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Abstract. We consider a class of linear Vlasov partial differential equations

driven by Wiener noise. Different types of stochastic perturbations are treated:
additive noise, multiplicative Itô and Stratonovich noise, and transport noise.

We propose to employ splitting integrators for the temporal discretization of
these stochastic partial differential equations. These integrators are designed

in order to preserve qualitative properties of the exact solutions depending

on the stochastic perturbation, such as preservation of norms or positivity of
the solutions. We provide numerical experiments in order to illustrate the

properties of the proposed integrators and investigate mean-square rates of

convergence.

1. Introduction. In this article, we are interested in stochastic perturbations of
the linear Vlasov equation

#

Btfpt, x, vq ` v ¨ ∇xfpt, x, vq ` Epxq ¨ ∇vfpt, x, vq “ 0,

fp0, x, vq “ f0px, vq,

see the next sections for the precise setting. Our objective is to identify some qual-
itative properties of the solutions and to propose temporal discretization schemes
which are able to preserve those properties.

The Vlasov equation has been introduced in the literature in the middle of the
20th century [62], and has become a fundamental tool for the mathematical descrip-
tion of (collisionless) plasma in astrophysics and in plasma physics. It is common
to interpret fpt, x, vq as the density of particles having position x (assumed to take
values in a torus) and velocity v at time t, starting from an initial configuration
f0px, vq, and where the particles are transported by the ordinary differential equa-
tion

#

9xt “ vt,

9vt “ Epxtq.

The linear model above is a simple version, where the vector field E is imposed and
is independent of time. In the Vlasov–Maxwell or the Vlasov–Poisson equations, for
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example, E is not fixed and depends on the solution f , see for instance [6, 23, 54].
We refer to [61] for a review of kinetic models which take into account collisional
effects, which may be linear (for instance Vlasov–Fokker–Planck, Bhatnagar–Gross–
Krook equations) or nonlinear (Boltzmann equation) and to the monograph [42] for
the analysis of kinetic partial differential equations (PDEs), including the Vlasov
equation. Note that kinetic PDEs have also been used as popular models in math-
ematical biology in the recent years.

Let us mention the main qualitative properties satisfied by the linear Vlasov
equations, we refer to Section 3 for details. If the initial value is nonnegative, then
at all times the solution is also nonnegative. In addition, all Lp norms are preserved.

Stochastic versions of Vlasov kinetic equations have been considered in some re-
cent works, for instance to model random injection or removal of particles in the
system or to model the influence of stochastic (space-time) perturbations of the ex-
ternal vector field E. In [40] the authors prove regularization by noise results for a
class of linear Vlasov equations with transport noise, and similar results are proved
for nonlinear Vlasov–Poisson(–Fokker–Planck) equations in [4]. See also the arti-
cle [34], where it is shown that introducing a stochastic (space-time) perturbation
of the vector field E can prevent collapse in Vlasov–Poisson systems. Variational
integrators are tested for some stochastic versions of the Vlasov equation in the
article [47]. Finally, numerical methods are applied to some linear collisional ki-
netic equations with stochastic perturbation in the diffusion limit in the article [2].
We refer to [36] for a review of numerical methods applied to kinetic PDEs. The
article [28] promotes the application of particle methods to approximate solutions
of Vlasov equations. See also [41] for a description of various numerical approaches.

Our motivation in this work is driven by the perspective of geometric numerical
integration and the desire to illustrate how the qualitative behavior of the solutions
and of well-chosen integrators are modified under stochastic perturbations of various
types. In addition, in this work we do not provide rigorous convergence analysis
for the proposed integrators. To the best of our knowledge, the numerical schemes
constructed below have not been studied previously in the literature.

The numerical schemes considered in this article combine two techniques which
have been extensively studied for the discretization of the Vlasov equation: the semi-
Lagrangian approach [59, 7, 38, 31, 8, 20] and the splitting technique [19, 39, 30, 56].
The lists of references above are not exhaustive. The semi-Lagrangian approach ex-
ploits characteristic curves to express the numerical solution at time tn`1 at grid
points in terms of the numerical solution at time tn, with the application of an
interpolation procedure. The splitting approach consists in decomposing on each
time interval the dynamics into subsystems which can be solved exactly. We briefly
review semi-Lagrangian and splitting techniques when applied to the determinis-
tic linear Vlasov equation in Section 3. In the sequel, we focus on the temporal
discretization and we thus only deal with semi-discrete splitting methods.

Various types of stochastic perturbations of the linear Vlasov equation are con-
sidered. We illustrate below how the properties of the exact solutions differ for each
type of perturbation, and how this needs to be taken into account in the construc-
tion of the splitting integrators. Basic concepts and results on splitting schemes,
when applied to deterministic differential equations, are found for instance in the
monographs [43, 10] and in the review articles [51, 11], see also references therein.
For applications of splitting schemes to the temporal discretization of stochastic
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partial differential equations, we refer the interested reader to the following (non-
exhaustive) list: [50, 29, 3, 32, 53, 16, 17, 5, 13, 12, 14, 15]. In all the considered
stochastic perturbations of the linear Vlasov equation, a similar strategy is applied
to define the splitting schemes: the contributions of the deterministic and stochastic
parts in the evolution are treated separately. In addition, the deterministic part is
always treated by the same Lie–Trotter splitting scheme. For each type of noise
the exact solution for the stochastic contribution is known exactly. Considering
splitting schemes is appealing in our context since this leads to effective explicit
numerical schemes which are able to preserve some qualitative properties of the
exact solutions. This is justified theoretically and demonstrated numerically for all
the stochastic versions of the linear Vlasov equation considered in this work. Let
us now describe these versions and the main results. We refer to Section 2 below
for the notation.

‚ Additive noise perturbation: in Section 4 we consider the following stochastic
PDE

$

’

’

&

’

’

%

dfaddpt, x, vq ` v ¨ ∇xf
addpt, x, vqdt

` Epxq ¨ ∇vf
addpt, x, vqdt “ dW pt, x, vq ,

faddp0, x, vq “ f0px, vq ,

see equation (15). The splitting scheme in this case is given by (19). Since
the noise is additive, the solution is a Gaussian process, thus the positivity
or the Lp norm of the initial value f0 cannot be preserved. Instead, we prove
trace formulas: the second-order moment of the L2 norm of the exact solution
grows linearly with time (see Proposition 1). This linear evolution is preserved
for the numerical solution computed using the proposed splitting scheme (see
Proposition 2).

‚ Multiplicative noise perturbation with Itô interpretation: in Section 5.1 we
consider the following stochastic PDE

$

’

’

&

’

’

%

dfmIpt, x, vq ` v ¨ ∇xf
mIpt, x, vqdt` Epxq ¨ ∇vf

mIpt, x, vqdt

“ fmIpt, x, vqdW pt, x, vq ,

fmIp0, x, vq “ f0px, vq ,

see equation (27). The splitting scheme in this case is given by (31). Propo-
sition 3 provides the qualitative properties for the exact solution. First, one
has almost sure preservation of the positivity of the initial value. Second, the
mass of the initial value is preserved in expectation. Finally, under an appro-
priate condition on the diffusion coefficients, the second-order moment of the
L2 norm is shown to satisfy a simple evolution law. All those properties are
shown to be preserved by the splitting scheme (31), see Proposition 5.

‚ Multiplicative noise perturbation with Stratonovich interpretation: in Sec-
tion 5.2 we consider the following stochastic PDE

$

’

’

&

’

’

%

dfmSpt, x, vq ` v ¨ ∇xf
mSpt, x, vqdt

` Epxq ¨ ∇vf
mSpt, x, vqdt “ fmSpt, x, vq ˝ dW pt, x, vq ,

fmSp0, x, vq “ f0px, vq ,

see equation (33). The splitting scheme in this case is given by (38). Propo-
sition 8 provides the qualitative properties for the exact solution. First, one
has almost sure preservation of the positivity of the initial value. Moreover,
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under an appropriate condition on the diffusion coefficients, the second-order
moment of the L2 norm is shown to satisfy a simple evolution law. All those
properties are shown to be preserved by the splitting scheme (38), see Propo-
sition 9.

‚ Transport noise perturbation: in Section 6 we consider the following stochastic
PDE

$

’

&

’

%

df trpt, x, vq ` v ¨ ∇xf
trpt, x, vqdt

` Epxq ¨ ∇vf
trpt, x, vqdt` ∇vf

trpt, x, vq d dW pt, xq “ 0 ,

f trp0, x, vq “ f0px, vq ,

see equation (39). The splitting scheme in this case is given by (44). Al-
most preservation of positivity and Lp norms are stated in Proposition 11 for
the exact solution. We show that those properties are also preserved by the
splitting scheme (44), see Proposition 12.

All the theoretical results mentioned above are illustrated by numerical experiments
for each stochastic partial differential equation (SPDE). Snapshots of the numerical
solutions also illustrate the influence of the stochastic perturbation on the behavior
of the solutions. Even if we do not provide a rigorous convergence analysis, we
conjecture that the proposed splitting schemes are consistent. Moreover, we report
below numerical experiments to investigate mean-square rates of convergence and
identify that in all cases convergence with order 1 is expected to hold. We leave a
convergence analysis and other questions such as treating nonlinear models or con-
structing higher order integrators for future works. Our implementation is based on
the code from [46] and is available under https://doi.org/10.5281/zenodo.10495233.

Sections 4, 5 and 6 below are organized similarly, this allows us to exhibit the
main common or different features of the considered SPDEs and their numerical
discretizations.

2. Notation. The dimension d P N is an arbitrary integer. Let Td “ pR{Zqd

denote the d-dimensional torus. For any differentiable mapping f : Td ˆ Rd Ñ R,
let ∇xf “

`

Bx1
f, . . . , Bxd

f
˘

and ∇vf “
`

Bv1f, . . . , Bvdf
˘

denote the gradients of f

with respect to the spatial variable x P Td and the velocity v P Rd respectively.
For any real number p P r1,8q, and any measurable mapping f : Td ˆ Rd Ñ R,

define

}f}Lp
x,v

“

´

ĳ

|fpx, vq|
p
dxdv

¯
1
p

:“

ˆ
ż

Rd

ż

Td

|fpx, vq|
p
dx dv

˙
1
p

and set Lp
x,v “ tf ; }f}Lp

x,v
ă 8u. Below, to simplify the notation we will not

write the domains of the integrals. In addition, for any measurable mapping f :
Td ˆ Rd Ñ R, define

}f}L8
x,v

“ ess sup
px,vqPTdˆRd

|fpx, vq|

and set L8
x,v “ tf ; }f}L8

x,v
ă 8u.

Given a function f : pt, x, vq P R` ˆ Td ˆ Rd ÞÑ fpt, x, vq P R, the notation fptq
for t ě 0 is frequently used in the sequel to denote the mapping px, vq P Td ˆRd ÞÑ

fpt, x, vq. The expression fptqpx, vq “ fpt, x, vq is also often employed below.
To describe the considered class of (stochastic) partial differential equations, let

us denote by E : x P Td ÞÑ Epxq P Rd a vector field which is assumed to be of class
C8. In addition, the initial value is denoted by f0 : px, vq P Td ˆ Rd ÞÑ f0px, vq P R

https://doi.org/10.5281/zenodo.10495233
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in the sequel. Below, it is assumed that f0 is non-random. Precise regularity and
integrability conditions on f0 are imposed below.

It remains to describe the setting for the considered stochastic perturbation of
linear Vlasov equations. Let pΩ,F ,Pq be a probability space and

`

Ft

˘

tě0
be a

filtration satisfying the usual conditions. The expectation operator is denoted by
Er¨s. Let K P N be an integer, and let

`

βk
˘

1ďkďK
be a family of independent

standard real-valued Wiener processes, adapted to the filtration.
In Sections 4 and 5, the stochastic perturbation is of additive or multiplicative

type, and is written as a real-valued Wiener process defined by

W pt, x, vq “

K
ÿ

k“1

βkptqσkpx, vq, t ě 0, x P Td, v P Rd, (1)

where σk : px, vq P TdˆRd ÞÑ σkpx, vq P R are real-valued mappings, for 1 ď k ď K.
In Section 6, the stochastic perturbation is of transport type and it does not

depend on of the variable v. It is written as a Rd-valued Wiener process defined by

W pt, xq “

K
ÿ

k“1

βkptqσkpxq, t ě 0, x P Td, (2)

where σj,k : x P Td ÞÑ σj,kpxq P R are real-valued mappings, and for all x P Td one
has σkpxq “

`

σ1,kpxq, . . . , σd,kpxq
˘

P Rd .

The notation W ptq is also used below for the random mapping px, vq P Td ˆ

Rd ÞÑ W pt, x, vq, associated with (1) while the notation W ptq stands for the random
mapping x P Td ÞÑ W pt, xq, associated with (2) respectively, for all t ě 0. We refer
for instance to [33, Chapter 4] and [49, Chapter 10] for details on Wiener processes
and stochastic integrals with values in Hilbert spaces.

It is assumed that the mappings σk and σj,k, 1 ď j ď d, 1 ď k ď K are of class
C8. Further growth or integrability conditions on these mappings are imposed
below depending on the considered class of problems.

Finally, the numerical methods considered in this paper use the following nota-
tion. For the temporal discretization, the time-step size is denoted by τ . Without
loss of generality, it is assumed that τ P p0, 1q. For any nonnegative integer n ě 0,
set tn “ nτ , and introduce Wiener increments

δβk,n “ βkptn`1q ´ βkptnq , 1 ď k ď K. (3)

The random variables
`

τ´ 1
2 δβn,k

˘

ně0,1ďkďK
are independent standard real-valued

Gaussian random variables (with mean equal to 0 and variance equal to 1).
Increments of the Wiener processes defined by (1) and (2) are given for any

nonnegative integer n ě 0 by

δWnpx, vq “ W ptn`1, x, vq ´W ptn, x, vq

“

K
ÿ

k“1

δβk,nσkpx, vq , px, vq P Td ˆ Rd, (4)

δWnpxq “ W ptn`1, xq ´ W ptn, xq “

K
ÿ

k“1

δβk,nσkpxq , x P Td. (5)

In this work, we focus on the temporal discretization of stochastic linear Vlasov
equations. However, practical implementation requires some discretization proce-
dure with respect to the spatial and velocity variables x P Td and v P Rd. In
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the numerical experiments below, a semi-Lagrangian approach is employed, see for
instance [59, 7, 38] or [37, Chapter 6]. The semi-Lagrangian approach exploits
characteristic curves to express the numerical solution at time tn`1 at grid points
in terms of the numerical solution at time tn. Since the characteristic curves in
general do not hit grid points, an interpolation procedure is employed to the nu-
merical solution at time tn. Note that, in order to preserve the positivity property
of solutions to the considered SPDEs (see below), we use a linear interpolation
in the implementation of the studied numerical schemes. However the analysis of
semi-Lagrangian discretization is out of the scope of this work. The mesh sizes with
respect to the spatial and velocity domains are denoted by δx and δv respectively.
Since the velocity space Rd is unbounded, in practice a truncation procedure at
large velocities v is imposed, whereas for the spatial variable x, periodic boundary
conditions are used. Besides, the verification of trace formulas and evolution laws
for some moments of the solutions and the study of mean-square convergence re-
quire a Monte Carlo averaging procedure in order to compute approximate values
of expectations.

3. Preliminaries on the deterministic linear Vlasov equation. The objec-
tive of this section is to provide basic and well-known background on the determinis-
tic version of the linear Vlasov equation, before considering stochastically perturbed
versions in the next sections. Some notation and fundamental properties introduced
below are employed in the sequel. We study the linear Vlasov equation

$

’

’

&

’

’

%

Btf
detpt, x, vq ` v ¨ ∇xf

detpt, x, vq ` Epxq ¨ ∇vf
detpt, x, vq “ 0 ,

t ě 0, x P Td, v P Rd,

fdetp0, x, vq “ f0px, vq , x P Td, v P Rd,

(6)

where the unknown is a mapping fdet : pt, x, vq P R` ˆ Td ˆ Rd ÞÑ fdetpt, x, vq P R.
Under appropriate regularity and integrability conditions, given any initial value
f0, the partial differential equation (6) admits a unique solution.

3.1. Analysis and properties of the problem. The solution of (6) can be con-
structed using solutions of the associated ordinary differential equation

#

9xt “ vt

9vt “ Epxtq.
(7)

Let
`

ϕt
˘

tPR denote the associated flow of this differential equation. Recall that this

means that for any initial value px0, v0q P TdˆRd, the solution at time t ě 0 is given
by pxt, vtq “ ϕtpx0, v0q. In addition, the flow map property ϕt`s “ ϕt˝ϕs is satisfied
for all t, s P R. Finally, for all t P R, the mapping ϕt is a smooth diffeomorphism and
one has pϕtq

´1 “ ϕ´t. Since the vector field px, vq : Td ˆ Rd ÞÑ pv,Epxqq P Rd ˆ Rd

does not depend on the time variable,
`

ϕ´1
t

˘

tPR “
`

ϕ´t

˘

tPR is obtained by reverting

time in the dynamics (7), i. e. by considering the flow of the ordinary differential
equation

#

9xt “ ´vt

9vt “ ´Epxtq.

The flow
`

ϕt
˘

tPR associated with (7) satisfies a remarkable property: it preserves

the volume in Td ˆ Rd. This can be written as follows: for any integrable function
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φ : Td ˆ Rd Ñ R, one has
ĳ

φpϕtpx, vqqdxdv “

ĳ

φpx, vqdxdv.

We are now in position to recall the links between the Vlasov PDE (6) and the
ODE system (7). On the one hand, assume that

`

fdetptq
˘

tě0
is solution of the

PDE (6), then for any solution
`

xt, vt
˘

tě0
of the ODE system (7), applying the

chain rule, one has
dfdetpt, xt, vtq

dt
“ 0.

As a consequence, for all t ě 0, x0 P Td and v0 P Rd, one has

fdetpt, ϕtpx0, v0qq “ fdetpt, xt, vtq “ fdetp0, x0, v0q “ f0px0, v0q.

Therefore the ODE system (7) provides characteristic curves for the Vlasov equa-
tion (6). This gives a strategy to solve (6) by the method of lines: the solution fptq
at any time t ě 0 is given by

fdetpt, x, vq “ f0
`

ϕ´1
t px, vq

˘

, x P Td, v P Rd. (8)

On the other hand, under sufficient regularity conditions, one can check that the
mapping fdet : pt, x, vq P R` ˆ Td ˆ Rd ÞÑ fdetpt, x, vq P R defined by the expres-
sion (8) solves the Vlasov equation (6).

The expression (8) leads to define a group of linear operators
`

Sptq
˘

tě0
as follows:

for all t P R and any measurable mapping f : Td ˆ Rd Ñ R, set
Sptqf “ f

`

ϕ´1
t p¨q

˘

. (9)

The group property Spt ` sq “ SptqSpsq, t, s P R, follows from the group property
of the flow

`

ϕt
˘

tPR.
Let us describe some remarkable properties of solutions of the Vlasov equa-

tion (6), which are considered below for stochastic perturbations of this PDE and
for its numerical discretization. Let fdetptq “ Sptqf0 for all t ě 0.

‚ Preservation of positivity. Assume that f0px, vq ě 0 for all px, vq P Td ˆ Rd.
Then one has fdetpt, x, vq ě 0 for all t ě 0 and px, vq P Td ˆ Rd.

‚ Preservation of integrals. Let Φ : R Ñ R` be a real-valued measurable map-
ping. Then for all t ě 0 one has

ĳ

Φpfdetpt, x, vqqdxdv “

ĳ

Φpf0px, vqqdxdv.

‚ Isometry property. For all p P r1,8s and t ě 0, the linear operator Sptq :
Lp
x,v Ñ Lp

x,v is an isometry: if f0 P Lp
x,v, then f

detptq “ Sptqf0 P Lp
x,v for all

t ě 0 and
}fdetptq}Lp

x,v
“ }Sptqf0}Lp

x,v
“ }f0}Lp

x,v
.

The preservation of positivity and the preservation of the L8
x,v norm are straight-

forward consequences of the expression (8). The preservation of integrals property
follows from the preservation of volume by the flow

`

ϕt
˘

tPR and implies the isometry

property above when p P r1,8q by choosing Φ “ | ¨ |p.
Finally, the preservation of volume by the flow

`

ϕt
˘

tě0
also implies the following

result. Assume that f0 P L1
x,v, then for any bounded and continuous function

φ : Td ˆ Rd Ñ R and for all t ě 0, one has
ĳ

fdetpt, x, vqφpx, vqdx dv “

ĳ

fp0, x, vqφpϕtpx, vqq dx dv.
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The properties above provide a possible probabilistic interpretation of solutions
to the Vlasov PDE (6). If the initial value f0 is a probability density function, in
particular, this requires the conditions f0 ě 0 and }f0}L1

x,v
“ 1, then for all t ě 0,

the mapping fdetptq “ Sptqf0 is a probability density function. If pX0,V0q is a Td ˆ

Rd-valued random variable having density f0 with respect to the Lebesgue measure,
then fdetptq is the density with respect to the Lebesgue measure of the random
variable pXt,Vtq “ ϕtpX0,V0q. In other words, fdetptq is the probability density
function associated with the transport by the dynamics (7) of the distribution f0 of
the initial values px0, v0q. In some contexts, in particular for Hamiltonian dynamics
(E “ ´∇V where V : Td Ñ R is a smooth mapping), the Vlasov equation (6) is
referred to as the Liouville equation associated with the dynamics (7).

3.2. Numerical approximation. Let us describe numerical integrators applied
to the linear Vlasov equation (6). As already mentioned, we focus on temporal
discretization only in this work. To approximate solutions and preserve the proper-
ties mentioned above, it is natural to rely on splitting integrators. We only present
Lie–Trotter versions, for simplicity and motivated by the fact that stochastic per-
turbations usually lead to numerical methods which are of strong order less than
2 (the usual order of Strang splitting for deterministic problems, see for instance
[22, 59, 39, 19]). Let us mention that high-order numerical schemes for the de-
terministic part of the problem (for instance using a Strang splitting instead of
a Lie–Trotter splitting) could however be of interest for stochastic problems with
small noise, see for instance [52, Chapter 4].

The principle of splitting integrators is to combine solutions of subsystems of
evolution equations which can be solved exactly. For the deterministic linear Vlasov
equation (6) it is natural to decompose the problem into the two subsystems

Btf
1pt, x, vq ` v ¨ ∇xf

1pt, x, vq “ 0 , t ě 0, x P Td, v P Rd (10a)

Btf
2pt, x, vq ` Epxq ¨ ∇vf

2pt, x, vq “ 0 , t ě 0, x P Td, v P Rd. (10b)

Let
`

S1ptq
˘

tPR and
`

S2ptq
˘

tPR be the associated groups of linear operators: the

solutions at time t ě 0 of (10a) and (10b) are respectively f1ptq “ S1ptqf0 and
f2ptq “ S2ptqf0, where for all t P R, x P Td, v P Rd and any measurable mapping
f : Td ˆ Rd Ñ R, one has

S1ptqfpx, vq “ fpx´ tv, vq

S2ptqfpx, vq “ fpx, v ´ tEpxqq.

Note that the partial differential equations (10a) and (10b) are associated with the
ordinary differential equations

#

9x1t “ v1t

9v1t “ 0,
and

#

9x2t “ 0

9v2t “ Epx2t q,

for which expressions of the exact solutions are known: for all t ě 0, one has
`

x1t , v
1
t

˘

“ ϕ1t px10, v
1
0q “

`

x10 ` tv10 , v
1
0

˘

`

x2t , v
2
t

˘

“ ϕ2t px20, v
2
0q “

`

x20, v
2
0 ` tEpx20q

˘

.

The link between the Vlasov equation (6) and the dynamics (7) is retrieved for the
subsystems (10a) and (10b) and the associated dynamics: for all t ě 0 and any
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measurable mapping f : Td ˆ Rd Ñ R one has

S1ptqf “ f
`

pϕ1t q´1p¨q
˘

, S2ptqf “ f
`

pϕ2t q´1p¨q
˘

(11)

where
`

ϕ1t
˘

tPR and
`

ϕ2t
˘

tPR are the flows associated with the dynamics introduced
above.

As a consequence, it is straightforward to check that the properties stated above
for solutions of the Vlasov equation (6) (preservation of positivity, preservation
of integrals and isometry property) and the interpretation of the solution as the
probability density functions associated with the transport by dynamics of the dis-
tribution of initial value, persist for the solutions of the subsystems (10a) and (10b).

Applying the Lie–Trotter splitting method yields to the definition of the following
numerical method for the deterministic linear Vlasov equation (6): set fdet0 “ f0
and for any nonnegative integer n ě 0, set

fdetn`1 “ S2pτqS1pτqfdetn . (12)

Using the definitions(11) of S1ptq and S2ptq above, one has for all n ě 0, x P Td

and v P Rd

fdetn`1px, vq “
`

S2pτqS1pτqfdetn

˘

px, vq “
`

S1pτqfdetn

˘

px, v ´ τEpxqq

“ fdetn px´ τv ´ τ2Epxq, v ´ τEpxqq.

With that expression, it appears that the scheme (12) can be interpreted as a
discrete version of the expression (8) for the exact solution of (6), where the flow ϕt
is approximated using a splitting integrator based on the two subsystems of ordinary
differential equations above.

It is straightforward to check that the properties stated above for the exact
solution of (6) also hold for the Lie–Trotter splitting scheme (12), for any value of
the time step size τ . In particular, one has the following results.

‚ Preservation of positivity. Assume that f0px, vq ě 0 for all px, vq P Td ˆ Rd.
Then for all n P N one has fdetn px, vq ě 0 for all px, vq P Td ˆ Rd.

‚ Isometry property. Let p P r1,8s and assume that f0 P Lp
x,v. Then for all

n ě 0 one has fdetn P Lp
x,v and

}fdetn }Lp
x,v

“ }f0}Lp
x,v
.

We conclude these preliminaries on the deterministic linear Vlasov equation (6)
with a numerical experiment with the goal to illustrate the behavior of the solution
to the linear Vlasov PDE (6), in dimension d “ 1. In Figure 1 below, snapshots at
times t0, 0.5, 1, 1.5, 2, 2.5u of the numerical solution computed using the Lie–Trotter
splitting scheme 12 are displayed. We consider a standard two-stream instability
test case: the initial value f0 is given by

f0px, vq “
e´v2

{2

?
2π

`

1 ` 0.05 cos p2πxq
˘

v2 , x P T, v P R, (13)

The two-stream instability has been extensively used to illustrate wave-particle
interactions since the seminal paper [35], see also for instance [9, 45, 22]. In addition,
the vector field E is given by

Epxq “ cosp2πxq , x P T. (14)

The discretization parameters for Figure 1 are δx “ 1
500 , δv “ 4π

500 , and τ “ 0.1.
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Figure 1. Snapshots: approximation of the solution of the
deterministic PDE (6) with initial value f0 given by (13),
at times t0, 0.5, 1, 1.5, 2, 2.5u, using the Lie–Trotter splitting
scheme (12) with time-step size τ “ 0.1.

4. The stochastic linear Vlasov equation perturbed by additive noise. In
this section, we consider a version of the linear Vlasov equation (6) perturbed by
additive noise of the type (1): for t ě 0, x P Td, v P Rd

#

dfaddpt, x, vq ` v ¨ ∇xf
addpt, x, vqdt` Epxq ¨ ∇vf

addpt, x, vqdt “ dW pt, x, vq,

faddp0, x, vq “ f0px, vq.

(15)

4.1. Analysis and properties of the problem. We recall that the initial value
f0 is assumed to be non-random. The solution of the stochastic partial differential
equation (15) can be interpreted in different ways, as explained below. Those inter-
pretations are equivalent under appropriate regularity and integrability conditions.

On the one hand, using the group
`

Sptq
˘

tPR of linear operators given by (9) in

Section 3 and the definition of the noise (1), one can consider mild solutions in the
sense of [33, Chapter 5], see also [49, Section 10.4] for instance: for all t ě 0, one
has

faddptq “ Sptqf0 `

ż t

0

Spt´ sqdW psq “ Sptqf0 `

K
ÿ

k“1

ż t

0

Spt´ sqσk dβkpsq, (16)

where
şt

0
Spt ´ sqdW psq is considered as a stochastic integral with values in the

Hilbert space L2
x,v, see [33, Chapter 4]. On the other hand, using the expression (9)

for the linear operator Sptq, one has for all t ě 0, x P Td and v P Rd

faddpt, x, vq “ f0pϕ´1
t px, vqq `

K
ÿ

k“1

ż t

0

σkpϕ´1
t´spx, vqqdβkpsq, (17)
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where
`

ϕt
˘

tPR denotes the flow of (7).
Finally note that the expression above can be retrieved by applying the Itô–

Wentzell formula (see Appendix A for the statement): if t ÞÑ pxt, vtq “ ϕtpx0, v0q

is the solution of the ordinary differential equation (7) with arbitrary initial value
px0, v0q P Td ˆ Rd, and if the solution of (15) is sufficiently regular, then the
stochastic process t P R` ÞÑ faddpt, xt, vtq satisfies

dfaddpt, xt, vtq “

K
ÿ

k“1

σkpxt, vtqdβkptq

faddpt, xt, vtq “ f0px0, v0q `

K
ÿ

k“1

ż t

0

σkpxs, vsqdβkpsq.

Let us now study properties of the solution to the SPDE (15). First, note that
the random field pt, x, vq P R` ˆ Td ˆ Rd ÞÑ faddpt, x, vq is Gaussian. Owing
to (17) one has Erfaddpt, x, vqs “ f0pϕ´1

t px, vqq “ fdetpt, x, vq for all t ě 0, x P

Td and v P Rd, where
`

fdetptq
˘

tě0
is the solution of deterministic linear Vlasov

equation (6) with initial value f0. The covariance structure of the Gaussian process
Erfaddpt1, x1, v1qfaddpt2, x2, v2qs is computed using Itô’s isometry formula applied
to (17): for all t1, t2 ě 0, x1, x2 P Td and v1, v2 P Rd one has

Erfaddpt1, x1, v1qfaddpt2, x2, v2qs “ f0pϕ´1
t1 px1, v1qqf0pϕ´1

t2 px2, v2qq

`

K
ÿ

k“1

ż minpt1,t2q

0

σkpϕ´1
t1´spx1, v1qqσkpϕ´1

t2´spx2, v2qqds.

Since the solution to the SPDE (15) is a Gaussian process, the preservation
properties satisfied in the deterministic case cannot be satisfied. However, one
has the following remarkable property, which is often called a trace formula in the
literature, see for instance [60, 44, 18, 58, 57, 26, 1, 25, 21, 27, 13].

Proposition 1. Assume that σk P L2
x,v for all 1 ď k ď K, and that f0 P L2

x,v.

Let
`

faddptq
˘

tě0
be the solution of the SPDE (15) driven by the additive noise (1).

Then for all t ě 0 one has faddptq P L2pΩ, L2
x,vq and

Er}faddptq}2L2
x,v

s “ }f0}2Lx,v
` t

K
ÿ

k“1

}σk}2L2
x,v
. (18)

The trace formula (18) is proved below using the two formulations (16) and (17).

First proof of Proposition 1. Choosing t1 “ t2 “ t, x1 “ x2 “ x and v1 “ v2 “ v in
the expression of the covariance above, and integrating with respect to the variables
x and v, one obtains

Er}faddptq}2L2
x,v

s “

ĳ

Erfaddpt, x, vq2s dx dv

“

ĳ

f0pϕ´1
t px, vqq2 dxdv `

K
ÿ

k“1

ż t

0

ĳ

Erσkpϕ´1
t´spx, vqq2sdxdv ds
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“

ĳ

f0px, vq2 dxdv `

K
ÿ

k“1

ż t

0

ĳ

Erσkpx, vq2sdx dv ds

“ }f0}2Lx,v
` t

K
ÿ

k“1

}σk}2L2
x,v

using the fact that for all t ě 0 the mapping ϕt preserves volume in Td ˆ Rd, see
Section 3.

Second proof of Proposition 1. Using the mild formulation (16) of the solution fptq
of (15), the Itô isometry formula in the Hilbert space L2

x,v (see for instance [49,

Theorem 10.16]), and the isometry property for the linear operators Sptq : L2
x,v Ñ

L2
x,v (see Section 3), for all t ě 0, one has

Er}faddptq}2L2
x,v

s “ Er}Sptqf0}2L2
x,v

s `

K
ÿ

k“1

ż t

0

}Spt´ sqσk}2L2
x,v

ds

“ Er}f0}2L2
x,v

s `

K
ÿ

k“1

ż t

0

}σk}2L2
x,v

ds

“ Er}f0}2L2
x,v

s ` t
K
ÿ

k“1

}σk}2L2
x,v
.

4.2. Splitting scheme. Let us now describe the proposed numerical scheme for
the temporal discretization of the SPDE (15). The strategy is to use a splitting
method in order to treat first the deterministic part, second the stochastic part.
Using the Lie–Trotter integrator (12) for the deterministic part yields the following
scheme: given the initial value f0 and the time-step size τ P p0, 1q, set fadd0 “ f0
and for any nonnegative integer n ě 0 set

faddn`1 “ S2pτqS1pτqfaddn ` δWn “ S2pτqS1pτqfaddn `

K
ÿ

k“1

δβn,kσk, (19)

where the Wiener increments δWn and δβn,k are given by (4) and (3) respectively,
see Section 2. The scheme (19) can also be written as follows: for all n ě 0, x P Td

and v P Rd one has

faddn`1px, vq “ faddn px´ τv ´ τ2Epxq, v ´ τEpxqq `

K
ÿ

k“1

σkpx, vqδβn,k. (20)

The main result of this section states that the Lie–Trotter splitting scheme (19)
preserves the trace formula from Proposition 1 for all times and for any value of the
time-step size τ .

Proposition 2. Assume that σk P L2
x,v for all 1 ď k ď K, and that f0 P L2

x,v.

Let
`

faddn

˘

ně0
be given by the Lie–Trotter splitting scheme (19) with time-step size

τ P p0, 1q. Then for any nonnegative integer n ě 0, one has faddn P L2pΩ, L2
x,vq and

Er}faddn }2L2
x,v

s “ }f0}2Lx,v
` tn

K
ÿ

k“1

}σk}2L2
x,v
, (21)

where tn “ nτ .
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To obtain the trace formula (21), it suffices to prove that for any nonnegative
integer n ě 0 one has

Er}faddn`1}2L2
x,v

s “ Er}faddn }2L2
x,v

s ` τ
K
ÿ

k“1

}σk}2L2
x,v
.

Like for Proposition 1, two proofs are given below.

First proof of Proposition 2. Observe that for all x P Td and v P Rd the ran-
dom variable faddn px ´ τv ´ τ2Epxq, v ´ τEpxqq and the Gaussian random vari-
able

`

δβn,k
˘

1ďkďK
are independent. Using the expression (20), one obtains, for all

px, vq P Td ˆ Rd, the identity

Erfaddn`1px, vq2s “ Erfaddn px´ tv ´ t2Epxq, v ´ tEpxqq2s ` τ
K
ÿ

k“1

σkpx, vq2.

Note that applying twice a change of variables formulas one has
ĳ

Erfaddn px´ τv ´ τ2Epxq, v ´ τEpxqq2sdxdv “

ĳ

Erfaddn px´ τv, vq2sdxdv

“

ĳ

Erfaddn px, vq2sdxdv.

Integrating with respect to the variables x and v, one then obtains

Er}faddn`1}2L2
x,v

s “

ĳ

Erfaddn`1px, vq2sdxdv

“

ĳ

Erfaddn px, vq2sdx dv ` τ
K
ÿ

k“1

ĳ

σkpx, vq2 dxdv

“ Er}faddn }2L2
x,v

s ` τ
K
ÿ

k“1

}σk}2L2
x,v
.

Second proof of Proposition 2. Observe that the random mapping faddn and the
Gaussian random variable

`

δβn,k
˘

1ďkďK
are independent. Using the isometry prop-

erty for the linear operators S1pτq, S2pτq : L2
x,v Ñ L2

x,v, one then obtains

Er}faddn`1}2L2
x,v

s “ Er}S2pτqS1pτqfaddn }2L2
x,v

s ` τ
K
ÿ

k“1

}σk}2L2
x,v

“ Er}faddn }2L2
x,v

s ` τ
K
ÿ

k“1

}σk}2L2
x,v
.

4.3. Numerical experiments. We begin the numerical experiments by illustrat-
ing the behavior of the linear Vlasov equation perturbed by additive noise (15), in
dimension d “ 1. Like for Figure 1 in the deterministic case (see Section 3), the
initial value f0 is given by (13) and the vector field E is given by (14).

The noise perturbation is given either by

σ1px, vq “ cospvq1|v|ď3 , x P T, v P R, (22)
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or by

σ1px, vq “ sinpvq1|v|ď3 , x P T, v P R, (23)

with K “ 1 in both cases. In Figures 2 and 3 below, snapshots at the times
t0, 0.5, 1, 1.5, 2, 2.5u of the numerical solution computed using the Lie–Trotter split-
ting scheme 19 are displayed, with σ1 given by (22) and (23) respectively. The
discretization parameters are given by δx “ 1

500 , δv “ 4π
500 , and τ “ 0.1. One ob-

serves that the solutions behave differently from the deterministic case displayed in
Figure 1. One also observes major differences between Figures 2 and 3 which are due
to imposing a noise perturbation which is either symmetric or skew-symmetric with
respect to the velocity variable v. Recall that the average value Erfaddpt, x, vqs “

fdetpt, x, vq is solution of the deterministic PDE (6), which justifies the persistence
of the deterministic behavior and of the influence of the initial condition in the
snapshots.
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Figure 2. Snapshots: approximation of the solution of the sto-
chastic PDE with additive noise (15) with initial value f0 given
by (13), with σ1 given by (22) at times t0, 0.5, 1, 1.5, 2, 2.5u, using
the Lie–Trotter splitting scheme (19) with time-step size τ “ 0.1.

We continue these numerical experiments with Figure 4 in order to illustrate the
trace formula (21) from Proposition 2 for the L2

x,v-norm of the Lie–Trotter splitting
scheme (19). Let d “ 1 and T “ 1, the initial value f0 is given by (13) and the
vector field E is given by (14). For the noise perturbation, one has either K “ 1
and

σ1px, vq “ 0.5 sinpvq1|v|ď3, (24)

or K “ 2 and

σ1px, vq “ 0.5e´v2
{2 cos p2πxq , σ2px, vq “ 0.5e´v2

{2 sin p2πxq, (25)

for all x P T and v P R. The discretization parameters are given by δx “ 1
200 ,

δv “ 4π
400 , and τ “ 0.1. The expectation in the trace formula (21) is approximated
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Figure 3. Snapshots: approximation of the solution of the sto-
chastic PDE with additive noise (15) with initial value f0 given
by (13), with σ1 given by (23) at times t0, 0.5, 1, 1.5, 2, 2.5u, using
the Lie–Trotter splitting scheme (19) with time-step size τ “ 0.1.

by a standard Monte Carlo averaging procedure over 106 independent samples.
The exact line in Figure 4 corresponds to the trace formula (18) from Proposition 1
satisfied by the exact solution. Even if Proposition 2 states that the Lie–Trotter
splitting scheme (19) preserves the trace formula at all times tn “ nτ , some error is
visible. This may be due to the discretization procedure with respect to the spatial
and velocity variables x and v, in particular since a truncation procedure for large
v is applied. We have verified that increasing the Monte Carlo sample size does not
seem to reduce the error visible in Figure 4.
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(a) Noise given by (24), K “ 1.
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Figure 4. Trace formula: illustration of Proposition 2 when ap-
plying the Lie–Trotter splitting scheme (19) to the SPDE with
additive noise (15) with time-step size τ “ 0.1.
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The final experiment in the additive noise case is devoted to investigate the mean-
square order of convergence of the Lie–Trotter splitting scheme (19). In Figure 5,
a loglog plot displays how the error

c

sup
x,v

Er|faddpx, vq ´ fadd,refpx, vq|2s

converges to 0 when τ decreases, where x, v are grid points, the reference solution
fadd,ref is computed using the splitting scheme with time-step size τref “ 2´14. The
time-step size τ takes values in t2´7, . . . , 2´13u, and the expectation is computed
using a Monte Carlo averaging procedure over 500 independent samples. Note that
the sample size used to illustrate the behaviour of the mean-square error is much
smaller than the sample size used for the illustration of the trace formula in Figure 4
above. This is due to the fact that the variance also decreases when τ decreases.
We have verified that increasing the Monte Carlo sample size does not significantly
modify the behaviour of the mean-square error observed below. The discretization
parameters are δx “ 1

100 , δv “ 4π
200 . The final time is given by T “ 0.5, whereas f0

and E are again given by (13) and (14) respectively. Like for Figure 4 above, the
noise is given by (24) or (25). Based on these numerical experiments, we conjecture
that the order of mean-square convergence of the scheme (19) is equal to 1. We
leave the rigorous verification of this conjecture for future works.
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Figure 5. Mean-square errors: Lie–Trotter scheme (19) applied
to the SPDE with additive noise (15) driven by one-dimensional
noise (K “ 1, left) and two-dimensional noises (K “ 2, right).

5. The stochastic linear Vlasov equation perturbed by multiplicative
noise. In this section, we consider stochastic perturbations of the Vlasov equa-
tion (6) where the noise is multiplicative. In the analysis and applications of sto-
chastic (partial) differential equations, it is well-known that several interpretations
of multiplicative noise perturbations are possible. The Itô interpretation of the
noise is considered in Section 5.1, then the Stratonovich interpretation is consid-
ered in Section 5.2. The objective of this section is to explain how to construct
numerical schemes which are consistent with the two possible interpretations of the
multiplicative noise, and to investigate which properties of the exact solution can
be preserved at the discrete level.
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In this section, the following condition is imposed: for all 1 ď k ď K, the mapping
px, vq ÞÑ σkpx, vq is bounded. Some arguments below hold assuming in addition that

there exists a real number σ such that the mapping
řK

k“1 σ
2
k is constant equal to

σ2:
K
ÿ

k“1

σkpx, vq2 “: σ2 , @px, vq P Td ˆ Rd. (26)

For instance the condition (26) is satisfied if d “ 1, K “ 2, σ1px, vq “ cosp2πxq and
σ2px, vq “ sinp2πxq, with σ “ 1. Note that this two-dimensional noise leads to a
different dynamics for the SPDE than the case K “ 1 and σ1px, vq “ σ “ 1.

5.1. Itô interpretation. We consider the following linear Vlasov equation driven
by multiplicative noise interpreted in the Itô sense: for t ě 0, x P Td, v P Rd

$

’

’

&

’

’

%

dfmIpt, x, vq ` v ¨ ∇xf
mIpt, x, vqdt` Epxq ¨ ∇vf

mIpt, x, vqdt

“ fmIpt, x, vqdW pt, x, vq,

fmIp0, x, vq “ f0px, vq ,

(27)

where the noise is defined by (1).

5.1.1. Analysis and properties of the problem. Like in the additive noise case (Sec-
tion 4), let us consider several ways to define and deal with solutions of the
SPDE (27).

On the one hand, using the group
`

Sptq
˘

tPR of linear operators given by (9) in
Section 3, one can consider mild solutions: for all t ě 0, one has

fmIptq “ Sptqf0 `

ż t

0

Spt´ sqfmIpsqdW psq

“ Sptqf0 `

K
ÿ

k“1

ż t

0

Spt´ sq
`

fmIpsqσk
˘

dβkpsq.

(28)

On the other hand, using the expression (9) for the linear operator Sptq, one has
for all t ě 0, x P Td and v P Rd

fmIpt, x, vq “ f0pϕ´1
t px, vqq `

K
ÿ

k“1

ż t

0

fmIps, ϕ´1
t´spx, vqqσkpϕ´1

t´spx, vqqdβkpsq. (29)

Finally, the connection with the ordinary differential equation (7) can also be seen
by applying the Itô–Wentzell formula (see Appendix A): if t ÞÑ pxt, vtq “ ϕtpx0, v0q

is the solution of the ordinary differential equation (7) with arbitrary initial value
px0, v0q P Td ˆ Rd, and if the solution of (27) is sufficiently regular, then the
stochastic process t ě 0 ÞÑ fmIpt, xt, vtq satisfies

dfmIpt, xt, vtq “

K
ÿ

k“1

fmIpt, xt, vtqσkpxt, vtqdβkptq. (30)

The formula (30) allows to retrieve the expression (29) of fmIpt, x, vq above by
writing pxt, vtq “ ϕtpx, vq.

Let us now describe the properties of the solutions of the SPDE (27).

Proposition 3. Let
`

fmIptq
˘

tě0
be the solution of the SPDE (27) with (non-

random) initial value f0. One has the following properties.
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‚ Preservation of positivity. Assume that f0px, vq ě 0 for all px, vq P Td ˆ Rd.
Then one has fmIpt, x, vq ě 0 almost surely for all t ě 0 and px, vq P Td ˆRd.

‚ Preservation of the expected mass. Assume that f0 P L1
x,v. Then almost

surely one has fmIptq P L1
x,v for all t ě 0, and

ĳ

ErfmIpt, x, vqs dx dv “

ĳ

f0px, vq dx dv.

‚ Evolution law for the L2 norm. Assume that f0 P L2
x,v and that the condi-

tion (26) is satisfied. Then one has fmIptq P L2pΩ, L2
x,vq for all t ě 0, and

Er}fmIptq}2L2
x,v

s “ eσ
2t}f0}2L2

x,v
.

Proof of Proposition 3.

‚ Owing to the expression (30) of the solution and applying a comparison prin-
ciple for solutions of stochastic differential equations, one has fmIpt, xt, vtq ě 0
almost surely for all t ě 0, and for any arbitrary initial value px0, v0q P TdˆRd.
Choosing px0, v0q “ ϕ´1

t px, vq then yields fmIpt, x, vq ě 0 almost surely for all
pt, x, vq P R` ˆ Td ˆ Rd.

‚ Owing to the expression (29) of the solution using the flow
`

ϕt
˘

tPR, one has
for all t ě 0

ĳ

ErfmIpt, x, vqsdx dv

“

ĳ

f0pϕ´1
t px, vqq dx dv

`

K
ÿ

k“1

ĳ

E
”

ż t

0

σkpϕ´1
t´spx, vqqfmIps, ϕ´1

t´spx, vqqdβkpsq
ı

dxdv

“

ĳ

f0px, vqdxdv,

since the expectation of the stochastic Itô integral vanishes and since ϕt pre-
serves the volume in Td ˆ Rd for all t ě 0.

‚ Owing to the expression (29) of the solution using the flow
`

ϕt
˘

tPR, applying
Itô’s isometry formula yields

ĳ

ErfmIpt, x, vq2sdxdv “

ĳ

f0pϕ´1
t px, vqq2 dxdv

`

K
ÿ

k“1

ż t

0

ĳ

E
“

σkpϕ´1
t´spx, vqq2fmIps, ϕ´1

t´spx, vqq2
‰

dxdv ds

“

ĳ

f0px, vq2 dxdv `

K
ÿ

k“1

ż t

0

ĳ

E
“

σkpx, vq2fmIps, x, vq2
‰

dx dv ds,

since the mapping ϕt´s preserves the volume in Td ˆ Rd for all t ě s ě 0.
Using the condition (26) then yields the identity

ĳ

ErfmIpt, x, vq2sdxdv “

ĳ

f0pϕ´1
t px, vqq2 dxdv

` σ2

ż t

0

ĳ

E
“

fmIps, x, vq2
‰

dxdv ds.
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This implies that for all t ě 0 one has

Er}fmIptq}2L2
x,v

s “ eσ
2t}f0}2L2

x,v
.

Remark 4. The evolution law for the L2 norm in Proposition 3 can be proved by
an alternative approach: using the expression (28) of the mild solution, and using
the Itô isometry formula in the Hilbert space L2

x,v, one has

Er}fmIptq}2L2
x,v

s “ }Sptqf0}2L2
x,v

`

K
ÿ

k“1

ż t

0

Er}Spt´ sq
`

fmIpsqσk
˘

}2L2
x,v

s ds

“ }f0}2L2
x,v

`

K
ÿ

k“1

ż t

0

Er}fmIpsqσk}2L2
x,v

s ds,

since the linear operator Spt ´ sq : L2
x,v Ñ L2

x,v is an isometry, for all t ě s ě 0.
When the condition (26) is satisfied, one has

K
ÿ

k“1

}fmIpsqσk}2L2
x,v

“ σ2}fmIpsq}2L2
x,v

and the conclusion is obtained as in the proof above.

5.1.2. Splitting scheme. Let us now describe the proposed numerical scheme for the
temporal discretization of the SPDE (27) driven by multplicative Itô noise. Like
in the additive noise case presented in Section 4, a Lie–Trotter splitting strategy
is applied. The treatment of the deterministic part is not modified. The auxiliary
stochastic subsystem with multiplicative Itô noise

dfpt, x, vq “ fpt, x, vqdW pt, x, vq , pt, x, vq P R` ˆ Td ˆ Rd

is solved exactly: for all t ě s ě 0, one has

fpt, x, vq “ e
řK

k“1 σkpβkptq´βkpsqq´
pt´sq

řK
k“1 σkpx,vq2

2 fps, x, vq , @ px, vq P Td ˆ Rd.

Using the Lie–Trotter integrator (12) for the deterministic part and combining the
discretizations of the deterministic and stochastic parts yields the following scheme:
given the initial value f0 and the time-step size τ P p0, 1q, set fmI

0 “ f0 and for any
nonnegative integer n ě 0 set

$

&

%

f̂mI
n`1 “ S2pτqS1pτqfmI

n

fmI
n`1px, vq “ e

řK
k“1 σkpx,vqδβn,k´

τ
řK
k“1 σkpx,vq2

2 f̂mI
n`1px, vq , x P Td, v P Rd,

(31)

where the Wiener increments δβn,k are given by (3) in Section 2.
The Lie–Trotter splitting scheme (31) satisfies the same properties as the exact

solution stated in Proposition 3.

Proposition 5. Let
`

fmI
n

˘

ně0
be the solution of the Lie–Trotter splitting scheme

(31) with initial value f0. One then has the following properties.

‚ Preservation of positivity. Assume that f0px, vq ě 0 for all px, vq P Td ˆ Rd.
Then for any time-step size τ P p0, 1q, one has fmI

n px, vq ě 0 almost surely for
any nonnegative integer n ě 0 and all px, vq P Td ˆ Rd.
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‚ Preservation of the expected mass. Assume that f0 P L1
x,v. Then almost

surely one has fmI
n P L1

x,v for all n ě 0, and
ĳ

ErfmI
n px, vqs dx dv “

ĳ

f0px, vq dx dv.

‚ Evolution law for the L2 norm. Assume that f0 P L2
x,v and that the condi-

tion (26) is satisfied. Then one has fmI
n P L2pΩ, L2

x,vq for all n ě 0, and

Er}fmI
n }2L2

x,v
s “ eσ

2tn}f0}2L2
x,v
,

where tn “ nτ .

Concerning the positivity-preserving property, a similar splitting scheme has been
proposed in the recent work [15] for another class of SPDEs.

Proof of Proposition 5.

‚ The proof of the positivity preserving property is performed by recursion. It
is satisfied if n “ 0 since fmI

0 “ f0. Assume that fmI
n px, vq ě 0 almost surely

for all px, vq P Td ˆ Rd. Owing to the positivity preserving property for the
deterministic problem (see Section 3), one has for all px, vq P Td ˆ Rd

f̂mI
n`1px, vq “

`

S2pτqS1pτqfmI
n

˘

px, vq “ fmI
n px´ tv ´ t2Epxq, v ´ tEpxqq ě 0

fmI
n`1px, vq “ e

řK
k“1 σkδβn,k´

pt´sq
řK
k“1 σkpx,vq2

2 f̂mI
n`1px, vq ě 0.

Therefore one has fmI
n`1px, vq ě 0 almost surely for all px, vq P Td ˆ Rd.

‚ Observe that the random variables f̂mI
n`1px, vq and

`

δβn,k
˘

1ďkďK
are inde-

pendent. As a result, using the well-known expression for the exponential
moments of Gaussian random variables, one has

ĳ

ErfmI
n`1px, vqsdxdv “

ĳ

Ere
řK

k“1 δβn,kσkpx,vq´ τ
2

řK
k“1 σkpx,vq

2

sErf̂mI
n`1px, vqsdx dv

“

ĳ

Erf̂mI
n`1px, vqsdx dv.

Finally, one has f̂mI
n`1 “ S2pτqS1pτqfmI

n owing to (31), where the linear oper-
ators S1pτq and S2pτq preserve the integral, thus one obtains the identity
ĳ

ErfmI
n`1px, vqsdxdv “

ĳ

Erf̂mI
n`1px, vqsdxdv “

ĳ

ErfmI
n px, vqsdx dv.

‚ Applying the same arguments as above, one obtains

Er}fmI
n`1}2L2

x,v
s “

ĳ

Ere2
řK

k“1 σkpx,vqδβn,k´τ
řK

k“1 σkpx,vq
2

sErf̂mI
n`1px, vq2sdxdv

“

ĳ

eτ
řK

k“1 σkpx,vq
2

Erf̂mI
n`1px, vq2sdxdv.

Then using the condition (26) and the expression f̂mI
n`1 “ S2pτqS1pτqfmI

n gives

Er}fmI
n`1}2L2

x,v
s “ eσ

2τEr}
`

S2pτqS1pτq
˘

fmI
n }2L2

x,v
s “ eσ

2τEr}fmI
n }2L2

x,v
s,

using the fact that S1pτq and S2pτq are isometries from L2
x,v to L2

x,v. The
evolution law then follows from a straightforward recursion argument.
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Remark 6. If the noise in the SPDE (27) is a purely temporal Wiener process, i.e.
W pt, x, vq “ βptq for all pt, x, vq P R` ˆTd ˆRd where

`

βptq
˘

tě0
is a standard real-

valued Wiener process, then the exact solution of (27) and the numerical solution
given by (31) can be written

fmIptq “ eβptq´ t
2 fdetptq , t ě 0 ; fmI

n “ eβptnq´
tn
2 fdetn , n ě 0,

where
`

fdetptq
˘

tě0
is the exact solution of the deterministic equation (6), given

by (8), and
`

fdetn

˘

ně0
is given by the deterministic Lie–Trotter splitting scheme (12).

In that situation, Propositions 3 and 5 are straightforward consequences of the
results described for the deterministic problem in Section 3.

Remark 7. Applying the standard Euler–Maruyama scheme to treat the stochastic
part of (27) provides the scheme

fmIEM
n`1 “ S2pτqS1pτqfmIEM

n `

K
ÿ

k“1

δβn,kσkf
mIEM
n .

That scheme does not satisfy the positivity preserving property and the evolu-
tion law for the L2 norm stated in Proposition 5 for the proposed Lie–Trotter
scheme (31).

5.1.3. Numerical experiments. We begin the numerical experiments by illustrating
the behavior of the linear Vlasov equation perturbed by multiplicative Itô noise (27),
in dimension d “ 1. In all the experiments below, the initial value f0 is given by (13)
and the vector field E is given by (14). The discretization parameters are given by
δx “ 1

400 , δv “ 4π
800 , and τ “ 0.1. The snapshots of the numerical solution at

times t0, 0.5, 1, 1.5, 2, 2.5u computed using the splitting scheme (31) are provided in
Figures 6 and 7, with K “ 1 and diffusion coefficient σ1 given by (22) and (23)
respectively. In both experiments, one observes that the solution remains nonnega-
tive, which illustrates the positivity preserving property stated in Proposition 5 on
the considered realization.

Let us now check the almost sure positivity preserving property for the Lie–
Trotter splitting scheme (31) in a more rigorous way: we have run 2.104 independent
samples on the time interval r0, 1s, with initial value (13), with the same discretiza-
tion parameters as above, and with different choices of the diffusion coefficients:
either K “ 1 and σ1 given by (23), or K “ 2 and σ1 and σ2 give by

σ1px, vq “ cosp2πxq , σ2px, vq “ sinp2πxq. (32)

All the samples only take nonnegative values, which confirms the positivity preserv-
ing property stated in Proposition 5.

Next, we illustrate the preservation of the expected mass and the evolution law
of the L2 norm stated in Proposition 5. In these experiments, one has d “ 1, T “ 1,
δx “ 1

200 , δv “ 4π
400 and τ “ 0.1. The expectations are computed using an averaging

procedure over 5.105 samples. Since the solution is nonnegative, the mass is in fact
equal to the L1 norm of the solution. The results are presented in Figure 8, with
different choices of the diffusion coefficients: K “ 1 with σ1px, vq “ 1, K “ 1 with
σ1 given by (23), and K “ 2 with σ1 and σ2 given by (32), respectively. Note that
the condition (26) is satisfied in the first and in the third case. We observe a good
agreement with the theoretical results given in Proposition 5.

We conclude these numerical experiments in the multiplicative Itô noise case
by investigating the mean-square order of convergence of the Lie–Trotter splitting
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Figure 6. Snapshots: approximation of the solution of the sto-
chastic PDE with multiplicative Itô noise (27) with initial value f0
given by (13), with σ1 given by (22) at times t0, 0.5, 1, 1.5, 2, 2.5u,
using the Lie–Trotter splitting scheme (31) with time-step size
τ “ 0.1.

scheme (31). The same procedure as in the additive noise case (Section 4) is applied.
A reference solution is computed using the splitting scheme with time-step size
τref “ 2´14, and the errors are computed when the time-step size τ takes values
in t2´7, . . . , 2´13u. The expectation is computed using a Monte Carlo averaging
procedure over 500 independent samples. The discretization parameters are δx “
1

100 , δv “ 4π
200 . The final time is T “ 0.5. The noise is given by (23) or by (32).

The results are presented in a loglog plot in Figure 9. We observe a mean-square
convergence order equal to 1.

5.2. Stratonovich interpretation. Let us now consider the linear Vlasov equa-
tion driven by a multiplicative noise interpreted in the Stratonovich sense, for t ě 0,
x P Td and v P Rd:

$

’

’

&

’

’

%

dfmSpt, x, vq ` v ¨ ∇xf
mSpt, x, vqdt` Epxq ¨ ∇vf

mSpt, x, vqdt

“ fmSpt, x, vq ˝ dW pt, x, vq ,

fmSp0, x, vq “ f0px, vq ,

(33)

where we recall that the noise is defined by (1) (Section 2) and that the symbol ˝

denotes the Stratonovich product. The stochastic partial differential equation (33)
has the equivalent Itô formulation, for t ě 0, x P Td, v P Rd:

$

’

’

’

’

&

’

’

’

’

%

dfmSpt, x, vq ` v ¨ ∇xf
mSpt, x, vqdt` Epxq ¨ ∇vf

mSpt, x, vqdt

“ fmSpt, x, vqdW pt, x, vq `
1

2

K
ÿ

k“1

σkpx, vq2fmSpt, x, vqdt ,

fmSp0, x, vq “ f0px, vq .

(34)
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Figure 7. Snapshots: approximation of the solution of the sto-
chastic PDE with multiplicative Itô noise (27) with initial value f0
given by (13), with σ1 given by (23) at times t0, 0.5, 1, 1.5, 2, 2.5u,
using the Lie–Trotter splitting scheme (31) with time-step size
τ “ 0.1.

5.2.1. Analysis and properties of the problem. Using the tools described in Section 3
and like in the multiplicative Itô noise case studied in Section 5.1, solutions of (33)
can be written in different ways.

On the one hand, using the group
`

Sptq
˘

tPR of linear operators given by (9) in

Section 3, one can consider mild solutions of (34): for all t ě 0, one has

fmSptq “Sptqf0 `

K
ÿ

k“1

ż t

0

Spt´ sq
`

fmSpsqσk
˘

dβkpsq

`
1

2

K
ÿ

k“1

ż t

0

Spt´ sq
`

fmSpsqσ2
k

˘

ds.

(35)

On the other hand, using the expression (9) for the linear operator Sptq, one has
for all t ě 0, x P Td and v P Rd

fmSpt, x, vq “ f0pϕ´1
t px, vqq `

K
ÿ

k“1

ż t

0

fmSps, ϕ´1
t´spx, vqqσkpϕ´1

t´spx, vqqdβkpsq

`
1

2

K
ÿ

k“1

ż t

0

fmSps, ϕ´1
t´spx, vqqσ2

kpϕ´1
t´spx, vqqds. (36)

Finally, the connection with the ordinary differential equation (7) can also be seen
by applying the Itô–Wentzell formula (see Appendix A): if t ÞÑ pxt, vtq “ ϕtpx0, v0q

is the solution of the ordinary differential equation (7) with arbitrary initial value
px0, v0q P Td ˆ Rd, and if the solution of (33) is sufficiently regular, then the
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(a) Noise given by σ1px, vq “ 1, K “ 1.
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Figure 8. Preservation of the expected mass and evolution law for
the L2

x,v norm: illustration of Proposition 5 when applying the Lie–
Trotter scheme (31) with τ “ 0.1 to the SPDE with multiplicative
Itô noise (27) with time-step size τ “ 0.1.
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Figure 9. Mean-square errors: Mean-square errors: Lie–Trotter
scheme (31) applied to the SPDE with multiplicative Itô noise (27)
driven by one-dimensional noise (K “ 1, left) and by two-
dimensional noise (K “ 2, right).
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stochastic process t ě 0 ÞÑ fmSpt, xt, vtq satisfies

dfmSpt, xt, vtq“

K
ÿ

k“1

fmSpt, xt, vtqσkpxt, vtqdβkptq `
1

2

K
ÿ

k“1

fmSpt, xt, vtqσkpxt, vtq
2 dt

“

K
ÿ

k“1

fmSpt, xt, vtqσkpxt, vtq ˝ dβkptq.

(37)
The formula (37) allows to retrieve the expression (36) of fmIpt, x, vq above by
writing pxt, vtq “ ϕtpx, vq.

Let us now describe the properties of the solutions of the SPDE (33).

Proposition 8. Let
`

fmSptq
˘

tě0
be the solution of the SPDE (33) with initial value

f0. One has the following properties.

‚ Preservation of positivity. Assume that f0px, vq ě 0 for all px, vq P Td ˆ Rd.
Then, one has fmSpt, x, vq ě 0 almost surely for all t ě 0 and px, vq P TdˆRd.

‚ Evolution law for the L2 norm. Assume that f0 P L2
x,v and that the condi-

tion (26) is satisfied. Then one has fptq P L2pΩ, L2
x,vq for all t ě 0, and

Er}fmSptq}2L2
x,v

s “ e2σ
2t}f0}2L2

x,v
.

Proof of Proposition 8.

‚ Owing to the expression (37) of the solution and applying a comparison princi-
ple for solutions of stochastic differential equations, one has fmSpt, xt, vtq ě 0
almost surely for all t ě 0, and for any arbitrary initial value px0, v0q P TdˆRd.
Choosing px0, v0q “ ϕ´1

t px, vq then yields fmSpt, x, vq ě 0 almost surely for all
pt, x, vq P R` ˆ Td ˆ Rd.

‚ Owing to the expression (35) of the mild solution, using Itô’s formula in the
Hilbert space L2

x,v and the isometry property of the group
`

Sptq
˘

tě0
(see

Section 3), one obtains for all t ě 0

1

2

dEr}fmSptq}2L2
x,v

s

dt
“

K
ÿ

k“1

Er}σkf
mSptq}2L2

x,v
s.

Using the condition (26) and integrating then yields the identity

Er}fmSptq}2L2
x,v

s “ e2σ
2t}f0}2L2

x,v
.

5.2.2. Splitting scheme. Let us now describe the proposed numerical scheme for the
temporal discretization of the SPDE (33) driven by multiplicative Itô noise. Like
in the multiplicative Itô noise case presented in Section 5.1, a Lie–Trotter splitting
strategy is applied. The treatment of the deterministic part is not modified. Com-
pared with Section 5.1, the auxiliary stochastic subsystem needs to be considered
with Stratonovich interpretation of the noise:

dfpt, x, vq “ fpt, x, vq ˝ dW pt, x, vq , pt, x, vq P R` ˆ Td ˆ Rd

The auxiliary stochastic subsystem above is solved exactly: for all t ě s ě 0 one
has

fpt, x, vq “ e
řK

k“1 σkpβkptq´βkpsqqfps, x, vq , @ px, vq P Td ˆ Rd.
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Using the Lie–Trotter integrator (12) for the deterministic part and combining the
discretizations of the deterministic and stochastic parts yields the following scheme:
given the initial value f0 and the time-step size τ P p0, 1q, set fmS

0 “ f0 and for any
nonnegative integer n ě 0 set

#

f̂mS
n`1px, vq “ S2pτqS1pτqfmS

n px, vq

fmS
n`1px, vq “ e

řK
k“1 σkpx,vqδβn,k f̂mS

n px, vq , x P Td, v P Rd,
(38)

where we recall that the Wiener increments δβn,k are given by (3), see Section 2.
The Lie–Trotter splitting scheme (38) satisfies the same properties as the exact

solution stated in Proposition 8.

Proposition 9. Let pfmS
n qně0 be the solution of the Lie–Trotter splitting scheme

(38) with initial value f0. One then has the following properties.

‚ Preservation of positivity. Assume that f0px, vq ě 0 for all px, vq P Td ˆ Rd.
Then, for any time-step size τ P p0, 1q, one has fmS

n px, vq ě 0 almost surely
for any nonnegative integer n P N and all px, vq P Td ˆ Rd.

‚ Evolution law for the L2 norm. Assume that f0 P L2
x,v and that the condi-

tion (26) is satisfied. Then, one has fmS
n P L2pΩ, L2

x,vq, for all n ě 0, and

Er}fmS
n }2L2

x,v
s “ e2σ

2tn}f0}2L2
x,v
,

where tn “ nτ .

The proof is similar to the proof of Proposition 3 from Section 5.1.

Proof of Proposition 9.

‚ The proof of the positivity preserving property is performed by recursion. It
is satisfied if n “ 0 since fmS

0 “ f0. Assume that fmS
n px, vq ě 0 almost surely

for all px, vq P Td ˆ Rd. Owing to the positivity preserving property for the
deterministic problem (see Section 3), one has for all px, vq P Td ˆ Rd

f̂mS
n`1px, vq “

`

S2pτqS1pτqfmS
n

˘

px, vq “ fmS
n px´ tv ´ t2Epxq, v ´ tEpxqq ě 0

fmS
n`1px, vq “ e

řK
k“1 σkpx,vqδβn,k f̂mS

n`1px, vq ě 0.

Therefore one has fmS
n`1px, vq ě 0 almost surely for all px, vq P Td ˆ Rd.

‚ Observe that the random variables f̂mS
n`1px, vq and

`

δβn,k
˘

1ďkďK
are inde-

pendent. As a result, using the well-known expression for the exponential
moments of Gaussian random variables, one has

Er}fmS
n`1}2L2

x,v
s “

ĳ

Ere2
řK

k“1 σkpx,vqδβn,k sErf̂mS
n`1px, vq2sdx dv

“

ĳ

e2τ
řK

k“1 σkpx,vq
2

Erf̂mS
n`1px, vq2sdxdv.

Then using the condition (26) and the expression f̂mS
n`1 “ S2pτqS1pτqfmS

n gives

Er}fmS
n`1}2L2

x,v
s “ e2σ

2τEr}
`

S2pτqS1pτq
˘

fmS
n }2L2

x,v
s “ eσ

2τEr}fmS
n }2L2

x,v
s,

using the fact that S1pτq and S2pτq are isometries from L2
x,v to L2

x,v. The
evolution law then follows by a straightforward recursion argument.
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Remark 10 below is a discussion in the Stratonovich noise case of the situation
described in Remark 6 in the Itô noise case above.

Remark 10. If the noise in the SPDE (33) is a purely temporal Wiener process, i.e.
W pt, x, vq “ βptq for all pt, x, vq P R` ˆTd ˆRd where

`

βptq
˘

tě0
is a standard real-

valued Wiener process, then the exact solution of (33) and the numerical solution
given by (38) can be written

fmSptq “ eβptqfdetptq , t ě 0 ; fmS
n “ eβptnqfdetn , n ě 0,

where
`

fdetptq
˘

tě0
is the exact solution of the deterministic equation (6), given

by (8), and
`

fdetn

˘

ně0
is given by the deterministic Lie–Trotter splitting scheme (12).

In that situation, Propositions 8 and 9 are straightforward consequences of the
results described for the deterministic problem in Section 3.

5.2.3. Numerical experiments. We begin the numerical experiments by illustrating
the behavior of the linear Vlasov equation perturbed by multiplicative Stratonovich
noise (33), in dimension d “ 1. In all the experiments below, the initial value
f0 is given by (13) and the vector field E is given by (14). The discretization
parameters are given by δx “ 1

400 , δv “ 4π
800 , and τ “ 0.1. The snapshots of

the numerical solution at times t0, 0.5, 1, 1.5, 2, 2.5u computed using the splitting
scheme (38) are provided in Figures 10 and 11, with K “ 1 and diffusion coefficient
σ1 given by (22) and (23) respectively. In both experiments, one observes that the
solution remains nonnegative, which illustrates the positivity preserving property
stated in Proposition 9 on the considered realization.
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Figure 10. Snapshots: approximation of the solution of the
stochastic PDE with multiplicative Stratonovich noise (33)
with initial value f0 given by (13), with σ1 given by (22)
at times t0, 0.5, 1, 1.5, 2, 2.5u, using the Lie–Trotter splitting
scheme (38) with time-step size τ “ 0.1.
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Figure 11. Snapshots: approximation of the solution of the
stochastic PDE with multiplicative Stratonovich noise (33)
with initial value f0 given by (13), with σ1 given by (23)
at times t0, 0.5, 1, 1.5, 2, 2.5u, using the Lie–Trotter splitting
scheme (38) with time-step size τ “ 0.1.

Next, we illustrate the evolution law of the L2 norm stated in Proposition 9. In
these experiments, one has d “ 1, T “ 1, δx “ 1

200 , δv “ 4π
400 and τ “ 0.1. The

expectations are computed using an averaging procedure over 5.105 samples. The
results are presented in Figure 12, with different choices of the diffusion coefficients:
K “ 1 with σ1px, vq “ 1, K “ 1 with σ1 given by (23), and K “ 2 with σ1 and σ2
given by (32), respectively. Note that the condition (26) is satisfied in the first and
in the third case. We observe a good agreement with the theoretical results given
in Proposition 9.

We conclude these numerical experiments in the multiplicative Stratonovich noise
case by investigating the mean-square order of convergence of the Lie–Trotter split-
ting scheme (38). The same procedure as in the multiplicative Itô noise case (Sec-
tion 5.1) is applied. A reference solution is computed using the splitting scheme
with time-step size τref “ 2´14, and the errors are computed when the time-step size
τ takes values in t2´7, . . . , 2´13u. The expectation is computed using a Monte Carlo
averaging procedure over 500 independent samples. The discretization parameters
are δx “ 1

100 , δv “ 4π
200 . The final time is T “ 0.5. The noise is given by (23)

or by (32). The results are presented in a loglog plot in Figure 13. We observe a
mean-square convergence order equal to 1.

6. The stochastic linear Vlasov equation perturbed by transport noise. In
this section, we consider a stochastic perturbation of the Vlasov partial differential
equation (6) where the noise is of transport type: for t ě 0, x P Td, v P Rd

$

’

&

’

%

df trpt, x, vq ` v ¨ ∇xf
trpt, x, vqdt` Epxq ¨ ∇vf

trpt, x, vqdt

` ∇vf
trpt, x, vq d dW pt, xq “ 0 ,

f trp0, x, vq “ f0px, vq ,

(39)
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(a) Noise given by σ1px, vq “ 1, K “ 1.
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(b) Noise given by (23), K “ 1.
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(c) Noise given by (32), K “ 2.

Figure 12. Evolution law for the L2
x,v norm: illustration of Propo-

sition 9 when applying the Lie–Trotter scheme (38) with τ “ 0.1 to
the SPDE with multiplicative Stratonovich noise (33) with time-
step size τ “ 0.1.

where the noise W pt, xq is given by (2) and the notation

∇vf
trpt, x, vq d dW pt, xq “

K
ÿ

k“1

∇vf
trpt, x, vq ¨ σkpxq ˝ dβkptq

“

d
ÿ

j“1

K
ÿ

k“1

Bvj
f trpt, x, vqσj,kpxq ˝ dβkptq,

is used, with ˝ denoting the Stratonovich product and d denoting the combination
of the Stratonovich product ˝ and of the inner product ¨ in the Euclidean space Rd.

To identify the equivalent Itô formulation of the stochastic partial differential
equation (39), it is convenient to set for all x P Td and 1 ď i, j ď d

ai,jpxq “

K
ÿ

k“1

σi,kpxqσj,kpxq.



SPLITTING FOR STOCHASTIC LINEAR VLASOV EQUATIONS 523

10
-4

10
-3

10
-2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Error

Error LT

Slope 1

Slope 1/2

(a) Noise: σ1px, vq “

#

sinpvq for |v| ď 3

0 else.

10
-4

10
-3

10
-2

10
-5

10
-4

10
-3

10
-2

10
-1

Error

Error LT

Slope 1

Slope 1/2

(b) Noise: σ1px, vq “ cos pxq and σ2px, vq “

sin pxq.

Figure 13. Mean-square errors: Lie–Trotter scheme (38) applied
to the SPDE with multiplicative Stratonovich noise (33) driven by
one-dimensional noise (K “ 1, left) and by two-dimensional noise
(K “ 2, right).

The Itô formulation of (39) is then the following: for t ě 0, x P Td, v P Rd

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

df trpt, x, vq ` v ¨ ∇xf
trpt, x, vqdt

` Epxq ¨ ∇vf
trpt, x, vqdt` ∇vf

trpt, x, vq ¨ dW pt, xq

“
1

2

K
ÿ

k“1

pσkpxq ¨ ∇vq2f trpt, x, vqdt ,

f trp0, x, vq “ f0px, vq ,

(40)

with the notation

∇vf
trpt, x, vq ¨ dW pt, xq “

d
ÿ

j“1

K
ÿ

k“1

Bvjf
trpt, x, vqσj,kpxqdβkptq

K
ÿ

k“1

pσkpx, vq ¨ ∇vq2f trpt, x, vq “

d
ÿ

i,j“1

K
ÿ

k“1

σi,kpxqσj,kpxqBviBvjf
trpt, x, vq

“

d
ÿ

i,j“1

ai,jpxqBviBvjf
trpt, x, vq.

6.1. Analysis and properties of the problem. Recall that the deterministic
linear Vlasov equation (6) is connected with the ordinary differential equation (7),
see Section 3. This connection is explored in Sections 4 and 5 for some stochastic
perturbations of (6). Contrary to those situations, for the stochastic linear Vlasov
equation driven by transport noise (39), the connection requires to introduce the
stochastic differential equation

$

’

&

’

%

dXt “ Vt

dVt “ EpXtqdt`

K
ÿ

k“1

σkpXtqdβkptq,
(41)
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for all t ě 0, instead of the ordinary differential equation (7). In the second line

of (41), one may use the notation dW pt,Xtq to refer to
řK

k“1 σkpXtqdβkptq.

Assume that
`

f trptq
˘

tě0
is a sufficiently regular solution of the SPDE (39) (or

of its equivalent formulation (40)), then for any solution
`

Xt, Vt
˘

tě0
of the SDE

system (41), applying the Itô–Wentzell formula (see Appendix A) one obtains the
identity

df trpt,Xt, Vtq “ 0.

This means that the SDE (41) provides characteristic curves for the stochastic
Vlasov equation (39) driven by transport noise. This gives a strategy to solve the
SPDE (39) by the method of lines. Instead of using the flow

`

ϕt
˘

tPR associated with

the ODE (7), in the present case this strategy is based on the notion of stochastic
flow of diffeomorphisms, see for instance the monograph [48]. We use the nota-
tion

`

ψt

˘

tě0
to denote the stochastic flow of diffeomorphisms associated with the

SDE (41). In particular, for any (deterministic) initial values pX0, V0q P TdˆRd, the
unique solution of the SDE (41) at any time t ě 0 is given by pXt, Vtq “ ψtpX0, V0q.
In addition, almost surely the mapping ψt preserves the volume in Td ˆ Rd for all
t ě 0.

It results from the identity above that, for all t ě 0 and all (deterministic)
X0 P Td and V0 P Rd, one has

f trpt, ψtpX0, V0qq “ f trpt,Xt, Vtq “ f trp0, X0, V0q “ f0pX0, V0q.

Finally one obtains the expression of the solution of (39) using characteristic curves:
for all t ě 0, x P Td, v P Rd one has

f trpt, x, vq “ f0pψ´1
t px, vqq. (42)

Conversely, if pt, x, vq P R` ˆ Td ˆ Rd ÞÑ f trpt, x, vq is defined by (42) and if the
initial value f0 is of class C2, then the stochastic process

`

f trptq
˘

tě0
defined by (42)

is a weak solution of the SPDE (40) (the Itô formulation is considered): for any
smooth compactly supported function φ : Td ˆ Rd Ñ R, one has

d
´

ĳ

φpx, vqfpt, x, vqdxdv
¯

“

ĳ

v ¨ ∇xφpx, vqfpt, x, vqdxdv dt

`

ĳ

Epxq ¨ ∇vφpx, vqfpt, x, vqdx dv dt

`

ĳ K
ÿ

k“1

σkpxq ¨ ∇vφpx, vqfpt, x, vqdxdv dβkptq

`
1

2

ĳ d
ÿ

i,j“1

ai,jpxqBviBvjφpx, vqfpt, x, vqdxdv dt.

(43)
The proof of the identity (43) combines two arguments. First, since the diffeo-

morphism ψt preserves the volume of Td ˆ Rd for all t ě 0, using (42) one has the
identity

ĳ

φpx, vqfpt, x, vqdxdv “

ĳ

φpψtpx, vqqfp0, x, vqdxdv

“

ĳ

φpXx,v
t , V x,v

t qfp0, x, vqdx dv,
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where pXx,v
t , V x,v

t q “ ψtpx, vq is the solution at time t ě 0 of (41) with initial
values Xx,v

0 “ x and V x,v
0 “ v. It then remains to apply the standard Itô formula

to t ÞÑ φpXx,v
t , V x,v

t q and to use integration by parts arguments combined with
the identity above obtained by the first argument to obtain (43). The details are
omitted. We refer to [24] for instance where this type of arguments are employed
in the analysis of a class of nonlinear transport equations with transport noise.

Using the expression (42) of the solution of (39), it is straightforward to check
that the preservation properties satisfied in the deterministic case by the solution
`

fdetptq
˘

tě0
of the deterministic linear Vlasov equation (6) are also satisfied when

a transport noise perturbation is applied. The proof is omitted.

Proposition 11. Let
`

f trptq
˘

tě0
be the solution of the SPDE (39) with (non-

random) initial value f0. One has the following properties.

‚ Preservation of positivity. Assume that f0px, vq ě 0 for all px, vq P Td ˆ Rd.
Then one has f trpt, x, vq ě 0 almost surely for all t ě 0 and px, vq P Td ˆ Rd.

‚ Preservation of integrals. Let Φ : R Ñ R` be a real-valued measurable map-
ping. Then for all t ě 0 one has almost surely

ĳ

Φpf trpt, x, vqq dx dv “

ĳ

Φpf0px, vqq dx dv.

In particular, if p P r1,8q and if f0 P Lp
x,v, then for all t ě 0 one has

f trptq P Lp
x,v almost surely and

}f trptq}Lp
x,v

“ }f0}Lp
x,v
.

6.2. Splitting scheme. We are now in position to introduce the proposed nu-
merical scheme for the discretization of the SPDE with transport noise (39). Like
in the previous sections, a Lie–Trotter splitting strategy is applied. To deal with
the stochastic perturbation in (39), one needs to consider the auxiliary stochastic
subsystem

dfpt, x, vq ` ∇vfpt, x, vq d dW pt, xq “ 0 , pt, x, vq P R` ˆ Td ˆ Rd.

This auxiliary stochastic subsystem can be solved exactly: for all t ě s ě 0 and all
px, vq P Td ˆ Rd one has

fpt, x, vq “ f
`

s, x, v ´ pW pt, xq ´ W ps, xqq
˘

.

Alternative notation for solving the auxiliary stochastic subsystem above can be
used: for all t ě s ě 0 one has

fptq “ T pW ptq ´ W psqqfpsq “ T dpβdptq ´ βdpsqq . . . T 1pβ1ptq ´ β1psqqfpsq,

where for any mapping σ : x P Td ÞÑ σpxq P Rd one has

T pσqfpx, vq “ fpx, v ´ σpxqq , x P Td, v P Rd

and where the auxiliary linear operators T kpyq, with y P R and 1 ď k ď K, are
defined by

T kpyqfpx, vq “ fpx, v ´ yσkpxqq , x P Td, v P Rd.

Using the Lie–Trotter integrator (12) for the deterministic part and combining the
discretizations of the deterministic and stochastic parts yields the following scheme:
given the initial value f0 and the time-step size τ P p0, 1q, set f tr0 “ f0 and for any
nonnegative integer n ě 0 set

f trn`1 “ T pδWnqS2pτqS1pτqf trn “ T dpδβn,dq˝¨ ¨ ¨˝T 1pδβn,1q˝S2pτqS1pτqf trn , n ě 0.
(44)
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where the Wiener increments δβn,k and δWn are given by (3) and (5) respectively,
see Section 2.

The Lie–Trotter splitting scheme (44) is consistent with Stratonovich interpre-
tation of the noise in the SPDE (39), and satisfies the same properties as the exact
solution stated in Proposition 11.

Proposition 12. Let pf trn qně0 be the solution of the Lie–Trotter splitting scheme
(44) with initial value f0. One then has the following properties.

‚ Preservation of positivity. Assume that f0px, vq ě 0 for all px, vq P Td ˆ Rd.
Then one has f trn px, vq ě 0 almost surely for any nonnegative integer n ě 0
and all px, vq P Td ˆ Rd.

‚ Preservation of integrals. Let Φ : R Ñ R` be a real-valued measurable map-
ping. Then for all n ě 0 one has almost surely

ĳ

Φpf trn px, vqq dx dv “

ĳ

Φpf0px, vqq dx dv.

In particular, if p P r1,8q and if f0 P Lp
x,v, then for all n ě 0 one has

f trn P Lp
x,v almost surely and

}f trn }Lp
x,v

“ }f0}Lp
x,v

almost surely.

Proof of Proposition 12. All the results are proved by recursion, using the fact that
the operators T pδWnq, S2pτq and S1pτq satisfy the considered properties.

Like for the splitting scheme (12) defined in Section 3 for the discretization of
the deterministic linear Vlasov equation (6), the Lie–Trotter splitting scheme (44)
can be interpreted as a discrete version of the expression (42) for the exact solution
of (39), where the stochastic flow ψt is approximated using a splitting integrator
applied to the SDE system (41).

Remark 13. If the noise in the SPDE (39) is a purely temporal Wiener process,

i.e. W pt, xq “ W ptq “
řK

k“1 βkptqσk for all pt, xq P R` ˆ Td where σ1, . . . ,σK are
elements of Rd, then the exact solution of (39) and the numerical solution given
by (44) can be written

f trptq “ T pW ptqqfdetptq , t ě 0 ; f trn “ T pW ptnqqfdetn , n ě 0,

where the auxiliary continuous-time process
`

fdetptq
˘

tě0
is the solution of the de-

terministic PDE (6) and the auxiliary continuous-time process
`

fdetn

˘

ně0
is given

by the deterministic Lie–Trotter splitting scheme (12).
In that situation, Propositions 11 and 12 are straightforward consequences of the

results described for the deterministic problem in Section 3.

6.3. Numerical experiments. We begin the numerical experiments by illustrat-
ing the behavior of the linear Vlasov equation perturbed by transport noise (39), in
dimension d “ 1. In all the experiments below, the initial value f0 is given by (13)
and the vector field E is given by (14). The discretization parameters are given
by δx “ 1

400 , δv “ 4π
800 , and τ “ 0.1. The snapshots of the numerical solution at

times t0, 0.5, 1, 1.5, 2, 2.5u computed using the splitting scheme (44) are provided
in Figure 14, with K “ 1 and diffusion coefficient σ1px, vq “ 0.5. One observes
that the solution remains nonnegative, which illustrates the positivity preserving
property stated in Proposition 12 on the considered realization.
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Figure 14. Snapshots: approximation of the solution of the sto-
chastic PDE with transport noise (39) with initial value f0 given
by (13), with σ1px, vq “ 0.5 at times t0, 0.5, 1, 1.5, 2, 2.5u, using the
Lie–Trotter splitting scheme (44) with time-step size τ “ 0.1.

Next, in Figure 15, we illustrate the almost sure preservation of the L1, L3 and
L55 norms when the Lie–Trotter splitting scheme (44) is applied to the SPDE (39).
This is performed for three independent realizations. The discretization parameters
are chosen to be: δx “ 1

3000 , δv “ 4π
3000 , and τ “ 0.1. The final time is T “ 1. In this

figure, we observe the preservation of the norms, which illustrates Proposition 12.
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Figure 15. Evolution of the L1
x,v, L

3
x,v and L55

x,v norms: illustra-
tion of Proposition 12 when applying the Lie–Trotter scheme (44)
to the SPDE with transport noise (39), with time-step size τ “ 0.1.

We conclude these numerical experiments in the transport noise case by investi-
gating the mean-square order of convergence of the Lie–Trotter splitting scheme (44).
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The same procedure as in the previous cases is applied. A reference solution is com-
puted using the splitting scheme with time-step size τref “ 2´14, and the errors are
computed when the time-step size τ takes values in t2´7, . . . , 2´13u. The expecta-
tion is computed using a Monte Carlo averaging procedure over 500 independent
samples. The discretization parameters are δx “ 1

100 , δv “ 4π
200 . The final time

is T “ 0.5. The results are presented in a loglog plot in Figure 16. We observe a
mean-square convergence order of at least 1{2.
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Figure 16. Mean-square errors: Lie–Trotter scheme (44) applied
to the SPDE (39) driven by one noise (K “ 1, σ1px, vq “ 0.5).

7. Conclusion and perspectives. In this paper, we numerically investigate the
behaviour of solutions of linear Vlasov partial differential equations perturbed by
Wiener noise, which may be additive noise, multiplicative Itô and Stratonovich
noise, and transport noise. For this purpose, we apply Lie–Trotter splitting inte-
grators for the temporal discretization of these SPDEs. We show that these time
integrators are able to preserve key qualitative properties of the exact solutions, such
as preserving norms or ensuring positivity. Several promising theoretical results are
provided and illustrated numerically.

We leave some fundamental questions open for future work. Let us mention a
few of them.

1. Based on the numerical experiments of this paper, we conjecture that the
order of mean-square convergence of the Lie–Trotter splitting scheme is equal
to 1 for all the considered types of noise. Thus the main perspective for a
possible future work is to prove mean-square error bounds.

2. We have only considered the behavior of the temporal discretization error.
It will be interesting to study the full discretization error, and in particular
whether some conditions on the time-step size τ and the mesh sizes δx and
δv need to be imposed for stability or accuracy reasons.

3. Constructing higher-order methods could also be an interesting question. For
instance, in the context of SPDEs with small noise, it may be possible to
apply a Strang splitting strategy to deal with the deterministic subsystems
and obtain better rates of convergence.
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4. We have only considered some simple linear Vlasov equations perturbed by
additive or linear noise. It may be interesting to study more complex problems,
for instance with nonlinear terms.

Appendix A. The Itô–Wentzell formula. Let D,K P N be two integers. Let
β1, . . . , βK be independent standard real-valuedWiener processes, and let bj : RD Ñ

R and ςj,k : RD Ñ R, 1 ď j ď D, 1 ď k ď K, be Lipschitz continuous mappings.
Assume that the RD-valued stochastic process

`

ξptq
˘

tě0
is solution of the sto-

chastic differential equation

dξjptq “ bjpξptqqdt`

K
ÿ

k“1

ςj,kpξptqqdβkptq , 1 ď j ď D, t ě 0.

Let G : pt, ξq P R` ˆ RD ÞÑ Gpt, ξq P R be a stochastic process, such that for all
ξ P RD and t ě 0 one has

dGpt, ξq “ Jpt, ξqdt`

K
ÿ

k“1

Hkpt, ξqdβkptq,

where J : pt, ξq P R` ˆRD ÞÑ Jpt, ξq P R and Hk : pt, ξq P R` ˆRD ÞÑ Hkpt, ξq P R,
1 ď k ď K, are stochastic processes. Assume that G is almost surely of class C0,2.

Then the real-valued stochastic processes t ÞÑ Gpt, ξptqq is solution of the sto-
chastic differential equation

dGpt, ξptqq “Jpt, ξptqqdt`

K
ÿ

k“1

Hkpt, ξptqqdβkptq

`

d
ÿ

j“1

bjpξptqqBξjGpt, ξptqqdt`

d
ÿ

j“1

K
ÿ

k“1

ςj,kpt, ξptqqBxjGpt, ξptqq dβkptq

`
1

2

d
ÿ

i,j“1

K
ÿ

k“1

ςi,kpt, ξptqqςj,kpt, ξptqqBxiBxjGpt, ξptqqdt

`

d
ÿ

j“1

K
ÿ

k“1

ςj,kpt, ξptqqBξjHkpt, ξptqq dt.

We refer to [55, Theorem 1.17] for a statement of the formula above.
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[59] E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for

the numerical resolution of the Vlasov equation, J. Comput. Phys., 149 (1999), 201-220.
[60] A. H. Strømmen Melbø and D. J. Higham, Numerical simulation of a linear stochastic oscil-

lator with additive noise, Appl. Numer. Math., 51 (2004), 89-99.

[61] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of
Mathematical Fluid Dynamics, 1 (2002), 71-305.

[62] A. A. Vlasov, Many-Particle Theory and Its Application to Plasma, Probab. Theory Stoch.

Model., 89 Springer, Cham, 2018.

Received July 2023; revised January 2024; early access March 2024.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR2519600&return=pdf
http://dx.doi.org/10.1137/080729049
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2379913&return=pdf
http://dx.doi.org/10.3934/dcdss.2008.1.353
http://dx.doi.org/10.3934/dcdss.2008.1.353
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3348201&return=pdf
http://dx.doi.org/10.1007/s10543-014-0507-z
http://dx.doi.org/10.1007/s10543-014-0507-z
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1672731&return=pdf
http://dx.doi.org/10.1006/jcph.1998.6148
http://dx.doi.org/10.1006/jcph.1998.6148
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2083326&return=pdf
http://dx.doi.org/10.1016/j.apnum.2004.02.003
http://dx.doi.org/10.1016/j.apnum.2004.02.003
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1942465&return=pdf
http://dx.doi.org/10.1016/S1874-5792(02)80004-0
http://mathscinet.ams.org/mathscinet-getitem?mr=MR186291&return=pdf

	1. Introduction
	2. Notation
	3. Preliminaries on the deterministic linear Vlasov equation
	3.1. Analysis and properties of the problem
	3.2. Numerical approximation

	4. The stochastic linear Vlasov equation perturbed by additive noise
	4.1. Analysis and properties of the problem
	4.2. Splitting scheme
	4.3. Numerical experiments

	5. The stochastic linear Vlasov equation perturbed by multiplicative noise
	5.1. Itô interpretation
	5.2. Stratonovich interpretation

	6. The stochastic linear Vlasov equation perturbed by transport noise
	6.1. Analysis and properties of the problem
	6.2. Splitting scheme
	6.3. Numerical experiments

	7. Conclusion and perspectives
	Appendix A. The Itô�Wentzell formula
	Acknowledgments
	REFERENCES

