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ABSTRACT
Emerging as an alternative to databases for continuous data
processing, stream processing has evolved significantly since
its inception in the early 2000s, leading to the emergence of
numerous Stream Processing Engines (SPEs).
Two main approaches exist to define streaming applica-

tions: to explicitly define graphs of common operators (Fil-
ters, Maps, Joins, and Aggregates) as the Dataflow model
prescribes, or to express patterns of interest based on obser-
vations of low-level events within the domain under analysis,
known as Complex Event Recognition (CER).

Motivated by SPEs’ semantic overlap, recent research has
shown Aggregates suffice for an SPE to be as semantically
expressive as other SPEs. However, a question remains open:
Do Aggregates possess the semantic expressiveness required
to cover CER too? We address this question formally demon-
strating they indeed hold such semantic expressiveness.
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• Information systems→ Data management systems; •
Theory of computation→ Streaming models.
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1 INTRODUCTION
Stream processing technologies have continuously evolved
over the years [14]. Research in the area focused both on
defining programming models and semantics for streaming
queries [12, 15] and on building Stream Processing Engines
(SPEs) for efficient and scalable query execution [22].

Over the years, the Dataflow model [3] emerged as the
de-facto standard for building distributed and parallel stream
processing systems. This model defines streaming queries
as a directed graph of independent operators. Each operator
computes part of a query and feeds the results of its execution
to downstream operators for further processing. As operators
do not share any state but only communicate by exchanging
immutable data, they can be independently deployed on the
same or different hosts, possibly in multiple copies, thus
enabling the scaling up and out of streaming applications.

The Dataflow model also captures notions of correctness
and fault tolerance. It relies on event-time semantics [2], that
is, it measures time based on timestamps that are associated
with streaming elements by applications and thus reflect the
notion of time for the specific application at hand. Dataflow
SPEs ensure that the results of the computation are the same
as if each input element was analyzed once and only once
(exactly-once semantics), even in the presence of failures,
and provide support to ensure that out-of-order elements do
not result in missing/wrong outputs.

In summary, using the Dataflow model to express stream-
ing queries enables scalable, correct, and fault-tolerant execu-
tion on modern stream processing platforms such as Apache
Spark [27], Apache Flink [9], or Google Dataflow [3].

Each SPE offers a rich library of common operators, which
partially but not completely overlap. This state of things
stimulated research on discovering equivalence relations and
overlapping between these operators. For instance, Apache
Beam [7] offers a unified syntax to express operators that
can be later translated to the specific API of individual SPEs
that support those operators. More recent work has shown
that many operators can be rewritten as compositions of a
restricted set of elementary operators and further proved
that all common operators found in state-of-the-art SPEs
can be expressed as a composition of a single minimalistic
Aggregate operator [18].
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The studies discussed above only target streaming applica-
tions that involve data transformations such as filtering, mod-
ification of individual data elements, join, or aggregations,
and can be directly expressed using the common operators
in the Dataflow model. However, data transformations only
cover part of the typical areas of application of SPEs [12].
In particular, stream processing is widely adopted as a tool
for monitoring and decision support. In this context, the
main task for the SPE is to identify situations of interest
starting from observations of low-level events that occur
in the domain under analysis, also referred to as Complex
Event Recognition (CER) [5, 15]. CER tasks are frequently
expressed using high-level languages that declaratively de-
fine the temporal patterns of events to be detected. Despite
promising investigations on the semantics and expressive-
ness of these languages [4, 10], a mapping of CER tasks onto
the common operators of SPEs has never been discussed
from a formal standpoint. Instead, bringing CER tasks onto
Dataflow SPEs entails defining custom operators to express
pattern detection functionalities that are not directly encoded
in common operators [15].

In this paper, we build on the work presented in [18] and
investigate whether compositions of Aggregate operators are
sufficient not only to cover simple data transformations but
also the pattern-detection requirements of CER. Specifically,
we observe that CER queries entail three main tasks: (1) ana-
lyze individual events or groups of events that take place at
the same point in time, for instance, to identify and remove
duplicate notifications of the same observations; (2) find-
ing patterns of events that span a period of time of known
length, for instance, to identify situations that always last
(at maximum) for the same amount of time, but may start
at any point in time; and (3) finding patterns of events that
span a period of time of unknown length and potentially
unbounded, for instance, because the start or the end of the
pattern is determined by the arrival of a specific element in
the input stream.

We prove that all these three tasks can be expressed as com-
positions of an Aggregate operator, relying only on basic as-
sumptions of the Dataflow model, namely event-time, water-
marks, key-by data partitioning, and basic non-nested loops.
This result brings significant consequences from both a theo-
retical and a practical viewpoint, as it enables CER tasks to be
implemented on top of virtually every distributed Dataflow-
based SPE, obtaining correctness in terms of exactly-once
semantics and event-time order.

An additional key contribution this paper brings to the re-
search on stream processing and CER by demonstrating that
CER tasks can be implemented on top of any Dataflow-based
SPE that offers an Aggregate operator is that Aggregates
have been widely studied since early engines, and features

such as parallelism, distribution, elasticity, and fault toler-
ance are well-supported for them. Hence, proving a certain
CER analysis can be expressed by composing Aggregates
implies such analysis can seamlessly benefit from elasticity,
parallelism, distribution, and fault tolerance in modern SPEs.
Paper organization: § 2 covers preliminaries and our sys-

tem model and assumptions. § 3-§ 5 each cover one of the
complex semantics operators we show can be expressed by
composing Aggregate operators: § 3 covers the Sort&Pre-
Process 𝑆&𝑃 operator, which can be used to sort and analyze
events that, individually or in groups, happen at a given point
in time; § 4 covers the Time-based CER (𝑇 -𝐶𝐸𝑅) operator,
used to find patterns of known length in time; and § 5 covers
the Rule-based CER (𝑅-𝐶𝐸𝑅) operator, used to find patterns
whose start/end time and whose duration are not known a
priori but rather a function of the data itself. § 6 discusses
related work. § 7 concludes the paper.

2 PRELIMINARIES AND SYSTEM MODEL
2.1 Stream processing basics
Since we build on the work from [18], we rely on an equiv-
alent system model for stream processing (presented next)
with a minor addition compared to the original model.

A stream 𝑆 is an unbounded sequence of tuples. Each tu-
ple ⟨𝜏, 𝜙⟩ carries a timestamp 𝜏 and a payload 𝜙 . We do not
impose any restriction on how many attributes 𝜙 carries nor
their type, but we assume the payloads of two tuples 𝑡1, 𝑡2
are comparable to assert whether 𝑡1.𝜙 = 𝑡2 .𝜙 and assume 𝑡1,
𝑡2 are equal (i.e., 𝑡1 = 𝑡2) if 𝑡1.𝜏 = 𝑡2.𝜏 ∧ 𝑡1.𝜙 = 𝑡2.𝜙 . We use
the notation 𝑡 .𝜙 .𝑥 to refer to the attribute 𝑥 carried by 𝑡 in
its payload 𝜙 . We say 𝜙 ′ encapsulates 𝜙 if 𝜙 is an attribute of
𝜙 ′. We use null to refer to uninitialized payloads or unini-
tialized payload’s attributes and write 𝑋 ←− {𝑎1:𝑣1, 𝑎2:𝑣2, . . .}
to say object 𝑋 is initialized with attribute 𝑎1 carry value 𝑣1,
attribute 𝑎2 carry value 𝑣2, and so on.

Queries are composed of operators, connected in a directed
graph, that process and forward/produce tuples. For a tuple
𝑡 , 𝑡 .𝜏 denotes its event time. Operators set 𝑡𝑜 .𝜏 of an output
tuple 𝑡𝑜 according to their semantics, as explained next. Event
time is expressed in units from a given epoch and progresses
in SPE-specific 𝛿 increments (e.g., milliseconds [13]), where
𝛿 represents the time granularity of the underlying SPE.

We consider both common stateless and stateful operators.
Operators like Map (𝑀) and Filter (𝐹 ) are stateless and do
not maintain a state that evolves based on the tuples they
process.

Map 𝑆𝑂 ←− 𝑀 (𝑆, 𝑓𝑀 ) processes the tuples from 𝑆 with func-
tion 𝑓𝑀 to produce stream 𝑆𝑂 . Function 𝑓𝑀 is invoked on
each 𝑡𝑖 ∈ 𝑆 to produce zero, one, or more 𝑡𝑜 output tuples.
Note 𝑡𝑜 .𝜏 = 𝑡𝑖 .𝜏 for a 𝑡𝑜 produced from 𝑡𝑖 .
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Filter 𝑆𝑂 ←− 𝐹 (𝑆, 𝑓𝐹 ) forwards each 𝑡𝑖 ∈ 𝑆 to 𝑆𝑂 if 𝑓𝐹 (𝑡𝑖 )
holds. Note 𝑡𝑖 = 𝑡𝑜 for a 𝑡𝑜 output by processing 𝑡𝑖 .
Stateful operators produce results from a state depen-

dent on a set of tuples. In this paper, we consider Aggre-
gates [13, 21, 26] defined over delimited groups of tuples
called time-based windows (or simply windows). We denote
as Γ(WA,WS, 𝑆, 𝑓𝐾 , 𝐿) a window specified as follows:
Window Advance (WA) and Window Size (WS) are the
parameters that define the event time periods covered by Γ:
[ℓWA, ℓWA +WS), with ℓ ∈ N. We refer to one such event
time period as window instance 𝛾 . If WA < WS, consecutive
𝛾s overlap, Γ is called sliding, and a tuple can fall into many
𝛾s. IfWA = WS, Γ is called tumbling and each tuple falls in
exactly one 𝛾 .
Input stream 𝑺 is the input stream fed to Γ.
Key-by function 𝒇𝑲 returns a numerical key for a tuple 𝑡 .
Dedicated𝛾s are then maintained for tuples sharing the same
key.
Allowed Lateness 𝑳 is used to decide whether a tuple 𝑡

falling in 𝛾 but received by the Aggregate maintaining Γ
after such Aggregate has produced a result for 𝛾 should still
be added to 𝛾 , potentially resulting in a new (or updated)
output tuple.

Aggregate operators, defined next, maintain a Γ and assign
their input tuples from 𝑆 to Γ’s instances 𝛾 depending on the
WA, WS, 𝑓𝐾 , and 𝐿 parameters. In the remainder, we use the
following notation for a specific 𝛾 :
• 𝛾 .𝑘 refers to the key associated to 𝛾 . All tuples falling in a
given 𝛾 share the same key. That is, if 𝑡1 and 𝑡2 fall in the
same 𝛾 , then 𝑓𝐾 (𝑡1) = 𝑓𝐾 (𝑡2).
• 𝛾 .𝑙 refers to the left boundary (inclusive) of 𝛾 . The right
boundary (exclusive) can be computed as 𝛾 .𝑙 +WS.
• 𝛾 .𝜙 refers to the state maintained by the 𝛾 . This state
depends on user-defined functions (presented next) and
could e.g., maintain the input tuples falling in 𝛾 , to aggre-
gate them later once an output tuple is to be produced
from 𝛾 , or an incrementally-aggregated value, for instance,
a counter used to output the number of tuples falling in 𝛾 .
As common in related works [7, 18, 26] and adopted by

state-of-the-art SPEs like Apache Flink [13], 𝑡𝑜 .𝜏 – the times-
tamp of an output tuple 𝑡𝑜 created from a given 𝛾 – is set to
reflect the maximum allowed timestamp for the tuples falling
in such 𝛾 , i.e., 𝛾 .𝑙 +WS − 1 (since the right boundary of 𝛾 is
exclusive). For a given 𝑡𝑜 , the event time period covered by
the 𝛾 from which 𝑡𝑜 is output is then [𝑡𝑜 .𝜏 −WS + 1, 𝑡𝑜 .𝜏 + 1).
When assigning tuples to Γ’s instances, note that, on the

one extreme, 𝑓𝐾 can be defined so that all tuples from 𝑆 fall
in a single 𝛾 for a given event time period. On the other
extreme, 𝑓𝐾 can be defined so that only identical tuples share
the same𝛾 for a given event time period [18]. The former can
be achieved by an 𝑓𝐾 , which we refer to as 𝑓𝐾∅ , that returns

always the same key, e.g., the value 0, independently of the
tuple fed to it. The latter can be achieved by an 𝑓𝐾 , which
we refer to as 𝑓𝐾∗ , that hashes both 𝑡 .𝜏 and 𝑡 .𝜙 .

We define the Aggregate operator as:

𝑆𝑂 ←− 𝐴(Γ(WA,WS, 𝑆, 𝑓𝐾 , 𝐿), 𝑓𝑈 , 𝑓𝑂 )
Function 𝑓𝑈 (𝛾, 𝑡) is invoked for each window 𝛾 and input
tuple 𝑡 (falling in 𝛾 ) to update 𝛾 .𝜙 . Function 𝑓𝑂 (𝛾) is invoked
to compute the 𝜙 payloads of the output tuples from 𝛾 and
to forward such output values if the set returned by 𝑓𝑂 is not
empty.

Note that the semantics of a given𝐴 can be achieved by dif-
ferent combinations of 𝑓𝑈 /𝑓𝑂 . To exemplify this, we present
two sample 𝐴s that show two possible ways in which 𝑓𝑈 /𝑓𝑂
can be defined to aggregate 𝑆 tuples by computing the first
and third quartiles of their 𝑡 .𝜙 .𝑣 values over a given Γ. The
first example aims at minimizing the per-tuple processing
cost and only aggregate data on output production. This 𝐴
is presented in Listing 1.

Listing 1: Sample𝐴 computing the first and third quartiles
of 𝑡 .𝜙 .𝑣 values upon output production.
𝑆𝑂 ←− 𝐴(Γ (WA,WS, 𝑆, 𝑓𝐾 , 𝐿), 𝑓𝑈 , 𝑓𝑂 ) , where:

1 Function 𝑓𝑈 (𝛾, 𝑡 )
2 if 𝛾 .𝜙 = null then 𝛾 .𝜙 ←− {𝑉 :∅}
3 𝛾 .𝜙.𝑉 ←− 𝛾 .𝜙.𝑉 ∪ 𝑡 .𝜙.𝑣 // Store 𝑡 .𝜙.𝑣 in 𝛾 .𝜙.𝑉

4 Function 𝑓𝑂 (𝛾 )
5 𝛾 .𝜙.𝑉 ←− sort(𝛾 .𝜙.𝑉 )
6 return { 𝑓 𝑞:firstQuart(𝛾 .𝜙.𝑉 ), 𝑡𝑞:thirdQuart(𝛾 .𝜙.𝑉 ) }

Upon reception of a tuple 𝑡 , 𝑓𝑈 is used to initialize an empty
set𝑉 if 𝑡 is the first tuple falling in𝛾 (List.1,L2). Subsequently,
𝑡 .𝜙 .𝑣 is added to such 𝑉 (List.1,L3). When an output tuple is
to be created from 𝛾 , the respective payload is computed by
𝑓𝑂 defining two values 𝑓 𝑞 and 𝑡𝑞, the first and third quartile
computed from 𝑉 (sorted), respectively, (List.1,L5-6). In the
example, the two quartiles are computed with the auxiliary
functions sort, firstQuart, and thirdQuart.
The second example aims to minimize the time required

to produce an output tuple. As shown in Listing 2, 𝑓𝑈 is in
this case defined so that 𝛾 .𝜙 .𝑉 maintains 𝑡 .𝜙 .𝑣 values sorted
(List.2,L3) and so that the first and third quartiles, maintained
in 𝛾 .𝜙 .𝑓 𝑞 and 𝛾 .𝜙 .𝑡𝑞, respectively, are updated for each new
tuple falling in 𝛾 (List.2,L4-5). When a tuple is to be output
from a 𝛾 , the time required to do so is then minimized since
𝑓𝑂 can simply forward 𝛾 .𝜙 .𝑓 𝑞 and 𝛾 .𝜙 .𝑡𝑞.
In the following, we use the notation 𝑓 ←− 𝑓 ′ for the

functions of a Γ or an operator when 𝑓 is optional and, if not
defined, is then set to 𝑓 ′.

Concerning the additions our model has compared to the
original one [18], namely 𝑓𝑈 , note that 𝑓𝑈 allows updating
a 𝛾 ’s state continuously, as tuples are added to it, but does
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Listing 2: Sample𝐴 computing the first and third quartiles
of 𝑡 .𝜙 .𝑣 values (the actual values are computed incremen-
tally upon the reception of each new tuple).
𝑆𝑂 ←− 𝐴(Γ (WA,WS, 𝑆, 𝑓𝐾 , 𝐿), 𝑓𝑈 , 𝑓𝑂 ) , where:

1 Function 𝑓𝑈 (𝛾, 𝑡 )
2 if 𝛾 .𝜙 = null then 𝛾 .𝜙 ←− {𝑉 :∅, 𝑓 𝑞:0, 𝑡𝑞:0}
3 𝛾 .𝜙.𝑉 ←− sortInsert(𝛾 .𝜙.𝑉 , 𝑡 .𝜙.𝑣) // Store 𝑡 .𝜙.𝑣 in 𝛾

4 𝛾 .𝜙.𝑓 𝑞 ←− firstQuart(𝛾 .𝜙.𝑉 ) // Update 𝑓 𝑞

5 𝛾 .𝜙.𝑡𝑞 ←− thirdQuart(𝛾 .𝜙.𝑉 ) // Update 𝑡𝑞

6 Function 𝑓𝑂 (𝛾 )
7 return { 𝑓 𝑞:𝛾 .𝜙.𝑓 𝑞, 𝑡𝑞:𝛾 .𝜙.𝑡𝑞}

not imply a higher expressiveness than that of an 𝐴 that,
as in [18], only defines an 𝑓𝑂 function. This is because any
operation performed by 𝑓𝑈 can also be later performed by
𝑓𝑂 once all the tuples falling into a given 𝛾 have been added
to such 𝛾 .

2.2 Correctness conditions
When deploying and running𝑀 , 𝐹 , and 𝐴 operators, users
expect SPEs to enforce such operators’ semantics correctly.
Since𝑀 and 𝐹 do not maintain a tuple-dependent state, cor-
rect semantics are enforced by processing each tuple exactly
once. The operator 𝐴 requires greater care, though. Leav-
ing aside late arrivals (discussed next), its correct execution
requires 𝑓𝑈 to be invoked exactly once on each tuple 𝑡 to
update the state of the 𝛾s to which 𝑡 falls into, and 𝑓𝑂 to be
invoked exactly once on each 𝛾 once such 𝛾 contains all the
tuples that should be aggregated together depending on Γ’s
definition.
While 𝑓𝑈 can be immediately invoked by an 𝐴 upon the

reception of a tuple 𝑡 , how can an 𝐴 know when a certain 𝛾
contains all the tuples falling in it and can be thus passed to
𝑓𝑂? This is achieved with the support of watermarks [19]:

Definition 1. The watermark𝑊 𝜔
𝐴

of 𝐴 at wall-clock time
𝜔 is the earliest event time a tuple 𝑡𝑖 fed to 𝐴 can have from
time 𝜔 on (i.e., 𝑡𝑖 .𝜏 ≥𝑊 𝜔

𝐴
,∀𝑡𝑖 processed from 𝜔 on).

In the literature [13, 19], watermarks are commonly main-
tained assuming data sources periodically output water-
marks as special tuples to notify how event time advances.
Upon receiving a watermark, 𝐴 stores the watermark’s time,
updates𝑊 𝜔

𝐴
to the smallest of the latest watermarks received

from each upstream peer, and propagates𝑊 𝜔
𝐴
. Upon an in-

crease of𝑊 𝜔
𝐴

and before forwarding𝑊 𝜔
𝐴
, 𝐴 invokes 𝑓𝑂 on

any 𝛾 |𝛾 .𝑙 +WS ≤𝑊 𝜔
𝐴
, in 𝛾 .𝑙 order, forwarding the resulting

output tuples in timestamp order and discarding such a 𝛾
since no more tuples will fall in it.

Handling late arrivals. As aforementioned, Γ defines 𝐿 to
handle late arrivals. More concretely, by delaying the purging
of 𝛾s by 𝐿. Tuple 𝑡 is a late arrival for𝐴 if 𝑡 .𝜏 <𝑊 𝜔

𝐴
when, at

time 𝜔 , 𝐴 processes 𝑡 . According to the Dataflow model [3],
𝑡 is processed, added to 𝛾 , and can result in an output tuple
(potentially an update of a previous output tuple) if 𝛾 .𝑙 +
WS ≤𝑊 𝜔

𝐴
+ 𝐿 at 𝜔 . Note that, if 𝐿 > 0 and watermarks are

forwarded by 𝐴 as described in § 2.2, results produced by 𝐴
could be late arrivals for 𝐴’s downstream peers. Also, note
we account for parameter 𝐿 since such a parameter is needed
to support loops [18], but we do not further use it to define
the operators we present in § 3-§ 5. We thus omit 𝐿 from Γ
in the reminder.

2.3 System model
With this work, we aim at formally showing that𝐴 operators
are sufficient to enforce the semantics of CER, namely: pre-
processing data (§ 3), finding patterns of events spanning a
period of known maximum duration (§ 4), and finding pat-
terns of events spanning a period of unknown duration (pos-
sibly unbounded) and location (§ 5). Note that it is not within
the scope of our contribution to account for performance-
and implementation-specific optimization, which we plan
to focus on in future work. We consider SPEs for which the
following can hold:
A1 A stream can feed one or more 𝐴 operators, delivering
the same tuples/watermarks in the same order.
A2 An 𝐴 operator can iterate over its outputs with a loop.
A3 Each stream 𝑆 delivers watermarks with a max event time
distance 𝐷𝑊 between𝑊 𝑖 and𝑊 𝑖+1. If the first tuple 𝑡0 ∈ 𝑆
precedes the first watermark𝑊 0, then𝑊 0 − 𝑡0.𝜏 ≤ 𝐷𝑊 .
For A2, note that if an output tuple 𝑡𝑜 , with 𝑡𝑜 .𝜏 = 𝛾𝑖 .𝑙 +

WS−𝛿 , is fed back to𝐴 immediately once𝐴’s watermark has
been updated to the𝑊 𝜔

𝐴
that results in 𝑡𝑜 ’s production, then

𝑡𝑜 falls into 𝛾𝑖 but constitutes a late arrival for 𝐴. As in [18],
we assume𝐴 handles watermarks and late arrivals so that all
looping tuples are processed, that any output tuples resulting
from such processing are forwarded to𝐴’s downstream peers,
and that𝐴’s watermarks are forwarded to downstream peers
preventing 𝐴’s output tuples from being late arrivals for the
latter. We refer to [18] for a detailed discussion about how
this can be done.

AboutA3 note that if an𝐴 operator is fed an input stream
for which A3 holds, a distance 𝐷𝑊 exists for 𝐴’s output too.
By extension, it also holds for all 𝐴 operators of a query
composed exclusively of 𝐴 operators.
Note A1-A3 are only needed for the operator in § 5. If

streams 𝑆𝐼1 , 𝑆𝐼2 , . . . are fed to𝐴, we write {𝑆𝐼1 , 𝑆𝐼2 , . . .} to refer
to the merged stream fed to 𝐴.

Finally, note that 𝐹 and𝑀 have already been proven to be
expressable as compositions of 𝐴 operators. As such, relying
on 𝐹 and𝑀 operators is not in contradiction with our goal
of showing how complex semantics can be enforced solely
by composing 𝐴 operators.
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Before presenting our operators, note the following sec-
tions are structured as follows: Definition describes the de-
sired semantics of the operator, Challenges and Intuition rea-
sons about how the desired semantics can be achieved by
relying on𝐴 operators, Solution contains the formal solution,
while Explanation and Proof describe the proposed solution
and provides a formal proof.

3 SORT AND PRE-PROCESS (𝑆&𝑃)
With this operator, we show how events carried by the tuples
of a stream can be sorted and pre-processed (e.g., to clean
them before further processing them). Such pre-processing
can e.g., shape the selection policy [23] dictating how events
are chosen to participate in pattern detection and which
events are eligible for inclusion.
For instance, when multiple instances of the same type

of event occur, potentially fitting the criteria for a complex
event pattern, the 𝑆&𝑃 operator can be employed to sort
and remove duplicate tuples within a stream 𝑆 (i.e., remove
𝑡 ′ ∈ 𝑆 if ∃𝑡 ∈ 𝑆 so that 𝑡 = 𝑡 ′). Removing duplicate events
is common in CER systems: indeed, the same event may be
captured from multiple sensors, resulting in duplicate notifi-
cations within the system. Likewise, different CER queries
may derive the same observation and produce equivalent
events in the output: in these cases, discarding redundant
event derivations based on some application-level notion of
equivalence is key to providing a concise view of the status
of the domain under analysis to end users.

Definition. With the 𝑆&𝑃 operator, defined as:

𝑆𝑂 ←− 𝑆&𝑃 (𝑆, 𝑓𝑃 , 𝑓𝐾 ←− 𝑓𝐾∗ )
a user is interested in sorting the tuples and in pre-processing
together, with function 𝑓𝑃 , tuples that share the same times-
tamp and key (i.e., tuples that are equivalent according to the
user/application). Such a key can be defined by the user with
the 𝑓𝐾 function. Alternatively, 𝑓𝐾 is set to 𝑓𝐾∗ by default (see
§ 2.1) implying two tuples 𝑡1, 𝑡2 are pre-processed together
only if 𝑡1 = 𝑡2.

Challenges and intuition. Every tuple in 𝑡 ∈ 𝑆 can be po-
tentially forwarded as is or result in the production of an
output tuple with a different payload once pre-processed
by 𝑓𝑃 , and possibly after being re-ordered, but carrying the
same 𝑡 .𝜏 . If this is to be achieved by relying on an 𝐴 able to
“forward” tuples from 𝑆 , or transformations of such tuples,
to its output stream, we can note that 𝑓𝑈 can store incoming
tuples in its 𝛾 .𝜙 and later feed them to 𝑓𝑃 upon invocation
of 𝑓𝑂 . To match the timestamp of output tuples with that
of input tuples, we can rely on a tumbling Γ with WS and
WA equal to 𝛿 . By doing this, each tuple 𝑡𝑖 will fall exactly
in one 𝛾 so that 𝛾 .𝑙 = ⌈ 𝑡𝑖 .𝜏WA ⌉WA = 𝑡𝑖 .𝜏 (note ⌈ 𝑡𝑖 .𝜏WA ⌉ =

𝑡𝑖 .𝜏

WA if
WA = 𝛿 , because 𝛿 is the event-time granularity of the SPE

under consideration, see § 2.1) and the corresponding output
will have a timestamp 𝑡𝑜 .𝜏 = 𝛾 .𝑙 +WS − 𝛿 = 𝛾 .𝑙 = 𝑡𝑖 .𝜏 .

We note that, based on 𝑓𝐾 , if a 𝛾 contains more than one
tuple, then such tuples share the same key (according to the
user-defined 𝑓𝐾 or 𝑓𝐾∗ ) and are to be pre-processed together.

Solution. Based on the aforementioned intuition, we can now
state the following theorem.

Theorem 1. 𝑆&𝑃 ’s semantics can be enforced by an 𝐴 opera-
tor as specified in Listing 3.

Listing 3: 𝐴 implementing 𝑆&𝑃
𝑆𝑂 ←− 𝐴(Γ (𝛿, 𝛿, 𝑆, 𝑓𝐾 ←− 𝑓𝐾∗ ), 𝑓𝑈 , 𝑓𝑂 ) , where:

1 Function 𝑓𝑈 (𝛾, 𝑡 )
2 if 𝛾 .𝜙 = null then 𝛾 .𝜙 ←− {𝑇 :∅}
3 𝛾 .𝜙.𝑇 ←− 𝛾 .𝜙.𝑇 ∪ 𝑡 // Store 𝑡 in 𝛾

4 Function 𝑓𝑂 (𝛾 )
5 return 𝑓𝑃 (𝛾 .𝜙.𝑇 ) // Return the output from 𝑓𝑃

As shown, each tuple 𝑡 falling in a given 𝛾 is stored upon
invocation of 𝑓𝑈 , once the state is initialized with a single
attribute 𝑇 (initially an empty set) when the very first tuple
falling in 𝛾 is received (List.3,L2-3). The output(s) from 𝑓𝑃
are then returned upon invocation of 𝑓𝑂 (List.3,L5).

After covering Listing 3, we formally prove Theorem 1.

Proof. (Theorem 1) By contradiction, we assume 𝑡𝑜 is an
output tuple produced by 𝑓𝑃 from a set 𝑇 ′ of tuples fed to
𝑆&𝑃 sharing the same timestamp 𝜏 ′ and key 𝑘 ′, but 𝑡𝑜 is not
produced (C1), produced more than once (C2), or produced
with the wrong timestamp/payload (C3), where C1 excludes
C2, but C2 and C3 could be observed at the same time.
Since 𝑓𝑂 (List.3,L5) is always invoked exactly once by 𝐴,

C1-C3 can only be ascribed to𝛾 .𝜙 .𝑇 not containing the exact
same tuples contained in 𝑇 ′.
All 𝑡s in 𝛾 .𝜙 .𝑇 share the same timestamp (becauseWA =

WS = 𝛿) and key, and there is a 𝛾 for each possible value of
𝛾 .𝑙 (because WA = 𝛿). Hence, if 𝛾 .𝑙 = 𝜏 ′ and 𝛾 .𝑘 = 𝑘 ′, then
𝛾 .𝜙 .𝑇 cannot contain tuples other than that in 𝑇 ′. Moreover,
𝑓𝑂 is only invoked on 𝛾 when𝑊 𝜔

𝐴
> 𝛾 .𝑙 = 𝜏 ′, so all tuples in

𝑇 ′ are also in 𝛾 .𝜙 .𝑇 , which leaves as only option for C1-C3
that for which not all tuples from 𝑇 ′ are fed to 𝑆&𝑃 , which
contradicts the initial assumption. □

4 TIME-BASED CER (𝑇 -𝐶𝐸𝑅)
With this operator, we exemplify CER queries having known
maximum time boundaries. These queries are frequent in
CER, as they enable capturing situations of interest in which
a set of events takes place within a maximum window of
time: for instance, in environmental monitoring applications,
physical phenomena may be derived from the observation
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of many anomalous event notifications received within a
predefined period of time. In fact, predicating on temporal
patterns and their duration is considered one of the base
features that most CER languages offer [5, 10].

Definition. With the 𝑇 -𝐶𝐸𝑅 operator, defined as:
𝑆𝑂 ←− 𝑇 -𝐶𝐸𝑅(𝑆, 𝑓𝐾 ←− 𝑓𝐾∅ , 𝐷𝐶 , 𝑓𝐶 )

a user is interested in finding, within stream 𝑆 , one or more
time-bound sequences 𝑃 = {𝑡𝑎, . . . , 𝑡𝑧} for tuples:
• sharing the same value of a key-by function 𝑓𝐾 ,
• so that max𝜏 𝑃 −min𝜏 𝑃 < 𝐷𝐶 , and
• for which a condition checked by 𝑓𝐶 holds.
𝑇 -𝐶𝐸𝑅 should report each found sequence exactly once. Note
that the default value for 𝑓𝐾 , 𝑓𝐾∅ (see § 2.1), implies all tuples
from 𝑆 are to be checked together. The function 𝑓𝐶 is used
to check, incrementally, if the user-defined condition holds
while being fed a set of tuples 𝑇 that potentially contains
𝑃 . More concretely, 𝑚,Φ𝑂 ←− 𝑓𝐶 (𝑚, 𝑡), once fed a state 𝑚
(initially null) and a tuple 𝑡 , returns an updated state𝑚 and
a set Φ𝑂 (possibly empty) of 𝜙s, one for each sequence found
upon the processing of 𝑡 , with𝑚 holding the information
about tuples processed before 𝑡 and possibly part of one or
more sequences 𝑃 . We assume each such 𝜙 defines at least
the attributes 𝜙.min𝜏 𝑃 and 𝜙.max𝜏 𝑃 for each sequence 𝑃
found in 𝑇 .

Challenges and intuition. Intuitively, knowing that 𝑃 cannot
span more than 𝐷𝐶 event-time units implies that a Γ with
WS = 𝐷𝐶 could have a 𝛾 so that 𝑃 falls entirely in such 𝛾 .
Note, though, we do not know the exact location in event-
time of 𝑃 , and näively going for a Γ with WA = 𝛿 and WS =
𝐷𝐶 , which would ensure that the 𝐷𝐶 period in which 𝑃 is
located falls entirely in at least one 𝛾 since Γ has 𝛾s starting
at each event-time value, could be too costly. This is because
this would imply each tuple 𝑡 falls in ⌈𝐷𝐶

𝛿
⌉ 𝛾s. If 𝐷𝐶 is 1 hour

and 𝛿 is 1 ms (e.g., as in Apache Flink [13]), as an example,
each 𝑡 would contribute to 3.6 × 106 𝛾s.

We can note, though, that by selecting WA/WS so that:
WA ≤ (WS − 𝐷𝐶 ) + 𝛿 ∧WS ≥ 𝐷𝐶

each sequence 𝑃 falls entirely in at least one 𝛾 (as formally
proved later). By defining a sliding window Γ ofWA = 0.5𝐷𝐶
andWS = 1.5𝐷𝐶 , for instance, any 𝑃 , from the ones for which
min𝜏 𝑃 = max𝜏 𝑃 to the ones for which max𝜏 𝑃 − min𝜏 𝑃 =

𝐷𝐶 − 𝛿 , falls in 1 to 3 𝛾s, as shown in Figure 1.
Note that, if 𝑃 falls in more than 1 𝛾 , it should nonetheless

be reported only once according to 𝑇 -𝐶𝐸𝑅’s definition. In
this case, each 𝛾𝑖 , knowing its boundaries, could check if the
subsequent 𝛾𝑖+1 also contains 𝑃 in its entirety, and in such a
case defer the output of the payloads in Φ𝑂 to such 𝛾𝑖+1.

Solution. Based on the aforementioned intuition, we can now
state the following theorem.

event
time
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Figure 1: Example showing how a sequence 𝑃 falls into
1 to 3 𝛾s for a Γ withWA = 0.5𝐷𝐶 and WS = 1.5𝐷𝐶 .

Theorem 2. 𝑇 -𝐶𝐸𝑅’s semantics can be enforced by an 𝐴

operator as specified in Listing 4.

Listing 4: 𝐴 implementing 𝑇 -𝐶𝐸𝑅
𝑆𝑂 ←− 𝐴(Γ (WA,WS, 𝑆, 𝑓𝐾 ←− 𝑓𝐾∅ ), 𝑓𝑈 , 𝑓𝑂 ) , forWA and WS so
that WA ≤ (WS − 𝐷𝐶 ) + 𝛿 ∧WS ≥ 𝐷𝐶 and where:

1 Function 𝑓𝑈 (𝛾, 𝑡 )
2 if 𝛾 .𝜙 = null then // setup state if 𝜙 unintialized
3 𝛾 .𝜙 ←− {𝑚:null,Φ𝑂 :∅}
4 𝛾 .𝜙.𝑚,Φ′

𝑂
←− 𝑓𝐶 (𝛾 .𝜙.𝑚, 𝑡 ) // get new state/outputs

5 for 𝜙𝑜 ∈ Φ′𝑂 do // store each 𝜙𝑜 not falling in next

𝛾

6 if
¬(𝜙𝑜 .min𝜏 𝑃 ≥ 𝛾 .𝑙+WA∧𝜙𝑜 .max𝜏 𝑃 < 𝛾 .𝑙+WA+WS)
then

7 𝛾 .𝜙.Φ𝑂 ←− 𝛾 .𝜙.Φ𝑂 ∪ 𝜙𝑜
8 Function 𝑓𝑂 (𝛾 )
9 return 𝛾 .𝜙.Φ𝑂 // Return all previously stored

payloads

Explanation and Proof. Before our proof about the correct-
ness of the proposed solution, we can note from Listing 4
that, upon the reception of a tuple 𝑡 and the invocation of 𝑓𝑈 ,
𝐴 initializes its state to keep a null value that represents 𝑓𝐶 ’s
internal state and an initially empty set of output payloads
if 𝑡 is the first tuple falling in a given 𝛾 (List.4,L2-3). It then
retrieves the value of 𝑓𝐶 ’s internal state, passes it to 𝑓𝐶 to-
gether with 𝑡 , and retrieves the updated value of 𝑓𝐶 ’s internal
state, which it stores back in 𝛾 .𝜙 , and a set (possibly empty)
of output payloads Φ′

𝑂
(List.4,L4). According to 𝑇 -𝐶𝐸𝑅’s def-

inition, each 𝜙𝑜 ∈ Φ′𝑂 carries two attributes, 𝜙𝑜 .min𝜏 𝑃 and
𝜙𝑜 .max𝜏 𝑃 . For each 𝜙𝑜 ∈ Φ′𝑂 , if 𝜙𝑜 does not fall in the sub-
sequent window, which covers [𝛾 .𝑙 +WA, 𝛾 .𝑙 +WA+WS), 𝜙𝑜
is then stored in 𝛾 .𝜙 .Φ𝑜 (List.4,L5-7).
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Upon invocation of 𝑓𝑂 , all the payloads previously stored
during the invocations of 𝑓𝑈 are returned for the SPE to
forward them to the 𝐴’s downstream peers (List.4,L9).
After covering Listing 4, we now formally prove Theo-

rem 2.

Proof. (Theorem 2) By contradiction, if the proposed so-
lution does not meet 𝑇 -𝐶𝐸𝑅’s definition, then there exists a
sequence 𝑃 for which the user-defined condition checked by
𝑓𝐶 holds but for which no output or more than one output
is produced. Before discussing these two cases, note that
if WA ≤ (WS − 𝐷𝐶 ) + 𝛿 and WS ≥ 𝐷𝐶 , then WS − WA is
minimized when WA = WS − 𝐷𝐶 + 𝛿 .

Let’s begin by assuming no output is produced. Then, there
exists a sequence 𝑃 that falls across all 𝛾s. Let’s denote as 𝛾𝑖
one such 𝛾 and assume 𝑃 falls across 𝛾𝑖 ’s left boundary. That
is, min𝜏 𝑃 < 𝛾𝑖 .𝑙 ∧max𝜏 𝑃 ≥ 𝛾𝑖 .𝑙 . If 𝛾 .𝑙 −WA ≤ min𝜏 𝑃 < 𝛾𝑖 .𝑙 ,
then𝛾 .𝑙−WA+(𝐷𝐶−𝛿) ≤ min𝜏 𝑃 +(𝐷𝐶−𝛿) < 𝛾𝑖 .𝑙+(𝐷𝐶−𝛿).
Since max𝜏 𝑃 ≤ min𝜏 𝑃 + (𝐷𝐶 − 𝛿), then max𝜏 𝑃 < 𝛾𝑖 .𝑙 +
(𝐷𝐶 − 𝛿), and 𝛾𝑖 .𝑙 + (𝐷𝐶 − 𝛿) ≤ 𝛾𝑖 .𝑙 + WS − WA (equal if
WA = WS−𝐷𝐶 +𝛿). Hence, 𝑃 falls in 𝛾𝑖−1 = [𝛾𝑖 .𝑙 −WA, 𝛾𝑖 .𝑙 −
WA+WS). Similarly, if 𝛾 .𝑙 −2WA ≤ min𝜏 𝑃 < 𝛾𝑖 .𝑙 −WA, then
𝑃 falls in 𝛾𝑖−2 = [𝛾𝑖 .𝑙 − 2WA, 𝛾𝑖 .𝑙 − 2WA +WS), and so on. A
similar argumentation can be made if 𝑃 falls across 𝛾𝑖 ’s right
boundary (i.e., if min𝜏 𝑃 < 𝛾𝑖 .𝑙 +WS and max𝜏 𝑃 ≥ 𝛾 .𝑙 +WS)
showing that if 𝛾𝑖 .𝑙 +WS ≤ max𝜏 𝑃 < 𝛾𝑖 .𝑙 +WA +WS, then
𝑃 falls in 𝛾𝑖+1 = [𝛾𝑖 .𝑙 +WA, 𝛾𝑖 .𝑙 +WA +WS), and so on.
Moving now to the case in which more than one output

is produced, we can assume at least two outputs are pro-
duced. For this to happen, 𝑃 must fall in its entirety in two
𝛾s but, according to List.4,L5-7, these 𝛾s cannot be consec-
utive. Being 𝛾𝑖 , 𝛾𝑖+1, 𝛾𝑖+2, . . . a series of consecutive 𝛾s, if 𝑃
cannot fall in 𝛾𝑖 and 𝛾𝑖+1, it must then fall in 𝛾𝑖 and 𝛾𝑖+2, or
in 𝛾𝑖 and 𝛾𝑖+3, or in any pair 𝛾𝑖 and 𝛾𝑖+𝑗 so that 𝑗 > 1 and
so that a portion of shared event-time exists for 𝛾𝑖 and 𝛾𝑖+𝑗 .
Notice, though, that the period of event-time shared by 𝛾𝑖
and 𝛾𝑖+2 is [𝛾𝑖 .𝑙 + 2WA, 𝛾𝑖 .𝑙 +WS), which nonetheless is also
shared by 𝛾𝑖+1 that covers [𝛾𝑖 .𝑙 + 2WA, 𝛾𝑖 .𝑙 + 2WA+WS), thus
contradicting the need for 𝑃 not to fall in two consecutive
𝛾s. □

5 RULE-BASED CER (𝑅-𝐶𝐸𝑅)
By extending the 𝑇 -𝐶𝐸𝑅 operator from § 4 to sequences in
stream 𝑆 covering a period of time for which a max duration
is not known a priori, the 𝑅-𝐶𝐸𝑅 operator can be used to:
• Discard all out-of-order tuples. The relevant sequences in
𝑆 would then be the ones with non-decreasing timestamps.
• Forward tuples from 𝑆 only after a given criterion has
been met. More concretely, forward tuples from 𝑡𝑖 on-
ward only if a given criterion has been met over tuples
𝑡0, . . . , 𝑡𝑖−1 |𝑡 𝑗 .𝜏 ≤ 𝑡𝑖 .𝜏,∀𝑗 ∈ [0, 𝑖 − 1]. This would cover the

case in which the relevant sequence in 𝑆 is open-ended
on its right boundary.
• Similarly, discard all tuples from 𝑡𝑖 onward if a given crite-
rion has been met. This would cover the case in which the
relevant sequence in 𝑆 is open-ended on its left boundary.
• Implement consumption policies [23] by keeping track of
whether a certain event 𝑒 has been observed in 𝑆 and,
subsequently, which later events should be considered
part of the pattern initiated by such an event 𝑒 .

Definition. With the 𝑅-𝐶𝐸𝑅 operator, defined as:

𝑆𝑂 ←− 𝑅-𝐶𝐸𝑅(𝑆, 𝑓𝑘 ←− 𝑓𝐾∅ , 𝑓𝑀∗ , 𝑓𝑇 ←− 𝑓𝑇 ∗ )

a user is interested, for a given stream 𝑆 partitioned accord-
ing to a key-by function 𝑓𝐾 , in applying a stateful function
𝑓𝑀∗ on each of 𝑆 ’ tuples, traversing them in event-time order,
breaking ties on the order of tuples sharing the same times-
tamp with the function 𝑓𝑇 . Being stateful, 𝑓𝑀∗ processes each
tuple 𝑡 together with an evolving state that can account for
all tuples before 𝑡 (traversed based on their event time and
𝑓𝑇 -order). Note the default value for 𝑓𝐾 is 𝑓𝐾∅ and it implies
that all tuples in 𝑆 are to be processed with a single overall
state. The function 𝑓𝑇 ∗ , the default value for 𝑓𝑇 , implies tuples
sharing the same timestamps can be simply traversed in their
arrival order. Note the output tuples resulting from the pro-
cessing of an input tuple should share the same timestamp
as such an input tuple.
Similarly to the 𝑇 -𝐶𝐸𝑅 operator (see § 4), the function

𝑚,Φ𝑂 ←− 𝑓𝑀∗ (𝑚, 𝑡) accepts a state𝑚 (initially null) and a
tuple 𝑡 as input parameters, and returns the updated state𝑚
and a set (possibly empty) of output payloads Φ𝑂 .

While leaving to users the definition of the evolving state
supporting the analysis of a 𝑅-𝐶𝐸𝑅 operator, we note its
space complexity should not grow linearly with the number
of tuples being processed, since they are unbounded accord-
ing to 𝑆 ’ definition (see § 2.1). We assume A1-A3 (see § 2.3)
to hold.

Challenges and intuition. To begin with, we note each tuple
in 𝑆 can result in one or more output tuples that share the
same timestamp. This, though, cannot be achieved using the
same intuition we used for the 𝑆&𝑃 operator (i.e., that of
relying on a tumbling Γ with WA = 𝛿 and WS = 𝛿 , see § 3)
since the lack of overlapping between 𝛾s would challenge
the sharing of an evolving state across such 𝛾s.
First, we cannot set 𝑓𝐾 to 𝑓𝐾∗ since, in this case, 𝑓𝐾 is

defined by the user.
By relying on a Γ with WA = 𝛿 and WS > 𝛿 , though,

we would have Γ covering sequences in 𝑆 starting at each
possible event-time. Each 𝛾 could then be responsible for the
output tuples of a given 𝜏 . More concretely, the𝛾 whose right
boundary is 𝑛𝛿 could be responsible for storing the tuples 𝑡
so that 𝑡 .𝜏 = (𝑛 − 1)𝛿 and, accordingly, output tuples sharing
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Figure 2: Example providing an intuition about how
the results from 𝛾𝑖 , 𝛾𝑖+1, and 𝛾𝑖+2 could be used, via a
loop, to share information across such 𝛾s.

𝑡 ’s timestamp. In this case, the evolving state could be shared
across 𝛾s by leveraging a loop as exemplified in Figure 2.
Note though that, by setting WA = 𝛿 and WS > 𝛿 , each 𝑡

falls in several 𝛾s, while the results originating from such 𝑡

should be output only once (by the 𝛾 producing results that
share the same timestamp as 𝑡 ).

An additional challenge must be accounted for about how
to share state across 𝛾s. If we consider the 𝛾 that contains the
earliest 𝑡 from 𝑆 (or one of them if multiple 𝑡s share the same
timestamp) we can intuitively imagine such a tuple, with
others in 𝛾 , can be used by 𝑓𝑀∗ to create the first𝑚 shared
with subsequent 𝛾s upon the invocation of 𝑓𝑂 on 𝛾 . Such
subsequent 𝛾s, though, (1) might be fed tuples and (2) might
be fed to 𝑓𝑂 before the evolving state𝑚 is passed to them. In
the example from Figure 2, for instance, the input tuple is
already added to 𝛾𝑖+2 before the watermark triggering the
invocation of 𝑓𝑂 on 𝛾𝑖 is fed to 𝐴 maintaining 𝛾𝑖 , 𝛾𝑖+1, and
𝛾𝑖+2.

Observing that a 𝛾 , by itself, might not have access to
enough information, based on its left and right boundaries,
to know if it is the 𝛾 containing the very first tuple fed by 𝑆1,
this raises a question: if a 𝛾 is fed a tuple 𝑡 before being fed
a state𝑚, is that because 𝛾 is the one containing the earliest
tuple in 𝑆 or is it because the𝑚 from a previous 𝛾 ′ has not been
fed to 𝛾 yet? The ability to distinguish between these two
cases allows us to distinguish whether, upon the invocation
of 𝑓𝑂 on 𝛾 , the output payloads and state from 𝛾 can be
immediately output since 𝛾 contains the earliest tuple from
𝑆 , or whether the output payloads and state forwarding from
𝛾 should be delayed until a previous state being fed through
the loop reaches 𝛾 . This can be achieved as exemplified in
Figure 3 and explained next.
The idea is to rely on a sliding Γ withWA = 𝛿 andWS =

𝐷𝑊 + 𝛿 , where 𝐷𝑊 is the max event-time distance between
consecutive watermarks, and the 𝜏 attribute of the first tuple
and the first watermark fed by 𝑆 (A3, see § 2.3). As shown
in Figure 3, the first tuple 𝑡0 from 𝑆 falls in the 𝛾s covering
[𝑡0.𝜏 − 𝐷𝑊 , 𝑡0 .𝜏 + 𝛿), . . ., [𝑡0.𝜏, 𝑡0.𝜏 + 𝐷𝑊 + 𝛿).𝑊 ′, the first
1Except for the 𝛾 covering [0,WS) , which nonetheless is sure to exist only
under a too-strict assumption on the 𝜏 carried by the first tuple delivered
by 𝑆 .
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Figure 3: Example showing how a sliding ΓwithWA = 𝛿

andWS = 𝐷𝑊 +𝛿 ensures only the𝛾 containing the very
first tuple from 𝑆 is fed such tuple before other tuples
or before states shared by previous 𝛾s.

watermark following 𝑡0, cannot be far apart from 𝑡0 more
than𝐷𝑊 event-time units (A3). Hence, upon reception of𝑊 ′,
it is possible to output a tuple for the𝛾 covering [𝑡0 .𝜏−𝛿, 𝑡0.𝜏+
𝐷𝑊 ), which contains 𝑡0 and thus allows for the forwarding
of a state that depends on 𝑡0 to contribute to the 𝛾 covering
[𝑊 ′ − 𝛿,𝑊 ′ + 𝐷𝑊 ), among others. Upon reception of𝑊 ′′,
the watermark following𝑊 ′, which cannot be far apart from
𝑊 ′ more than 𝐷𝑊 (A3), it is possible to output a tuple for
the 𝛾 covering [𝑊 ′′ −𝛿,𝑊 ′′ +𝐷𝑊 ) with𝑊 ′′ −𝛿 >𝑊 ′ +𝐷𝑊 ,
among others, forwarding the state from 𝑡0 to the following
𝛾 , and so on.

Within such a setup, note that, being 𝑡1 the first tuple fed
by 𝑆 so that 𝑡1 .𝜏 > 𝑡0.𝜏 , if 𝑡1 falls in between 𝑡0 and𝑊 ′, then
𝑡1 falls into a 𝛾 that observes 𝑡0 too, and that can be thus
identified as a 𝛾 that is not responsible for the storing of
the first tuple 𝑡0 from 𝑆 . If 𝑡1 falls between𝑊 ′ and𝑊 ′′, it
then falls into a 𝛾 that contains a state created from a 𝛾 that
contained 𝑡0. Hence, it is possible, in this case too, to identify
the 𝛾 to which 𝑡1 falls as a 𝛾 that does not contain the first
tuple from 𝑆 , and so on. A similar reasoning applies to 𝑡2, the
first tuple fed from 𝑆 so that 𝑡2.𝜏 < 𝑡1.𝜏 , 𝑡3, and subsequent
tuples.
To complete our discussion about the challenges under-

lying the 𝑅-𝐶𝐸𝑅 operator, note that for a loop to be used
to share state across 𝛾s, 𝐴 needs to define for its input tu-
ples a payload 𝜙 that carries both the payload of 𝑆 tuples
and state-related attributes, while the output 𝑆𝑂 should only
carry the 𝜏 together with the payloads defined by 𝑓𝑀∗ . This
can be achieved by relying on additional 𝐹 and𝑀 operators
as shown in Figure 4. Note that, as aforementioned, 𝐹 and𝑀
operators have already been proven to be expressable using
𝐴 operators in [18].

Solution. Based on the aforementioned intuition, we can now
state the following theorem.
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Figure 4: Graph showing how𝑀 and𝐴 operators can be
composed to enforce the semantics of 𝑅-𝐶𝐸𝑅 and their
main tasks.

Theorem 3. 𝑅-𝐶𝐸𝑅’s semantics can be enforced by the oper-
ators shown in Figure 4 and specified in Listing 5.

Listing 5: 𝑀s, 𝐹 , and 𝐴 implementing 𝑅-𝐶𝐸𝑅

𝑆𝑀1 ←− 𝑀 (𝑆, 𝑓𝑀 ) , where: // 𝑀1 -Fig. 4

1 Function 𝑓𝑀 (𝑡 )
2 𝜙 ′ ←− {𝜙 :𝑡 .𝜙,𝑚:null, 𝑘 :𝑓𝐾 (𝑡 ), 𝑓 𝑟𝑜𝑚𝑆 :True}
3 return 𝜙 ′ // Encapsulate 𝜙 and add attributes used

by 𝐴
𝑆𝐴 ←− 𝐴(Γ (𝛿, 𝐷𝑊 + 𝛿, {𝑆𝑀1 , 𝑆𝐴 }, 𝑓𝐾 ′ ), 𝑓𝑈 , 𝑓𝑂 ) , where:

// 𝐴 -Fig. 4

4 Function 𝑓𝐾 ′ (𝑡 )
5 return 𝑡 .𝜙.𝑘
6 Function 𝑓𝑈 (𝛾, 𝑡 )
7 if 𝛾 .𝜙 = null then // Initialize state
8 𝛾 .𝜙 ←−

{ 𝑓 𝑖𝑟𝑠𝑡𝛾 :True,𝑇 :∅,𝑚:null,𝑚𝜏 :null, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔:True}
9 if 𝑡 .𝜙.𝑓 𝑟𝑜𝑚𝑆 then // 𝑡 comes from 𝑆
10 if 𝑡 .𝜏 = 𝛾 .𝑙 +𝐷𝑊 then // 𝛾 is responsible for 𝑡
11 sortInsert(𝑡 .𝜙) // store 𝑡 (sorted on 𝑓𝑇 )

12 else // this 𝛾 does not contain the earliest 𝑡
13 𝛾 .𝜙.𝑓 𝑖𝑟𝑠𝑡𝛾 ←− False

14 else // 𝑡 comes from 𝐴 (via the loop)
15 𝛾 .𝜙.𝑚 ←− 𝑡 .𝜙.𝑚
16 𝛾 .𝜙.𝑚𝜏 ←− 𝑡 .𝜏
17 Function 𝑓𝑂 (𝛾 )
18 if 𝛾 .𝜙.𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∧ (𝛾 .𝜙.𝑓 𝑖𝑟𝑠𝑡𝛾 ∨ 𝛾 .𝜙.𝑚𝜏 = 𝛾 .𝑙 +𝐷𝑊 − 𝛿 )

then // Ready to produce output payloads
19 Φ𝑂 ←− ∅
20 for ∀𝑡 ∈ 𝛾 .𝜙.𝑇 do // For all input 𝑡s
21 𝛾 .𝜙.𝑚, Φ′

𝑂
←− 𝑓𝑀∗ (𝛾 .𝜙.𝑚, 𝑡 )

22 Φ𝑂 ←− Φ𝑂 ∪ Φ′𝑂
23 𝛾 .𝜙.𝑝𝑒𝑛𝑑𝑖𝑛𝑔←− False

24 𝜙 ′ ←− {𝜙 :Φ𝑂 , 𝑘 :𝛾 .𝑘,𝑚:𝛾 .𝜙.𝑚, 𝑓 𝑟𝑜𝑚𝑆 :False}
25 return 𝜙 ′

26 else
27 return ∅

Auxiliary functions:
28 sortInsert(𝑡) // Add 𝑡 to 𝛾 .𝜙.𝑇 sorted on 𝑓𝑇

𝑆𝑀2 ←− 𝑀 (𝑆𝐴, 𝑓𝑀 ) , where: // 𝑀2 -Fig. 4

29 Function 𝑓𝑀 (𝑡 )
30 return 𝑡 .𝜙.𝜙

Explanation and Proof. The operator 𝑀1 is covered in
(List.5,L1-3). Upon reception of a tuple 𝑡 ,𝑀1 encapsulates 𝑡 ’s
payload into a new payload that also carries an attribute𝑚 –
initially null – for the state that will be later updated based
on 𝑓𝑀∗ , 𝑡 ’s key based on the user-defined 𝑓𝐾 function, and a
flag stating this payload carries the payload of a tuple from
𝑆 .

The 𝐴 operator running the 𝑓𝑀∗ function is covered in
List.5,L4-28. Note that several implementations can be de-
fined to enforce 𝑅-𝐶𝐸𝑅’s semantics. For ease of exposition,
the one we present relies on 𝑓𝑈 to store relevant tuples (tu-
ples coming from 𝑆) as well as state𝑚 fed via𝐴’s loop, while
it relies on 𝑓𝑂 to feed the relevant tuples to 𝑓𝑀∗ . Based on
the previous discussions, 𝐴 defines a sliding Γ with WA = 𝛿

and WS = 𝐷𝑊 + 𝛿 . It consumes the tuples from 𝑆𝑀1 and
those from 𝑆𝐴, relying on 𝑓𝐾 ′ to partition them based on the
user-defined 𝑓𝐾 , whose value is carried in 𝑡 .𝜙 .𝑘 (List.5,L4-5).
For 𝑓𝑈 (List.5,L6-16), we note the state 𝛾 .𝜙 is initialized

upon the reception of the very first tuple when 𝛾 .𝜙 = null
(List.5,L7-8). In such initialization, 𝛾 .𝜙 is assumed to be the
𝛾 containing the very first tuple in 𝑆 , to store an initially
empty set of tuples 𝑇 , to have an uninitiated state𝑚 associ-
ated with an uninitialized timestamp𝑚𝜏 , and to indicate the
results from this 𝛾 have not yet been produced by setting the
attribute 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 to True.

Once the state is initialized, the incoming tuple 𝑡 is stored
if it comes from 𝑆 and its timestamp 𝑡 .𝜏 is equal to 𝛾 .𝑙 + 𝐷𝑊
(List.5,L9-11). As explained before, this ensures that, if an
output tuple 𝑡𝑜 is produced from 𝑡 , then 𝑡𝑜 .𝜏 = 𝛾 .𝑙 +𝐷𝑊 = 𝑡 .𝜏 .
Note that tuples are inserted in 𝛾 .𝜙 .𝑇 in sorted order based
on 𝑓𝑇 through the auxiliary function sortInsert (List.5,L28).
Alternatively, 𝛾 .𝜙 .𝑓 𝑖𝑟𝑠𝑡𝛾 is set to False if 𝑡 comes from 𝑆

but 𝑡 .𝜏 ≠ 𝛾 .𝑙 +𝐷𝑊 (List.5,L12-13). If 𝑡 comes from 𝐴, its state
and its timestamp are stored in 𝜙.𝑚 and 𝜙.𝑚𝜏 , respectively
(List.5,L14-16).

Moving now to 𝑓𝑂 (List.5,L17-27), we note the set of out-
put payloads Φ𝑂 is populated only if a result has not been
produced for 𝛾 yet (i.e., if 𝛾 .𝜙 .𝑝𝑒𝑛𝑑𝑖𝑛𝑔 = True), and if 𝛾 is
the 𝛾 containing the very first tuple delivered by 𝑆 (and po-
tentially others sharing the same timestamp) or if the state
from the previous 𝛾 ′, i.e., the 𝛾 ′ creating an output 𝑡𝑜 so that
𝑡𝑜 .𝜏 = 𝛾 .𝑙 + 𝐷𝑊 − 𝛿 , has been received (List.5,L18). In such a
case, 𝑓𝑂 traverses all the tuples in 𝛾 .𝜙 .𝑇 and passes them to
𝑓𝑀∗ while maintaining an up-to-date state 𝛾 .𝜙 .𝑚. Eventually,
𝛾 .𝜙 .𝑝𝑒𝑛𝑑𝑖𝑛𝑔 is set to False to mark an output has been pro-
duced for this 𝛾 and the payload for an output tuple carrying
Φ𝑂 , the associated key 𝑘 , the state𝑚, and a flag stating such
tuple is not from 𝑆 is returned (List.5,L20-25). If the condi-
tion on List.5,L18 is not met, an empty set is returned instead
(List.5,L26-27).

Finally, the operator 𝑀2 is covered in (List.5,L29-30). As
shown,𝑀2 forwards only the payloads produced by 𝑓𝑀∗ .
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Note the proposed solution implies for 𝐴 that each tuple
contributes to ⌈𝐷𝑊 +𝛿

𝛿
⌉ 𝛾s and, thus, that𝐴 needs to maintain

such ⌈𝐷𝑊 +𝛿
𝛿
⌉ 𝛾s in parallel for each 𝑓𝐾 value. While such a

value is application- and SPE-dependent, because of 𝐷𝑊 and
𝛿 , respectively, we note nonetheless 𝐷𝑊 can be controlled
by a data source/SPE itself and is usually in the sub-second
range (e.g., 200 ms as default for Apache Flink [13]).
Before proving Theorem 3, we introduce and prove the

following supporting theorem.
Theorem 4. Being: 𝑡0 the tuple with the earliest timestamp
𝜏 fed by 𝑆 for a given key 𝑘 (or one of such tuples, if multiple
tuples sharing the earliest timestamp exist),𝛾0 the𝛾 storing 𝑡0 in
𝛾 .𝜙 .𝑇 (List.5,L11), and 𝛾𝑖−1, 𝛾𝑖+1 the 𝛾s preceding and following
𝛾𝑖 , respectively, then the 𝐴 operator in Listing 5 produces its
first output tuple from 𝛾0, its second output tuple from 𝛾1, and,
in general, its 𝑖-th output from 𝛾𝑖−1.

Proof. (Theorem 4) First, we can note that 𝛾0 is the earliest
𝛾 maintained by𝐴, because𝛾−1 covers [𝛾0 .𝑙−𝛿,𝛾0.𝑙+𝐷𝑊 ) and
𝑡0 does not fall in it, since 𝑡0.𝜏 = 𝛾0.𝑙 + 𝐷𝑊 , nor in earlier 𝛾s.
Hence, upon invocation of 𝑓𝑂 on 𝛾0, 𝛾0.𝜙 .𝑓 𝑖𝑟𝑠𝑡𝛾 is True, and
the output tuple 𝑡𝑜 so that 𝑡𝑜 .𝜏 = 𝑡0.𝜏 will be the first output
tuple produced by 𝐴. Any subsequent invocation of 𝑓𝑂 on
𝛾0 will not result in new output tuples since 𝛾0.𝜙 .𝑝𝑒𝑛𝑑𝑖𝑛𝑔 =

False (List.5,L23).
Since 𝑡0.𝜏 = 𝛾0 .𝑙 + 𝐷𝑊 , then 𝛾0 .𝑙 = 𝑡0 .𝜏 − 𝐷𝑊 , 𝛾1 .𝑙 = 𝑡0.𝜏 −

𝐷𝑊 +𝛿 , 𝛾2.𝑙 = 𝑡0.𝜏−𝐷𝑊 +2𝛿 , and so on. No matter how small
𝐷𝑊 is, even when 𝐷𝑊 = 𝛿 , we can observe that when fed to
𝐴, 𝑡0 will also contribute to 𝛾1, which for 𝐷𝑊 = 𝛿 covers the
period [𝑡0 .𝜏, 𝑡0 .𝜏 + 2𝛿), setting 𝛾1 .𝜙 .𝑓 𝑖𝑟𝑠𝑡𝛾 to False. Upon
the invocation of 𝑓𝑂 on 𝛾1 (note 𝛾s for which an output
can be produced upon a watermark update are traversed in
order, see § 2.2), the condition in List.5,L18 can thus be met
only after 𝑡𝑜 is produced and added to 𝛾1, since at that point
𝛾1 .𝜙 .𝑚𝜏 will be 𝑡0.𝜏 and𝛾1 .𝑙+𝐷𝑊 −𝛿 = 𝑡0.𝜏−𝐷𝑊 +𝛿+𝐷𝑊 −𝛿 =

𝑡0.𝜏 . Also in this case, any subsequent invocation of 𝑓𝑂 on
𝛾1 will not result in new output tuples since 𝛾1.𝜙 .𝑝𝑒𝑛𝑑𝑖𝑛𝑔 =

False (List.5,L23).
Moving now to𝛾2, we can observe it is not necessarily true

that 𝑡0 falls in 𝛾2 too. More concretely, if 𝐷𝑊 = 𝛿 , 𝛾2 covers
the period [𝑡0.𝜏 +𝛿, 𝑡0.𝜏 +3𝛿). Nonetheless, the output 𝑡𝑜 from
𝛾1 does, since it carries the timestamp 𝑡0.𝜏 + 𝛿 (A2), and is
needed upon invocation of 𝑓𝑂 on 𝛾2 to match the condition
on List.5,L18 and result in an output tuple (exactly once).
A similar reasoning applies to all 𝛾2’s subsequent 𝛾s. □

We can now use Theorem 4 to support the proof of The-
orem 3. The proof for Theorem 3 resembles that of Theo-
rem 1. In this case, though, accounting also for tuples fed to
𝐴 through its loop.

Proof. (Theorem 3) By contradiction, if the operators in
Figure 4 and Listing 5 do not enforce the semantics of 𝑅-𝐶𝐸𝑅

then, being 𝑡𝑖 an input tuple associated to key 𝑘 = 𝑓𝐾 (𝑡) and
𝑡𝑜 an output tuple resulting from the invocation of 𝑓𝑀∗ on
𝑡𝑖 , then one of three cases holds: 𝑡𝑜 is not produced, 𝑡𝑜 is
produced twice or more, or 𝑡𝑜 is produced but with wrong
𝜏 and/or 𝜙 . Note that the non-production of 𝑡𝑜 excludes the
production of multiple 𝑡𝑜s and the production of any 𝑡𝑜 with
wrong 𝜏/𝜙 , while the latter two cases could be observed
simultaneously.
We can generalize these cases into three main cases. The

non-production of 𝑡𝑜 or the production of multiple 𝑡𝑜 can be
observed if 𝑡𝑖 is not processed exactly once (case C1) or if
𝑡𝑖 is fed to 𝑓𝑀∗ with the wrong state𝑚 (case C2), where𝑚
is wrong if it was not correctly updated by processing all
the tuples before 𝑡𝑖 (based on 𝑡𝑖 .𝜏 and 𝑓𝑇 ) and that share the
same key as 𝑡𝑖 . Case C2 could also lead to the production of
a 𝑡𝑜 with a wrong 𝜙 . Finally, a 𝑡𝑜 carrying the wrong 𝜏 could
also be caused by the processing of 𝑡𝑖 in a 𝛾 for which 𝑡𝑖 ∈ 𝛾
does not lead to a 𝑡𝑜 so that 𝑡𝑖 .𝜏 = 𝑡𝑜 .𝜏 (case C3).
To prove C1 cannot be observed, we note 𝑀1 and 𝑀2

forward an output tuple for each input tuple. Thus, C1 can
only hold if 𝑡𝑖 is not stored exactly once in the 𝛾 .𝜙 .𝑇 of a 𝛾
or, if once stored, it is not processed exactly once. Since 𝐴
has WA = 𝛿 , no matter the 𝑓𝐾 value of 𝑡𝑖 , 𝐴 will define a 𝛾
for each possible left boundary 0, 𝛿, 2𝛿, 3𝛿, . . . including the
only one fulfilling the condition 𝑡𝑖 .𝜏 = 𝛾 .𝑙 + 𝐷𝑊 in List.5,L10
(i.e., that of the 𝛾 in which 𝑡𝑖 is stored). Moreover, 𝑡𝑖 is fed
exactly once to 𝑓𝑀∗ in List.5,L21 only if 𝛾 .𝜙 .𝑝𝑒𝑛𝑑𝑖𝑛𝑔 is True
(List.5,L18) since once 𝑡𝑖 is fed to 𝑓𝑂 , 𝛾 .𝜙 .𝑝𝑒𝑛𝑑𝑖𝑛𝑔 is set to
False (List.5,L23). Hence, C1 cannot be observed.
Note that proving C1 cannot be observed implies C3 is

also not observable because, if 𝑡𝑖 is added to the state of the 𝛾
so that 𝑡𝑖 .𝜏 = 𝛾 .𝑙+𝐷𝑊 , then an output 𝑡𝑜 from that𝛾 will have
timestamp 𝑡𝑜 .𝜏 = 𝛾 .𝑙 +𝑊𝑆 −𝛿 = 𝑡𝑖 .𝜏 −𝐷𝑊 +𝐷𝑊 +𝛿 −𝛿 = 𝑡𝑖 .𝜏 .
Finally, C2 can be also proven not to hold based on The-

orem 4, which implies all tuples in 𝛾𝑖 .𝜙 .𝑇 are processed (in
𝑓𝑇 order) and used to update the state 𝛾𝑖 .𝜙 .𝑚 before such
state is passed to 𝛾𝑖+1 and used by 𝛾𝑖+1 to process its 𝛾𝑖+1 .𝜙 .𝑇
tuples in order and further pass the updated state to 𝛾𝑖+2, and
so on. □

6 RELATEDWORK
Our study contributes to the fields of CER and stream pro-
cessing, which have witnessed substantial advancements and
increased use in industrial setups over the past decade.
In the domain of CER, several formalisms have been

proposed to express patterns of interest: they range from
automata-based [8, 20] or tree-based [24] languages to logic-
based abstractions [1, 6, 10, 11]. These formalisms offer ex-
pressive constructs to capture the needs of applications, in-
cluding filtering of individual events, compositions into se-
quences with temporal constraints, iterations, and selection
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and consumption policies to precisely indicate when a pat-
tern is satisfied and which events it should consider. Our
work is orthogonal to these aspects, and shows that 𝐴 op-
erators are sufficient to capture patterns with known and
unknown duration. The general solutions we presented in
the paper can be declined to capture any of the specific for-
malisms presented in the literature.

A pivotal area of research within this domain has been the
exploration of the expressiveness of CER languages. Stud-
ies such as those by Artikis et al. [4] and Grez et al. [16]
have been instrumental in proposing abstract operators to
capture the expressive capabilities of CER constructs. These
contributions align with our work, albeit from a different
angle. More concretely, while [4, 16] aim to establish a formal
framework for CER tasks, our focus is on demonstrating the
feasibility of implementing these tasks relying on the stream
processing Dataflow model [3], and specifically leveraging
𝐴 operators.

To the best of our knowledge, our work is the first to
analyze, from a formal standpoint, the semantic overlap be-
tween stream processing and CER. We establish that the
semantics of common CER operators can be effectively real-
ized through compositions of common 𝐴 operators, thereby
enriching both the theoretical understanding and practical
application of these concepts in streaming environments.
Among the existing literature, [18] is the study with the

closest resemblance to our research, particularly in its as-
sertion that 𝐴s are sufficient for enforcing the semantics of
other operators. While primarily addressing common stream-
ing operators (Filter, Map, and Join), [18] also proposes an
early version of the 𝑅-𝐶𝐸𝑅 operator, which is nonetheless
a very preliminary approach that mostly aims at showing
streaming analysis can benefit from loops to have 𝛾s’ state
shared across window instances. In contrast, our research
offers a more refined definition of this operator and delves
into comprehensive discussions on its implementation and
correctness verification.

Palyvos [25] presents an alternative version of the 𝑇 -𝐶𝐸𝑅
operator, which is also examined in our study within the con-
text of time-based pattern matching for events that span a
period of event time of known length but unknown location.
Our approach, however, extends beyond this initial explo-
ration by proposing a generalized implementation frame-
work. More concretely, the solution proposed in [25] is less
efficient and relies on a larger set of prerequisites for the
underlying streaming model. About the efficiency: it relies
on two 𝐴s each with a 𝛾 with WA and WS set to 2𝐷𝐶 , while
we show a single 𝐴 with aWS ≥ 𝐷𝐶 suffices (see § 4). About
the underlying model: it assumes 𝐴 operators also define a
Window Offset WO, thus covering the event time periods
[ℓWA +WO, ℓWA +WO +WS), with ℓ ∈ N, while we do not
require such extra parameter for Γ (see § 2.1).

Finally, [17] demonstrates the potential of base operators
for constructing queries capable of learning and maintaining
a Bayesian Network in the context of intrusion detection
systems. While [17] highlights the rich semantics achievable
with base operators, it is specifically tailored to the semantics
of its application domain, distinguishing it from our broader
examination of CER and stream processing techniques. Also,
[17] aims at showing the semantics of Bayesian Networks
can be enforced using common stream processing operators,
but does not study which is the minimum set of common
operators required to enforce such semantics.

7 CONCLUSIONS AND FUTUREWORK
This work proposed a formal discussion about the semantic
overlap that exists between Complex Event Reasoning (CER)
and the operators of distributed stream processing engines
(SPEs). More concretely, we formally argued how a single
Aggregate operator (𝐴) suffices to enforce the semantics
of CER analysis that can (1) analyze individual events or
groups of events that take place at the same point in time,
(2) find patterns of events that span a period of event time
of known length, and (3) find such patterns even when the
period of event time they cover is not known in advance
(and potentially unbounded).

Besides the theoretical contribution we make, these find-
ings have also an important practical implication when it
comes to existing state-of-the-art frameworks for CER anal-
ysis and how their computational costs (e.g., CPU, memory)
compare with the resources made available for such an anal-
ysis. More concretely, users who wish to run CER analysis
as the one in focus in our paper can do so provided they
have access to an SPE that can run (compositions of) the
minimalistic 𝐴 we rely on.

The solutions proposed in this paper are purely meant to
support our claim about the semantic equivalence with their
CER counterpart. As pointed out in § 4 and § 5, multiple
solutions can be defined while enforcing the same semantics.
A possible extension of this work can thus focus on such al-
ternatives to account for performance- and implementation-
specific optimizations. In parallel with that, we plan to extend
this work with an empirical performance assessment com-
paring state-of-the-art frameworks with a dedicated SPE that
only supports the 𝐴 we rely on.
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