CHAL

UNIVERSITY OF TECHNOLOGY

Supporting Early Architectural Decision-Making through Tradeoff
Analysis: A Study with Volvo Cars

Downloaded from: https://research.chalmers.se, 2025-10-18 21:23 UTC

Citation for the original published paper (version of record):

Oqvist, K., Messinger, J., Wohlrab, R. (2024). Supporting Early Architectural Decision-Making
through Tradeoff Analysis: A Study with Volvo

Cars. FSE Companion - Companion Proceedings of the 32nd ACM International Conference on the
Foundations of Software Engineering: 411-416. http://dx.doi.org/10.1145/3663529.3663860

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

N
Check for
Updates

Supporting Early Architectural Decision-Making
through Tradeoff Analysis: A Study with Volvo Cars

Karl Oqvist
Department of Computer Science
and Engineering
Chalmers | University of Gothenburg
Gothenburg, Sweden
karlog@student.chalmers.se

ABSTRACT

As automotive companies increasingly move operations to the
cloud, they need to carefully make architectural decisions. Cur-
rently, architectural decisions are made ad-hoc and depend on the
experience of the involved architects. Recent research has proposed
the use of data-driven techniques that help humans to understand
complex design spaces and make thought-through decisions. This
paper presents a design science study in which we explored the use
of such techniques in collaboration with architects at Volvo Cars.
We show how a software architecture can be simulated to make
more principled design decisions and allow for architectural tradeoff
analysis. Concretely, we apply machine learning-based techniques
such as Principal Component Analysis, Decision Tree Learning, and
clustering. Our findings show that the tradeoff analysis performed
on the data from simulated architectures gave important insights
into what the key tradeoffs are and what design decisions shall be
taken early on to arrive at a high-quality architecture.

CCS CONCEPTS

- Software and its engineering — Extra-functional properties;
Software architectures; Cloud computing; Abstraction, modeling
and modularity; Software design tradeoffs.

KEYWORDS

software architecture, architectural analysis, cloud systems, design
decisions, principal component analysis, tradeoff analysis

ACM Reference Format:

Karl Oqvist, Jacob Messinger, and Rebekka Wohlrab. 2024. Supporting Early
Architectural Decision-Making through Tradeoff Analysis: A Study with
Volvo Cars. In Companion Proceedings of the 32nd ACM International Confer-
ence on the Foundations of Software Engineering (FSE Companion '24), July
15-19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3663529.3663860

1 INTRODUCTION

Modern cars are commonly made up of complex software systems
that continuously record and process data on the cloud [21]. To

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

FSE Companion °24, July 15-19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663860

Jacob Messinger
Department of Computer Science
and Engineering
Chalmers | University of Gothenburg
Gothenburg, Sweden
mejacob@student.chalmers.se

411

Rebekka Wohlrab
Department of Computer Science
and Engineering
Chalmers | University of Gothenburg
Gothenburg, Sweden
wohlrab@chalmers.se

ensure that the right levels of quality are achieved, their architec-
tures must be carefully designed, e.g., with respect to performance,
availability, and cost [18]. Decisions taken in the design phase of
software architectures can greatly impact the system’s quality [12].
However, design decisions are often made in an ad-hoc manner
rather than being data-driven with concrete evidence for how the
system will perform and what factors influence the system’s quality
[2, 11]. One concern when designing software architectures are
tradeoffs, which occur when an improvement in one area entails a
negative impact on another area [10]. Most decisions taken in the
design phase come with inadvertent tradeoffs. An example tradeoff
arises from using more powerful hardware that leads to greater
performance but will also increase the monetary cost of the system.

Researchers have investigated architectural decision-making in
the design phase [20]. In recent years, a trend has been to post-
pone architectural decisions as much as possible. At the same time,
some decisions are important to be made at the beginning of the
development—especially those that are hard to isolate and for which
a change would have a large impact on the rest of the architecture.
Identifying these decisions is crucial and the focus of our approach.
Those decisions often relate to tradeoffs in the architecture.

Past research has proposed to use machine learning techniques
to explain quality tradeofs [3, 4]. However, to the best of our knowl-
edge, such tradeoff analysis techniques have not been applied to
architectural decision-making in an industrial setting with real-
world challenges. In this paper, we explore this issue and aim to
answer the following questions: To what extent is it feasible to
understand architectural tradeoffs based on simulation data? What
are key decisions that are important to be made at the beginning
of the development? How can tradeoffs be effectively visualized?
How understandable are such visualizations?

In this paper, we present a study that focuses on developing an
approach to simulate and elicit architectural tradeoffs in the auto-
motive domain. The approach assumes that architects have thought
of potential architecture candidates and want to better assess the
quality tradeoffs that these candidates come with. Moreover, they
want to analyze the impact of both high- and low-level decisions.
We collaborated with a team of architects aiming to redesign their
architecture and analyze what decisions to make early on.

2 SCENARIO USED IN THIS STUDY

A typical architectural problem in the design phase at Volvo Cars
has been selected as our example scenario. The scenario was used
for all modeling, simulation, and analysis. The wanted architecture
is intended for a system that is responsible for delivering diagnostic

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3663529.3663860
https://doi.org/10.1145/3663529.3663860
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663529.3663860&domain=pdf&date_stamp=2024-07-10

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

data from the car’s battery and contains the following steps: (1)
The vehicle produces 8 kB of diagnostic data with a frequency of
1 Hz. (2) The data is stored in a local cache that can be set up to
act as a batching component for the data. It only sends data to the
cloud when the cache contents have reached a certain threshold
size. (3) The data is transported to the cloud. (4) The data undergoes
computations to calculate important metrics such as time to empty
and charge rate. (5) The data is stored in a cloud storage. To realize
the cloud side of the architecture, Amazon Web Services (AWS) will
be used. Within the AWS ecosystem, many services exist and many
choices can be made that have an impact on software architecture.

3 RELATED WORK

A literature review on architecture evaluation in high-uncertainty
environments [19] concluded that utilizing machine learning tech-
niques when evaluating architectures significantly improves the
decision-making process. However, only 25% of the employed run-
time evaluations use machine learning approaches [19]. Our ap-
proach employs machine learning techniques to explain the archi-
tectural alternatives that architects choose from. Previous architec-
ture optimization approaches have mostly focused on generating
architectural configurations without supporting mechanisms that
help people understand the underlying tradeoffs [1].

Previous research has focused on understanding architectural
tradeoff spaces, which explores the possibility of linking quality
attributes to architectural design variables using machine learning
techniques such as PCA [3, 5, 22]. The output of tools to generate ar-
chitectural designs is often not easily digestible and understandable
for practitioners, and the results are filled with noise that obscures
the understanding of relations between variables [3]. This raises the
need for techniques that guide architects in architectural decision-
making. To address this challenge, related work has explored the
use of radar charts and visualization to help humans understand
architectural tradeoffs [6, 13]. To the best of our knowledge, none of
those previous techniques have been applied and evaluated in the
context of architectural decision-making in an industrial setting.

4 RESEARCH METHOD

This study was conducted using design science [7] in which we iter-
atively developed an approach for simulating cloud-based software
architectures in order to elicit and explain architectural tradeoffs.

We included all participants involved with cloud-based software
architectures in the company: (1) one software architect and (2)
one cloud architect, both with more than 20 years of experience
with software engineering; (3) a software architect with 10 years
of experience, (4) an advanced engineering lead with 3 years of
experience, and (5) a solution architect with more than 25 years of
experience. We performed a series of interviews and focus groups.

We relied on three iterations, each spanning five weeks. An
overview figure of what the iterations contained, what was added to
the approach in each iteration, and how the approach was evaluated
in between iterations can be found on Figshare!, along with other
supplementary material.

!https://doi.org/10.6084/m9.figshare.24258439.v2

412

Karl Ogvist, Jacob Messinger, and Rebekka Wohlrab

5 CHALLENGES WITH TRADEOFF ANALYSIS

To understand practitioners’ challenges, we performed five inter-
views of 20-30 minutes. In the following, we present the key chal-
lenges that should be addressed by a tradeoff analysis approach.

Time-consuming and non-standardized exploration of the design
space. One finding throughout the interviews is that there is no
standardized architecting process. Usually, several architects collab-
orate until a consensus is reached. Other than sketching ideas with
a visualization tool and discussing them, there were no additional
methods that the architects used for the evaluation and analysis
of proposed solutions. The architects also stressed that they could
not evaluate every possible solution and idea, which is why it is
important to be able to quickly assess solutions and their tradeoffs.

Our approach requires architects to have deduced several dif-
ferent architecture candidates. The interviewees had many design
ideas that seemed suitable for the scenario of the diagnostic data
from the vehicles. The architects stated that they could not eval-
uate every possible topological setup and idea, which is why it is
important to be able to quickly assess candidates and their tradeoffs.

Side-effects of decisions and complexity of problem space. In our
interviews, it was found that it was important that a chosen solution
does not have previously unidentified side effects when run in
production. To mitigate this, it is crucial to understand the impact
of architectural decisions. It was also stated that underestimating
such impacts is a commonly made oversight and very difficult to
completely avoid. The reason is that there are many decisions to
make for all possible solutions, and controlling and analyzing them
all would be too costly and intricate. One architect among the
interviewees stated: “I don’t think anyone at the company has a
large-scale view of the system. Meaning that we can make a little
decision here, which adds a lot of complexity for someone else without
us noticing, and vice-versa.”

Reliance on individuals’ experience levels. In the interviews, it
was found that domain knowledge and previous experience are
crucial for understanding architectural tradeoffs. Appropriate doc-
umentation of the services and components within the architecture
was seen as essential. One interviewee additionally stated: “When
you are not so experienced with a concept, it is easy to focus too much
on the advantages but not maybe anticipate the challenges”

6 APPROACH FOR DECISION SUPPORT

The models and simulations were developed using Simulink [14], a
software used for graphical modeling and simulation of dynamic
systems. The subsequent analysis and visualizations were developed
in Python using a variety of libraries [8, 9, 15-17].

Fig. 1 shows the approach that was developed in this study. It goes
from architecture candidates down to how analysis methods are
applied to support decision-making. First, the proposed architecture
is modeled as a set of components and connections in Simulink (1).
Each component models a real-world architectural component or
service. Components are connected similarly to how they would in
the real world. By exploring multiple combinations of parameters
and other architectural decisions, a thorough exploration of the
design space is enabled. In (2), a Matlab script acts as a guide to
how a modeled architecture gets loaded with parameter values.

https://doi.org/10.6084/m9.figshare.24258439.v2

Supporting Early Architectural Decision-Making through Tradeoff Analysis

Architecture Candidates :
Created by Architect

: Section 7
Model Configure Simulate in
Architectures Simulations Simulink
In Simulink

Section 8

: (A (B) (©) :
¢ Architecture Level ~ Component Level ~ Parameter Level :
Decisions Decisions Decisions

(C1) P2?

Data Processing

52 @@
0o

(A1) 39;9

Data Processing

"

Data Processing

PCA Component Grouping PCA
(A3) A (83)
W/
Radar Plots

Figure 1: Our approach for design decision support through
simulations and tradeoff analysis

The script also configures the data input and maximum duration
time of the simulation. For this study, the script configures the
simulation to simulate 15 minutes of constant data upload from
1000 vehicles. Step (3) is to run the simulations. For this study, a
total of 12136 simulations were run, each representing a unique
architectural setup. The total simulation time was approximately 4
hours using an 8-core CPU with 128GB of RAM.

The output of the simulations is one data frame containing: the
simulated architecture, parameter values, components in use, and
the quality metrics of cost, latency, load sensitivity, and complexity.
The data frame used in this study can be found on Figshare! and
Github, along with the simulation data and analysis code?.

The next action in this approach is data analysis and visualization.
It is possible to apply a multitude of techniques to be able to support
a broad variety of design decisions and are thus subject to change
based on the needs of the practitioners. The three paths taken in
this paper (A, B, C in the figure) showcase the analyses deemed
helpful by the architects at Volvo Cars. In the first steps (A1), (B1),
(C1), the data frame is filtered using data frame slicing tailored to
what kind of questions we want to answer. A subsection of Pareto-
optimal data samples is retrieved. Exceptionally bad or good setups
are filtered out to capture the general trends of each architecture.
The later steps are analysis and visualization tools, where (A2), (B3),
and (C2) denote Principal Component Analysis (PCA). (A3) denotes
radar plots and (B2) relies on decision flow charts.

Zhttps://github.com/karlog/architectural-tradeoff-analysis

413

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

7 MODELING CLOUD ARCHITECTURES

In total, seven architecture candidates were discussed at Volvo.
They belong to three design ideas, named Simple, Stream, and
Sophisticated. On Figsharel, a table of all possible parameters,
their value ranges, and a description of their effect can be found.

Simple. This solution uses either Kinesis or IoT Core for data
transport and Lambda or Fargate as processing services. If Lambda
is used for processing, SQS is used as an intermediary service before
Lambda, to utilize its resources better and optimize total compu-
tation time. The design uses a limited caching capability, which is
why in reality the software code would have to be developed with
great care to ensure that data is not lost if services were to crash.

Stream. This design idea also uses Kinesis or IoT Core for data
transport. The data then gets ingested into DynamoDB, where a
Lambda instance keeps track of how much data has been received
from each car. When ample data has been received, it sends the
batched data as a job to SQS that acts as a queue. The jobs are then
fetched by either Fargate or Lambda for processing. This offers a
solution to some of the concerns of the Simple architecture because
both DynamoDB and the SQS act as a caching service that can be
configured to re-transmit data if the processing services Lambda
and Fargate were to lose data for some reason. The data gets batched
into processing jobs based on what car they stem from. That ensures
that data from the same vehicle is not processed in parallel, which
makes it much easier to ensure stricter data consistency.

Sophisticated. This design idea uses IoT Core for data transport.
It then gets processed by a Lambda function that checks against
a DynamoDB database if the container for the data processing is
active. All cars are split up so that they have a specific container for
their processing. If active, the data is sent to the container. If not
active, the data gets stored in an SQS queue while the container gets
started by a StepFunction service. When it is started, the data in the
queue is sent to the container, and DynamoDB is altered to indicate
that the container is active so that new data to that container is
sent directly. DynamoDB and SQS can thus re-transmit data and act
like caches. Moreover, individual containers can run on different
cars. The containers are preassigned to the cars beforehand and
do not necessarily need to be replicas of each other, since EC2 can
run different containers in the same service. This cannot be done
in Simple and Stream as instances in Lambda and Fargate must be
replicas of each other. The Sophisticated design idea might prove
beneficial for worldwide operations since it enables different data
processing based on the region the data stems from.

Quality metrics. Performance is measured by the total latency
caused by the blocks divided by the number of data packets from
the cars that have been computed. Cost is measured by the price of
running the system for the simulation time and was modeled based
on the pricing information on the Amazon website. Complexity
measures how many parameters and blocks a setup contains (not
counting Source). Load sensitivity indicates how sensitive the cost
and latency of the system are when the load increases tenfold.
A Load Sensitivity value of 10 means that the Cost and Latency
increase tenfold, i.e., it scales linearly. If the Load Sensitivity is 0,
the Cost and Latency are constant when increasing the load.

https://github.com/karloq/architectural-tradeoff-analysis

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

8 FINDINGS FROM TRADEOFF ANALYSIS

8.1 Findings on Architecture Level Decisions

In early stages, architects typically ask themselves: What tradeoffs
do different architectural candidates entail? This question is a part of
understanding how architectural decisions affect quality. The simu-
lation data of 1200 configurations is useful since factual evidence is
needed to answer such questions. To make use of this multivariate
simulation data, it needs to be broken down.

Fig. 2 shows clusters of four of the seven architecture candidates.
The radar plots are created by computing mean values of the quality
measures for each design idea and normalizing the scales. What can
be seen in Fig. 2 is that there exist two general, somewhat skewed,
shapes: a kite, as can be seen for Stream_1 and Simple_1, and a
trapezoid, as can be seen for Sophisticated_1 and Simple_3. The
existence of such shapes shows that no architecture minimizes all
qualities. Tradeoffs always have to be made. Stream configurations
are expensive and complex, but have good latency and are some-
what load-sensitive. Simple configurations are rather cheap and
not complex, but can be very load-sensitive. Sophisticated config-
urations come with a high latency and load sensitivity, but are
neither very complex nor costly. These findings can help architects
understand what tradeoffs come with different configurations.

Stream_1
Cost

Simple_1
Cost

Latency Complexity @ Latency

Load Sensitivity

Complexity

Load Sensitivity

Sophisticated_1

Cost

Simple_3
Cost

Latency Complexity @ Latency

Load Sensitivity

Complexity

Load Sensitivity

Figure 2: Radar plots showing 4 architectures with their qual-
ity measures, with high values (meaning poor quality metric
for the attribute) closer to the outer rim of the circle.

8.2 Findings on Component Level Decisions

To better understand the tradeoffs, architects might ask: What spe-
cific components and services impact the qualities and cause tradeoffs?

In Fig. 3, a decision flow chart is depicted. Each architecture can
be seen as making five key decisions, i.e., regarding Source, Trans-
port, Intermediary, Processing, and Storage. In each step, different
decisions can be made. For Source, architects can choose between
Caching and No Caching. Caching is positively correlated with all
quality measures, whereas no caching is negatively correlated with
them. It can be seen that the main cause for high Cost and Latency is
the decision not to cache data in the car and the use of MQTT as the
transport protocol. What can also be seen is that all Intermediaries
entail a tradeoff either through lowering the cost but increasing the

414

Karl Ogvist, Jacob Messinger, and Rebekka Wohlrab

Data Source
-0.01 [0.01] 0.37
[-020[-0.04] | [0:20[0.04]
Caching No Caching
s | IncarCache 1 | '
OULCE I srrcvashavaes o0 ;
v
[oos[od6] [-o08[-046]
014 [026 | 0.14] -026
[MQTT] [HTTP]
T o ' IoT Core 3 ' Kinesis H
ransport ‘e--oooooo- et
v
[-0.06] 0.79 | [[0.99 [-0.06] [-0.20] 030 | [-0.05[-0.29]
[0.86 [-0.23] |-0.04[0.08 | 044032 | -0.44[-0.34
[Job Batching] Container] [Load 1 [No intermediary]
1 L f‘._ imi i H
i Dyromeps L 1 VINCheck | 1 sas T :
S e /| DynamoDB ‘ecmcecccceaa
| _JobQueue !
. Step Functions
Intermediary Ao o0 oo S
v
[0.99 [-0.06] [-0.16]-0.05] [-0.06] 0.07 |
[-0.04[0.08 | [0.10] 04s | -009[-048
[Containers] [Serverless] [Auto-Scaling Containers]
| EC2 i I Lambda ' Fargate b
e e P e s e et ’
Processing
¥
i
Storage Neoeee A |

Figure 3: Decision Flow chart describing design decisions and
their quality attribute correlations (top left = Latency, top
right = Cost, bottom left = Complexity, bottom right = Load
Sensitivity). Positive numbers indicate positive correlations
and negative numbers indicate negative correlations.

latency, or vice-versa. This gives further insight into the reasons
behind why Simple and Stream outperform Sophisticated: they
omit the Container Management and Containers features, which are
the features that have the highest correlation with high latency.

8.3 Findings on Parameter Level Decisions

Many of the AWS components that are considered by Volvo Cars
can be modified and configured with the use of settings and pa-
rameters. The differences in architectural setups and the selection
of parameters have a large impact on how certain components
function and thus change the architecture significantly. It there-
fore exists a need to be able to analyze the components on a more
fine-granular level to see how these parameters and settings af-
fect the quality metrics. We aim at answering questions like: What
parameters are important for the impact on the quality attributes?
To answer the question, PCA is applied, which is a widely used
statistical method that aims to reduce the dimensionality of data.
The approach divides the data into Principal Components (PC),
which are linear combinations of the variables in the data. Fig. 4
shows the results of a PCA performed on the top 15% of the sam-
ples from each architecture candidate in the simulation data. The
variances that PC1 and PC2 explain are expressed as a percentage
on the corresponding axes. The plot describes 86.2% of the variance
in the data. Points that are located close to each other are posi-
tively correlated, whereas points that are located on opposite ends

Supporting Early Architectural Decision-Making through Tradeoff Analysis

Top 15% optimal samples per topology

104 Late"cy.ecz_instances
e

c2_memorylevel
ec2_vepus

Load Sensitivity ®

0.5 1

Complexity ® 3
° dynamo_peaktime
Cost f dynamo_stream X

® dynamo_ondemand

0.0

dynamo_peakcapacity
dynamo_readrate

dynamo_writerate .\ambda_al\ocatec_l_memory. car_cache
sqs_queue_size lambda_parallel_instances

sqs_timeout [] -
fargate_memcryleve\. kinesis_ondemand
fargate_vcpus

PC2-22.9%

® kinesis_efos

~1.0 ?
kinesis_peak
kinesis_records

0.0 1.0

PC1-63.3%

0.5

Figure 4: PCA plot depicting the parameters and quality at-
tributes for the top 15% of the samples

of the PCA plot are negatively correlated. What it shows is, first,
that all quality variables lie far from the origin (marked by an X
in the figure), which means that they are relevant for explaining
the variance in the data. Secondly, all parameters that stem from
the same component are tightly clustered together. That makes
sense since if a component does not exist in an architecture, all its
parameter values will be zero. Therefore, this PCA plot can help
to explain how the existence of components affects the quality of
the modeled system. It can be seen that EC2 parameters have a
significant positive correlation with load sensitivity and latency.
Similarly, Dynamo and SQS parameters strongly correlate with
cost and complexity. On the contrary, all parameters in the lower
right quadrant, i.e., car cache, and Kinesis parameters are negatively
correlated with cost and complexity. These insights are useful as
they indicate what tradeoffs to expect depending on the chosen
parameter values.

8.4 Qualitative Evaluation

The participating architects found the PCA loading plots useful
because they gave them a good indication of the quality tradeoffs
of each architectural candidate. They liked the fact that so much
information about the general trends in the data could be discerned
from the plots. They also acknowledged the fact that this is some-
thing far off any practice they employ today. The big disadvantage
with the PCA loading plots which was confirmed in the evaluation
is that they are hard to analyze with little experience. Therefore,
the radar plots were seen as beneficial to complement PCA plots
and also as a better option for quick comparisons.

The participants found the approach useful for early decision-
making and analysis. The visualizations sparked a discussion among
the architects regarding the actual architectural scenario. They
concluded that they conveyed the tradeoffs the architect team had
experienced in previous architectures they designed, but had not
been thinking of before it was deployed in a real demo. The team

415

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

stated that the approach really can be used in their everyday work,
as long as they can trust the simulation data and its correctness.

9 THREATS TO VALIDITY

Internal Validity: While we focused on the main design decisions and
quality attributes, some factors might not have been considered that
might change the overall results. Close collaboration with architects
at Volvo Cars was instrumental in ensuring that the modeled system
behaves realistically. Any specific values used in this analysis are
not to be used as factual statements.

External Validity: Because the nature of this study is specific to
the selected scenario, external validity is low. Generalizability was
not the goal. Instead, we investigated one particular real-world case
in depth. We aimed to describe the case context in detail, so that
others can consider generalization based on analogy.

Reliability: We made our interview guide, the approach’s code,
and our example data available. Many of the visualization tech-
niques used utilize open-source libraries, so we encourage others
to apply them to further example scenarios and systems.

Construct Validity: Constructs such as “tradeoff” and “design
space” might be understood in different ways. Explaining these to
the interviewees helped us improve construct validity.

10 CONCLUSIONS

Currently, architects are often left to ad-hoc decision-making based
on experience and discussions. In this paper, we investigated to
what extent architectural tradeoffs can be explored using a data-
driven approach. The results of our research highlight the value of
visualization techniques [3, 5, 13, 22], such as PCA plots, radar plots,
and decision trees, in supporting architectural decision-making.

The approach assumes that ideas for potential architecture candi-
dates exist whose tradeoffs and parameter values architects want to
investigate. It took us one full-time person week to set up the scripts
and create the first model for Simple_1. The next models could be
created within a few hours, and the plots used in this paper could
be developed and generated within a few minutes. We conclude
that while the approach does require an initial time investment, it
makes it easier to explore architectural alternatives later on. The
techniques employed in this study enabled a fine-granular analysis
of tradeoffs, key architectural decisions, and parameter selection.

We chose one scenario, for which we described our findings in
depth. Applying the approach in other scenarios will help us to
assess the general usefulness. In this work, we focused on latency,
cost, complexity, and load sensitivity as quality metrics. It will be
interesting to assess how other quality concerns can be modeled.

An interesting aspect to investigate in future work is the extent
to which providing the input for the simulation design itself already
supports systematic decision-making on the architect’s side—and/or
how much of the insights come through the visualizations and
discussions.

ACKNOWLEDGMENTS

The authors would like to thank the participants from Volvo Cars
for their support of the study. This work was partially supported
by the Wallenberg Al, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

REFERENCES

[1] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and Indika Mee-

3

=

deniya. 2013. Software Architecture Optimization Methods: A Systematic Liter-
ature Review. IEEE Transactions on Software Engineering 39, 5 (2013), 658—-683.
https://doi.org/10.1109/TSE.2012.64

P. Bengtsson and J. Bosch. 1998. Scenario-based software architecture reengi-
neering. In Proc. of the Fifth International Conference on Software Reuse. IEEE,
308-317. https://doi.org/10.1109/ICSR.1998.685756

Javier Camara, Rebekka Wohlrab, David Garlan, and Bradley Schmerl. 2023. Ex-
TrA: Explaining architectural design tradeoff spaces via dimensionality reduction.
Journal of Systems and Software 198 (2023), 111578. https://doi.org/10.1016/j jss.
2022.111578

[4] Javier Camara, Rebekka Wohlrab, David Garlan, and Bradley Schmerl. 2024.

[5

]

Focusing on What Matters: Explaining Quality Tradeoffs in Software-Intensive
Systems Via Dimensionality Reduction. IEEE Software 41, 1 (2024), 64-73. https:
//doi.org/10.1109/MS.2023.3320689

J. Andres Diaz-Pace, Rebekka Wohlrab, and David Garlan. 2023. Supporting
the Exploration of Quality Attribute Tradeoffs in Large Design Spaces. In Proc. of
the European Conference on Software Architecture, Bedir Tekinerdogan, Catia
Trubiani, Chouki Tibermacine, Patrizia Scandurra, and Carlos E. Cuesta (Eds.).
Springer Nature Switzerland, Cham, 3-19.

Sebastian Frank and André van Hoorn. 2020. SQuAT-Vis: Visualization and
Interaction in Software Architecture Optimization. In Proc. of the European Con-
ference on Software Architecture (ECSA), Vol. 1269. Springer, 107-119. https:
//doi.org/10.1007/978-3-030-59155-7_9

Alan R Hevner. 2007. A Three Cycle View of Design Science Research. Scandina-
vian Journal of Information Systems 19 (2007). Issue 2.

J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science
& Engineering 9, 3 (2007), 90-95. https://doi.org/10.1109/MCSE.2007.55

Plotly Technologies Inc. 2015. Collaborative data science. Montreal, QC. https:
//plot.ly

Ton Kostelijk. 2005. Misleading architecting tradeoffs [DVD hard-disk ar-
chitecture tradeoff analysis method]. Computer 38, 5 (2005), 20-26. https:
//doi.org/10.1109/MC.2005.165

Philippe Kruchten, Rafael Capilla, and Juan Carlos Duenas. 2009. The decision
view’s role in software architecture practice. IEEE Software 26, 2 (2009), 36—42.
https://doi.org/10.1109/MS.2009.52

416

Karl Ogvist, Jacob Messinger, and Rebekka Wohlrab

[12] Francisca Losavio, Ledis Chirinos, Nicole Lévy, and Amar Ramdane-Cherif. 2003.
Quality Characteristics for Software Architecture. The Journal of Object Technol-
ogy 2 (2003), 133. Issue 2. https://doi.org/10.5381/jot.2003.2.2.a2

[13] Jason Mashinchi and Javier Camara. 2020. Voyager: Software Architecture Trade-

off Explorer. In Proc. of the European Conference on Software Architecture (ECSA),

Vol. 1269. Springer, 55-67. https://doi.org/10.1007/978-3-030-59155-7_5

MathWorks. [n.d.]. Simulink - Simulation and Model-Based Design. https:

//se.mathworks.com/help/simulink/, accessed 2023-05-09.

[15] Wes McKinney. 2012. Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. O’Reilly Media, Inc.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
https://doi.org/10.5555/1953048.2078195

[17] pypi.org. 2024. paretoset. https://pypi.org/project/paretoset, accessed 2024-05-09.

[18] Sofia Sherman and Naomi Unkelos-Shpigel. 2014. What do software architects
think they (should) do? Research in progress. In Proc. of the CAISE 2014 Interna-
tional Workshops. Springer, 219-225. https://doi.org/10.1007/978-3-319-07869-
4 20

[19] Dalia Sobhy, Rami Bahsoon, Leandro Minku, and Rick Kazman. 2021. Evaluation
of software architectures under uncertainty: a systematic literature review. ACM
Transactions on Software Engineering and Methodology (TOSEM) 30, 4 (2021), 1-50.
https://doi.org/10.1145/3464305

[20] Antony Tang, Maryam Razavian, Barbara Paech, and Tom-Michael Hesse. 2017.

Human aspects in software architecture decision making: a literature review. In

Proc. of the IEEE International Conference on Software Architecture (ICSA). IEEE,

107-116. https://doi.org/10.1109/ICSA.2017.15

Haoxin Wang, Tingting Liu, BaekGyu Kim, Chung-Wei Lin, Shinichi Shiraishi,

Jiang Xie, and Zhu Han. 2020. Architectural design alternatives based on

cloud/edge/fog computing for connected vehicles. IEEE Communications Surveys

& Tutorials 22, 4 (2020), 2349-2377. https://doi.org/10.1109/COMST.2020.3020854

Rebekka Wohlrab, Javier Camara, David Garlan, and Bradley Schmerl. 2023.

Explaining quality attribute tradeoffs in automated planning for self-adaptive

systems. Journal of Systems and Software 198 (2023). https://doi.org/10.1016/j.jss.

2022.111538

[14

[21

[22

Received 2024-02-08; accepted 2024-04-18

https://doi.org/10.1109/TSE.2012.64
https://doi.org/10.1109/ICSR.1998.685756
https://doi.org/10.1016/j.jss.2022.111578
https://doi.org/10.1016/j.jss.2022.111578
https://doi.org/10.1109/MS.2023.3320689
https://doi.org/10.1109/MS.2023.3320689
https://doi.org/10.1007/978-3-030-59155-7_9
https://doi.org/10.1007/978-3-030-59155-7_9
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
https://plot.ly
https://doi.org/10.1109/MC.2005.165
https://doi.org/10.1109/MC.2005.165
https://doi.org/10.1109/MS.2009.52
https://doi.org/10.5381/jot.2003.2.2.a2
https://doi.org/10.1007/978-3-030-59155-7_5
https://se.mathworks.com/help/simulink/
https://se.mathworks.com/help/simulink/
https://doi.org/10.5555/1953048.2078195
https://pypi.org/project/paretoset
https://doi.org/10.1007/978-3-319-07869-4_20
https://doi.org/10.1007/978-3-319-07869-4_20
https://doi.org/10.1145/3464305
https://doi.org/10.1109/ICSA.2017.15
https://doi.org/10.1109/COMST.2020.3020854
https://doi.org/10.1016/j.jss.2022.111538
https://doi.org/10.1016/j.jss.2022.111538

	Abstract
	1 Introduction
	2 Scenario used in this Study
	3 Related Work
	4 Research Method
	5 Challenges with Tradeoff Analysis
	6 Approach for Decision Support
	7 Modeling Cloud Architectures
	8 Findings from Tradeoff Analysis
	8.1 Findings on Architecture Level Decisions
	8.2 Findings on Component Level Decisions
	8.3 Findings on Parameter Level Decisions
	8.4 Qualitative Evaluation

	9 Threats to Validity
	10 Conclusions
	References

