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Abstract
We give a recursive method for computing all values of a basis of Whittaker functions
for unramified principal series invariant under an Iwahori or parahoric subgroup of
a split reductive group G over a nonarchimedean local field F . Structures in the
proof have surprising analogies to features of certain solvable lattice models. In the
case G = GLr we show that there exist solvable lattice models whose partition
functions give precisely all of these values. Here ‘solvable’ means that themodels have
a family ofYang–Baxter equationswhich imply, amongother things, that their partition
functions satisfy the same recursions as those for Iwahori or parahoric Whittaker
functions. TheR-matrices for theseYang–Baxter equations come from aDrinfeld twist
of the quantum groupUq(̂gl(r |1)), which we then connect to the standard intertwining
operators on the unramified principal series. We use our results to connect Iwahori
and parahoric Whittaker functions to variations of Macdonald polynomials.
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1 Introduction

Solvable lattice models [5, 39] are statistical-mechanical systems (usually two-
dimensional) that are amenable to analysis using Yang-Baxter equations, highly
constrained identities whosemysterious nature led to the discovery of quantum groups
[31, 38]. Beyond their origins in statistical mechanics, lattice models are also closely
connected to quantum field theory [4, 6, 30], knot invariants [1, 40, 57] and inte-
grable probability [8, 29]. Most importantly for us, they also give a fruitful method
for studying symmetric function theory and its generalizations by representing poly-
nomials as partition functions of solvable lattice models, as for example in [32, 43,
45, 47, 49, 65, 66]. In this context, the Yang-Baxter equation becomes a powerful tool
for demonstrating identities among partition functions.

Variants of these methods have been used by the authors and their collaborators
[12, 16, 19, 20, 33, 36] to study the representation theory of algebraic groups and
their covers over a p-adic field F . These papers use families of solvable six-vertex
models and their generalizations to produce partition functions giving special values of
Whittaker functions for unramified principal series, particularly for the groupsGLr (F)

and Sp(2r , F) and their metaplectic covers. The results shed a lot of light on the nature
of these Whittaker functions. However, these prior results have treated only spherical
Whittaker functions, those invariant under a maximal compact subgroup. It is very
desirable to have lattice model interpretations for Whittaker functions invariant under
smaller compact subgroups.

Iwahori Whittaker functions for an unramified principal series representation are
fixed by an Iwahori subgroup J that is smaller than the maximal compact subgroup K .
Even if one ismainly interested in spherical (K -fixed)Whittaker functions, the Iwahori
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Whittaker functions are needed. The Iwahori Hecke algebra that acts on them has a
richer structure and the IwahoriWhittaker functions play a crucial role in evaluating the
spherical Whittaker function in the work of Casselman and Shalika [26]. Moreover,
the Iwahori Whittaker functions interestingly mirror the geometry of the Schubert
varieties in the flag variety [22, 54, 56]. So understanding IwahoriWhittaker functions
by bringing them into the lattice model framework is an important goal. Once this
connection is made, we find thatWhittaker functions invariant under certain parahoric
subgroups (intermediate between J and K ) also fit naturally into these models, and
they too should be included in order to have a complete story.

A recent breakthrough by Borodin andWheeler [9, 10] showed how to refine lattice
models using an additional attribute they called ‘color.’ This led us to wonder whether
a similar refinement of the six-vertex model in [20] might produce values of Iwahori
Whittaker functions for the general linear group. The surprisingly complete answer
to this question for GLr , and related results about Whittaker functions on all split
reductive groups, are the subject of this paper.

Let us highlight two of our main results and their implications before a precise
accounting of our results in the next section. Given a split, reductive group G, let J
be a subset of the index set for simple reflections of the Weyl group W of G(F) and
KJ the associated standard parahoric subgroup (as in Definition 4.2). Note that J = ∅

reduces to the Iwahori case K∅ = J . There exists a standard basis {ψw} of KJ-fixed
Whittaker functions for any irreducible unramified principal series, given explicitly in
Sect. 4. In this paper we construct what we will call the parahoric lattice model for
which we prove the following theorem:

Theorem A For every g inGLr (F), any subset J ⊆ {1, 2, . . . , r−1}, and for everyψw

in a basis of KJ-fixedWhittaker functions, there exists a choice of boundary conditions
for the parahoric lattice model such that its partition function equals ψw(g).

Conversely, we find that every admissible choice of boundary conditions (in partic-
ular every assignment of colors to the boundary) has a meaning in terms of Whittaker
functions. That is, assume that the colors used along the top boundary are distinct, and
that no colors appear on the left or bottom boundary edges. For the partition function
to be nonzero, the same distinct colors must appear on the right boundary edges. Then
each choice of boundary data corresponds to an element g inG(F) and aw in theWeyl
group such that the partition function of this solvable lattice model is the value of the
Iwahori Whittaker function φw(g). (See Theorem 7.2, Lemma 3.5 and Remark 3.3.)

If more generally some colors are allowed to repeat on the top boundary, the
resulting partition functions correspond precisely to values of Whittaker functions
for vectors fixed by a parahoric subgroup (Theorem 8.3). The restriction of the para-
horic lattice model to top boundary conditions with distinct colors will therefore be
called the Iwahori lattice model. If instead the top boundary colors are all the same,
we obtain a one-colored lattice model for the spherical Whittaker function, which is
equivalent to the uncolored lattice model in [20] that we will here call the Tokuyama
model.

In order to prove Theorem A, we needed to extend known results expressing Whit-
taker functions recursively using Demazure-like operators, and these very general
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Table 1 Relations between Whittaker functions and special polynomials as detailed in Sect. 9

Whittaker function Special polynomial Algebraic Lattice models

Spherical Whittaker function = Schur polynomial [26, 61] [20, 35]

Li’s Whittaker function = Hall-Littlewood polynomial [50] Sect. 9 and [64]

Iwahori Whittaker function = Non-symmetric Macdonald
polynomial

[22], Sect. 3 Sect. 7

Parahoric Whittaker function = Macdonald polynomial with
prescribed symmetry

Sect. 4 Sects. 8 and 9

In the third columnwe list references for the algebraic viewpoint on theWhittaker function and in the fourth
column we give references for a lattice model interpretation

results (in Sects. 3 and 4) are valid for any split, reductive group. Thus we were led to
prove the following result:

Theorem B Let G := G(F) be any split reductive group defined over a local field
F. For a basis {φw} of the space of Iwahori Whittaker functions for any irreducible
unramified principal series representation of G and any g ∈ G, there is a recursive
algorithm using Demazure-like operators to compute φw(g).

We have similar algorithmic results for parahoric Whittaker functions. (See The-
orem 4.7 and Remark 4.8.) Prior to this work, even a conjectural description of all
values of the Iwahori and parahoric Whittaker functions was unknown. Reeder [56]
and Brubaker, Bump, and Licata [22] computed Iwahori Whittaker functions if g is a
torus element. In the introduction to [56], Reeder describes the determination of the
remaining values as a difficult problem. Lansky [48] determined the dimensions of
the spaces of standard parahoric fixed vectors in unramified principal series.

In addition to the above theorems, the development of these results led us to:

• Prove a Casselman-Shalika formula for certain parahoric Whittaker functions on
split, reductive groups in Theorem 4.7.

• Relate several classes ofWhittaker functions to special functions that arise in alge-
braic combinatorics summarized in Table 1 below and further detailed in Table 2
of Sect. 9.

Moreover, in pursuing the connection to solvable lattice models in type A, we were
led to:

• Interpret the Demazure recurrence relations in our algorithmic description in terms
of the R-matrix for the quantum affine superalgebra U√

v−1(ĝl(r |1));
• Develop a combinatorial analog of a fusion procedure from quantum groups in
Sect. 5, which allows us to prove that our Boltzmann weights solve Yang–Baxter
equations for any rank r even though the number of admissible vertex configura-
tions grows exponentially in r .

• Interpret the action of intertwiners of Iwahori or parahoric fixed vectors in the prin-
cipal series representation with R-matrices acting on evaluation representations of
quantum loop groups in Sect. 10.
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Table 2 Relations between different Whittaker functions and associated special polynomials

Whittaker function Special polynomial

Spherical Whittaker function Schur polynomial
∑

w∈W φw(z; �−λ) = ∏

α∈�+ (1 − vz−α)sλ(z)

Li’s Whittaker function Hall-Littlewood polynomial
∑

w∈W (−v)−�(w)φw(z; �−λ) = z−ρ Pλ+ρ(z, v−1)

Iwahori Whittaker function Non-symmetric Macdonald polynomial

φw1 (z; �−λ) = (−v)�(w)z−ρw0Ew0w(λ+ρ)(z; ∞, v)

Parahoric Whittaker function Macdonald polynomial with prescribed symmetry

ψ
J
1 (z; �−λ) = z−ρ S(∅,J)

λ+ρ (z; 0, v−1)a(∅,J)
λ+ρ

Potential future applications include new Cauchy identities for these Whittaker
functions, which may then find application in local Rankin-Selberg computations.
It may also be possible to relate our lattice models to interacting particle processes
such as ASEP and TASEP in the spirit of similar results by Borodin and Wheeler
[9, Section 12]. Furthermore in [16] we found connections between the metaplectic
models in [12] and LLT polynomials (ribbon symmetric functions) and we expect
that there may be similar connections here.

Another exciting open question is whether Whittaker functions for even smaller
compact subgroupsmight similarly have representations as partition functions of solv-
able lattice models. In other words, if L is an arbitrary compact open subgroup, does
there exist a basis of L-invariantWhittaker functions whose values may be represented
by solvable latticemodels? If the answer is affirmative one could also look for represen-
tations of Whittaker of other admissible representations, particularly supercuspidals.
To what extent are solvable lattice models and their associated quantum groups a
tool for studying all representations of p-adic groups? These possibilities are purely
speculative at this time, but our success in treating Iwahori and parahoric Whittaker
functions and the work of Ju-Lee Kim [41] which gives combinatorial descriptions of
Whittaker functions for other admissible representations is suggestive in this regard.

Finally, the models in this paper may also be generalized to refine the models
representing metaplectic Whittaker functions introduced in [12], called metaplectic
ice. Whereas for metaplectic ice certain edges are enhanced by adding an attribute
called charge, in this paper we enhance the system by decorating certain edges with
color. These attributes of charge and color are handled differently, and at first glance
the schemes seem different. We show in the papers [15, 18], which are successors
to this one, how they may be placed in a unified framework. The R-matrices for the
solvable models whose partition functions are Iwahori Whittaker functions on the n-
fold metaplectic cover of GL(r) are related to U√

v−1(̂gl(r |n)), or more precisely a
Drinfeld twist thereof which introduces Gauss sums into the R-matrix.

Let us also mention the bosonic models in [24], which represent not Iwahori Whit-
taker functions, but rather Iwahori fixed vectors in the spherical model. Many aspects
of that theory such as the monochrome factorization of the models and the color lifting
properties (Sect. 8 below) have exact analogs in that setting. But whereas the models
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in this paper are related to the quantum group Uv−1/2(gl(r |1)), the bosonic models in
[24] are related to Uv−1/2(gl(r + 1)).

2 Outline of the paper

Let us now explain the results of this paper in more detail. We begin with a brief
description of spherical Whittaker functions for GLr (F) and their associated six-
vertex model, which we will call the Tokuyama model. Let o be the ring of integers of
the nonarchimedean local field F and let v−1 be the cardinality of the residue field.
Construct an unramified principal series representation of GLr (F) from a character
of T (F)/T (o) where T is the maximal split torus (see Sect. 3 for full details). These
representations have uniqueWhittaker functionals and a unique-up-to-constant vector
which is right invariant under K = GLr (o). The spherical Whittaker function is the
image of this vector in the Whittaker functional and it is completely determined by its
values on T (F)/T (o), which we identify with the weight lattice 
 of the Langlands
dual group. It is easily seen that the spherical Whittaker function vanishes unless
the associated weight is dominant. The remaining values for dominant weights are
given by the Shintani-Casselman-Shalika formula in terms of Schur polynomials in
the Langlands parameters of the principal series. By Tokuyama’s theorem, described
in [20, 35, 63] and recalled below as (49), there exists a solvable six-vertex model
with boundary conditions indexed by dominant weights whose partition function give
the Shintani-Casselman-Shalika formula.

There are multiple ways to describe this six-vertex model. A state of the system
attaches a spin + or − to each edge of a grid so that each vertex has adjacent edges
in one of six possible configurations seen for example in [20, Table 1]. Alternatively,
the state may be described by connecting the edges labeled with − into lines or paths
as in Section 8.1 of [5]. The models needed in this paper refine the six vertex model
by coloring these paths.

For the Iwahori lattice model in this paper the grid has r rows and boundary condi-
tions that specify the particular GLr IwahoriWhittaker function φw and group element
g. Then a state of the system representing φw(g) will consist of r paths with distinct
colors beginning at the top boundary and traveling downward and rightward until each
path exits on a distinct row along the right boundary. The partition function is the sum
of the Boltzmann weights for all such configurations of paths. The Boltzmann weights
can, for example, be found in the row labeled S�(i) of [20, Table 2].

In Sect. 6, we exhibit a set of colored Boltzmann weights and prove Yang–Baxter
equations for them in Theorem 6.5. In Theorem 7.2 we use these Yang–Baxter equa-
tions to demonstrate that the partition function of the Iwahori latticemodel for different
boundary conditions is equal to values of Iwahori Whittaker functions in the standard
basis.

The Iwahori lattice model never has more than one path of a given color, because
the boundary conditions only have two edges of a given color: one on the top boundary
and one on the right. In a state of the system, these are connected by a single path, so
there is only one path of that color. However, the Yang–Baxter equations, which are
highly constrained and overdetermined relations the Boltzmann weights must satisfy,
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force us to assign nonzero values to local vertex or path configurations where two
paths of the same color cross, even though these configurations can never appear in
any state of the Iwahori model. Remarkably, these seemingly unneeded weights that
we are forced to include do turn out to be needed when we turn to the more general
parahoric Whittaker functions discussed in Sect. 4, and the corresponding parahoric
lattice model of Sect. 8 allowing for multiple paths of the same colors.

It is precisely these latter, parahoricweights that distinguishourmodels frommodels
of Borodin and Wheeler [9], which also have configurations of multicolored paths
crossing in a grid. In both types of colored models, the horizontal edges can carry only
one color, but the vertical edges can carry more than one. In this paper, the vertical
edges are ‘fermionic’ meaning that they satisfy an exclusion principle: no vertical edge
may carrymore than one instance of a particular color. Themodels in [9] are ‘bosonic’
and the vertical edges may carry their colors with a multiplicity. The parahoric lattice
model makes clear the need for these fermionic weights in order to produce the correct
partition function describing a parahoric Whittaker function.

This distinction may also be observed from the quantum groups that underlie the
models. One may check that the R-matrix in Fig. 6 is a Drinfeld twist of the R-matrix
for the quantum affine Lie superalgebra U√

v−1(̂gl(r |1)) from [44]. By contrast the

R-matrix for the systems in [9] is a twist of a quantum group Uq(̂slr+1). See also
Remark 6.7 for further details on the relationship between our models and those
of [9].

While our R-matrix is associated to a quantum superalgebra, we have no such mod-
ule interpretation for the Boltzmann weights of our colored models. To demonstrate
the Yang–Baxter equation, we must instead introduce an equivalent version of the
systems in which each vertex is replaced by r vertices, and each vertical edge by r
vertical edges. We refer these expanded systems as monochrome because each col-
umn is assigned a color, and each vertical edge in that column can carry only that
color and no other. See Fig. 16 for an example of a colored model and its equivalent
expanded monochrome system. The relationship between the Boltzmann weights for
the regular colored systems and the expanded monochrome systems is demonstrated
in Fig. 8. This relationship is reminiscent of the fusion construction for tensor products
of quantum group modules (see [46, 55] and Appendix B of [9]) and our results in
Sect. 5 may be viewed as a combinatorial substitute for fusion in the absence of a
quantum group module interpretation. This link is the key to the solvability of the
colored models, for it is with the monochrome vertices and weights that we prove the
Yang–Baxter equations.

Apart fromour results on solvable latticemodels, our independent results on Iwahori
and parahoric Whittaker functions (i.e. which are not depending on their relations to
lattice model partition functions) are more precise than what is found in the literature.
Let us explain this point.

With notation as in Sect. 3, our task is to study so-called ‘standard basis’ Iwahori
Whittaker functions φw1(g) for w1 ∈ W and g ∈ G. Using left and right translation
properties of φw1 , we may assume that g = �−λw2 where w2 is again a Weyl group
element, λ is a weight and � is a uniformizer of F . Not every pair λ,w2 needs to
be considered, since φw1(g) vanishes for many values of g. For example if w2 = 1
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then λ must be dominant, meaning that 〈α∨
i , λ〉 � 0 for all simple roots αi . If w2 is

a general permutation, then we allow 〈α∨
i , λ〉 � −1 when i is a descent of w−1

2 (see
Definition 3.4).

In fact, for G = GLr , it turns out that the triples w1, w2, λ with w2 and λ as above
correspond exactly to the boundary conditions with distinct colors in our lattice model
scheme! The permutations w1 and w2 describe the order of the colors on the right
and top boundaries; λ describes the columns on the top boundary where a colored
line has its terminus; and the cases where 〈α∨

i , λ〉 = −1 is allowed correspond to the
possibility that a top vertical edge carries more than one color. This correspondence
between the data describing the values of Whittaker functions and available systems
in our scheme becomes even more striking when we consider the parahoric systems
in Sect. 8.

In order to prove all this we need new results on the values of φw1(g) with g =
�−λw2 when w2 	= 1. In prior work such as [22, 54, 56] the group element g
has usually been taken to be diagonal. We are able to give a recursive method of
computing the values φw1(�

−λw2) based on Proposition 3.6 and Theorem 3.8. This
then is used in Theorem 7.2 to prove that φw1(�

−λw2) equals the partition function
of the Iwahori lattice model with certain boundary conditions determined by λ, w1
and w2 as explained above. The above methods to compute the Iwahori Whittaker
functions, both the recursive algorithm (for any reductive group) and the partition
function (for GLr ), are easy to implement on a computer. In the parahoric case, our
results are also applicable to all group elements.

InSect. 9,weuse our descriptions forWhittaker functions in termsofDemazure-like
divided difference operators, which arise from our Yang–Baxter equations, to relate
them to variations of Macdonald polynomials. Indeed, we provide interpretations for
spherical, Iwahori, and parahoric Whittaker functions in terms of a specialization or
generalization of aMacdonald polynomial. In particular, the parahoricWhittaker func-
tions are expressed as Macdonald polynomials with prescribed symmetry studied in
[2, 3, 53]. Moreover, Jian-Shu Li [50] introduced a certain Iwahori Whittaker function
to study the unique genuine subquotient of the unramified principal series, and we will
show that its values are symmetric Hall–Littlewood polynomials (see Proposition 9.4).
See Table 1 for a summary of these connections and relevant references. Details of
the exact relations are shown in Table 2 of Sect. 9.

Finally, in Sect. 10, we explain how lattice models shed some further light on p-
adic representation theory. Not only are the outputs of both the lattice models and the
p-adic representation theory the same, but each tool or technique has a counterpart in
this dictionary, as we shall now explain.

Standard intertwining operators on principal series are a basic tool in the repre-
sentation theory of p-adic groups. Their action on Iwahori fixed vectors and how
they interact with the Whittaker functional are the two principal ingredients in the
Casselman-Shalika formula [25, 26] and are also the key to Theorem 3.8. Roughly,
we show that these two actions of intertwining operators, on Iwahori fixed vectors and
for the Whittaker functional, correspond to restrictions of the quantum superalgebra
U√

v−1(̂gl(r |1)) to its U√
v−1(̂gl(r)) and U√

v−1(̂gl(1)) pieces, respectively.
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In Theorem 10.5 we show that the action of the intertwining integral on the space of
Iwahori fixed vectors is the same as the action of the affine R-matrix on a subspace of
the tensor product of evaluation representations Vr (z1)⊗· · ·⊗Vr (zr ) ofU√

v−1(̂gl(r)).
This result is independent of the Whittaker functional and only the smaller quantum
groupU√

v−1(̂gl(r)) ⊂ U√
v−1(̂gl(r |1)) appears due to the fact that the right boundary

conditions of our model contain only colored edges (which span a subspace that can
be thought of as the tensor product of evaluation representations of U√

v−1(̂gl(r))).
This result can be easily generalized to the parahoric setting.

A result similar to Theorem 10.5 was proved in the case of spherical Whittaker
functions on themetaplectic n-cover of GLr in [12, Theorem 1.1], where the first three
authors relate the Kazhdan-Patterson scattering matrix to theU√

v−1(̂gl(n)) R-matrix.
The relation was used in [13] to build finite dimensional representations of the affine
Hecke algebra starting from metaplectic Whittaker functionals. Theorem 10.5 now
allows for a similar construction starting from Iwahori fixed vectors in an unramified
principal series representation.

3 Iwahori Whittaker functions

Wewill review the constructions of IwahoriWhittaker functions following [22]. There
are several differences between choicesmade here and in [22]with those inCasselman-
Shalika [26]. Let us summarize these choices, with notations to be defined more
precisely below.

• As in [26], principal series representations are induced from the standard Borel
subgroup B. But in contrast with [26], we will take Whittaker functions with
respect to the unipotent radical N− of the opposite Borel subgroup B−.

• We will take our Iwahori subgroup J to be the preimage in the maximal compact
subgroup K of B− modulo p.

• Wewill apply our construction to the contragredient representation of the principal
series with Langlands parameters z.

• When restricting to the maximal torus we will evaluate our Whittaker functions at
values �−λ where −λ is antidominant.

The advantage of these unconventional choices is that it keeps the longWeyl group
elementw0 out of the formulas. Thus whereas for Casselman and Shalika the simplest
Whittaker function is that supported on the double coset Bw0 J , and its value at �λ

is (up to normalization), zw0λ, with our conventions the simplest Whittaker function
is supported on B · 1W J , and its value is (up to normalization) zλ.

In more detail, let F be a nonarchimedean local field with ring of integers o. Let
p be the maximal ideal of o with generator � ∈ p. Then, � is a prime element, or
uniformizer, of F . We will denote by q the cardinality q = |o/p| and the residue field
itself by Fq = o/p.

LetG be a split reductive Chevalley group, that is, an affine algebraic group scheme
overZwith afixedChevalley basis for itsLie algebragZ. LetT be the standardmaximal
split torus ofG obtained from our choice of Chevalley basis, and similarly let N be the
standard maximal unipotent subgroup whose Lie algebra is the union of the positive
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root spaces. Together they form the standard Borel subgroup B = T N and the Weyl
group W is defined by NG(T )/T where NG(T ) is the normalizer of T in G.

Remark 3.1 For each Weyl group element w we will always choose a representative
in K = G(o) that is the maximal compact subgroup of G(F). Strictly speaking this
representative is only determined modulo T (o). However because we are considering
representations induced from unramified data, none of the functions we compute ever
depend on this choice, nor on the choice of � .

Let B− be the opposite Borel subgroup and N− be its unipotent radical generated
by the negative root spaces. In the later sections of this paper we will mainly consider
G = GLr for which B is the subgroup of upper triangular matrices, T the diagonal
matrices and B− the lower triangular matrices.

Let Ĝ be the Langlands dual group of G. We will denote the root system of Ĝ by�

and the simple roots of Ĝ by α1, . . . , αr . The root system of G is the dual root system
�∨. We prefer this notation instead of making � the root system of G, because the
weight lattice 
 of Ĝ appears frequently in the sequel.

We will consider an unramified character τ of T (F), that is, a character that is
trivial on T (o). The group of such characters is isomorphic to T̂ (C) ∼= (C×)r , where
T̂ is the standard split maximal torus of Ĝ. To define the unramified character τz for
z ∈ T̂ (C) we will use the following isomorphisms.

The group X∗(T ) of rational cocharacters of T is isomorphic to the weight lattice

 = X∗(̂T ) of rational characters of the dual torus, and we will identify these two
groups. But X∗(T ) is also isomorphic to the quotient T (F)/T (o). Indeed, if λ is a
cocharacter let �λ be the image of the uniformizer � in T under λ; then we associate
withλ the coset�λT (o) inT (F)/T (o).On theother handwemay regardλ as a rational
character and, with z ∈ T̂ (C), let zλ ∈ F× be the application of this character to z.
Then we define the unramified character τz of T (F) by τz(t) = zλ when t ∈ �λT (o).

In particular, for G = GLr with λ = (λ1, . . . , λr ) ∈ Z
r ∼= 
 and z =

(z1, . . . , zr ) ∈ (C×)r ∼= T̂ (C) we let

�λ =
⎛

⎝

�λ1

�λ2

. . .
�λr

⎞

⎠ ∈ GLr (F) and τz(�
λ) = zλ =

r
∏

i=1

zλii .

The Iwahori subgroup J = J− of G(F) is the subgroup of K = G(o) defined as
the preimage of B−(Fq) under the mod p reduction map K → G(Fq). Let J+ be the
preimage of B(Fq). For G = GLr the Iwahori subgroup J consists of elements in
GLr (o) which are lower triangular mod p.

We trivially extend an unramified character τz of T (F) to B(F) and let (π, I (z))
denote the induced representation I (z) = IndGB (δ1/2τz) under the right-regular action
π of G(F) where δ : B(F) → R

× is the modular quasicharacter.

Remark 3.2 It is convenient to extend δ to a function on G(F) as follows using the
Iwasawa decomposition. If g ∈ G(F) we may write g = bk where b ∈ B(F), k ∈ K
and we define δ(g) = δ(b). This is well-defined since δ is trivial on B(F) ∩ K .
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Consider the space I (z)J of Iwahori fixed vectors in I (z) which is of dimen-
sion dim I (z)J = |W |. We will now describe a basis for I (z)J which will be used
throughout the paper. Using the Iwasawa decomposition G(F) = B(F)K , the Bruhat
decomposition K = ⊔

w∈W J+wJ , the Iwahori factorization J+ = (B ∩ J+)N−(p)
and the fact thatw−1N−(p)w ⊂ J weobtain the decompositionG = ⊔

w∈W B(F)wJ
[25]. Thus the elements �z

w ∈ I (z)J for w ∈ W defined by

�z
w(bw′k) :=

{

δ1/2τz(b) if w′ = w

0 otherwise
b ∈ B(F), w′ ∈ W , k ∈ J

form a basis of I (z)J , commonly referred to as the ‘standard basis.’
For α ∈ �, let xα : Ga → G be the one-parameter subgroup of G corresponding

to α∨. (We recall that � is the root system of the dual group ̂G, and it is the coroot α∨
that is a root of G.) Thus xα(t) = exp(t Xα) where Xα is the corresponding Chevalley
basis element of the Lie algebra. The group K = G(o) is generated by the unipotent
groups xα(o). Fix a unitary character ψ on N−(F) such that, for any simple root α,
ψ ◦ x−α : F → C

×, is a character on F trivial on o but no larger fractional ideal.
The space of Whittaker functionals, which are linear maps �z : I (z) → C satisfying
�z(π(n−) f ) = ψ(n−)�z( f ) for n− ∈ N−(F), is one dimensional [58]. We need
therefore only consider the following explicit Whittaker functional

�z( f ) :=
∫

N−(F)

f (n)ψ(n)−1 dn f ∈ I (z) . (1)

The integral is convergent if |zα| < 1 for positive roots α, and can be extended to all
z by analytic continuation.

The objects of study in this paper are the Iwahori Whittaker functions obtained by
applying the Whittaker functional (1) to right-translates of standard basis elements
�z

w.

Remark 3.3 Any g ∈ G(F) may be written as g = n�−λw2k with n ∈ N−(F),
λ ∈ 
, w2 a Weyl group representative chosen in K by Remark 3.1, and k ∈ J . Using
the left N−(F) equivariance and the right J invariance, any IwahoriWhittaker function
W(g) then satisfies W(g) = ψ(n)W(�−λw2). Thus we reduce to computing our
Whittaker functions at values �−λw2.

We will use the following conventions and normalizations for Whittaker functions
of the contragredient I (z−1) of I (z) at these values. For w1 ∈ W we consider the
Iwahori Whittaker function

φw1(z; g) := δ1/2(g)�z−1
(

π(g)�z−1

w1

)

(2)

which is determined by its values on g = �−λw2 for a weight λ ∈ 
 and w2 ∈ W .
See Remark 3.2 for the extension of δ toG(F). In [22] theseWhittaker functions were
considered only for torus elements g = �−λ and were there denoted as Wλ,w1(z).
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In this paper we treat the general case, not only w2 = 1, and will therefore need to
compute more generally φw1(z;�−λw2).

First, we determine the pairs λ andw2 for which this J -invariantWhittaker function
is non-vanishing.

Definition 3.4 We say that λ is w-almost dominant if for all simple roots αi

{ 〈α∨
i , λ〉 � 0 if w−1αi ∈ �+,

〈α∨
i , λ〉 � −1 if w−1αi ∈ �−.

(3)

Lemma 3.5 Let W be any J -invariant Whittaker function. Then

W(�−λw2) = 0

unless λ is w2-almost dominant.

Proof This is similar to Lemma 5.1 of [26]. Let αi be a simple root such that (3) fails.
We may find t ∈ p−1 such that ψ(u) 	= 1 where u = x−αi (t). Now

ψ(u)W(�−λw2) = W(u�−λw2) = W(�−λw2 j) (4)

where

j = w−1
2 �λu�−λw2 = x−w−1

2 (αi )
(�−〈α∨

i ,λ〉t).

Our assumption that (3) fails implies that �−〈α∨
i ,λ〉t ∈ o if w−1

2 (α) ∈ �+ and

�−〈α∨
i ,λ〉t ∈ p if w−1

2 (α) ∈ �− and in either case j ∈ J , so W(�−λw2 j) equals
W(�−λw2) which must therefore vanish by (4).

Next we analyze the special case w1 = w2.

Proposition 3.6 Let w ∈ W and λ ∈ 
 a w-almost dominant weight. Then

φw(z;�−λw) = q−�(w)zλ,

where �(w) denotes the length of a reduced expression for w.

Proof By definition

φw(z;�−λw) = δ−1/2(�λ)

∫

N−(F)

�z−1

w (n�−λw)ψ(n)−1dn.

We make the variable change n �→ �−λn�λ. This multiplies the measure by δ(�λ)

and using �z−1

w (�−λg) = δ1/2(�−λ)zλ�z−1

w (g) we get

zλ

∫

N−(F)

�z−1

w (nw)ψ(�−λn�λ)−1dn.
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Let Jw = wJw−1. This has the Iwahori factorization Jw = N−
w T (o)N+

w where
N−

w = Jw ∩ N−(F) and similarly for N+
w . In particular

N−
w =

∏

α∈�+

{

x−α(o) if w−1α ∈ �+,

x−α(p) if w−1α ∈ �−.
(5)

The integrand is nonzero only if nw ∈ BwJ . We will show that this is true if and
only if n ∈ N−

w . Indeed, write nw = bw j where j ∈ J . Then n = bjw where
jw = w jw−1 ∈ Jw. Using the Iwahori factorization, jw = βn−

w where β ∈ B and
n−

w ∈ N−
w . Because B ∩ N− = {1}, b = β = 1 and n = n−

w . Therefore the integral
equals

zλ

∫

N−
w

�z−1

w (nw)ψ(�−λn�λ)−1dn.

Now we will show that the value of the integrand is 1 so this is just zλ times the
volume of N−

w . We have �z−1

w (nw) = 1 since the argument is in wJ . We must show
that �−λn�λ is in the kernel of ψ . For this it is sufficient to show that if α = αi is a
simple positive root then

�−λx−αi (t)�
λ ∈ N−(o)

where using (5) we may assume that t ∈ o if w−1(αi ) ∈ �+ and t ∈ p otherwise.
Now

�−λx−αi (t)�
λ = x−αi (�

〈λ,α∨
i 〉t).

Because λ is w-almost dominant � 〈λ,α∨
i 〉t is indeed in o.

Hence φw(z;�−λw) equals zλ times the volume of N−
w , which is q−�(w).

In order to determine the values of the Iwahori Whittaker function φw1(z;�−λw2)

in full generality, we mimic the methods of [22], which used ingredients from earlier
papers of Casselman and Shalika [25, 26]. In brief, we will develop a recursion using
the Bruhat order in the Weyl group in the w1 variable above, whose base case is
given by Proposition 3.6. The recursion results from computing the function �z(Asi ·
�w) in two ways, where Aw denotes the standard intertwining operator on principal
series corresponding to the Weyl group element w ∈ W and si is a simple reflection.
Comparing the two methods of computation will give the values of the Whittaker
function. We begin by briefly reviewing the basics of intertwining operators. These
facts will also be needed in Sect. 10. To avoid technical problems with the poles and
zeros of the intertwining integrals, we will assume that zα 	= 1, q±1 for all α.

The standard intertwining integral Az
w : I (z) → I (wz) is given by

Az
w�(g) =

∫

N (F)∩wN−(F)w−1
�(w−1ng)dn. (6)
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The integral converges when |zα| < 1 for α ∈ �+ and can be extended to arbitrary z
bymeromorphic continuation. The intertwining integral induces amapAz

w : I (z)J →
I (wz)J and an explicit expression forAz

si on I (z)J is given by the following formula.
See Proposition 3 in [22] for a proof of this fact, which is equivalent to Theorem 3.4
of [25]:

Az
si (�

z
w) =

{

(1 − cαi (siz))�
si z
w + �

si z
siw if �(siw) > �(w),

(q−1 − cαi (siz))�
si z
w + q−1�

si z
siw if �(siw) < �(w),

(7)

where

cαi (z) = 1 − q−1zαi

1 − zαi
. (8)

Substituting in the definition of cαi and using that (siz)αi = z−αi we get that
equation (7) is equivalent to

Āz
si (�

z
w) =

⎧

⎨

⎩

1−q−1

1−q−1zαi �
si z
w + 1−zαi

1−q−1zαi �
si z
siw if �(siw) > �(w),

zαi 1−q−1

1−q−1zαi �
si z
w + q−1 1−zαi

1−q−1zαi �
si z
siw if �(siw) < �(w),

(9)

where Āz
si := 1−zαi

1−q−1zαi Az
si . The normalized version of the intertwiner Āz

si is sometimes
preferred because it is a cocycle, i.e.

Āz
s j si = Āsi z

s j ◦ Āz
si .

To any w ∈ W , let �+
w denote the set of positive roots {α ∈ �+ | w(α) ∈ �−}. In

Proposition 2 of [22], following from Proposition 4.3 of [26], the following result is
proven.

Proposition 3.7 For any w ∈ W,

�wz ◦ Az
w =

(
∏

α∈�+
w

1 − q−1z−α

1 − zα

)

�z. (10)

In Theorem 3.8 below we will combine the above results to obtain a recursion
relation for φw(z; g) using Demazure type operators that we will define now.

LetO(T̂ ) be the ring of regular (polynomial) functions on T̂ (C) ∼= (C×)r . This ring
is isomorphic to the group algebra of
 = Z

r as follows. If z = (z1, · · · , zr ) ∈ (C×)r

and λ ∈ 
 let zλ = ∏

zλii . Then O(T̂ ) is spanned by the functions zλ. We may now

define operators Ti onO(T̂ ) as follows. Let v be a nonzero complex number and, for
f ∈ O(T̂ ), let

Ti,v f (z) = Ti f (z) = f (z) − f (siz)
zαi − 1

− v
f (z) − z−αi f (siz)

zαi − 1
. (11)
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These operators satisfy the same braid relations

TiT j · · · = T jTi · · ·

as the corresponding simple reflections si , s j in the finiteWeyl group (see, for example
[22, Proposition 5]). The operators also satisfy the quadratic relation

T2
i = (v − 1)Ti + v. (12)

This quadratic relation implies that Ti is invertible. Indeed its inverse is

T−1
i f (z) = z−αi f (siz) − zαi f (z)

zαi − 1
− f (siz) − zαi f (z)

v(zαi − 1)
. (13)

See [22] Propositions 5 and 6 for proofs of these facts.1 The operatorsTi thus generate
a finite Iwahori Hecke algebra. They are similar to the well-known Demazure-Lusztig
operators [51], which by comparison send f to

Li,v f (z) = Li f (z) = f (z) − f (siz)
zαi − 1

− v
f (z) − zαi f (siz)

zαi − 1
. (14)

As we will discuss in Sect. 9, the difference is slight but significant. We will refer to
the Ti operators in (11) as Demazure-Whittaker operators.

The following result generalizes Theorem 2 of [22].

Theorem 3.8 For any w ∈ W, a simple reflection si , and with v = q−1,

φsiw(z; g) =
{

Ti · φw(z; g) if �(siw) > �(w),

T−1
i · φw(z; g) if �(siw) < �(w),

(15)

where the Ti and their inverses are as in (11) and (13).

Proof Recall from (2) that the Whittaker functions φw(z; g) are made with respect to
principal series with the Langlands parameter z−1. The result follows by expanding

�si z(Az
si π(g)�z

w1
)

in two different ways using the relation (9) and Proposition 3.7, respectively. Here one
has to use the fact that Az

si is an intertwiner and therefore commutes with π(g). This
produces a functional equation, which can be rewritten in the form of equation (14).
See [22, Theorem 2] for more details.

Proposition 3.8 gives a recursion on Iwahori fixed vectors φw which is independent
of the word used to represent w.

1 All references to [22] are to the published version; the operators in the arXiv version are slightly different.
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Corollary 3.9 Given any w1, w2 and a w2-almost dominant weight λ, let (si1 , . . . , sik )
be any path in theWeyl group fromw2 tow1, sow2 → si1w2 → · · · → sik · · · si1w2 =
w1. Set ei j to be +1 or −1 depending on whether si j is an ascent or descent, respec-
tively, in the Bruhat order. Then, with v = q−1,

φw1(z;�−λw2) = v�(w2)T
eik
ik

· · ·Tei1
i1
zλ.

Proof This corollary follows immediately from Proposition 3.6 and Theorem 3.8. It
generalizes Theorem 1 of [22], which evaluates the special case w2 = 1.

Corollary 3.10 For any g ∈ G(F), the function φw(z; g) is regular as a function of z
on ̂T (C).

Proof This is known on other grounds from Proposition 2.1 of [26], but let us show
how it follows from our results. By Remark 3.3 we may assume g = �−λw2 and if
w = w2, regularity follows from Proposition 3.6. Then for more general w = w1 as
in Corollary 3.9, φw(z; g) may be obtained by applying the Ti and T−1

i , and these
preserve regularity.

Suppose that w = yz in W , with �(w) = �(y) + �(z). Then we write z�Lw. The
partial order �L on W is the left weak (Bruhat) order. See [7] Chapter 3 for more
information about the left and right weak orders.

Corollary 3.11 Suppose that w2�Lw1 in the left weak order. Let λ be a w2-almost
dominant weight. Then

φw1(z;�−λw2) = v�(w2)φ
w1w

−1
2

(z;�−λ). (16)

Proof If w2 = w1, this follow from Proposition 3.6. Therefore we assume that
w2<Lw1. Let si be a left descent of w1w

−1
2 and let w′

1 = siw1 so that w2�Lw′
1.

By induction on �(w1w
−1
2 ) we have

φw′
1
(z;�−λw2) = v�(w2)φ

w′
1w

−1
2

(z;�−λ).

Applying Ti to both sides of this identity and applying Theorem 3.8 gives (16).

4 Parahoric Whittaker functions

We now extend the results of the last section to Whittaker functions that are invariant
under so-called ‘parahoric subgroups’ which are intermediate between the Iwahori
subgroup J and the maximal compact subgroup K .

Let W be a Coxeter group with generators si (i ∈ I), which we will call simple
reflections. Let J be a subset of I, let WJ be the subgroup generated by the s j with
j ∈ J, and let

W J = {

w ∈ W | ws j > w for all j ∈ J
}

. (17)
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Here > is with respect to the Bruhat order, but by the Exchange Property for Coxeter
groups ( [7] Theorem 1.5.1) the conditionws j > w is equivalent to �(ws j ) = �(w)+1
in terms of the length function on W . By Proposition 2.4.4 of [7] every element of
W has a unique factorization wJwJ with wJ ∈ W J and wJ ∈ WJ. Moreover, by the
corollary to that proposition, every coset wWJ has a unique representative of shortest
length, and w ∈ W J if and only if w is that generator.

Lemma 4.1 Letw ∈ W J. Suppose that si is a simple reflection such thatw−1siw /∈ WJ.
Then siw ∈ W J. Assume furthermore that siw > w. Then siwy > wy for any y ∈ WJ.

Proof Let us show that siw ∈ W J. If not, then for some j ∈ J we have siws j < siw.
Since w ∈ W J we have ws j > w. Now there are two cases. First assume that
siw < w. Then ws j > w > siw > siws j , and �(ws j ) = �(siws j ) + 3. This is a
contradiction since �(si y) = �(y) ± 1 for any y ∈ W . On the other hand suppose that
siw > w. By the Lifting Property of the Bruhat order (Proposition 2.2.7 of [7]) the
inequalities siw > w, siws j < siw andws j > w imply thatw � siws j < siw. Since
�(siw) = �(si ) + 1 this implies that w = siws j and therefore w−1siw = s j ∈ WJ,
contradicting one of our assumptions. Thus, siw ∈ WJ.

For the rest of the proof,we assume that siw > w, andwewill prove that siwy > wy
for any y ∈ WJ. Arguing by contradiction, assume that siwy < wy. We claim that
either siwy = w′y for w′ < w or siwy = wy′ for y′ < y. Indeed, let si1 · · · sik be a
reduced word for w and sik+1 · · · sil be a reduced word for y. By [7] Proposition 2.4.4
�(wy) = �(w)+�(y), so si1 · · · sil is a reducedword forwy. By the Exchange Property
for Coxeter Groups (Theorem 1.5.1 of [7]) it follows that siwy = si1 · · · ŝim · · · sil
for some m. If m � k we may take w′ = si1 · · · ŝim · · · sik , otherwise, we may take
y′ = sik+1 · · · ŝim · · · sil .

First suppose that siwy = w′y with w′ < w. Then siw = w′ < w, contradicting
one of our assumptions. On the other hand, suppose that siwy = wy′ with y′ < y.
Then y′ ∈ WJ since y ∈ WJ and y′ < y. Hence w−1siw = y′y−1 ∈ WJ, also
contradicting one of our assumptions. This proves siwy > wy.

Definition 4.2 By a standard parahoric subgroup we mean a subgroup of K = G(o)
that arises as the preimage of a standard parabolic under the canonical map K −→
G(Fq). In particular, any such group contains the Iwahori subgroup J . We will denote
these groups by KJ where J is the index set of simple roots in the corresponding
standard parabolic subgroup P of G. We will denote the Levi subgroup of P by M
which has Weyl group WJ. With this notation K∅ = J (the Iwahori subgroup) and
KI = K (the maximal compact subgroup).

For example, ifG = GLr , thesemaybe constructed as follows.Let r = (r1, · · · , rk)
be a set of positive integers such that

∑

i ri = r . Let P := Pr be the parabolic subgroup
of GLr containing the opposite Borel B− with Levi subgroup M = GLr1 × · · ·×GLrk
embedded diagonally inGLr . TheWeyl groupWJ = Sr1 ×· · ·×Srk ofM is a parabolic
subgroup of W = Sr with J consisting of integers 1 � j � r − 1 such that j is not of
the form r1, r1 + r2, r1 + r2 + r3, etc. Then the standard parahoric subgroup KJ is the
preimage of Pr(Fq) under the map K −→ GLr (Fq).
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If w ∈ W J let

ψJ
w :=

∑

y∈WJ

φwy, (18)

where the φw denote the standard basis Iwahori Whittaker functions defined in (2).

Proposition 4.3 The ψJ
w with w ∈ W J are a basis of the KJ-fixed vectors in the

Whittaker model of a principal series I (z).

Proof Let k = Fq be the residue field. We have

G(k) =
⊔

w∈W J

B(k)wP(k) (disjoint)

by [11], Remark 2 in Section IV.2.5 and the fact that W J are a set of coset represen-
tatives for W/WJ. (The parabolic P actually contains the opposite Borel subgroup to
B but the decomposition is still valid.) Pulling this back to K = G(o) we have

K =
⊔

w∈W J

J+wKJ (19)

where J+ is the upper Iwahori subgroup. We have bijections of coset spaces

B(F) \ G(F) ←→ (B(F) ∩ K ) \ K ←→
⊔

w∈W J

N−(p)wKJ

where the first step follows from the Iwasawa decomposition G(F) = B(F)K and
for the second step we have used (19) and the Iwahori factorization J+ = (B(F) ∩
K )N−(p). Therefore

G(F) =
⊔

w∈W J

B(F)N−(p)wKJ =
⊔

w∈W J

B(F)wKJ,

where for the last step we have used the fact that w−1N−(p)w ⊂ KJ. Hence I (z)KJ

has a basis of functions �J
w (w ∈ W J) defined by

�J
w(bw′k) =

{

δ1/2τz(b) if w′ ∈ wWJ,

0 otherwise,

for w′ ∈ W and k ∈ KJ. Decomposing the support of �J
w into a union of J -cosets,

we see that �J
w = ∑

y∈WJ
�wy , and projecting this identity into the Whittaker model,

the statement follows.

Remark 4.4 One can deduce from Proposition 4.3 the dimension of the space of para-
horic fixed vectors in the unramified principal series. This is in accordance with the
work of Lansky [48] (see Theorem 1.1), where these dimensions were first computed.
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Proposition 4.5 Suppose that w ∈ W J and that si is a simple reflection such that
w−1siw ∈ WJ. Then ψJ

w(z; g) is divisible by 1− vz−αi as a Laurent polynomial, and
(1 − vz−αi )−1ψJ

w(z; g) is invariant under the reflection si . Moreover siw > w.

Proof Let t = w−1siw be the reflection that is in WJ. Assume y ∈ WJ and t y > y.
Then siwy = wt y and by Theorem 3.8 we have φwt y = Tiφwy . Thus

ψJ
w =

∑

y∈WJ

φwy =
∑

y∈WJ
t y>y

(φwy + φwt y) = (1 + Ti )
∑

y∈WJ
t y>y

φwy .

Now using the fact that (Ti − v)(Ti + 1) = 0, we have Tiψ
J
w = vψJ

w. Substituting
the definition of Ti a small amount of algebra gives

(1 − vzαi )ψJ
w(z; g) = (1 − vz−αi )ψJ

w(siz; g). (20)

The function ψJ
w(z; g) is a regular function on T̂ (C) by Corollary 3.10. The ring

O(T̂ ) of regular functions is a principal ideal domain; indeed it is a Laurent polynomial
ring. The functions 1−vzαi and1−vz−αi are coprime. From the right-hand side of (20),
1− vz−αi divides the left-hand side, and it therefore divides ψJ

w(z; g). Remembering
that w(αi ) = −αi , we may rearrange (20) in the form

ψJ
w(z; g)

1 − vz−αi
= si

(

ψJ
w(z; g)

1 − vz−αi

)

,

and we have proved that this is an si -invariant regular function.
The last assertion to be proved is that siw > w. For this we note that with t =

w−1siw ∈ WJ, wt is the unique factorization of siw into a product of elements ofW J

and WJ by Proposition 2.4.4 of [7] which was mentioned before, and by part (iii) of
that result, �(siw) = �(w) + �(t) > �(w), as required.

Proposition 4.6 Suppose that w ∈ W J and that si is a simple reflection such that
w−1siw /∈ WJ. Then

ψJ
siw(z; g) =

{

Tiψ
J
w(z; g) if siw > w,

T−1
i ψJ

w(z; g) if siw < w.

Proof By Lemma 4.1, w ∈ W J if and only if siw ∈ W J. With this in mind, the two
cases are equivalent since we may interchange the roles of w and siw. Therefore we
may assume that siw > w. Let y ∈ WJ. By Lemma 4.1 we have siwy > wy and so
by Theorem 3.8 we have φsiwy = Tiφwy . Therefore

ψJ
siw =

∑

y∈WJ

φsiwy = Ti

∑

y∈WJ

φwy = Tiψ
J
w.
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In the following theorem,we show that Proposition 4.5 implies aCasselman-Shalika
formula for ψJ

1 = ∑

w∈WJ
φw for any fixed subset J. If λ is a dominant weight for

Ĝ(C), the complex, connected Langlands dual group of G, then it is also a dominant
weight for the Levi subgroup M̂(C), the dual group of M having Weyl group WJ.
So we may consider the irreducible character χJ

λ of M̂(C) with highest weight λ.
We will denote by χJ

λ (z) the value of this character on the semisimple element with
eigenvalues (z1, . . . , zr ). The root system �J of M̂(C) is a subsystem of the root
system � of Ĝ(C).

Theorem 4.7 Suppose that λ is a dominant weight for G. Then

ψJ
1 (z;�−λ) =

∏

α∈�+
J

(1 − vz−α)χJ
λ (z). (21)

If w ∈ W J then

ψJ
w(z; g) = TwψJ

1 (z; g) (22)

Proof We will argue that the expression

ψJ
1 (z;�−λ)

∏

α∈�+
J
(1 − vz−α)

(23)

is regular for z ∈ T̂ (C), symmetric under the action of WJ, and independent of v.
If si is a simple reflection inWJ thenwemaywrite (23) as (1−vz−αi )−1ψJ

1 (z;�−λ)

divided by the remaining factors, which are permuted by si . By Proposition 4.5 this
shows that (23) is invariant under si and so it is invariant under WJ.

Next let us show that (23) is regular on all of T̂ (C). To see this, note that its potential
poles are in the union of the hypersurfaces zα = v (α ∈ �+

J ). But by Proposition 4.5 if
αi is a simple root the hyperplane zαi = v is not among the poles. As the polar divisor
is invariant under WJ, neither are any of the other loci zα = v. Hence (23) is regular.

Now the numerator and the denominator of (23) are polynomials in zi , z
−1
i and

v, and the numerator is divisible by the denominator. We will argue that both have
degree |�+

J | = �(wJ
0) as polynomials in v where wJ

0 is the long element of WJ which
shows that the ratio is in fact independent of v. For the numerator, we may write
ψJ
1 = ∑

w∈WJ
φw and φw(�−λ) = Twzλ; it follows from the definition of Tw that

its degree in v is �(w), which takes its maximum at the long element wJ
0, proving that

the degree is �(wJ
0). And clearly the denominator has the same degree.

Then (23) is independent of v and we may therefore take the limiting case v → 0
to evaluate it. Let

∂◦
i f (z) = f (z) − f (siz)

zαi − 1
, ∂i f (z) = f (z) − z−αi f (siz)

1 − z−αi
.
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We have ∂◦
i = ∂i − 1. These Demazure operators are known to satisfy the braid rela-

tions; see for example [23] Propositions 25.1 and 25.3 but note that in Proposition 25.3
there is a typo and Di should be ∂i . If w = si1 · · · sik is a reduced expression define
∂w = ∂i1 · · · ∂ik and similarly for ∂◦

w.
When v → 0 the operator Ti reduces to ∂◦

i and so

lim
v→0

φw(�−λ) = ∂◦
wz

λ.

By Theorem 2.1 of [17], it follows that (23) equals
∑

w∈WJ
∂◦
wz

λ = ∂
wJ
0
zλ and by the

Demazure character formula ([23] Theorem 25.3), this is χJ
λ (z). This proves (21).

Now let us prove (22) by induction on �(w). If w = 1, there is nothing to prove.
Thus suppose that w = siw′ where si is a simple reflection and �(w′) < �(w).
Then w−1siw /∈ WJ, since otherwise the last assertion of Proposition 4.5 would be
contradicted. Therefore by Lemma 4.1 w′ ∈ W J and by induction ψJ

w′ = Tw′ψJ
1 .

Now Proposition 4.6 gives

ψJ
w = TiTw′ψJ

1 = TwψJ
1 ,

proving (22).

Remark 4.8 For Iwahori Whittaker functions Corollary 3.9 gives an algorithm to com-
pute φw1 at any value of g (which we can take to be on the form�−λw2). This depends
on Proposition 3.6, which gives the base case φw(�−λw), i.e. w1 = w2, for a recur-
sive algorithm using Demazure-Whittaker operators, suitable for implementation on
a computer. Our parahoric results are not as general because we only have a direct
expression (without Demazure-Whittaker operators) for the base case (21) which is
only for w1 = w2 = 1. For an arbitrary base case w1 = w2 	= 1 we need to fall back
on (18) which expresses ψJ

w1
(�−λw2) as a sum of φw1y(�

−λw2). However since the
φw are computable, this is not an obstacle to an explicit computation of ψJ

w. In both
cases we may then compute all ψJ

w1
(�−λw2) from ψJ

w2
(�−λw2) recursively, taking

Proposition 4.5 and 4.6 into account. Alternatively, knowing all φw we may compute
ψJ

w1
(�−λw2) directly by the sum (18).

5 Yang–Baxter equations from fusion

The models that we will be concerned with take place on planar graphs. In using the
term graph to describe these arrays we are deviating from usual terminology, where
edges have always two vertices, for we will allow open edges with only a single
endpoint. Thus we mean a set of vertices which are points in the plane, together with
edges that are arcs which either join two vertices, or which are attached to only a single
vertex. The edges which are only attached to a single vertex are called boundary edges.
The edges attached to two vertices are called interior edges. Every vertex is adjacent
to four edges. Edges can only cross at a vertex.
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Fig. 1 Left: a vertex adjoining four horizontal edges. Such a vertex will be called an R-vertex. Right: A
vertex adjoining two horizontal edges and two vertical ones. We will call such vertices ordinary. Each
vertex receives a label ξ corresponding to its Boltzmann weights

For every edge A in the graph there is a finite set �A of values called spins that
may be assigned to the edge in a state of the system.

Assumption 5.1 At each vertex, let A, B, C , D be the four adjacent edges, arranged
so that A and C are opposite edges, as are B and D. Then �A = �C and �B = �D .

Each vertex has a label ξ , and an associated set of Boltzmann weights βξ . This is
a rule which assigns a complex number to every possible choice of spins at the four
adjacent edges of the vertex. Thus if A, B,C, D are the four adjacent edges to a vertex
with label ξ , this data consists of a map

βξ : �A × �B × �C × �D → C.

We call the set of spins (a, b, c, d) ∈ �A × �B × �C × �D a configuration at the
vertex. The configuration is admissible if βξ (a, b, c, d) 	= 0.

Assumption 5.2 At each vertex, if three out of four spins in (a, b, c, d) in an admissible
configuration are given, the fourth is uniquely determined.

In a systemS, the data specifying the system are the graph itself, the spinsets �A,
the Boltzmann weight data βξ for each label ξ , and for every boundary edge A a
fixed boundary spin bA ∈ �A. For example, the labels ξ might be complex numbers
and βξ are uniformly described as a set of complex-valued functions of ξ for each
configuration. Note that the spins of the boundary edges are fixed, and are part of the
data specifying the system.

A state s of the system is an assignment of spins to all edges. That is, for each
edge A there is specified a spin sA ∈ �A. For boundary edges sA must be the fixed
boundary spin bA, while the interior edge spins are allowed to vary. We will use the
notation s ∈ S to mean that s is a state of the system S. The Boltzmann weight β(s)
of the state is the product of the Boltzmann weights at the labelled vertices and the
state is said to be admissible if all of its vertices are admissible. The partition function
Z(S) is the sum of the Boltzmann weights of all the (admissible) states.

In the systems that we will consider, the edges may all be classified as either
horizontal or vertical. There will be two types of vertices. In one type, the vertex
intersects four horizontal edges and will be called an R-vertex. In the other, called
ordinary, it intersects two horizontal and two vertical ones. See Fig. 1.
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Fig. 2 Fusion. This procedure replaces a sequence of vertices by a single vertex

Next we explain a procedure we refer to as fusion for producing new kinds of edges
and vertices from given ones. (This is partly inspired by a process of the same name
described in Borodin and Wheeler [9], Appendix B that goes back to [46].)

Given a sequence of edges, A1, · · · , Am we may replace these with a single edge
A such that �A = ∏

k �Ak . This edge is called the fusion of the edges {Ak}. Next
assume that we have a sequence of m ordinary vertices with labels ξ1, · · · , ξm such
that the vertex with label ξk is adjoined to the vertex with label ξk+1 by an edge Ek if
1 � k � m − 1. Let the remaining adjacent edges of the vertex with label ξk be Bk

and Dk and A (if k = 1) and C if k = m. Thus the configuration is as in Fig. 2 (left).
Now we may construct the fusion B of the edges Bi as above, as well as the fusion

D of the edges Di . We may then fuse the vertices, replacing the sequence ofm vertices
with labels ξ1, . . . , ξm by a single vertex labeled ξ (as in Fig. 2). It remains to discuss
the Boltzmann weights. Let spins (a, b, c, d) ∈ �A × �B × �C × �D. By definition
b and d are sequences of spins bk ∈ �Bk and dk ∈ �Dk . Fixing (a, b, c, d), it follows
from Assumption 5.2 that the system in Fig. 2 (left) has at most one (admissible) state.
We define βξ (a, b, c, d) to be its partition function. It is clear that Assumption 5.2
remains valid for this fused vertex.

At any vertex, it will be useful to choose a clockwise ordering (A, B,C, D) of
the adjoining edges. In our illustrations, we will always choose the ordering as in
Fig. 1. If A is an edge, we will denote by VA the free vector space with basis �A.
By Assumption 5.1, we may identify VA = VC and VB = VD . Then the Boltzmann
weights at a vertex with label ξ define an element of End(VA ⊗ VB) by

a ⊗ b �→
∑

(c,d)∈�C×�D

βξ (a, b, c, d)(c ⊗ d). (24)

If the vertex is an R-vertex we will denote this endomorphism as Rξ ; this endomor-
phism is called an R-matrix. For ordinary vertices, we will denote the endomorphism
(24), which is called a transfer matrix, as Tξ .

Definition 5.3 Suppose that, for ordinary vertices labeled ξ , η and R-vertex labeled
ζ , there exists Boltzmann weights such that for every choice of boundary spins
(a, b, c, d, e, f ) the partition functions of the two systems in Fig. 3 are equal. Then
we say we have a solution of the Yang–Baxter equation.

Let A, B,C , D, E , F be the boundary edges of these configurations, so that a ∈ �A,
etc. ByAssumption 5.1 VA = VD , VB = VE and VC = VF . Then Rζ ∈ End(VA⊗VB),
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Fig. 3 The Yang–Baxter equation

Fig. 4 Setup fr the Yang–Baxter equation with fused vertices ξ and η

Tξ ∈ End(VA ⊗ VC ) and Tη ∈ End(VB ⊗ VC ). The Yang–Baxter equation can be
expressed in the formula

(Rζ )12(Tξ )13(Tη)23 = (Tη)23(Tξ )13(Rζ )12, (26)

an identity in End(VA ⊗ VB ⊗ VC ), where, in the notation common in quantum group
theory, (Rζ )12 denotes Rζ acting on the first two components of VA ⊗ VB ⊗ VC and
so forth. Note that the left side of (26) corresponds to the right side in Fig. 3, and vice
versa. We wish to consider examples of (25) where the ordinary vertices arise from
the fusion process described above. Thus the left configuration can be expanded as in
Fig. 4.

Lemma 5.4 Suppose there exists a sequence of R-vertices with labels ζ1, . . . , ζm+1
such that ζ1 = ζm+1 = ζ and such that for each 1 � k � m, the two partition
functions in Fig.5 are equal. (Note that the R-vertex of the left-hand side is ζk while
the one on the right-hand side is ζk+1.) Then the auxiliary Yang–Baxter equations in
(27) induce a solution to the Yang–Baxter equation in (25) for the fused system.
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Fig. 5 Auxiliary Yang–Baxter equations. These imply a Yang–Baxter equation for the fusion situation in
Fig. 4. In these equations, the R-matrix changes after moving past the vertical edges. After m such changes,
it is back to its original form

Proof This follows from the usual train argument. Each time the R-matrix moves to
the right, ζk is replaced by ζk+1. Since ζ1 = ζm+1 = ζ , the statement follows.

Remark 5.5 We have chosen to call the method for producing new solutions to the
Yang–Baxter equation outlined in this section ‘fusion,’ despite some differences with
the prior notion in the literature (see for example [46] and Appendix B of [9]). Both
methods construct new solutions from old by forming new weights using one-row
partition functions. The typical fusion construction features two steps: first summing
over all one-row systems with given multiset of spins on its vertical edges (which
is the graphical manifestation of the R-matrix of a tensor product of quantum group
modules) and then taking a further weighted average (which manifests the resulting
R-matrix for projection onto irreducible constituents of the tensor product; see for
example (B.2.1) of [9]). However, our fusion prescribes a set of labels for each vertex
in the one-row system, our weights are allowed to vary based on the label, and we
do not require a second summation acting as a projection. Our example of weights
for fusion in the next section (see Fig. 7) will have vertices labeled by colors and the
weights depend critically on this color.

6 Yang–Baxter equations for coloredmodels

We shall describe Yang–Baxter equations for systems that generalize the Tokuyama
model introduced in Sect. 2 by replacing its − spins by a setP (called the palette) of
r different colors. The set P is ordered, and when convenient we may take P to be
the set of integers 1 � c � r .

If A is a horizontal edge, the spinset �A is
{+} ∪ P. On the other hand if A is

a vertical edge, the spinset �A is the power set of P where it will be convenient to
identify the empty set with + as before. Now in a state s of such a system, we say
that a horizontal edge A carries the color c if sA = c. If A is a vertical edge, we
say that A carries the color c if c ∈ sA, remembering that sA is a subset of P. The
vertical edges are thus allowed to carry more than one color. But since �A is a set
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Fig. 6 The colored R-vertex weights. The colors c and d are an arbitrary choice of distinct colors inP. If a
configuration does not appear in this table, the Boltzmann weight is zero. The associated R-matrix equals
that of evaluation modules V (z j ) ⊗ V (zi ) of the quantum supergroup Uq (̂gl(r |1)) for q = 1/

√
v

Fig. 7 Boltzmann weights for monochrome ordinary vertices. The weight depends on a pair of labels: a
complex number zi (suppressed in pictures above) and a color (denoted c above). Note that admissible
vertical edges adjacent to the monochrome vertex may only carry the color c of the vertex, while adjacent
horizontal edges may carry any color. In particular, in the diagrams above, c = d is allowed

(instead of a multiset as in bosonic models) each color appears along a vertical edge
with multiplicity at most 1. The horizontal edges may carry at most one color.

Having described the admissible configurations at each vertex, it remains to describe
the Boltzmann weights for both the ordinary and the R-vertices in colored systems.
The Boltzmann weights of the R-vertex are given in Fig. 6.

Remark 6.1 It may be checked that with the Boltzmann weights in Fig. 6, the R-matrix
agrees with aDrinfeld twist of the (ungraded) R-matrix of evaluationmodules V (z j )⊗
V (zi ) for the quantumaffineLie superalgebraU1/

√
v(

̂gl(r |1)) (cf. [44,Definition 2.1]).
The r colored spins span one graded piece in the super vector space, while the + spin
spans the remaining one-dimensional piece.

The Boltzmann weights of the ordinary vertices, which adjoin two horizontal edges
and two vertical edges with many coloring possibilities, are harder to describe. We
will define these by means of fusion, starting with simpler monochrome vertices:
vertices that adjoin only monochrome edges that are only allowed to carry at most
one particular color. Each monochrome vertex is itself assigned a color c ∈ P, and
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Fig. 8 Ordinary fused vertex constructed from monochrome vertices by fusion for r = 2. Left: a fused
vertex (compare with Fig. 10). Middle: The case c > d, using weights from Fig. 7. Right: The case d > c

the spinset of a vertical edge attached to that vertex is {+ , c}. For horizontal edges,
the spinset is {+ } ∪ P just as before. The Boltzmann weights for the monochrome
(ordinary) vertices are given in Fig. 7.

Convention 6.2 (Monochrome vertices) Now the admissible ordinary vertices and
their weights may be described by fusion of monochrome vertices as detailed in
Sect. 5. In a model with r colors, we replace each ordinary vertex by a single row
of r monochrome vertices with color labels arranged in ascending order from left to
right. Recall that a vertical edge A adjacent to an ordinary vertex is decorated by a
subset sA of P. For the corresponding monochrome vertices we color the c-th such
edge (with color c) if and only if the color c appears in the set sA.

Remark 6.3 Looking ahead to Sect. 7, we will consider systems made from these ordi-
nary, fused vertices. Regarding the vertex as a fusion, wemay replace the entire system
by an expanded or monochrome system with monochrome vertices; each column of
vertices is replaced by r different vertices. Then we may refer to the systemwith fused
edges as the fused system. See Fig. 16 for an example of this procedure. It follows
from the definition of the fused weights that the fused and expanded systems have the
same partition function. Indeed, there is a bijection between the states of the fused
and expanded systems, and corresponding states have the same Boltzmann weight, by
definition.

As described in Sect. 5, the Boltzmannweight of the fused vertex is just the partition
function of the single row of these ordered r monochrome vertices, which has at most
one admissible state. In Fig. 8, we compute an example of a fused Boltzmann weight
when r = 2 from the corresponding monochrome vertices. In Fig. 9 we give all the
fusedBoltzmannweights (for any r ) inwhich the vertical edges carry atmost one color.
The possible cases in which vertical edges carry two colors are shown in Fig. 10. For
r > 2 one would have to complete these with similar tables for vertical edges carrying
more colors. At the end of this section we will give all the fused weights in a closed
form in a notation similar to the one used in [9]. See Fig. 12.

It remains to discuss the Yang–Baxter equation for fused vertices, which will
result from auxiliary Yang–Baxter equations for the monochrome model according
to Lemma 5.4. We first need to define monochrome R-vertices for use in (27), gen-
eralizing the R-vertices in Fig. 6. These will play a role of the vertices labeled ζk
in Lemma 5.4, but now each such R-matrix depends not only on a pair of complex
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Fig. 9 Fused weights (I). These are the Boltzmann weights in which the vertical edges carry no more than
one color. Since edges can carry more than one color, this is not a complete list of the possibilities. In this
figure, c 	= d except where explicitly allowed

Fig. 10 Fused weights (II). The vertical edges can carry more than one color, with multiplicity at most one
(so c 	= d in this figure). These are the extra possibilities when at most two colors appear

parameters zi , z j , but also on a color c. The Boltzmann weights for these are given in
Fig. 11.

Let R(zi , z j ) denote the R-matrix constructed with the weights in Fig. 6 according
to (24), and if 1 � c � r is a color, let R(c)(zi , z j ) denote the colored R-matrix
constructed from the Boltzmann weights in Fig. 11 where the vertex is labeled by
the color c. Note that R(1) = R. Also, let T (c)(zi ) denote the matrix associated with
the monochrome (ordinary) vertices labeled by the color c whose Boltzmann weights
are described in Fig. 7. We recall that the colors c are identified with the integers
1 � c � r , so there is a next color c + 1 unless c is the last color c = r , in which
case we define R(r+1) := R. We may now describe auxiliary Yang–Baxter equations
involving the monochrome vertices.

Proposition 6.4 If 1 � c � r , then

R(c)(zi , z j )12T
(c)(zi )13T

(c)(z j )23 = T (c)(z j )23T
(c)(zi )13R

(c+1)(zi , z j )12. (28)
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Fig. 11 R-vertices for auxiliary Yang–Baxter equations. These are labeled by a color c and a pair of
parameters (zi , z j ) (suppressed in the pictures above). If the color c is minimal, that is if c � d, e for all
colors that appear in this figure, this agrees with the R-vertices in Fig. 6. In this figure, the colors c, d, e are
distinct except when c = d or c = e is explicitly allowed

Proof Note that since we are using monochrome edges, at most three different colors
can appear in the boundary (and interior) spins in the equivalent description (27) of
(28). There are two more colors c and c + 1 which must also be compared with these
three in the values for T (c), R(c), R(c+1) fromFigs. 6 and 7.All possibilities are covered
if we take 5 colors and we conclude that if the Yang–Baxter equation is checked for
r = 5 then it is true for all r . We checked the Yang–Baxter equation for r = 5 using
a computer and (28) is proved.

Theorem 6.5 The Yang–Baxter equation for colored models is satisfied:

R(zi , z j )12T (zi )13T (z j )23 = T (z j )23T (zi )13R(zi , z j )12

Proof This follows from Proposition 6.4 and Lemma 5.4.

Remark 6.6 Restricting the palette P to a single color, the weights in Figs. 9 recover
the weights used to compute Tokuyama’s deformation of the Weyl character formula
as seen for example in the row labeled S�(i) of [20, Table 2] if we replace this color
with a − spin. The R-matrices for the two models are also equal.
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Fig. 12 Colored Boltzmann weights in a style resembling [9] (2.2.2) or (2.2.6), except that we are using
+ for the ‘colorless’ horizontal edges, and in place of their multiset I of colors, we use a subset � of the
palette. We are assuming c < d

We will now describe the fused weights in a closed form. For comparison with [9],
we will choose a notation close to theirs. In [9], vertical edges are labeled by tuples
I = (I1, · · · , Ir ) ∈ N

r representing a state in which the k-th color has multiplicity Ik .
The principal difference between their systems and ours is that colors can only occur
with multiplicity 0 or 1 in our systems. In other words, if we imitate their setup, each
Ik ∈ {0, 1}. Hence the same data can be specified by the subset � = {k | Ik = 1} of
the palette P.

In [9], an operation adds (resp. removes) a color a to the tuple I, that is, increments
(resp. decrements) Ia and the resulting tuple is denoted I+a (resp. I−a ). We therefore
introduce the corresponding operations on the set � and denote �+

a = � ∪ {a}, to be
used only if a /∈ �, and �−

a = � \ {a}, to be used only if a ∈ �. Finally if a ∈ �

and b /∈ �, we will denote �+−
ab = � ∪ {a} \ {b}, also corresponding to the I+−

ab in
[9]. If 1 � a � b � r , we will define �[a,b] = {c ∈ � | a � c � b}.

In Fig. 12 we give our Boltzmann weights in closed form using these notations. It is
easy to see that these are the correct weights obtained from the monochrome weights
by fusion.

Remark 6.7 The weights in Fig. 12 closely resemble weights presented in Section 2.2
of [9]. One important distinction is that our weights are ‘fermionic’ — we do not
allow multiple copies of any given color on an edge — while their weights are
‘bosonic’ (allowing multiplicities). Nevertheless, we may compare the weights of
the multiplicity-free colored vertices in [9] with those in Fig. 12; even allowing for
changes of variables and Drinfeld twisting, small differences persist. For example, we
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may take themirror image of the weights in [9] (2.2.2) specialized by setting s = 0 and
compare to the weights in Fig. 12 by making the substitutions v = q−1 and zi = x .
Note that if no color occurs more than once on the top boundary then no vertical edge
on the interior of the grid will ever have a color with multiplicity larger than one,
so that the distinction between bosonic and fermionic weights becomes unimportant.
Then both weight schemes have the same admissible vertices grouped into types as
in Fig. 12. Upon Drinfeld twisting, the Boltzmann weights agree in their powers of x
and (1 − q−1) but differ by various factors of −1 and q that cannot be resolved. Fur-
thermore, although we have noted that bosonic weights can be excluded by imposing
boundary conditions they are still important for the Yang–Baxter equation, so the R-
matrices for [9] and for our systemmust definitely be different. Indeed, our R-matrix is
a Drinfeld twist of the R-matrix for the quantum group for ̂gl(r |1) while the R-matrix
in [9] is a Drinfeld twist of the one for ̂slr+1. For further comparison of our models
with [9] see arXiv version 1 of this paper [14].

7 The Iwahori lattice model

We now describe a family of statistical-mechanical systems made from fused vertices
whose partition functions may be shown to give values of IwahoriWhittaker functions
in the case G = GLr . Indeed, if g ∈ GLr (F), where F is a nonarchimedean local
field, we will see that the Whittaker function φw(g) defined by (2) can be represented
as the partition function of such a model. First note that, as mentioned in Remark 3.3,
we may assume that g is of the form �−λw2 for some weight λ and Weyl group
element w2. By Lemma 3.5, we may assume that λ is w2-almost dominant. Finally,
multiplying g by � N · Ir for some N just multiplies φw(g) by (z1 · · · zr )N , which
corresponds to adding N to each part of λ. Using this flexibility we may assume with
no loss of generality that g ∈ Matr (o) and that the entries in λ are nonnegative.

Having already explained how theBoltzmannweights for fused vertices are defined,
it remains to explain the boundary conditions for the model and the labels on each
of the vertices. For any positive integer r , the boundary conditions and vertex labels
depend on three pieces of data: a partition denoted λ+ρ with at most r nonzero parts,
a pair of permutations w1, w2 ∈ Sr = W , the Weyl group of GLr , and r complex
parameters z = (z1, . . . , zr ). The systems we present here, denoted Sz,λ,w1,w2 and
referred to as Iwahori systems, may be considered as simultaneous generalizations of
those appearing previously in the Tokuyama model and in the colored systems of [17].
Our goal in this section is to equate the partition function ofSz,λ,w1,w2 with the value
of the Whittaker function φw1(z;�−λw2) of Sect. 3.

With r fixed, let ρ = (r − 1, . . . , 1, 0) and let λ + ρ = (λ1 + r − 1, · · · , λr )

be a partition, whose parts are written in weakly decreasing order as usual. In the
identification of the weight lattice of GLr withZ

r , the correspondingweight λ satisfies
〈α, λ〉 � −1 for all simple roots α, a necessary condition for the non-vanishing of the
Whittaker function according to Lemma 3.5.

Given the partition λ+ρ, we form a rectangular lattice consisting of N +1 columns
and r rows, where N is any integer at least λ1 + r − 1. The columns will be numbered
from left to right from N to 0 in decreasing order. The rows are numbered 1 to r , in
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Fig. 13 Summary of boundary conditions for the colored systems. Let c = (c1, · · · , cr ) be a semistandard
flag of colors c1 � · · · � cr ; for the systemsSz,λ,w1,w2 , if we identify the colors ci with integers we take
ci = r + 1 − i , while in Sect. 8 we will take more general flags. On the top boundary the minus signs are
positioned at columns λi + r − i with color (w2c)i = c

w−1
2 (i)

, and on the right boundary the edge in row

i is colored (w1c)i = c
w−1
1 (i)

increasing order from top to bottom. Given z, each vertex in the i-th row receives the
label zi . The Boltzmann weights are the fused weights in Fig. 12. Unless otherwise
stated we will henceforth assume that the parameter v appearing in the Boltzmann
weights (as well as in the Demazure-Whittaker operators among other places) equals
q−1 with q the cardinality of the residue field of F . We will prefer the use of v to avoid
confusion in later sections where, to follow tradition, q will have another meaning.

It remains to describe the boundary spins and colors located around the edge of the
rectangular grid. They depend on the choice of the weight λ and the two Weyl group
elements w1, w2 as follows and summarized in Fig. 13.

We have colors numbered 1, . . . , r at our disposal. For the top boundary, we assign
the color r + 1 − w−1

2 (i) to the edge in the column labeled λi + r − i for each
i ∈ {1, . . . , r} and a + spin in the remaining columns. That is, we color each edge
whose column index is a part of λ + ρ and we have multiple colors on a given top
boundary edge according to the multiplicity of parts in the partition. Then, we put
a + spin on all the left and bottom boundary edges. This leaves the right boundary
edges to be described. These will depend on the choice of permutationw1 ∈ W for the
system. The right boundary edge in the i-th row is assigned the color r + 1− w−1

1 (i).
For w2 = 1, these boundary conditions are exactly as in [17]. A particularly simple
admissible state in an Iwahori system is given in Fig. 14.

In any state of the system Sz,λ,w1,w2 , the edges of any one particular color form
a line or path starting at the top boundary and ending at the right boundary. This
depiction of admissible states as configurations of lines is present in many works on
lattice models, for example Baxter’s book [5], Chapter 8. The idea of using colored
lines and refined systems that specify starting and ending points of each colored line
is presented in [9]. We exploited this idea in a prior paper [17] to give a new theory of
Demazure atoms, nonsymmetric pieces of Schur functions. The coloredweights in this
paper specialize to those of [17] by setting v = 0, which leads to a vast simplification.
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Fig. 14 The ground state for r = 3, λ = (5, 2, 0) so λ + ρ = (7, 3, 0), w1 = w2 = 1 (the identity
permutation), and z = (z1, z2, z3) is an arbitrary triple of complex numbers. The top row colors read from
left to right are are (3, 2, 1). The colors on the right edge, read from top to bottom, are also (3, 2, 1). This
is the unique state of the system Sz,λ,1,1. Its Boltzmann weight is zλ+ρ . Assuming w2 stays fixed, the
monomial partition function of the ground state is the “seed” from which the partition functions for systems
corresponding to other w1 are derived by application of Demazure operators

In particular, every edge in [17] may carry at most one color (even in the fused model)
and two colored lines can cross at most once. In this paper, weights and subsequent
Yang–Baxter equations are understood via fusion, and two colored lines can cross
more than once.

Let Z(Sz,λ,w1,w2) denote the partition function of the system Sz,λ,w1,w2 . We will
now demonstrate that this partition function satisfies the same functional equation
as the Iwahori Whittaker function φw1 in Theorem 3.8 under Demazure-Whittaker
operators using the Yang–Baxter equation. It will be convenient to conjugate the
Demazure-Whittaker operators Ti of (11) as follows

Ti = zρTiz−ρ. (29)

such that

Ti · f (z) = zαi − v

1 − zαi
f (siz) + v − 1

1 − zαi
f (z) (30)

and

T−1
i · f (z) = zαi − v

v(1 − zαi )
f (siz) + (v − 1)zαi

v(1 − zαi )
f (z) . (31)

Proposition 7.1 For any partition λ + ρ, simple reflection si , and any pair of Weyl
group elements w1, w2 ∈ W,

Z(Sz,λ,siw1,w2) =
{

Ti Z(Sz,λ,w1,w2) if �(siw1) > �(w1),

T−1
i Z(Sz,λ,w1,w2) if �(siw1) < �(w1).

(32)
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Fig. 15 Top: the system
Ssi z,λ,w1,w2 with the R-matrix
attached. Bottom: after using the
Yang–Baxter equation

Proof Repeated use of the Yang–Baxter equation gives the equality of the partition
functions in Fig. 15.

Using theR-matrixweights fromFig. 6, we obtain the following identity of partition
functions:

(zi − vzi+1)Z(Ssi z,λ,w1,w2 )

=
{

(1 − v)zi+1Z(Sz,λ,w1,w2 ) + (zi+1 − zi )Z(Sz,λ,siw1,w2 ) if �(siw1) > �(w1),

(1 − v)zi Z(Sz,λ,w1,w2 ) + v(zi+1 − zi )Z(Sz,λ,siw1,w2 ) if �(siw1) < �(w1).

(33)

Consulting the table in Fig. 6, there is one possible configuration for the R-matrix for
the top state in Fig. 15, and two possible configurations for the bottom state, account-
ing for the three terms in the identity (33). The weights for the latter two R-matrix
configurations are separated into the two cases shown for the right-hand side of (33)
where �(siw1) > �(w1) is equivalent to d > c using the color-assignment of Fig. 15.
Note that we take (i, j) in Fig. 6 to be (i + 1, i).

Setting zαi = zi/zi+1, and rearranging terms in (33) upon division by zi+1, we
obtain the desired equality.

We have noted in Remark 6.3 that we may replace a system such as Sz,λ,w1,w2

made with fused Boltzmann weights by an equivalent system with r times as many
vertices, using monochrome weights. The expanded monochrome system will appear
in the following proof. See Fig. 16 for an example.



Colored vertex models and Iwahori… Page 35 of 58    78 

Theorem 7.2 Given any w1, w2 ∈ W, let λ be a w2-almost dominant weight and let
Sz,λ,w1,w2 be the corresponding Iwahori system. Then

Z(Sz,λ,w1,w2) = zρφw1(z;�−λw2). (34)

Proof Comparing Proposition 7.1 and Theorem 3.8 while bearing in mind (29), both
sides of (34) satisfy the same recursive formula, so if (34) is true for one value of w1,
it is true for all w1. Thus we may assume that w1 = w2.

We will show that when w1 = w2 = w the system has a unique state. We will use
the monochrome model, in which each vertical edge has been broken into r distinct
vertical edges, and the color c, if we identify c with an integer 1 � c � r can only be
carried by the c-th such vertical edge. The following argument shows that the condition
that λ is w2-dominant implies that the sequence of colors on the top boundary edges
are the same as the sequence of colors on the right boundary edges. By definition of
Sz,λ,w,w the sequence of colors on the right edge are r +1−w−1(i). On the top edge,
the color in the λi + r − i column is also r + 1−w−1(i), and the sequence of integers
λi + r − i is weakly decreasing. Since columns are labeled in decreasing order, we
see that if the λi + r − i are distinct, then the colors are in the same order on the top
boundary and on the right boundary, as claimed. But we must consider what happens
if several λi + r − i are equal, as in Fig. 16. If λi + r − i = λi+1 + r − (i + 1) then
〈λ, α∨

i 〉 = −1 so our condition that λ is w-almost dominant implies that w−1αi is a
negative root. Therefore w−1(i) > w−1(i + 1) and so the colors on the right edge
in rows i, i + 1 are r + 1 − w−1(i) < r + 1 − w−1(i + 1). Now let us see that this
agrees with the condition for the top boundary. Indeed, when we split the vertices into
monochrome vertices as in Convention 6.2, they are in increasing order.

We have shown that the colors of the top boundary edges of the monochrome
model are in the same order as those of the right boundary edges. From this it is
easily deduced that there is only one possible state, and that every colored line crosses
every other colored line (exactly once). We need to consider the Boltzmann weights
that arise from these crossings. Consulting the second case in Fig. 7 we see that when
c > d, the crossing produces a factor of v, otherwise it does not. The total number of
such crossings is the number of inversions of w−1, that is �(w). Also in the i-th row,
using the fused (non-monochrome) description, the number of factors zi will be the
number of vertices with a colored edge to the left, which will be zλi+r−i

i . Therefore the
Boltzmann weight of the state is therefore v�(w)zλ+ρ . By Proposition 3.6 this equals
zρφw(z,�−λw), and this concludes the proof.

Proposition 7.3 Let μ′ ∈ Z
r . There exists a unique pair (w, λ), with w ∈ W and λ a

w-almost dominant weight, such that

w(μ′) = λ + ρ.

Proof We may find w and λ = (λ1, · · · , λr ) such that w(μ′) = λ + ρ and λ + ρ

is dominant. Clearly λ is unique but w may not be if we only require w(μ′) to be
dominant. However the stronger condition that w(μ′) − ρ is w-almost dominant will
force w to be unique as follows.
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Fig. 16 The unique state of Sz,λ,w1,w2 for G = GL3 with w1 = w2 = s2 in W = S3 and λ = (2, 1, 2)
shown with fused vertices (top) and monochrome vertices (bottom). Note that while λ is not dominant, it
is w2-almost dominant. The partition function vz41z

2
2z

2
3 of this system equals zρφs2 (�

−λs2)

We recall that w−1αi ∈ �+ if and only if �(siw) > �(w). The w such that
w(μ′) = λ + ρ lie in a single left coset of the stabilizer of λ + ρ, which is a Coxeter
group generated by the si such that λi + 1 = λi+1. But the condition that w(μ′) − ρ

is w-almost dominant is equivalent to the assumption that �(siw) < �(w) whenever
λi + 1 = λi+1. So this condition means that any si among the generators of this
stabilizer is a left descent of w. Thus clearly there is a unique w in this coset such that
λ isw-almost dominant, and that is the longest element ofW such thatw(μ′) = λ+ρ.

Remark 7.4 As noted above, the ‘standard basis’ of Iwahori Whittaker functions φw1

are determined by their values at �−λw2. We have shown in Theorem 7.2 that these
values are partition functions of certain systems Sz,λ,w1,w2 . Proposition 7.3 shows
that the partition function of every Iwahori system is a value of an Iwahori Whittaker
function. Indeed, the data describing the system are colorings of the top and right



Colored vertex models and Iwahori… Page 37 of 58    78 

boundary edges in the fused model. In other words, the data are two maps from the
set of colors to the top boundary edges (labeled by columns) and to the right boundary
edges (labeled by rows). The map to rows is bijective but the map to columns can be
any map; as in Fig. 16, where colors 1 and 2 (blue and green) map to the same column,
it does not need to be injective. Letμ′

i be the column corresponding to the (r+1−i)-th
color.ApplyingProposition7.3 toμ′ = (μ′

1, · · · , μ′
r )produces a pair (w2, λ) such that

λ is w2-almost dominant and w2μ
′ = λ+ρ. In column λi +ρi = (w2μ

′)i = μ′
w−1
2 (i)

we then have the color r + 1−w−1
2 (i) exactly as specified for the top boundary edges

in Fig. 13. Thus, from every μ′ we obtain a systemSz,λ,w1,w2 with w1 determined by
the permutation of colors on the right edge.

8 The parahoric lattice model

In this section we will generalize the Iwahori lattice model to allow multiple colored
lines of the same color. This allows us to represent parahoric Whittaker functions as
partition functions. See Fig. 17 for an example.

We will call a sequence of r colors a flag. The boundary conditions of the colored
systems are represented by two flags: one on the top edge, and one on the right edge,
which is a permutation of the former. A flag c = (γ1, . . . , γr ) is called standard if
γ1 > · · · > γr , and semistandard if γ1 � · · · � γr . Since we have a palette of r
colors there is a unique standard flag, and if, as in Sect. 6, we identify the colors with
integers 1 � c � r , then the unique standard flag is (r , r − 1, . . . , 1). Any flag may
be represented as wc = (γw−1(1), . . . , γw−1(r)), where c is a semistandard flag and
w ∈ W = Sr . For the Iwahori systems in Sect. 7 every color appeared exactly once on
the top boundary and on the right boundary, meaning the boundaries were represented
by permutations w1, w2 ∈ W of a standard flag c. For the parahoric systems these
boundaries will instead be represented by permutations of a semistandard flag.

If c is a semistandard flag then we may write

c = (γ1, · · · , γr ) = (cr11 , cr22 , · · · , crkk ) (35)

with c1 > · · · > ck and
∑

ri = r . Here the notationmeans that we have r1 copies of c1
followed by r2 copies of c2, and so forth. The stabilizer of this flag inW is the parabolic
subgroupWJ = Sr1 ×· · ·× Srk , which is the Weyl group of GLr1 × · · ·×GLrk . Here,
using the notation of Sect. 4, J is the index set of simple reflections generating this
subgroup of W , that is, all simple reflections except sr1 , sr1+r2 , · · · . If a general flag
is written wc with c = (cr11 , cr22 , . . . , crkk ) then we may choose the representative w to
be in W J, meaning that it is the shortest element of the coset wWJ.

We now explain the parahoric lattice model generalizing the Iwahori lattice model
of Sect. 7. Let c be a semistandard flag parametrized as above and let w1, w2 ∈ W J.
Assume that λ is w2-almost dominant.

To this data we associate a parahoric system SJ
z,λ,w1,w2

as follows. We start from
the same construction as for the Iwahori lattice model, with the only difference being
which boundary conditions we allow. We take the top boundary edge spin in column
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Fig. 17 Two states for parahoric Whittaker functions corresponding to the Levi subgroup GL2 ×GL1 ⊂
GL3. The set of simple reflections in this Levi subgroup indexed by J is {s1}. On the left we have a state
for the system SJ

z,λ,w1,w2
with λ = (2, 1, 0), w1 = 1 and w2 = s2, and on the right we have a state for

the system with λ = (2, 2, 1), w1 = 1 and w2 = s2

λi +r − i to be the color (w2c)i = γ
w−1
2 (i); the remaining top boundary edge spins are

+ . The right boundary spin in row i is (w1c)i = γ
w−1
1 (i). The boundary spins on the

left and bottom edges are + . For the interior, we use the same Boltzmann weights in
Fig. 12 as before. Note that if c is a standard flag we recover the Iwahori lattice model
from the parahoric model.

Recall that our ‘fermionic’ Boltzmann weights do not allowmore than one instance
of the same color on a given vertical edge. The following proposition implies that this
requirement is satisfied for the top boundary edges (and therefore for all vertical edges).

Proposition 8.1 Suppose that w2 ∈ W J, and assume that λ is a w2-almost dominant
weight. If λi + r − i = λ j + r − j then γ

w−1
2 (i) 	= γ

w−1
2 ( j).

Proof If 1 � i, j � r let ti j denote the transposition in W = Sr that interchanges i
and j . Then obviously

γi = γ j ⇐⇒ ti j ∈ WJ . (36)

Without loss of generality assume i < j . If λ is w2-almost dominant then λ + ρ is
dominant, so the sequence λi + r − i is monotone nonincreasing. Therefore

λi + r − i = λi+1 + r − i − 1 = · · · = λ j + r − j

and so 〈λ, α∨
i 〉 = 〈λ, α∨

i+1〉 = · · · = 〈λ, α∨
j−1〉 = −1. Because λ is w2-

almost dominant, it follows that w−1
2 (αi ), · · · , w−1

2 (α j−1) are all negative roots.
Thus w−1

2 (αi + αi+1 + . . . + α j−1) is a negative root. Now the reflection in the
hyperplane orthogonal to the root αi + αi+1 + . . . + α j−1 is ti j so by [7] Propo-
sition 4.4.6 we have �(w−1

2 ti j ) < �(w−1
2 ), or equivalently �(ti jw2) < �(w2). Now

ti jw2 = w2tw−1
2 (i),w−1

2 ( j). We claim that this implies that t
w−1
2 (i),w−1

2 ( j) /∈ WJ. Indeed,

w2 ∈ W J so w2 is the shortest element in the coset w2WJ. Since we have shown that
�(w2tw−1

2 (i),w−1
2 ( j)) < �(w2), this would be a contradiction if t

w−1
2 (i),w−1

2 ( j) ∈ WJ. It
now follows from (36) that γ

w−1
2 (i) 	= γ

w−1
2 ( j).
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Remark 8.2 Weobserve that theBoltzmannweights of Fig. 12 are constructed from the
monochrome weights of Fig. 7 and that the monochrome weights involving more than
one color only depend on the orders of the colors. Therefore if we choose another set
of colors such that c′

1 > · · · > c′
k and replace each color ci by c

′
i , the partition function

is unchanged. We refer to this type of transformation as reparametrization. Because
of this, we are permitted to omit the colors c1, . . . , ck from the notation SJ

z,λ,w1,w2
.

Wemay now state themain theoremof this section that relates a parahoricWhittaker
function ψJ

w1
of Sect. 4 to the partition function of a parahoric system.

Theorem 8.3 Assume that w1, w2 ∈ W J and that λ is w2-almost dominant. Then

Z(SJ
z,λ,w1,w2

) = zρψJ
w1

(z;�−λw2). (37)

Before we prove this we will establish a result about lattice models that implies it.
Once this is established, it is easy to see that the two results are equivalent. We will
make use of two sets K and J of simple reflections such that K ⊆ J. Then WK ⊆ WJ
and WK ⊇ W J. We will prove

Proposition 8.4 Assuming that K ⊆ J, we have

Z(SJ
z,λ,w1,w2

) =
∑

y∈WJ/WK

Z(SK
z,λ,w1y,w2

), (38)

where we may choose the coset representatives y so that w1y ∈ WK.

The proof of Proposition 8.4 and hence of Theorem 8.3 will occupy most of this
Section. These proofs will follow from Lemmas 8.5 and 8.6 below. Proposition 8.4 is a
global lifting property expressing the partition function of a system with fewer colors
as a sum over systems with more colors. Lemma 8.6 is a more precise statement whose
proof shows how to do this reduction at the level of individual states. The idea is to
show that each state of the system with fewer colors can be split up into states of the
systemswithmore colors [Lemma8.6 (i)]. On the other hand, some states of the system
withmore colors will cancel, and these are accounted for in Lemma 8.6 (ii). Both these
properties depend on local lifting properties here called Property A and Property B,
which are phenomena concerning the Boltzmann weights at a single vertex. Local
lifting properties such as these were called color-blindness in [9]. Our proof that the
local lifting properties imply the global lifting property will make use of an argument
in which states of the system with more colors are arranged in a tree. For a more
informal treatment of a similar result see Bump and Naprienko [24], Section 5. See
also arXiv Version 1 of this paper ( [14]) for further discussion related to the models
of this paper.

Lemma 8.5 Suppose that whenever J is nonempty, there exists a proper subsetK of J
such that (38) is true. Then Proposition 8.4 is true.
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Proof We may prove (37) by induction. For the base case J = ∅, (37) is true by The-
orem 7.2 because ψ∅

w = φw and S∅

z,λ,w1,w2
= Sz,λ,w1,w2 . Now assume inductively

that (37) is true for proper subsets K of J. By our assumption there exists such a K
such that (38) is satisfied. Then (37) follows for J by combining (38), (48) and (37)
for K.

In preparation for applying Lemma 8.5 assume that J is nonempty, so ri > 1 for
some i . Then, recalling that WJ = Sr1 × · · · × Srk , the last simple reflection that is
contained in Sri is sm where m = r1 + . . . + ri − 1. Let K be obtained by removing
m from J so that WK = Sr1 × · · · × Sri−1 × S1 × · · · × Srk and let the system
S = SJ

z,λ,w1,w2
be described by the semistandard flag (cr11 , cr22 , · · · , crkk ) as in (35).

Let c = ci . We wish to insert a color between ci and ci+1. Reparametrizing by
Remark 8.2 if necessary, we may assume that there is a color c′ such that

c1 > c2 > · · · > ci = c > c′ > ci+1 > · · · > ck . (39)

The color c′ corresponds to the color m in the last paragraph, but since we are
reparametrizing, we are changing the notation. Note that the colors c and c′ are adja-
cent. We may use these colors to describe SK

z,λ,w1y,w2
. Let

S′ :=
⊔

y∈WJ/WK

SK
z,λ,w1y,w2

. (40)

Note that each state inS′ has one line of color c′ that starts at a fixed location in the top
row, replacing one of the top vertical edges colored c in SJ

z,λ,w1,w2
. Since w2 ∈ W J,

the edge containing the instance of the color c that is replaced by c′ is the rightmost
such top vertical edge. The c′ colored line ends up on the right edge, replacing one of
the horizontal vertical edges colored c. There are ri possible such locations and the
decomposition of S′ into the ri = |WJ/WK| ensembles SK

z,λ,w1y,w2
corresponds to

these ri possibilities.
We will now instead decompose S′ into two parts. We call a state s′ ∈ S′ strict if

it has no vertical edge carrying both colors c and c′. Let S′
strict consist of strict states

in S′, and let S′
ns be the remaining, nonstrict states.

Lemma 8.6 Let S′
strict and S′

ns be as above. Then,

(i) Z(S′
strict) = Z(SJ

z,λ,w1,w2
),

(ii) Z(S′
ns) = 0.

Note that Lemma 8.6 implies (38) for the above chosen subset K of J, which
together with Lemma 8.5, proves Theorem 8.3. We will prove Lemma 8.6 later in this
section, but first we will need to introduce some terminology.

Let L be the set of vertices for our lattice models as first introduced in Sect. 7. We
order the vertices L lexicographically from left to right, top to bottom. We will denote
this total order on vertices ≺. Thus x ≺ y if and only if x is in a row above y, or x
and y are in the same row and x is to the left of y. An initial segment of L is either
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the empty set ∅ or I (x) = {y ∈ L | y � x} for some x ∈ L. Let L̂ be the set of initial
segments of L. If I ∈ L̂ is not L then I has a unique successor succ(I ) in L̂, which is
the unique initial segment of cardinality |I | + 1. If x is a vertex of L we will call the
edges above and left of x inputs, and the edges below and to the right outputs.

For a state s in some system with lattice L and a vertex x in L we denote by s|x
the vertex configuration of s at x , that is, the sequence of spins for the four adjacent
edges. Similarly, for any sequence I of vertices in L we denote by s|I the sequence of
vertex configurations of s for vertices in I . We may extend our previous notation and
denote by β(s|I ) the product of the Boltzmann weights for the state s at the vertices
in I .

Let � be a finite directed graph with no cycles. We call � a tree if it has a unique
initial node, called the root; the terminal nodes are called leaves. If X ,Y ∈ � we say
that Y is a child of X if X → Y is an edge of �. Let R be an abelian group, which in
our applications will be C(v). We call a function F : � −→ R additive if for every
non-leaf X ∈ � we have F(X) = ∑

F(Y ) where the sum is over the children of
X (but not over further descendants). If � is a tree with root Xroot and an additive
function F then clearly

F(Xroot) =
∑

leaves Y

F(Y ).

We will now define a tree and an additive function that we will use to prove
Lemma 8.6. Let S′ be defined as in (40). If I ∈ L̂ define an equivalence relation
on states in S′ where s′

1 ≡I s′
2 if s′

1|I = s′
2|I , that is, the two states have the same

vertex configurations at each vertex in I . Let [s′]I be the equivalence class of a state s′
under this relation. We may define a directed graph � whose nodes are pairs (I , [s′]I )
andwith edges of the form (I , [s′

1]I ) → (J , [s′
2]J )where J = succ(I ) and s′

2 ∈ [s′
1]I .

Note that the equivalence class [s′
1]I is a union of ≡J equivalence classes.

We may enumerate the children of a parent node (I , [s′
parent]I ) as follows. Let

J = succ(I ) = I ∪ {x} where x is the last vertex in J . A child of (I , [s′
parent]I ) has

the form (J , [s′
child]J ) where the class [s′

child]J is determined by the spins of the four
edges adjacent to x in a representative s′

child. Moreover, the input spins for s′
child at x

are determined by s′
parent since the input edges at x are either output edges for vertices

in I or boundary edges. Thus, [s′
child]J is determined by the two output spins at x . We

see that the graph � is a tree, and its branching at the node (I , [s′
parent]I ) is determined

by the different ways that the two inputs at the vertex x can be completed with the
output spins to an admissible configuration at the vertex x . The root of the tree �

is (∅,S′) where all states in S′ are equivalent under ≡∅, and each leaf of the tree
corresponds to an individual state in S′.

We define a function F on � as follows

F(I , [s′]I ) =
∑

s∈[s′]I
β(s), (41)
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Fig. 18 Illustrating local lifting Property A in the case where the vertex x carries the colors c and c′ and no
others. Here d and d ′ are c and c′ in some order

which is additive by the fact that [s′]I is a union of its child ≡succ(I ) equivalence
classes. The root value is the partition function, and the leaf values are the Boltzmann
weights of the individual states.

We will consider subgraphs of the tree � to prove Lemma 8.6. These graphs are
used to organize the application of the following two properties of the Boltzmann
weights, which are explained in Figs. 18 and 19.

Property A We consider the situation where, for a state s′ ∈ S′ and a vertex x in L,
the vertex configuration s′|x has one input edge carrying the color c while the other
carries c′, but with no vertical edge carrying both colors c and c′. In this case one
output edge must carry the color c and the other must carry c′. There are in total four
configurations to consider but we group together the configurations that are mapped
to each other under the interchange of c and c′. We denote these groups as II and III
shown in Fig. 18. Because of the allowed vertex configurations, only one of the two
configurations within each group is possible for any given pair of input edges. If
the color c′ is replaced by c, the four vertex configurations map to a single vertex
configuration for S that we denote by I. The fact that we need is that the Boltzmann
weights satisfy

βx (II) + βx (III) = βx (I), (42)

for any given input edges on the left-hand side of the equation. This is shown in Fig. 18.
It is possible that both vertical edges carry other colors besides c and c′ but if c′′ is such
a color, since c and c′ are adjacent (cf. (39)), we have either c′′ > c, c′ or c, c′ > c′′.
In other words, other colors cannot distinguish between c and c′. Using this, we see
that (42) remains true even with these extra colors.

Property B We also consider the situation where the vertical edge above vertex x
carries both c and c′, but one color exits to the right, and the other to the bottom. There
are two ways this can happen, as shown in Fig. 19, and the Boltzmann weights of these
patterns cancel:

βx (IV) + βx (V) = 0. (43)



Colored vertex models and Iwahori… Page 43 of 58    78 

Fig. 19 Illustrating Property B,
in which the Boltzmann weights
of two nonstrict configurations
are negatives of each other

As for Property A, this relation also remains true even if the vertical edges carry one
or more additional colors.

If s′ is a strict state of the systemS′ then there is a corresponding state π(s′) of the
systemS in which every instance of the color c′ is replaced by c. For each s ∈ S there
exists at least one s′ ∈ S′

strict such that π(s′) = s and can be obtained by coloring one
c-path in the color c′.

For I ∈ L̂, let Ī be the complement of I in the set of vertices for the lattice L.
We say that a state s′ is Ī -strict if for all x ∈ Ī no vertical edge of s′|x carries both c
and c′. That is, if the vertex configurations s′| Ī are strict. In this case (generalizing the
above notation) we may define π(s′| Ī ) to be the Ī -sequence of vertex configurations
obtained from the sequence s′| Ī by replacing every instance of c′ by c. Note that these
vertex configurations are admissible only when s′ is Ī -strict.

Lemma 8.7 Let s′
0 ∈ S′ and X0 = (I0, [s′

0]I0) be a node of � such that s′
0 is Ī0-strict.

Consider the subtree �X0 of � with its root at X0 together with all its descendants. Let

�
(s′

0)

X0
be the tree obtained from �X0 by selecting the branches whose leaves s′ ∈ S′

are Ī0-strict and such that π(s′| Ī0) = π(s′
0| Ī0). Then

Fs′
0
(I , [s′]I ) := β(s′|I )β(π(s′

0| Ī )) (44)

is additive on �
(s′

0)

X0
.

Note that the representative s′ ∈ S′ in (44) need not be a leaf of �
(s′

0)

X0
; Fs′

0
is still

well-defined and independent of the representative in [s′]I .

Proof Let X = (I , [s′
parent]I ) be a node of �

(s′
0)

X0
and let Y = (J , [s′

child]J ) be a child
of X , where J = succ(I ) = I ∪{x}. Denote the set of leaves of �(s′

0)

X0
by� and choose

the representatives s′
parent and s′

child such that they are in �. That is, s′
parent and s′

child

are Ī0-strict and π(s′
parent| Ī0) = π(s′

child| Ī0) = π(s′
0| Ī0).

The fact that s′
child is a child of s′

parent means that s′
parent|I = s′

child|I . Furthermore
s′
parent and s′

child agree on the two input edges of x , but they may differ on the two
output edges of x . Since π(s′

parent|x ) = π(s′
child|x ) = π(s′

0|x ), this can happen only if,
for both states, one of the input edges carries the color c and the other carries c′ while
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the output edges for the two states have c and c′ interchanged. Note that since s′
child

is Ī0-strict, no edge of x carries both c and c′. If s′
parent and s′

child do agree on the two
output edges of x , then they are J -equivalent, so the node (I , [s′

parent]I ) has at most
two children.

Thus, �
(s′

0)

X0
is a binary tree and to prove that Fs′

0
is additive we need to check two

cases: X has one or two children.
Assume first that X = (I , [s′

parent]I ) has two children Y1 = (J , [s′
1]J ) and Y2 =

(J , [s′
2]J ) where we have chosen the representatives s′

1 and s′
2 in �. Then,

Fs′
0
(X) = β(s′

parent|I )β(π(s′
0|x ))β(π(s′

0| J̄ ))
Fs′

0
(Yi ) = β(s′

i |I )β(s′
i |x )β(π(s′

0| J̄ )) = β(s′
parent|I )β(s′

i |x )β(π(s′
0| J̄ )).

(45)

As argued above, π(s′
0|x ), s′

1|x and s′
2|x are in the situation of Property A meaning

that β(π(s′
0|x )) = β(s′

1|x ) + β(s′
2|x ) and thus F(X) = F(Y1) + F(Y2).

For the case where X = (I , [s′
parent]I ) has a single child Y1 = (J , [s′

1]J ) equa-
tion (45) is still valid and the vertex configuration s′

1|x is uniquely determined
by [s′

parent]I and s′
0. Since s

′
0 is Ī0-strict this means that the vertex configuration does

not contain both c and c′. Because other colors cannot differentiate between c and c′
we then have that β(s′

1|x ) = β(s′
parent|x ) = β(π(s′

0|x )), which concludes the proof.

If we apply Lemma 8.7 to the full tree �X0 = � we get the following corollary.

Corollary 8.8 If s is a state of S then

β(s) =
∑

s′∈S′
strict

π(s′)=s

β(s′). (46)

Proof Let X0 be the root Xroot = (∅,S′) of�. For each s ∈ S there exists s′
0 ∈ S′

strict

such that π(s′
0) = s. Then �

(s′
0)

X0
contains all branches of � for which the leaves s′ are

strict and map to s under π independent of the choice of s′
0. The value of Fs′

0
at the

root Xroot equals β(s) while at a leaf s′ it equals β(s′) also independent of s′
0, and the

statement follows from the additivity of Fs′
0
on �

(s′
0)

X0
.

Proof of Lemma 8.6 and Proposition 8.4 Wehave already noted that Lemma8.6 implies
Proposition 8.4, so we turn to the proof of the Lemma. Statement (i) follows from
Corollary 8.8 by summing over s ∈ S.

For statement (ii) we will start with the tree �. Let I be a maximal initial segment
such that there is a nonstrict state s′

1 that is Ī -strict. This means that all states in [s′
1]I

are strict at the vertices in Ī , but if x is the last vertex in I , then the colors c and c′ of
s′
1|x are in one of the two configurations in Fig. 19 of Property B (disregarding other
colors). The node X1 = (I , [s′

1]I ) has a single sibling X2 = (I , [s′
2]I ) for which s′

2|x
is in the other configuration of Fig. 19. Indeed, we can construct a representative s′

2
by starting from s′

1, apply π on s′
1| Ī and then apply the color c′ to one of the c-paths
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going in the other direction at x . By construction π(s′
1| Ī ) = π(s′

2| Ī ) while s′
1|I and

s′
2|I only differ at the vertex x with an overall minus sign for their Boltzmann weights.

Let �1 and �2 be the sets of leaves for �
(s′

1)

X1
and �

(s′
2)

X2
respectively. By Lemma 8.7,

∑

s′∈�1

β(s′) = Fs′
1
(I , [s′

1]I ) = β(s′
1|I )β(π(s′

1| Ī ))

= −β(s′
2|I )β(π(s′

2| Ī )) = −Fs′
2
(I , [s′

2]I ) = −
∑

s′∈�2

β(s′) (47)

Note that the freedom in constructing s′
2 above is given by �2. Any other choice of

the pair (s′
1, s

′
2) in �1 × �2 would give the same trees �

(s′
1)

X1
and �

(s′
2)

X2
with the sames

sets of leaves, as well as the same equation (47) for these leaves. We may thus choose
pairs of representatives in [s′

1]I × [s′
2]I such that the corresponding sets �1 × �2 are

disjoint and their union equals �(�X1) × �(�X2) where �(�Xi ) is the set of leaves
for the tree �Xi .

Hence, we can remove the nodes X1 and X2 together with their descendants from
the tree � without affecting the values and additivity property of the function F on
the remaining nodes of �. That is, we may remove these nodes without changing the
partition function of the leaves of �. Repeating the process with a new maximal initial
segment and I and siblings X1 and X2 of the remaining � we have thus shown that we
may remove all branches with non-strict states as leaves without changing the partition
function. Together with statement (i) that was shown above, this proves statement (ii).

Proof of Theorem 8.3 From the definition (18) of ψJ
w we have

ψJ
w1

(z; g) =
∑

y∈WJ/WK

ψK
w1y(z; g), (48)

where, as in Proposition 8.4, we are choosing the coset representatives y so thatw1y ∈
WK. Comparing (38) with (48), the Whittaker functions have the same restriction
property as the partition functions. So if Theorem 8.3 is true for some setK of simple
reflections it is true for any larger set J. But ifK = ∅ then (37) reduces to the Iwahori
case (Theorem 7.2). This completes the proof.

The case of themaximal compact subgroup K = KI is a special case of the parahoric
system where J = I is the set of all simple reflections. As previously mentioned, the
Boltzmann weights for the Tokuyama model, shown for example in the row labeled
S�(i) of [20, Table 2], are a special case of the weights in Figs. 7 (where − is replaced
by one fixed color c). The partition function with these Boltzmann weights depends
only on the partition λ and is given by the formula

Z(z; λ) = zρ
∏

α∈�+
(1 − vz−α)sλ(z) (49)
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which is one version of Tokuyama’s formula [20, 35, 63]. It also agrees with the
Casselman-Shalika formula for the spherical Whittaker function.

9 Whittaker functions andMacdonald polynomials

Thepurpose of this section is to give a dictionary betweenvalues ofWhittaker functions
onGLr (F) and certain specializations and generalizations ofMacdonald polynomials,
as introduced in Table 1 and further detailed here in Table 2. The second and last of
these identities are new to our knowledge and will be proved later in this section.
Both sides of the dictionary can be studied either algebraically, usually involving
some variations of Demazure-Lusztig operators, or combinatorially which, for the
Whittaker functions, can be achieved via the theory of solvable lattice models.

We start with the well-known case of the spherical Whittaker function, which can
be expressed as the product of a quantizedWeyl denominator and a Schur polynomial.
This result is due toShintani [61] andwas generalized to all quasi-split reductive groups
by Casselman-Shalika [26]. It may be proved by studying the more refined Iwahori
fixed vectors. One can use the Yang–Baxter equation to give a lattice model interpre-
tation of the spherical function; this was done in [20] based on ideas of Tokuyama
[63].

Parallel to this work, Li [50] studied certain Iwahori fixed vectors in the unramified
principal series and their associatedWhittaker functions which can be used to identify
the unique genuine subquotient of I (z). Li computed a variation of the Casselman-
Shalika formula for these Whittaker functions each of which we will express in terms
of a Hall-Littlewood polynomial in Proposition 9.4. A (bosonic) lattice model called
the q-boson model exists for Hall–Littlewood polynomials (see [64]); it has success-
fully been used to study Hall–Littlewood polynomials in both combinatorics [65] and
representation theory [45]. By our results we can then associate this lattice model to
Li’s Whittaker function.

To understand both examples presented above, we need to understand the passage to
the Iwahori level. As documented earlier, these Whittaker functions may be described
in terms of certain divided difference operators. The definition of the Demazure-
Lusztig and Demazure-Whittaker operators Li and Ti associated to simple reflections
si in the Weyl group W were given in (14) and (11), respectively. They also arise
naturally in certain induced representations of the affine Hecke algebra made from the
trivial and sign characters of the finite Hecke algebra, respectively (see [21, 22]).

Given any w ∈ W and a reduced expression w = si1 · · · sik , set Tw = Ti1 · · ·Tik ,
which is well-defined because theTi satisfy the braid relations.Wewill similarly write
Lw = Li1 · · ·Lik . Then the following relation holds between these operators, where
we add v-dependence to the notation for Lw and Tw.

Proposition 9.1 For any w ∈ W, as operators on the ring O(T̂ ) of regular (polyno-
mial) functions on T̂ (C) ∼= (C×)r ,

Lw,v = (−v)�(w)zρTw,v−1z−ρ. (50)
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Proof Using (11) and (14) it follows that −vLi,v−1 = zρTi,vz−ρ which implies (50).

In order to understand the sphericalWhittaker functions (which are sumsof standard
Iwahori Whittaker functions), we must compute how the corresponding spherical
idempotents in the Hecke algebra act on a dominant weight. Define

� = z−ρ
∏

α∈�+
(1 − z−α)−1

(

∑

w∈W
(−1)�(w)w

)

zρ .

The operator � was denoted � in [21].

Proposition 9.2 The following identities of operators hold in O(T̂ ):

∑

w∈W
Tw = z−ρ

⎛

⎝

∏

α∈�+
(1 − vz−α)

⎞

⎠ � zρ,
∑

w∈W
Lw = �

∏

α∈�+
(1 − vz−α).

Proof Consider the operator (9) of [21] with the specialization πλ �→ z−λ and taking
q to be our v. If we choose ε to be the character of the Hecke algebra such ε(Ti ) = q,
the operator (9) becomes our Li,v . On the other hand if we instead take ε(Ti ) = −1,
we obtain the operator

zρTi,vz−ρ : f �→ (zαi − 1)−1( f − zαi (si f )) − v(zαi − 1)−1( f − si f ),

that is, the operator of (29). Therefore Theorem 14 of [21] gives both formulas.

By the Weyl character formula if λ is a partition then �zλ = sλ(z) is the corre-
sponding Schur function. Thus

∑

w

zρTwz−ρ zλ+ρ = zρ
∏

α∈�+
(1 − v z−α)sλ(z).

This identity agrees with Proposition 8.4 with J being the set of all simple reflections,
K = ∅ and w2 = 1. In this case the sum in (38) is over the entire Weyl group. To see
this, note that the right-hand side agrees with the uncolored partition function (49),
while each term zρTwz−ρ zλ+ρ is one of the colored partition functions Z(Sz,λ,w,1)

by Proposition 32.
On the other hand, the sum over Lw produces a (symmetric) Hall–Littlewood poly-

nomial. While Proposition 9.1 gives a relationship between Lwzλ and Twzλ for any
w, it is remarkable that their sums over all w ∈ W result in such different functions.

Next we explain precisely how these operators Ti and Li may be used to compute
various specializations of non-symmetric Macdonald polynomials. In general, these
polynomials depend on two parameters which are usually denoted q and t . There
are differing notations in the literature, but in this paper we will follow the notation
Eλ(z; q, t) of Haglund, Haiman and Loehr [34]. Note that this q is not the cardinality
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of the residue field of F as in earlier sections; in this section, the notation v−1 will be
used for this quantity, where the t of [34] equals our v.

If q = 0 or ∞ the polynomials Eλ(z; q, t) are non-symmetric variants of Hall–
Littlewood polynomials. According to [22], one such specialization arises from
successively applying the operators Ti to a dominant weight λ. The notation of
Haglund, Haiman and Loehr [34] that we follow here differs from the notation in
[22] by the variable change (q, t) �→ (q−1, t−1), so Theorem 7 of [22] will now be
written

φw(z;�−λ) = Tw,v(zλ) = (−v)�(w)z−ρw0Ew0w(λ+ρ)(z;∞, v). (51)

The next result is an analog of this for the Lw,v using Proposition 9.1.

Proposition 9.3 If λ is dominant, then

Lw,v(zλ+ρ) = w0Ew0w(λ+ρ)(z;∞, v−1). (52)

Proof This follows by comparing (50) and (51). Another proof may be based on the
Knop-Sahi recurrence ([28, 42, 59]) and other facts that can be found in [34]. For
brevity we will not give this alternative proof.

Having made this connection, we can now relate Li’s Whittaker functions to the
Hall–Littlewood polynomials Pλ ([52], Chapter III). If we denote by WLi(z,�−λ)

the Whittaker function described by Jian-Shu Li in [50], we have the following result:

Proposition 9.4 Let λ be a dominant weight. Then

zρW Li(z,�−λ) := zρ
∑

w∈W
(−v)−�(w)φw(z;�−λ) = Pλ+ρ(z, v−1).

Proof By (1.1) in Chapter III of Macdonald [52], if λ is a partition then

∑

w∈W
Lwzλ = Rλ(z; v) = vλ(v)Pλ(z; v) (53)

where Rλ, vλ and Pλ are as in [52] Section III.1. Multiplying (51) by zρ(−v)−�(w) and
summing over w, then using (52) and (53), the left-hand side of the desired identity
equals

∑

w∈W
w0Ew0w(λ+ρ)(z;∞, v) =

∑

w∈W
Lw,v−1(zλ+ρ) = vλ+ρ(v−1)Pλ+ρ(z; v−1).

Because λ + ρ is strongly dominant vλ+ρ = 1 and the statement follows.

To conclude this section, we relate parahoricWhittaker functions to generalizations
of Macdonald polynomials calledMacdonald polynomials with prescribed symmetry.
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They were introduced by Baker, Dunkl and Forrester [2] and studied further by Mar-
shall [53] and Baratta [3]. We shall follow the conventions in [3].

For I , J disjoint subsets of {1, · · · , r − 1} such that i ± 1 /∈ J for i ∈ I and
j ± 1 /∈ I for j ∈ J , we define

S(I ,J )
η∗ (z; q, t) := 1

a(I ,J )
η

∑

w∈WI∪J

(−t)−�(w)Lw,t Eη(z; q, t), (54)

where η∗ is a composition such that η∗
i � η∗

i+1 for all i ∈ I and η∗
j > η∗

j+1 for

all j ∈ J , η is any composition in WI∪Jη
∗, and a(I ,J )

η is a normalization factor as
described in [3, eq. (16)].

Proposition 9.5 Let λ be a dominant weight, I = ∅, J = J and t = v−1. Then

ψJ
1 (λ, z) = z−ρS(∅,J)

λ+ρ (z; 0, t)a(∅,J)
λ+ρ .

Proof From (51) and (52) with t = v−1 we have that

φw(z;�−λ) = (−t)−�(w)z−ρLw,t (zλ+ρ). (55)

Since Eλ+ρ(z; 0, t) = zλ+ρ for dominant weights λ, the result follows from (18)
and (54).

The following corollary follows immediately from Theorem 4.7:

Corollary 9.6 Let λ be a dominant weight and t = v−1. Then

S(∅,J)
λ+ρ (z; 0, t) = zρ

a(∅,J)
λ+ρ

∏

α∈�+
J

(1 − vz−α)χJ
λ (z).

At this point in time, we have a good understanding of the dictionary relating
Whittaker functions to special polynomials when the group we are working with is
GLr . It would be interesting for both combinatorial and number theoretic reasons
to understanding generalizations of this dictionary to the metaplectic cover of GLr

and to other reductive groups. In the metaplectic setting, earlier results suggest these
questions merit further inquiry: in [16], metaplectic spherical Whittaker functions are
related to supersymmetric LLT polynomials, while in [60] a new family of special
polynomials is introduced that generalizes metaplectic Iwahori Whittaker functions
and non-symmetric Macdonald polynomials.

10 Intertwining integrals and R-matrices

In this section, we will explore the dictionary between p-adic representation theory
andR-matrices of quantum groups, using latticemodels for a pictorial interpretation of
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either side. Roughly speaking, we will show that parts of the R-matrix for the quantum
superalgebraUq(̂gl(r |1)) corresponding to the smaller quantum groupsUq(̂gl(r)) and
Uq(̂gl(1)) neatly express the action of intertwining operators on standard Iwahori fixed
vectors (Theorem 10.5) and on Whittaker functionals (Remark 10.8), respectively. To
prove Theorem 10.5, we identify the R-matrix for Uq(̂gl(r)) and the intertwining
integral acting on standard Iwahori fixed vectors with a part of the colored R-matrix
in Fig. 6. This allows us to give a pictorial interpretation of the functional equations
used to prove Theorem 3.8 [see Eqs. (63) and (64)].

Before proving these facts, we will first make several comments related to Theo-
rem 10.5. A common principle in the theory of symmetric functions (related to Schur
duality) is to consider the coefficient of z1z2 · · · zr in the r variables zi as having some
combinatorial significance. Applying this to Schur functions gives the representation
degrees of the irreducible representations of the symmetric group, and this principle
was also used by Stanley [62] in counting the number of reduced words for the longest
element of Sr .

A somewhat analogous procedure (related to Schur-Jimbo duality [38]) is to con-
sider the space of vectors of the form (60) below in a tensor representation ofUq (̂gl(r)).
These vectors are like the monomials z1z2 · · · zr , because there are no repetitions
allowed among the indexing set. The R-matrix acts on these vectors and we will relate
this fact to the action of the intertwining operators on the Iwahori fixed vectors.

The larger quantum group Uq(̂gl(r |1)) will not appear in Theorem 10.5, only
Uq(̂gl(r)). Concretely, the reason for this is that + spins do not appear on the right
boundary of our systems. We relate the + spins with the Whittaker functional in
Remark 10.8. We therefore want to think of the boundary condition for the left side
of our lattice model as indexing the unique Whittaker functional of the unramified
principal series, while the boundary conditions for the right side index the basis of the
space of Iwahori fixed vectors. This can be generalized to the parahoric case as well,
per Remark 10.7.

In this section, q will not denote the cardinality of the residue field; instead it
will stand for the quantum parameter q in Uq(̂gl(r)) as is customary in the theory of
quantum groups. We will continue to denote the cardinality of the residue field of F
by v−1. With these conventions, we set q2 = 1/v for Theorem 10.5, consistent with
our relation between quantum groups and residue field cardinalities in earlier sections
(where we wrote U1/

√
v).

Consider the quantum loop group Uq(̂gl(r)), which is a quantization of a central
extension of the loop algebra of gl(r); for its formal definition see Section 12.2 in [27].
The quantum loop group acts on the evaluation representation Vr (z) for z ∈ C

×. The
evaluation representation has a basis {vi (z), 1 � i � r}. Denote Vr (z) := Vr (z1) ⊗
· · · ⊗ Vr (zr ).

There is an affine R-matrix, initially due to Jimbo [37], that intertwines between
tensor products of evaluation representations. We denote it by Rq(zαk ) : Vr (zk) ⊗
Vr (zk+1) → Vr (zk+1) ⊗ Vr (zk) and it is given by the following formula:
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Fig. 20 The colored R-matrix Rcol(zαk ). The colors c, d ∈ P which we will represent by {1, 2, · · · , r} are
always distinct

Rq(zαk ) = 1

1 − q−2zαk

∑

1�i�r

(q − zαk q−1)eii ⊗ eii

+ 1

1 − q−2zαk

∑

i> j

(

(−q−1)(1 − zαk )ei j ⊗ e ji + (−q)(1 − zαk )e ji ⊗ ei j
)

+ 1

1 − q−2zαk

∑

i> j

(

(q − q−1)e j j ⊗ eii + zαk (q − q−1)eii ⊗ e j j
)

.

(56)

In the above, ei j stands for the r × r matrix with a 1 in the (i, j) entry and all other
entries equal to 0. It is a map Vr (zk) → Vr (zk+1) if it is on the left of the tensor
product and Vr (zk+1) → Vr (zk) if it is on the right of the tensor product.

Remark 10.1 This is not exactly the R-matrix in [37]; it is a Drinfeld twist by −q. See
[13] for a definition of the Drinfeld twist and details on how it modifies an R-matrix.
This particular Drinfeld twist appears very often when one deals withUq(̂gl(r)) lattice
models. Let us consider theweights in our Fig. 20 inwhichwe restrict to configurations
with all edges colored. This is theUq (̂gl(r)) portion of the largerUq(̂gl(r |1))R-matrix.
These are the same as the weights in equation (2.1.8) of [9] (up to a factor, and their
q is our q−2). Both R-matrices come from the same Drinfeld twist of Uq(̂gl(r)).
Throughout this section, when we write Uq(̂gl(r)), we will in fact refer to a Drinfeld
twist of the usual affine quantum group that produces the R-matrix Rq(zαk ).

It is a standard fact in the theory of quantum groups that Rq(zαk ) is a Uq(̂gl(r))-
module homomorphism. We will also denote by (Rq(zαk ))k,k+1 : Vr (z) → Vr (skz)
the map that acts as Rq(zαk ) on the k and k + 1 tensor components of Vr (z) and the
identity elsewhere.

Consider the R-matrix in Fig. 6 restricted to vertices where all edges are colored.
It is preferable to normalize the weights of R(zk+1, zk) by dividing by zk+1 so that
they may be expressed in terms of zαk = zk/zk+1. We further normalize by a factor
of 1 − vzαk . Denote the resulting restricted R-matrix by Rcol(zαk ), and similarly the
restricted version of R(zk, zk+1) is then Rcol(z−αk ). The vertices and weights are
pictured in Fig. 20.

Let i0 := (1, 2, · · · , r) and let I be the set of all permutations of i0. Given w ∈ Sr
and i ∈ {1, · · · , r}, let wi = w(i) which equals the i-th component of the r -tuple
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w(i0). For example, if s1s2 ∈ S3, then (s1s2)(i0) = (312) and therefore (s1s2)3 = 2.
The following lemma is well-known:

Lemma 10.2 �(skw) > �(w) if and only if wk+1 > wk .

In the notation of Sect. 3, let Āz
sk := (1−zαk )

1−vzαk Az
sk where Az

w : I (z) → I (wz) is the
standard intertwining integral (6).

Proposition 10.3 Equation (9) can be rewritten as

Āz
sk (�

z
w) = wt

⎛

⎜

⎜

⎝

zαk

wk

wk+1 wk+1

wk

⎞

⎟

⎟

⎠

�skz
w + wt

⎛

⎜

⎜

⎝

zαk

wk+1

wk wk+1

wk

⎞

⎟

⎟

⎠

�skz
skw. (57)

Proof Let sk, w ∈ Sr and let us prove the statement for the case �(skw) > �(w);
the opposite case is similar. Lemma 10.2 implies that wk+1 > wk . By consulting the
weights in Fig. 20, we see that

wt

⎛

⎜

⎜

⎝

zαk

wk

wk+1 wk+1

wk

⎞

⎟

⎟

⎠

= 1 − v

1 − vzαk
, wt

⎛

⎜

⎜

⎝

zαk

wk+1

wk wk+1

wk

⎞

⎟

⎟

⎠

= 1 − zαk

1 − vzαk
.

and the equivalence follows immediately by comparison with equation (9).

Remark 10.4 We will represent the colors of the palette P by the integers {1, . . . , r}.
In this section, our color ordering will be opposite to the ordering we used in previous
sections, so 1 > 2 > · · · > r . We use this ordering because we want to match
the largest color (in this case 1) with the highest weight vector of a quantum group
representation which is customarily denoted by v1.

Since the edges of the R-matrix Rcol(zαk ) are specified by these colors, we can then
think of it as a map Rcol(zαk ) : Ur (zk) ⊗ Ur (zk+1) → Ur (zk+1) ⊗ Ur (zk), where
Ur (z) is a vector space with formal basis elements ui (z) associated to the colors i for
1 � i � r . One can write the R-matrix in Fig. 20 in matrix form as follows:
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Rcol(zαk ) =
∑

1�i�r

wt

⎛

⎜

⎜

⎝

zαk

i

i i

i

⎞

⎟

⎟

⎠

eii ⊗ eii +
∑

i> j

wt

⎛

⎜

⎜

⎜

⎝

zαk

i

j i

j

⎞

⎟

⎟

⎟

⎠

ei j ⊗ e ji (58)

+
∑

i> j

wt

⎛

⎜

⎜

⎜

⎝

zαk

j

i j

i

⎞

⎟

⎟

⎟

⎠

e ji ⊗ ei j +
∑

i> j

wt

⎛

⎜

⎜

⎝

zαk

j

i i

j

⎞

⎟

⎟

⎠

e j j ⊗ eii

+
∑

i> j

wt

⎛

⎜

⎜

⎜

⎝

zαk

i

j j

i

⎞

⎟

⎟

⎟

⎠

eii ⊗ e j j .

Define Ur (z) := Ur (z1) ⊗ · · · ⊗Ur (zr ) and, for i = (i1, · · · , ir ) ∈ I, let

ui(z) := ui1(z1) ⊗ · · · ⊗ uir (zr ) ∈ Ur (z). (59)

Let U alt
r (z) be the subspace of Ur (z) with basis {ui(z), i ∈ I}. The R-matrix

Rcol(zαk )k,k+1 : Ur (z) → Ur (skz) restricts to Rcol(zαk )k,k+1 : U alt
r (z) → U alt

r (skz)
by removing the first term of (58). We similarly define

vi(z) := vi1(z1) ⊗ · · · ⊗ vir (zr ) ∈ Vr (z), (60)

and denote by V alt
r (z) the subspace of Vr (z) with basis {vi(z), i ∈ I}. Note that this is

not aUq(̂gl(r)) submodule of Vr (z). Even so, the restriction of Rq(zαk )k,k+1 to V alt
r (z)

maps into V alt
r (skz) because Rq(zα1) maps v1(z1) ⊗ v2(z2) to a linear combination of

v1(z2) ⊗ v2(z1) and v2(z2) ⊗ v1(z1) as seen in (56).
Consider the following isomorphisms of vector spaces θz : I (z)J → U alt

r (z) and
ξz : U alt

r (z) → V alt
r (z) defined by

θz(�
z
w) := uw(i0)(z), ξz(uw(i0)(z)) := vw(i0)(z). (61)

In this basis we have that

θskz(�
skz
w ) = (ewk ,wk ⊗ ewk+1,wk+1)θz(�

z
w), θskz(�

skz
skw)

= (ewk+1,wk ⊗ ewk ,wk+1)θz(�
z
w),

(62)

where we have suppressed the notation that the operators (eab ⊗ ecd) here act on the
k and k + 1 factors of the tensor product of U alt

r (z). We may use this to rewrite the
action of Āz

sk (�
z
w) in (57) in terms of the action of Rcol(zαk ) in (58), or similarly the

action of Rq(zαk ) in (56), to obtain the following result.
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Theorem 10.5 The following diagram commutes assuming q2 = 1/v:

I (z)J U alt
r (z) V alt

r (z)

I (skz)J U alt
r (skz) V alt

r (skz)

θz

Āz
sk Rcol(zαk )k,k+1

ξz

q−1Rq (zαk )k,k+1
θsk z ξsk z

Proof The commutativity of the left side of the diagram follows from Proposition 10.3
noting that after the identification between I (z)J and U alt

r (z) via θz, the action of Āz
sk

and Rcol(zαk )k,k+1 are the same as seen from Eqs. (57), (58) and (62). The right half
of the diagram commutes because the restriction of the two R-matrices are equal.
Indeed we have matching entries of the R-matrices in Eqs. (56) and (58) (we need to
match each entry except for the first term which does not occur in the restriction). For
example, the last entry in Eq. (58) has weight (1−v)zαk

1−vzαk , while the last entry in Eq. (56)

multiplied by q−1 has weight (1−q−2)zαk
1−q−2zαk .

Remark 10.6 The theorem above can also be proved if we set q2 = v (as opposed
to q2 = v−1). In that setting the quantum group needs to be Drinfeld twisted by the
parameter −q (as opposed to by q−1). We emphasize this as both choices might be
useful when considering representation theoretic applications of this result.

Remark 10.7 One can generalize Theorem 10.5 to the parahoric setting by choosing
elements of the form in Eq. (60) with repetitions determined by the chosen Levi
subgroup or by the possible right boundary conditions of the latticemodel associated to
the parahoricWhittaker function. For example, if the Levi subgroup is GL2 ×GL1, the
space of KJ-fixed vectors in I (z) has a basis indexed by elements inW J = {1, s2, s1s2}
which is in bijection with {v112, v121, v211}. For each basis element we also have
a corresponding right boundary condition for the colored lattice model in Sect. 8.
Assume R > B. If (in accord with Remark 10.4) we let the integers 1 and 2 be
identified with the colors R and B respectively, v112 corresponds to right boundary
condition (R, R, B), v121 to (R, B, R), and v211 to (B, R, R).

Remark 10.8 Note that Proposition 3.7 can be rewritten as

�skz ◦ Āz
sk = 1 − vz−αk

1 − vzαk
�z.

The factor above agrees up to a scalar with the fully uncolored Boltzmann weight
for R(zk+1, zk) in Fig. 6 and should be thought of as an entry of the R-matrix for
the evaluation module of Uq(̂gl(r |1)). This remark and the previous theorems realize
the action of intertwiners on both the space of Whittaker functionals and Iwahori (or
parahoric) fixed vectors as entries in the R-matrix of Uq(̂gl(r |1)).

The purpose of this section was to give a dictionary between objects related to
different areas ofmathematics: intertwiners for p-adic groups, R-matrices for quantum
groups, and R-matrices for lattice models. Let us now upgrade this dictionary by
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matching two techniques used in the theory of p-adic groups and lattice models.
For lattice models we used the train argument to derive functional equations for the
partition function. This argument was first used by Baxter to prove commutativity of
transfer matrices and in our setting can be summarized as follows:

wt

⎛

⎝

+

++

+
zαk

⎞

⎠ Z(Sz,λ,w1,w2) = intermediate states appearing in the train argument

= wt

⎛

⎜

⎜

⎝

zαk

wk

wk+1 wk+1

wk

⎞

⎟

⎟

⎠

Z(Sskz,λ,w1,w2) + wt

⎛

⎜

⎜

⎝

zαk

wk

wk+1 wk+1

wk

⎞

⎟

⎟

⎠

Z(Sskz,λ,skw1,w2).

(63)

For p-adic groupswe used the intertwiner to derive functional equations for Iwahori
Whittaker functions based on results and ideas of Casselman and Shalika. This process
can be reimagined using Proposition 10.3 and Remark 10.8 as follows (we denote
�−λw2 by g):

wt

⎛

⎝

+

++

+
zαk

⎞

⎠ �z(π(g)�z
w1

) = �skz ◦ Āz
sk (π(g)�z

w1
) = �skz(π(g)Āz

sk�
z
w1

)

= �skz

⎛

⎜

⎜

⎝

π(g)

⎛

⎜

⎜

⎝

wt

⎛

⎜

⎜

⎝

zαk

wk

wk+1 wk+1

wk

⎞

⎟

⎟

⎠

�skz
w1

+ wt

⎛

⎜

⎜

⎝

zαk

wk+1

wk wk+1

wk

⎞

⎟

⎟

⎠

�skz
skw1

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= wt

⎛

⎜

⎜

⎝

zαk

wk

wk+1 wk+1

wk

⎞

⎟

⎟

⎠

�skz(π(g)�skz
w1

) + wt

⎛

⎜

⎜

⎝

zαk

wk

wk+1 wk+1

wk

⎞

⎟

⎟

⎠

�skz(π(g)�skz
skw1

).

(64)

We see that the beginning and the end of the equations (63), (64) correspond to each
other by use of Theorem 7.2 and Proposition 10.3. The idea of both arguments is also
the same. In the p-adic setting one moves the intertwiner from the ‘Whittaker side’ to
the ‘Iwahori side’, while in the lattice model setting one moves the R-matrix from the
left side (which corresponds to the Whittaker functionals as we argued before) to the
right side (corresponding to the space of Iwahori fixed vectors).

This phenomena also appears in the theory of metaplectic spherical Whittaker
functions for an n-fold metaplectic cover of GLr (F), which can also be realized as
partition functions of a solvable lattice model [12]. In that case the action of the
intertwining integral on the space of Whittaker functionals is the Kazhdan-Patterson
scattering matrix, which has been interpreted (up to a Drinfeld twist) as theUq(̂gl(n))

R-matrix in [12, Theorem 1], while the action of the intertwining integral on the
spherical vector is the Gindinkin-Karpelevich factor which can be interpreted as the
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spin + part of a larger R-matrix. The train argument and the p-adic argument for
producing functional equations work in the same way. This compelling connection
between two a priori different methods of argument should be useful in further relating
the representation theories of p-adic and quantum groups.
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