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Abstract

We give a recursive method for computing all values of a basis of Whittaker functions
for unramified principal series invariant under an Iwahori or parahoric subgroup of
a split reductive group G over a nonarchimedean local field F. Structures in the
proof have surprising analogies to features of certain solvable lattice models. In the
case G = GL, we show that there exist solvable lattice models whose partition
functions give precisely all of these values. Here ‘solvable’ means that the models have
afamily of Yang—Baxter equations which imply, among other things, that their partition
functions satisfy the same recursions as those for Iwahori or parahoric Whittaker
functions. The R-matrices for these Yang-Baxter equations come from a Drinfeld twist
of the quantum group U, (gl(r|1)), which we then connect to the standard intertwining
operators on the unramified principal series. We use our results to connect Iwahori
and parahoric Whittaker functions to variations of Macdonald polynomials.
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1 Introduction

Solvable lattice models [5, 39] are statistical-mechanical systems (usually two-
dimensional) that are amenable to analysis using Yang-Baxter equations, highly
constrained identities whose mysterious nature led to the discovery of quantum groups
[31, 38]. Beyond their origins in statistical mechanics, lattice models are also closely
connected to quantum field theory [4, 6, 30], knot invariants [1, 40, 57] and inte-
grable probability [8, 29]. Most importantly for us, they also give a fruitful method
for studying symmetric function theory and its generalizations by representing poly-
nomials as partition functions of solvable lattice models, as for example in [32, 43,
45,47, 49, 65, 66]. In this context, the Yang-Baxter equation becomes a powerful tool
for demonstrating identities among partition functions.

Variants of these methods have been used by the authors and their collaborators
[12, 16, 19, 20, 33, 36] to study the representation theory of algebraic groups and
their covers over a p-adic field F. These papers use families of solvable six-vertex
models and their generalizations to produce partition functions giving special values of
Whittaker functions for unramified principal series, particularly for the groups GL, (F')
and Sp(2r, F) and their metaplectic covers. The results shed a lot of light on the nature
of these Whittaker functions. However, these prior results have treated only spherical
Whittaker functions, those invariant under a maximal compact subgroup. It is very
desirable to have lattice model interpretations for Whittaker functions invariant under
smaller compact subgroups.

Iwahori Whittaker functions for an unramified principal series representation are
fixed by an Iwahori subgroup J that is smaller than the maximal compact subgroup K.
Even if one is mainly interested in spherical (K -fixed) Whittaker functions, the Iwahori
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Whittaker functions are needed. The Iwahori Hecke algebra that acts on them has a
richer structure and the Iwahori Whittaker functions play a crucial role in evaluating the
spherical Whittaker function in the work of Casselman and Shalika [26]. Moreover,
the Iwahori Whittaker functions interestingly mirror the geometry of the Schubert
varieties in the flag variety [22, 54, 56]. So understanding Iwahori Whittaker functions
by bringing them into the lattice model framework is an important goal. Once this
connection is made, we find that Whittaker functions invariant under certain parahoric
subgroups (intermediate between J and K) also fit naturally into these models, and
they too should be included in order to have a complete story.

A recent breakthrough by Borodin and Wheeler [9, 10] showed how to refine lattice
models using an additional attribute they called ‘color.” This led us to wonder whether
a similar refinement of the six-vertex model in [20] might produce values of Iwahori
Whittaker functions for the general linear group. The surprisingly complete answer
to this question for GL,, and related results about Whittaker functions on all split
reductive groups, are the subject of this paper.

Let us highlight two of our main results and their implications before a precise
accounting of our results in the next section. Given a split, reductive group G, let J
be a subset of the index set for simple reflections of the Weyl group W of G(F) and
Kj the associated standard parahoric subgroup (as in Definition 4.2). Note that J = &
reduces to the Iwahori case Ky = J. There exists a standard basis {{,,} of Kj-fixed
Whittaker functions for any irreducible unramified principal series, given explicitly in
Sect. 4. In this paper we construct what we will call the parahoric lattice model for
which we prove the following theorem:

Theorem A Forevery gin GL, (F), any subsetJ C {1,2, ..., r—1}, and for every iy,
in a basis of Kj-fixed Whittaker functions, there exists a choice of boundary conditions
for the parahoric lattice model such that its partition function equals Y, (g).

Conversely, we find that every admissible choice of boundary conditions (in partic-
ular every assignment of colors to the boundary) has a meaning in terms of Whittaker
functions. That is, assume that the colors used along the top boundary are distinct, and
that no colors appear on the left or bottom boundary edges. For the partition function
to be nonzero, the same distinct colors must appear on the right boundary edges. Then
each choice of boundary data corresponds to an element g in G (F') and a w in the Weyl
group such that the partition function of this solvable lattice model is the value of the
Iwahori Whittaker function ¢,,(g). (See Theorem 7.2, Lemma 3.5 and Remark 3.3.)

If more generally some colors are allowed to repeat on the top boundary, the
resulting partition functions correspond precisely to values of Whittaker functions
for vectors fixed by a parahoric subgroup (Theorem 8.3). The restriction of the para-
horic lattice model to top boundary conditions with distinct colors will therefore be
called the Iwahori lattice model. If instead the top boundary colors are all the same,
we obtain a one-colored lattice model for the spherical Whittaker function, which is
equivalent to the uncolored lattice model in [20] that we will here call the Tokuyama
model.

In order to prove Theorem A, we needed to extend known results expressing Whit-
taker functions recursively using Demazure-like operators, and these very general
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Table 1 Relations between Whittaker functions and special polynomials as detailed in Sect.9

Whittaker function Special polynomial Algebraic Lattice models

Spherical Whittaker function = Schur polynomial [26, 61] [20, 35]

Li’s Whittaker function = Hall-Littlewood polynomial [50] Sect.9 and [64]

Iwahori Whittaker function = Non-symmetric Macdonald [22], Sect.3 Sect.7
polynomial

Parahoric Whittaker function = Macdonald polynomial with Sect.4 Sects. 8 and 9

prescribed symmetry

In the third column we list references for the algebraic viewpoint on the Whittaker function and in the fourth
column we give references for a lattice model interpretation

results (in Sects. 3 and 4) are valid for any split, reductive group. Thus we were led to
prove the following result:

TheoremB Let G := G(F) be any split reductive group defined over a local field
F. For a basis {¢y} of the space of Iwahori Whittaker functions for any irreducible
unramified principal series representation of G and any g € G, there is a recursive
algorithm using Demazure-like operators to compute ¢, (g).

We have similar algorithmic results for parahoric Whittaker functions. (See The-
orem 4.7 and Remark 4.8.) Prior to this work, even a conjectural description of all
values of the Iwahori and parahoric Whittaker functions was unknown. Reeder [56]
and Brubaker, Bump, and Licata [22] computed Iwahori Whittaker functions if g is a
torus element. In the introduction to [56], Reeder describes the determination of the
remaining values as a difficult problem. Lansky [48] determined the dimensions of
the spaces of standard parahoric fixed vectors in unramified principal series.

In addition to the above theorems, the development of these results led us to:

e Prove a Casselman-Shalika formula for certain parahoric Whittaker functions on
split, reductive groups in Theorem 4.7.

o Relate several classes of Whittaker functions to special functions that arise in alge-
braic combinatorics summarized in Table 1 below and further detailed in Table 2
of Sect. 9.

Moreover, in pursuing the connection to solvable lattice models in type A, we were
led to:

e Interpret the Demazure recurrence relations in our algorithmic description in terms
of the R-matrix for the quantum affine superalgebra U m(g[(r [1));

e Develop a combinatorial analog of a fusion procedure from quantum groups in
Sect. 5, which allows us to prove that our Boltzmann weights solve Yang—Baxter
equations for any rank r even though the number of admissible vertex configura-
tions grows exponentially in 7.

e Interpret the action of intertwiners of Iwahori or parahoric fixed vectors in the prin-
cipal series representation with R-matrices acting on evaluation representations of
quantum loop groups in Sect. 10.
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Table 2 Relations between different Whittaker functions and associated special polynomials

Whittaker function Special polynomial

Spherical Whittaker function Schur polynomial

Y wew $w@ @) = [Tyeat+ A —vz=%)s; (2)

Li’s Whittaker function Hall-Littlewood polynomial

Ywew ()T Wy @ ah) = 27/ Pyyp@ v

Iwahori Whittaker function Non-symmetric Macdonald polynomial

buy (@) = (=) 2P wg E o1y 4y (23 00, )

Parahoric Whittaker function Macdonald polynomial with prescribed symmetry
Joy =2 _ —p @0 -1,,(3.0)

Yz o) = z /’S)L_‘_p (0,07 a; %

Potential future applications include new Cauchy identities for these Whittaker
functions, which may then find application in local Rankin-Selberg computations.
It may also be possible to relate our lattice models to interacting particle processes
such as ASEP and TASEP in the spirit of similar results by Borodin and Wheeler
[9, Section 12]. Furthermore in [16] we found connections between the metaplectic
models in [12] and LLT polynomials (ribbon symmetric functions) and we expect
that there may be similar connections here.

Another exciting open question is whether Whittaker functions for even smaller
compact subgroups might similarly have representations as partition functions of solv-
able lattice models. In other words, if L is an arbitrary compact open subgroup, does
there exist a basis of L-invariant Whittaker functions whose values may be represented
by solvable lattice models? If the answer is affirmative one could also look for represen-
tations of Whittaker of other admissible representations, particularly supercuspidals.
To what extent are solvable lattice models and their associated quantum groups a
tool for studying all representations of p-adic groups? These possibilities are purely
speculative at this time, but our success in treating Iwahori and parahoric Whittaker
functions and the work of Ju-Lee Kim [41] which gives combinatorial descriptions of
Whittaker functions for other admissible representations is suggestive in this regard.

Finally, the models in this paper may also be generalized to refine the models
representing metaplectic Whittaker functions introduced in [12], called metaplectic
ice. Whereas for metaplectic ice certain edges are enhanced by adding an attribute
called charge, in this paper we enhance the system by decorating certain edges with
color. These attributes of charge and color are handled differently, and at first glance
the schemes seem different. We show in the papers [15, 18], which are successors
to this one, how they may be placed in a unified framework. The R-matrices for the
solvable models whose partition functions are Iwahori Whittaker functions on the n-
fold metaplectic cover of GL(r) are related to U m(g[(”n)), or more precisely a
Drinfeld twist thereof which introduces Gauss sums into the R-matrix.

Let us also mention the bosonic models in [24], which represent not Iwahori Whit-
taker functions, but rather Iwahori fixed vectors in the spherical model. Many aspects
of that theory such as the monochrome factorization of the models and the color lifting
properties (Sect. 8 below) have exact analogs in that setting. But whereas the models
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in this paper are related to the quantum group U,-1/2(gl(r|1)), the bosonic models in
[24] are related to U,-12(gl(r + 1)).

2 Outline of the paper

Let us now explain the results of this paper in more detail. We begin with a brief
description of spherical Whittaker functions for GL,(F) and their associated six-
vertex model, which we will call the Tokuyama model. Let o be the ring of integers of
the nonarchimedean local field F and let v~! be the cardinality of the residue field.
Construct an unramified principal series representation of GL,(F') from a character
of T(F)/T (o) where T is the maximal split torus (see Sect. 3 for full details). These
representations have unique Whittaker functionals and a unique-up-to-constant vector
which is right invariant under K = GL, (0). The spherical Whittaker function is the
image of this vector in the Whittaker functional and it is completely determined by its
values on T'(F)/T (0), which we identify with the weight lattice A of the Langlands
dual group. It is easily seen that the spherical Whittaker function vanishes unless
the associated weight is dominant. The remaining values for dominant weights are
given by the Shintani-Casselman-Shalika formula in terms of Schur polynomials in
the Langlands parameters of the principal series. By Tokuyama’s theorem, described
in [20, 35, 63] and recalled below as (49), there exists a solvable six-vertex model
with boundary conditions indexed by dominant weights whose partition function give
the Shintani-Casselman-Shalika formula.

There are multiple ways to describe this six-vertex model. A state of the system
attaches a spin @ or © to each edge of a grid so that each vertex has adjacent edges
in one of six possible configurations seen for example in [20, Table 1]. Alternatively,
the state may be described by connecting the edges labeled with © into lines or paths
as in Section 8.1 of [5]. The models needed in this paper refine the six vertex model
by coloring these paths.

For the Iwahori lattice model in this paper the grid has r rows and boundary condi-
tions that specify the particular GL, Iwahori Whittaker function ¢,, and group element
g. Then a state of the system representing ¢, (g) will consist of r paths with distinct
colors beginning at the top boundary and traveling downward and rightward until each
path exits on a distinct row along the right boundary. The partition function is the sum
of the Boltzmann weights for all such configurations of paths. The Boltzmann weights
can, for example, be found in the row labeled St (i) of [20, Table 2].

In Sect. 6, we exhibit a set of colored Boltzmann weights and prove Yang—Baxter
equations for them in Theorem 6.5. In Theorem 7.2 we use these Yang—Baxter equa-
tions to demonstrate that the partition function of the Iwahori lattice model for different
boundary conditions is equal to values of Iwahori Whittaker functions in the standard
basis.

The Iwahori lattice model never has more than one path of a given color, because
the boundary conditions only have two edges of a given color: one on the top boundary
and one on the right. In a state of the system, these are connected by a single path, so
there is only one path of that color. However, the Yang—Baxter equations, which are
highly constrained and overdetermined relations the Boltzmann weights must satisfy,
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force us to assign nonzero values to local vertex or path configurations where two
paths of the same color cross, even though these configurations can never appear in
any state of the Iwahori model. Remarkably, these seemingly unneeded weights that
we are forced to include do turn out to be needed when we turn to the more general
parahoric Whittaker functions discussed in Sect.4, and the corresponding parahoric
lattice model of Sect. 8 allowing for multiple paths of the same colors.

Itis precisely these latter, parahoric weights that distinguish our models from models
of Borodin and Wheeler [9], which also have configurations of multicolored paths
crossing in a grid. In both types of colored models, the horizontal edges can carry only
one color, but the vertical edges can carry more than one. In this paper, the vertical
edges are ‘fermionic’ meaning that they satisfy an exclusion principle: no vertical edge
may carry more than one instance of a particular color. The models in [9] are ‘bosonic’
and the vertical edges may carry their colors with a multiplicity. The parahoric lattice
model makes clear the need for these fermionic weights in order to produce the correct
partition function describing a parahoric Whittaker function.

This distinction may also be observed from the quantum groups that underlie the
models. One may check that the R-matrix in Fig. 6 is a Drinfeld twist of the R-matrix
for the quantum affine Lie superalgebra U/, —(gl(r[1)) from [44]. By contrast the

R-matrix for the systems in [9] is a twist of a quantum group U, (5:\[r+1). See also
Remark 6.7 for further details on the relationship between our models and those
of [9].

While our R-matrix is associated to a quantum superalgebra, we have no such mod-
ule interpretation for the Boltzmann weights of our colored models. To demonstrate
the Yang—Baxter equation, we must instead introduce an equivalent version of the
systems in which each vertex is replaced by r vertices, and each vertical edge by r
vertical edges. We refer these expanded systems as monochrome because each col-
umn is assigned a color, and each vertical edge in that column can carry only that
color and no other. See Fig. 16 for an example of a colored model and its equivalent
expanded monochrome system. The relationship between the Boltzmann weights for
the regular colored systems and the expanded monochrome systems is demonstrated
in Fig. 8. This relationship is reminiscent of the fusion construction for tensor products
of quantum group modules (see [46, 55] and Appendix B of [9]) and our results in
Sect.5 may be viewed as a combinatorial substitute for fusion in the absence of a
quantum group module interpretation. This link is the key to the solvability of the
colored models, for it is with the monochrome vertices and weights that we prove the
Yang—Baxter equations.

Apart from our results on solvable lattice models, our independent results on Iwahori
and parahoric Whittaker functions (i.e. which are not depending on their relations to
lattice model partition functions) are more precise than what is found in the literature.
Let us explain this point.

With notation as in Sect. 3, our task is to study so-called ‘standard basis’ Iwahori
Whittaker functions ¢y, (g) for wi € W and g € G. Using left and right translation
properties of ¢,,,, we may assume that g = @ ~*w; where w; is again a Weyl group
element, A is a weight and @ is a uniformizer of F. Not every pair A, wy needs to
be considered, since ¢y, (g) vanishes for many values of g. For example if wy = 1
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then A must be dominant, meaning that (al.v ,A) = 0 for all simple roots «;. If w; is

a general permutation, then we allow (ozl.v ,A) 2 —1 wheni is a descent of w, ! (see
Definition 3.4).

In fact, for G = GL,, it turns out that the triples w1, wz, A with w, and A as above
correspond exactly to the boundary conditions with distinct colors in our lattice model
scheme! The permutations w; and w, describe the order of the colors on the right
and top boundaries; A describes the columns on the top boundary where a colored
line has its terminus; and the cases where (ozl.v, A) = —1 is allowed correspond to the
possibility that a top vertical edge carries more than one color. This correspondence
between the data describing the values of Whittaker functions and available systems
in our scheme becomes even more striking when we consider the parahoric systems
in Sect. 8.

In order to prove all this we need new results on the values of ¢y, (g) with g =
@ *wy when wy # 1. In prior work such as [22, 54, 56] the group element g
has usually been taken to be diagonal. We are able to give a recursive method of
computing the values ¢y, (o ~*w>) based on Proposition 3.6 and Theorem 3.8. This
then is used in Theorem 7.2 to prove that ¢, (= ~*w;) equals the partition function
of the Iwahori lattice model with certain boundary conditions determined by A, w
and w; as explained above. The above methods to compute the Iwahori Whittaker
functions, both the recursive algorithm (for any reductive group) and the partition
function (for GL,), are easy to implement on a computer. In the parahoric case, our
results are also applicable to all group elements.

In Sect. 9, we use our descriptions for Whittaker functions in terms of Demazure-like
divided difference operators, which arise from our Yang-Baxter equations, to relate
them to variations of Macdonald polynomials. Indeed, we provide interpretations for
spherical, Iwahori, and parahoric Whittaker functions in terms of a specialization or
generalization of a Macdonald polynomial. In particular, the parahoric Whittaker func-
tions are expressed as Macdonald polynomials with prescribed symmetry studied in
[2, 3, 53]. Moreover, Jian-Shu Li [50] introduced a certain Iwahori Whittaker function
to study the unique genuine subquotient of the unramified principal series, and we will
show that its values are symmetric Hall-Littlewood polynomials (see Proposition 9.4).
See Table 1 for a summary of these connections and relevant references. Details of
the exact relations are shown in Table 2 of Sect.9.

Finally, in Sect. 10, we explain how lattice models shed some further light on p-
adic representation theory. Not only are the outputs of both the lattice models and the
p-adic representation theory the same, but each tool or technique has a counterpart in
this dictionary, as we shall now explain.

Standard intertwining operators on principal series are a basic tool in the repre-
sentation theory of p-adic groups. Their action on Iwahori fixed vectors and how
they interact with the Whittaker functional are the two principal ingredients in the
Casselman-Shalika formula [25, 26] and are also the key to Theorem 3.8. Roughly,
we show that these two actions of intertwining operators, on Iwahori fixed vectors and
for the Whittaker functional, correspond to restrictions of the quantum superalgebra

U = (8l(r|D)) toits U /—(gl(r)) and U —(gl(1)) pieces, respectively.
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In Theorem 10.5 we show that the action of the intertwining integral on the space of
Iwahori fixed vectors is the same as the action of the affine R-matrix on a subspace of
the tensor product of evaluation representations V,(z1) ®- - - ® V. (z,) of U T (gl(r)).
This result is independent of the Whittaker functional and only the smaller quantum
group U m(a(r)) cU m(a(r |1)) appears due to the fact that the right boundary
conditions of our model contain only colored edges (which span a subspace that can
be thought of as the tensor product of evaluation representations of U m(g[(r))).
This result can be easily generalized to the parahoric setting.

A result similar to Theorem 10.5 was proved in the case of spherical Whittaker
functions on the metaplectic n-cover of GL, in [12, Theorem 1.1], where the first three
authors relate the Kazhdan-Patterson scattering matrix to the U ST (gT[(n)) R-matrix.
The relation was used in [13] to build finite dimensional representations of the affine
Hecke algebra starting from metaplectic Whittaker functionals. Theorem 10.5 now
allows for a similar construction starting from Iwahori fixed vectors in an unramified
principal series representation.

3 Iwahori Whittaker functions

We will review the constructions of Iwahori Whittaker functions following [22]. There
are several differences between choices made here and in [22] with those in Casselman-
Shalika [26]. Let us summarize these choices, with notations to be defined more
precisely below.

e As in [26], principal series representations are induced from the standard Borel
subgroup B. But in contrast with [26], we will take Whittaker functions with
respect to the unipotent radical N_ of the opposite Borel subgroup B_.

o We will take our Iwahori subgroup J to be the preimage in the maximal compact
subgroup K of B_ modulo p.

e We will apply our construction to the contragredient representation of the principal
series with Langlands parameters z.

e When restricting to the maximal torus we will evaluate our Whittaker functions at
values @ ~* where — A is antidominant.

The advantage of these unconventional choices is that it keeps the long Weyl group
element wq out of the formulas. Thus whereas for Casselman and Shalika the simplest
Whittaker function is that supported on the double coset BwgJ, and its value at o*
is (up to normalization), Z%0*  with our conventions the simplest Whittaker function
is supported on B - 1y J, and its value is (up to normalization) z*.

In more detail, let F' be a nonarchimedean local field with ring of integers o. Let
p be the maximal ideal of o with generator @ € p. Then, @ is a prime element, or
uniformizer, of F'. We will denote by ¢ the cardinality ¢ = |o/p| and the residue field
itself by F, = o/p.

Let G be a split reductive Chevalley group, that is, an affine algebraic group scheme
over Z with a fixed Chevalley basis forits Lie algebra gz. Let T be the standard maximal
split torus of G obtained from our choice of Chevalley basis, and similarly let N be the
standard maximal unipotent subgroup whose Lie algebra is the union of the positive
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root spaces. Together they form the standard Borel subgroup B = T N and the Weyl
group W is defined by Ng(T)/T where Ng(T) is the normalizer of T in G.

Remark 3.1 For each Weyl group element w we will always choose a representative
in K = G(o) that is the maximal compact subgroup of G (F). Strictly speaking this
representative is only determined modulo 7 (o). However because we are considering
representations induced from unramified data, none of the functions we compute ever
depend on this choice, nor on the choice of @ .

Let B_ be the opposite Borel subgroup and N_ be its unipotent radical generated
by the negative root spaces. In the later sections of this paper we will mainly consider
G = GL, for which B is the subgroup of upper triangular matrices, 7 the diagonal
matrices and B_ the lower triangular matrices.

Let G be the Langlands dual group of G. We will denote the root system of G by A
and the simple roots of G by ai, ..., . The root system of G is the dual root system
AY. We prefer this notation instead of making A the root system of G, because the
weight lattice A of G appears frequently in the sequel.

We will consider an unramified character T of T (F), that is, a character that is
tr1v1a1 on 7T (0). The group of such characters is isomorphic to T((C) (C*)", where
T is the standard split maximal torus of G. To define the unramified character 7, for
z € T(C) we will use the following isomorphisms.

The group X, (T) of rational cocharacters of T is isomorphic to the weight lattice
A=X *(7"\) of rational characters of the dual torus, and we will identify these two
groups. But X*(T) is also isomorphic to the quotient 7 (F)/T (o). Indeed, if A is a
cocharacter let 0 be the image of the uniformizer e in T under A; then we associate
with A the coset @ T'(0) in T(F)/T (a) On the other hand we may regard X as arational
character and, with z € 7(C), let z* € F* be the application of this character to z.
Then we define the unramified character t, of T (F) by 7,(¢) = 7" whent € @*T (o).

In particular, for G = GL, with A = (A(,...,A,) € Z' =Z A and z =
21y, 2r) € (CH" = T(C) we let

ot = _ € GL,(F) and o,(w™) = 2" = [ [ z}" .
- i i=1

The Iwahori subgroup J = J_ of G(F) is the subgroup of K = G (o) defined as
the preimage of B_ (F,) under the mod p reduction map K — G(IF,). Let J be the
preimage of B(F,). For G = GL, the Iwahori subgroup J consists of elements in
GL, (0) which are lower triangular mod p.

We trivially extend an unramified character t, of T (F) to B(F) and let (, I(z))
denote the induced representation /(z) = Indg (8Y21,) under the right-regular action
7 of G(F) where § : B(F) — R* is the modular quasicharacter.

Remark 3.2 1t is convenient to extend § to a function on G(F) as follows using the
Iwasawa decomposition. If g € G(F) we may write g = bk where b € B(F), k € K
and we define 6(g) = §(b). This is well-defined since § is trivial on B(F) N K.
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Consider the space I(z)’ of Iwahori fixed vectors in I(z) which is of dimen-
sion dim /(z)? = |W|. We will now describe a basis for 1(z)’ which will be used
throughout the paper. Using the Iwasawa decomposition G(F) = B(F)K, the Bruhat
decomposition K = | |, cw J+w/J, the Iwahori factorization J; = (B N J;)N_(p)
and the fact that w ! N_(p)w C J we obtain the decomposition G = Llpew B(F)wJ
[25]. Thus the elements ®% ¢ I(z)’ for w € W defined by

sV2¢,b) ifw =w

D% (bw'k) :=
w(bWh) 0 otherwise

beB(F),w eW,kelJ

form a basis of 7(z)’, commonly referred to as the ‘standard basis.’

Fora € A, let x4 : G, — G be the one-parameter subgroup of G corresponding
to V. (We recall that A is the root system of the dual group G, and it is the coroot o
that is a root of G.) Thus x4 (#) = exp(¢ X, ) where X, is the corresponding Chevalley
basis element of the Lie algebra. The group K = G (o) is generated by the unipotent
groups xq (0). Fix a unitary character ¥ on N_(F') such that, for any simple root «,
Y ox_y ¢ F — C*,is a character on F trivial on o but no larger fractional ideal.
The space of Whittaker functionals, which are linear maps 2, : I(z) — C satistying
Qur(n) f) = yv(n_)Q(f) for n_ € N_(F), is one dimensional [58]. We need
therefore only consider the following explicit Whittaker functional

Q(f) = / Fymdn  fel@. )

N_(F)

The integral is convergent if |z%| < 1 for positive roots ¢, and can be extended to all
z by analytic continuation.

The objects of study in this paper are the Iwahori Whittaker functions obtained by
applying the Whittaker functional (1) to right-translates of standard basis elements
oz,

Remark 3.3 Any g € G(F) may be written as g = nw *wsrk with n € N_(F),
A € A, wy a Weyl group representative chosen in K by Remark 3.1, and k € J. Using
the left N_ (F') equivariance and the right J invariance, any Iwahori Whittaker function
W(g) then satisfies W(g) = ¥ (n) W(w *w»). Thus we reduce to computing our
Whittaker functions at values @ ~*wy.

We will use the following conventions and normalizations for Whittaker functions
of the contragredient / (z~1) of I(z) at these values. For w; € W we consider the
Iwahori Whittaker function

—1

bu, (2 g) = 8"(8) Q-1 (T ()DL, ) ()
which is determined by its values on g = @ ~*w, for a weight . € A and w, € W.
See Remark 3.2 for the extension of § to G (F). In [22] these Whittaker functions were

considered only for torus elements g = & ~* and were there denoted as Wi.w, (@).
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In this paper we treat the general case, not only wy = 1, and will therefore need to
compute more generally ¢, (z; @ wy).

First, we determine the pairs A and w, for which this J-invariant Whittaker function
is non-vanishing.

Definition 3.4 We say that A is w-almost dominant if for all simple roots o;

VoA =0 ifwlee AT
{(a,)»)/O ifw o € AT, 3)

@V, 2y > —1lifwla; e A™.

1

Lemma 3.5 Let W be any J-invariant Whittaker function. Then
W@ *wr) =0

unless A is wa-almost dominant.

Proof This is similar to Lemma 5.1 of [26]. Let «; be a simple root such that (3) fails.
We may find ¢ € p~! such that ¥ (u) # 1 where u = X_g; (t). Now

Y@W(@ " wa) = Wuw *w) = W ws ) 4

where

A —(av,x)t)

e P W S
J=w, @'uw wz_x_wz_l(ai)(w i

o))

Our assumption that (3) fails implies that o ¢ t € oif wy, l(oz) e AT and

T = p if w;l(a) € A~ and in either case j € J, so W(w 7w, j) equals
W(w ~*w,) which must therefore vanish by (4). O

Next we analyze the special case w; = ws.
Proposition 3.6 Let w € W and A € A a w-almost dominant weight. Then

buw(z; o w) = g7 W

where £(w) denotes the length of a reduced expression for w.
Proof By definition
bw(z; w7 w) =82 (@h) @Z;l(nw_)‘w)llf(n)_ldn.
N_(F)

We make the variable change n — @ ~*nz*. This multiplies the measure by §(z ")

and using deU_l (wg) = 51/2(ZD'_)‘)Z)”(DIZU_1 (g) we get

ZA/ dbfu_l(nw)W(w_)‘nw)‘)_ldn.
F)
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Let J,, = wJw™!. This has the Iwahori factorization J,, = N, T(0)N,} where
N,, = Jy N N_(F) and similarly for NJ. In particular

N, =

w

el +
l—[ {x_a(o) ifw™ae AT, )

vent x_o(p) ifwlae A,

The integrand is nonzero only if nw € BwJ. We will show that this is true if and
only if n € N, . Indeed, write nw = bwj where j € J. Then n = bj,, where
jw = wjw™! € J,. Using the Iwahori factorization, j, = Bn,, where B € B and
n, € N, .Because BNN_ = {1}, b = 8 = 1 and n = n,,. Therefore the integral
equals

7 / @f;l (nw)y (o *nw*) " Ldn.
Ny

Now we will show that the value of the integrand is 1 so this is just z* times the
volume of N, . We have @fu_l (nw) = 1 since the argument is in wJ. We must show
that o ~*nw? is in the kernel of v. For this it is sufficient to show that if & = «; is a
simple positive root then

w_)‘x_a,. (t)w)‘ € N_(o)

where using (5) we may assume that ¢t € o if w Ne) e ATand 1 € p otherwise.
Now

Vv
w_kx_ai (o™ = X_q AR RN

Because A is w-almost dominant & %)t is indeed in o.
Hence ¢y, (z; @ ~*w) equals z* times the volume of N, which is g ~¢®). o

In order to determine the values of the Iwahori Whittaker function ¢y, (z; @ “wy)
in full generality, we mimic the methods of [22], which used ingredients from earlier
papers of Casselman and Shalika [25, 26]. In brief, we will develop a recursion using
the Bruhat order in the Weyl group in the w; variable above, whose base case is
given by Proposition 3.6. The recursion results from computing the function Q, (A, -
d,,) in two ways, where A,, denotes the standard intertwining operator on principal
series corresponding to the Weyl group element w € W and s; is a simple reflection.
Comparing the two methods of computation will give the values of the Whittaker
function. We begin by briefly reviewing the basics of intertwining operators. These
facts will also be needed in Sect. 10. To avoid technical problems with the poles and
zeros of the intertwining integrals, we will assume that z% # 1, g*! for all a.

The standard intertwining integral A% : I(z) — I(wz) is given by

A% d(g) = / S (w " ng)dn. ©)

N(F)NwN_(F)w~!
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The integral converges when [z%| < 1 for @ € AT and can be extended to arbitrary z
by meromorphic continuation. The intertwining integral induces amap A, : (z)’ —
I(wz)’ and an explicit expression for .Afi on I(z)” is given by the following formula.
See Proposition 3 in [22] for a proof of this fact, which is equivalent to Theorem 3.4
of [25]:

2 (7 ) — (1 — co; (5i2) P + Piin if £(s;w) > £(w), -
' (q7" = co (i)Y + g7 O, f L(siw) < £(w),
where
1 — g 'z%
Co; (Z) = B 8)
Substituting in the definition of ¢, and using that (s;z)* = z~% we get that
equation (7) is equivalent to
1— -1 o Si .
(@t — H1+1z | W+ 7 1 e N if £(siw) > €(w),
S w’/ T 1 —— i .

2% 1,qzlzf1i oWk _|_ g 1 qu}]za[ o5, if L(siw) < L(w),
where flfI =g lq za'a, A%, . The normalized version of the intertwiner AZ is sometimes
preferred because it is a cocycle, i.e.

A% Si A?,Z ° Af, :

To any w € W, let A;; denote the set of positive roots {& € AT | w(a) € A~}. In
Proposition 2 of [22], following from Proposition 4.3 of [26], the following result is
proven.

Proposition 3.7 Forany w € W,

1—qg 1z

Quzodly = ([] 1) (10)

aeA

In Theorem 3.8 below we will combine the above results to obtain a recursion
relation for ¢, (z; g) using Demazure type operators that we will define now.

Let (’)(T) be the ring of regular (polynomial) functions on T(C) (C*)". Thisring
is isomorphic to the group algebra of A = Z" as follows. If z = (z1, - - - , z,) € (C*)”
and A € Aletz" =] zf‘i. Then O(T) is spanned by the functions z*. We may now

define operators ¥; on O(f‘) as follows. Let v be a nonzero complex number and, for

f e o), let

f@ — fGiz) vf(Z) - Z_“"f(SiZ)_

z% — 1 z% — 1

Tinf(@=%if(z) = (1)
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These operators satisfy the same braid relations
LT =TT

as the corresponding simple reflections s;, s in the finite Weyl group (see, for example
[22, Proposition 5]). The operators also satisfy the quadratic relation

T =(- DT +o. (12)

This quadratic relation implies that T; is invertible. Indeed its inverse is

N fGin) 2 (@) fsiz) — 2 f(2)

% — 1 v(z% — 1)

T f@ = (13)

See [22] Propositions 5 and 6 for proofs of these facts.! The operators T; thus generate
a finite Iwahori Hecke algebra. They are similar to the well-known Demazure-Lusztig
operators [51], which by comparison send f to

f@— fsin) _ [ @ =2 [ (5i2)

Cinf @ =S f (@) = — e (14)

As we will discuss in Sect. 9, the difference is slight but significant. We will refer to

the T; operators in (11) as Demazure-Whittaker operators.
The following result generalizes Theorem 2 of [22].

Theorem 3.8 For any w € W, a simple reflection s;, and with v = ¢!,

i buw(zig)  fliiw) > L(w),

IR A (15)
T pu@g) ifl(siw) < L(w),

¢S,'w(z; g) =

where the T; and their inverses are as in (11) and (13).

Proof Recall from (2) that the Whittaker functions ¢, (z; g) are made with respect to
principal series with the Langlands parameter z~!. The result follows by expanding

Qxi z (Af, m(g) q)lzul )
in two different ways using the relation (9) and Proposition 3.7, respectively. Here one
has to use the fact that Aﬁi is an intertwiner and therefore commutes with 7 (g). This
produces a functional equation, which can be rewritten in the form of equation (14).
See [22, Theorem 2] for more details. O

Proposition 3.8 gives a recursion on Iwahori fixed vectors ¢,, which is independent
of the word used to represent w.

' All references to [22] are to the published version; the operators in the arXiv version are slightly different.
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Corollary 3.9 Given any w1, wy and a w-almost dominant weight X, let (s;,, . .., si,)
be any path in the Weyl group from w to wi, 0 Wy — Sj;w2 —> «++ —> Sj; + -+ Sj; W2 =
wi. Set e;; 1o be +1 or —1 depending on whether s;; is an ascent or descent, respec-

tively, in the Bruhat order. Then, with v = q_l,

b, (z; T wy) = ve(wZ)‘IZk ~~‘If1i1z)\.
Proof This corollary follows immediately from Proposition 3.6 and Theorem 3.8. It
generalizes Theorem 1 of [22], which evaluates the special case wy = 1. O

Corgllary 3.10 Forany g € G(F), the function ¢,(z; g) is regular as a function of z
on T (C).

Proof This is known on other grounds from Proposition 2.1 of [26], but let us show
how it follows from our results. By Remark 3.3 we may assume g = @ *w, and if
w = w;y, regularity follows from Proposition 3.6. Then for more general w = w; as
in Corollary 3.9, ¢y, (z; g) may be obtained by applying the %; and T !, and these
preserve regularity. O

Suppose that w = yz in W, with £(w) = £(y) + £(z). Then we write z<y w. The
partial order <z on W is the left weak (Bruhat) order. See [7] Chapter 3 for more
information about the left and right weak orders.

Corollary 3.11 Suppose that wa<pwy in the left weak order. Let A be a ws-almost
dominant weight. Then

uy (@@ Hwy) ="V, @), (16)

Proof If wy = wy, this follow from Proposition 3.6. Therefore we assume that
wr<ypwi. Let 5; be a left descent of wlw;] and let w’1 = s;wq so that wszw/l.
By induction on Z(wlwgl) we have

¢w’1 (z; w_)‘wz) = UZ(wz)d)w’lwz" (z; w_)‘).

Applying ¥; to both sides of this identity and applying Theorem 3.8 gives (16). O

4 Parahoric Whittaker functions

We now extend the results of the last section to Whittaker functions that are invariant
under so-called ‘parahoric subgroups’ which are intermediate between the Iwahori
subgroup J and the maximal compact subgroup K.

Let W be a Coxeter group with generators s; (i € I), which we will call simple
reflections. Let J be a subset of I, let Wy be the subgroup generated by the s; with
j €J,and let

W) ={weWw|ws;>wforall j eJ}. (17)
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Here > is with respect to the Bruhat order, but by the Exchange Property for Coxeter
groups ( [7] Theorem 1.5.1) the condition ws; > w is equivalentto £(ws;) = £(w)+1
in terms of the length function on W. By Proposition 2.4.4 of [7] every element of
W has a unique factorization wlwjy with wd € WJ and wy € Wj. Moreover, by the
corollary to that proposition, every coset w Wy has a unique representative of shortest
length, and w € WY if and only if w is that generator.

Lemma 4.1 Letw € WY. Suppose that s; is a simple reflection such thatw™'s;w ¢ Wy.
Then siw € WY. Assume furthermore that s;w > w. Then s;wy > wy forany y € Wy.

Proof Let us show that s;w € WJ. If not, then for some J € J we have s;ws; < s;w.
Since w € WJ we have ws; > w. Now there are two cases. First assume that
siw < w. Then ws; > w > s;w > s;ws;, and £(ws;) = £(s;ws;) + 3. This is a
contradiction since £(s;y) = £(y) £ 1 for any y € W. On the other hand suppose that
siw > w. By the Lifting Property of the Bruhat order (Proposition 2.2.7 of [7]) the
inequalities s;w > w, s;ws; < s;w and ws; > w imply that w < s;ws; < s;w. Since
£(siw) = £(s;) + 1 this implies that w = s;ws; and therefore wlsiw = sj € Wy,
contradicting one of our assumptions. Thus, s;w € Wj.

For the rest of the proof, we assume that s; w > w, and we will prove that s; wy > wy
for any y € Wj. Arguing by contradiction, assume that s;wy < wy. We claim that
either s;wy = w'y for w’ < w or s;wy = wy’ for y’ < y. Indeed, let s;, - - - 5;, be a
reduced word for w and s;,,, - - - 5;, be a reduced word for y. By [7] Proposition 2.4.4
L(wy) = L(w)+L(y),s0s;, - - -s; is areduced word for wy. By the Exchange Property
for Coxeter Groups (Theorem 1.5.1 of [7]) it follows that s;wy = s, - -+ 8, - - - 8},
for some m. If m < k we may take w’ = s;, ---5;, - - - 5, otherwise, we may take
Y = Sigey e Siy iy

First suppose that s;wy = w’y with w’ < w. Then s;w = w’ < w, contradicting
one of our assumptions. On the other hand, suppose that s;wy = wy’ with y' < y.
Then y/ € Wy since y € Wy and y' < y. Hence w™ls;w = y'y~! € Wy, also
contradicting one of our assumptions. This proves s;wy > wy. O

Definition 4.2 By a standard parahoric subgroup we mean a subgroup of K = G (o)
that arises as the preimage of a standard parabolic under the canonical map K —>
G(IF,). In particular, any such group contains the Iwahori subgroup J. We will denote
these groups by Kj where J is the index set of simple roots in the corresponding
standard parabolic subgroup P of G. We will denote the Levi subgroup of P by M
which has Weyl group Wj. With this notation Ko = J (the Iwahori subgroup) and
K1 = K (the maximal compact subgroup).

Forexample,if G = GL,, these may be constructed as follows. Letr = (ry, - - - , 1)
be a set of positive integers such that ), r; = r.Let P := P, be the parabolic subgroup
of GL, containing the opposite Borel B_ with Levi subgroup M = GL,, x --- x GL,,
embedded diagonally in GL,. The Weyl group Wy = S, x- - - x S, of M is a parabolic
subgroup of W = §, with J consisting of integers 1 < j < r — 1 such that j is not of
the form 1, r; + r2, r1 + r2 + r3, etc. Then the standard parahoric subgroup Kj is the
preimage of Pr(IF,) under the map K — GL, (F,).
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If w e WY let

lﬁg) = Z ¢wy» (18)

yeWy

where the ¢,, denote the standard basis Iwahori Whittaker functions defined in (2).

Proposition 4.3 The w;]) with w € WY are a basis of the Ky-fixed vectors in the
Whittaker model of a principal series I(z).

Proof Let k = Fq be the residue field. We have

Gk) = |_| B(k)wP (k) (disjoint)
weWwJ

by [11], Remark 2 in Section IV.2.5 and the fact that WJ are a set of coset represen-
tatives for W /Wj. (The parabolic P actually contains the opposite Borel subgroup to
B but the decomposition is still valid.) Pulling this back to K = G(0) we have

K= || Jiwky (19)
wewd

where J is the upper Iwahori subgroup. We have bijections of coset spaces

B(F)\G(F) «<— (B(F)NK)\ K <«— I_l N_(p)wKjy
weWwJ

where the first step follows from the Iwasawa decomposition G(F) = B(F)K and
for the second step we have used (19) and the Iwahori factorization J4+ = (B(F) N
K)N_(p). Therefore

G(F) = | | BEON-mwky = | | B(F)wKy,

wewd wewd

where for the last step we have used the fact that wIN_ (p)w C Kj. Hence 1 (z)Ks
has a basis of functions \Ilg) (w e wi ) defined by

1/2 : ’

] a8 (D) if w' e wWy,

Wy (bwk) = { 0 otherwise,

for w’ € W and k € Kj. Decomposing the support of \II;L into a union of J-cosets,
we see that \yi = Zy ewy Puys and projecting this identity into the Whittaker model,
the statement follows. O

Remark 4.4 One can deduce from Proposition 4.3 the dimension of the space of para-
horic fixed vectors in the unramified principal series. This is in accordance with the
work of Lansky [48] (see Theorem 1.1), where these dimensions were first computed.

W Birkhauser



Colored vertex models and Iwahori... Page190f58 78

Proposition 4.5 Suppose that w € WY and that s; is a simple reflection such that
w™s;w € Wy. Then x[f;L (z; g) is divisible by 1 — vz~% as a Laurent polynomial, and

(1 —vz=%)~! W,}IJ (z; g) is invariant under the reflection s;. Moreover siw > w.

Proof Lett = w™ls;w be the reflection that is in Wy. Assume y € Wy and 1y > y.
Then s;wy = wty and by Theorem 3.8 we have ¢y = T;¢yy. Thus

Iﬂg) = Z ¢wy = Z (¢wy +¢wty) =(1+%) Z ¢wy-
yeWy yeWwy yeWy
ty>y ty>y

Now using the fact that (T; — v)(%; + 1) = 0, we have T; 1//;], = vwg). Substituting
the definition of ¥; a small amount of algebra gives

(1 — vz (z; 8) = (1 — vz~ )yl (si2; 9). (20)

The function wg) (z; g) is a regular function on 7(C) by Corollary 3.10. The ring
O(T) of regular functions is a principal ideal domain; indeed it is a Laurent polynomial
ring. The functions 1 —vz® and 1 —vz™% are coprime. From the right-hand side of (20),
1 — vz~% divides the left-hand side, and it therefore divides w;L (z; g). Remembering
that w(w;) = —a;, we may rearrange (20) in the form

AT < v (2 8) >

4 .
1 — vz 1 —vz=%

and we have proved that this is an s;-invariant regular function.

The last assertion to be proved is that s;w > w. For this we note that with r =
w™ls;w € Wy, wt is the unique factorization of s;w into a product of elements of WJ
and Wj by Proposition 2.4.4 of [7] which was mentioned before, and by part (iii) of

that result, £(s;w) = £(w) + £(t) > £(w), as required. O

Proposition 4.6 Suppose that w € WY and that s; is a simple reflection such that
wls;w ¢ Wy. Then

Tyl @) ifsiw>w,

J . —
Vute 0= {0 o

Proof By Lemma 4.1, w € WY if and only if s;w € WJ. With this in mind, the two
cases are equivalent since we may interchange the roles of w and s; w. Therefore we
may assume that s;w > w. Let y € Wj. By Lemma 4.1 we have s;wy > wy and so
by Theorem 3.8 we have ¢,y = T;$yy. Therefore

w;],w = Z ¢s,-wy =% Z ¢wy = Tll//g)

yeWy yeWy

O
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In the following theorem, we show that Proposition 4.5 implies a Casselman-Shalika
formula for 1//1J = Zwewj ¢y for any fixed subset J. If A is a dominant weight for

G(C), the complex, connected Langlands dual group of G, then it is also a dominant
weight for the Levi subgroup M (©), the dual group of M having Weyl group WJ
So we may cons1der the irreducible character Xx of M(C) with highest weight A

We will denote by x; J(2) the value of this character on the semisimple element with

eigenvalues (z1, ..., z;). The root system Ay of M(C) is a subsystem of the root
system A of G(C).

Theorem 4.7 Suppose that X is a dominant weight for G. Then

W@o™) =[] 0 -vex@. @1)
aeAf
Ifw e WY then
vl g =Tuvl@ e (22)

Proof We will argue that the expression

vl(z; o)
l_[oteAjr (I —vz™)

(23)

is regular for z € 7(C), symmetric under the action of Wj, and independent of v.

If 5; is a simple reflection in Wy then we may write (23) as (1 —vz~%)~! wi] (z; o)
divided by the remaining factors, which are permuted by s;. By Proposition 4.5 this
shows that (23) is invariant under s; and so it is invariant under Wj.

Next let us show that (23) is regular on all of T (©). To see this, note that its potential
poles are in the union of the hypersurfaces z* = v (« € A}'). But by Proposition 4.5 if
«; is a simple root the hyperplane z* = v is not among the poles. As the polar divisor
is invariant under Wj, neither are any of the other loci z* = v. Hence (23) is regular.

Now the numerator and the denominator of (23) are polynomials in z;, Zi_l and
v, and the numerator is divisible by the denominator. We will argue that both have
degree |Ajr| = Z(wg) as polynomials in v where wg is the long element of Wy which
shows that the ratio is in fact independent of v. For the numerator, we may write
Wi] = ZweWJ ¢w and ¢y, (™) = T,2"; it follows from the definition of ¥, that

its degree in v is £(w), which takes its maximum at the long element wg, proving that

the degree is Z(wg). And clearly the denominator has the same degree.
Then (23) is independent of v and we may therefore take the limiting case v — 0
to evaluate it. Let

f @ — f(siz) f@ -2 fsiz)

NI = @)=
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We have 97 = 0; — 1. These Demazure operators are known to satisfy the braid rela-
tions; see for example [23] Propositions 25.1 and 25.3 but note that in Proposition 25.3
there is a typo and D; should be ;. If w = s;, - - - 5;, is a reduced expression define
Oy = 0j, - - - 0;, and similarly for 9.

When v — 0 the operator ; reduces to 9;” and so

lim ¢, (@) = 827"
v—0

By Theorem 2.1 of [17], it follows that (23) equals 3%z = 8wg z” and by the

weWy “w
Demazure character formula ([23] Theorem 25.3), this is X)‘I (z). This proves (21).
Now let us prove (22) by induction on £(w). If w = 1, there is nothing to prove.
Thus suppose that w = s;w’ where s; is a simple reflection and £(w’) < £(w).
Then w™ls;w ¢ Wy, since otherwise the last assertion of Proposition 4.5 would be
contradicted. Therefore by Lemma 4.1 w’ € WY and by induction I/fg, , = Twn/flJ .
Now Proposition 4.6 gives

Vi = %Tw] = Tuy],
proving (22). O

Remark 4.8 For Iwahori Whittaker functions Corollary 3.9 gives an algorithm to com-
pute ¢, atany value of g (which we can take to be on the form @ ~*w5). This depends
on Proposition 3.6, which gives the base case (@ *w), i.e. w; = wo, for a recur-
sive algorithm using Demazure-Whittaker operators, suitable for implementation on
a computer. Our parahoric results are not as general because we only have a direct
expression (without Demazure-Whittaker operators) for the base case (21) which is
only for w; = wy = 1. For an arbitrary base case w; = w» # 1 we need to fall back
on (18) which expresses t/f;L] (z ~*w») as a sum of duyy ( ~*w»). However since the
¢y are computable, this is not an obstacle to an explicit computation of W{L- In both
cases we may then compute all w;l)l (o ~*ws) from ngz ( ~*wy) recursively, taking
Proposition 4.5 and 4.6 into account. Alternatively, knowing all ¢,, we may compute
¥ (@ wy) directly by the sum (18).

5 Yang-Baxter equations from fusion

The models that we will be concerned with take place on planar graphs. In using the
term graph to describe these arrays we are deviating from usual terminology, where
edges have always two vertices, for we will allow open edges with only a single
endpoint. Thus we mean a set of vertices which are points in the plane, together with
edges that are arcs which either join two vertices, or which are attached to only a single
vertex. The edges which are only attached to a single vertex are called boundary edges.
The edges attached to two vertices are called interior edges. Every vertex is adjacent
to four edges. Edges can only cross at a vertex.
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B C

A D

Fig. 1 Left: a vertex adjoining four horizontal edges. Such a vertex will be called an R-vertex. Right: A
vertex adjoining two horizontal edges and two vertical ones. We will call such vertices ordinary. Each
vertex receives a label & corresponding to its Boltzmann weights

For every edge A in the graph there is a finite set X 4 of values called spins that
may be assigned to the edge in a state of the system.

Assumption 5.1 At each vertex, let A, B, C, D be the four adjacent edges, arranged
so that A and C are opposite edges, as are B and D. Then ¥4 = X¢ and X3 = Xp.

Each vertex has a label &, and an associated set of Boltzmann weights B¢ . This is
a rule which assigns a complex number to every possible choice of spins at the four
adjacent edges of the vertex. Thus if A, B, C, D are the four adjacent edges to a vertex
with label &, this data consists of a map

Be 1 ZaxEpxEcxZp—C.

We call the set of spins (a, b, c,d) € ¥4 X ¥p X ¢ X Xp a configuration at the
vertex. The configuration is admissible if B¢ (a, b, ¢, d) # 0.

Assumption 5.2 Ateach vertex, if three out of four spinsin (a, b, ¢, d) in an admissible
configuration are given, the fourth is uniquely determined.

In a system &, the data specifying the system are the graph itself, the spinsets X4,
the Boltzmann weight data B¢ for each label &, and for every boundary edge A a
fixed boundary spin by € ¥ 4. For example, the labels £ might be complex numbers
and B¢ are uniformly described as a set of complex-valued functions of & for each
configuration. Note that the spins of the boundary edges are fixed, and are part of the
data specifying the system.

A state s of the system is an assignment of spins to all edges. That is, for each
edge A there is specified a spin 54 € X 4. For boundary edges s4 must be the fixed
boundary spin b4, while the interior edge spins are allowed to vary. We will use the
notation s € G to mean that s is a state of the system &. The Boltzmann weight B(s)
of the state is the product of the Boltzmann weights at the labelled vertices and the
state is said to be admissible if all of its vertices are admissible. The partition function
Z(G) is the sum of the Boltzmann weights of all the (admissible) states.

In the systems that we will consider, the edges may all be classified as either
horizontal or vertical. There will be two types of vertices. In one type, the vertex
intersects four horizontal edges and will be called an R-vertex. In the other, called
ordinary, it intersects two horizontal and two vertical ones. See Fig. 1.
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Fig. 2 Fusion. This procedure replaces a sequence of vertices by a single vertex

Next we explain a procedure we refer to as fusion for producing new kinds of edges
and vertices from given ones. (This is partly inspired by a process of the same name
described in Borodin and Wheeler [9], Appendix B that goes back to [46].)

Given a sequence of edges, Ay, --- , A;; we may replace these with a single edge
A such that Xz = [, Z4,. This edge is called the fusion of the edges {Ax}. Next
assume that we have a sequence of m ordinary vertices with labels &, --- , &, such
that the vertex with label & is adjoined to the vertex with label &1 by an edge Ey if
1 < k < m — 1. Let the remaining adjacent edges of the vertex with label & be By
and Dy and A (if k = 1) and C if k = m. Thus the configuration is as in Fig. 2 (left).

Now we may construct the fusion B of the edges B; as above, as well as the fusion
D of the edges D;. We may then fuse the vertices, replacing the sequence of m vertices
with labels &1, . . ., &, by a single vertex labeled & (as in Fig. 2). It remains to discuss
the Boltzmann weights. Let spins (a, b, c,d) € ¥4 X £ X X¢ X Xp. By definition
b and d are sequences of spins by € Xp, and dy € Xp,. Fixing (a, b, ¢, d), it follows
from Assumption 5.2 that the system in Fig. 2 (left) has at most one (admissible) state.
We define B¢ (a, b, ¢, d) to be its partition function. It is clear that Assumption 5.2
remains valid for this fused vertex.

At any vertex, it will be useful to choose a clockwise ordering (A, B, C, D) of
the adjoining edges. In our illustrations, we will always choose the ordering as in
Fig. 1. If A is an edge, we will denote by V4 the free vector space with basis X 4.
By Assumption 5.1, we may identify V4 = V¢ and Vp = Vp. Then the Boltzmann
weights at a vertex with label & define an element of End(V4 ® Vp) by

a®br Y Pr(a.b.c.d)c®d). (24)
(c,d)eXcxXZp

If the vertex is an R-vertex we will denote this endomorphism as Rg; this endomor-
phism is called an R-matrix. For ordinary vertices, we will denote the endomorphism
(24), which is called a transfer matrix, as Tg.

Definition 5.3 Suppose that, for ordinary vertices labeled &, n and R-vertex labeled
¢, there exists Boltzmann weights such that for every choice of boundary spins
(a,b,c,d, e, f) the partition functions of the two systems in Fig.3 are equal. Then
we say we have a solution of the Yang—Baxter equation.

Let A, B,C, D, E, F be the boundary edges of these configurations, so thata € X4,
etc. By Assumption5.1 V4 = Vp,Vp = Vgand V¢ = Vp.Then R; € End(VA®Vp),
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Fig.3 The Yang—Baxter equation
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Fig.4 Setup fr the Yang—Baxter equation with fused vertices & and n

Tz € End(V4 ® V¢) and T;) € End(Vp ® V). The Yang-Baxter equation can be
expressed in the formula

(R)12(Te)13(Ty)23 = (Ty)23(Te)13(Re )12, (26)

an identity in End(V4 ® Vp ® V), where, in the notation common in quantum group
theory, (R;)12 denotes R; acting on the first two components of V4 ® Vg ® V¢ and
so forth. Note that the left side of (26) corresponds to the right side in Fig. 3, and vice
versa. We wish to consider examples of (25) where the ordinary vertices arise from
the fusion process described above. Thus the left configuration can be expanded as in
Fig.4.

Lemma 5.4 Suppose there exists a sequence of R-vertices with labels ¢1, ..., {nyt1
such that {1 = {u4+1 = ¢ and such that for each 1 < k < m, the two partition
functions in Fig.5 are equal. (Note that the R-vertex of the left-hand side is i while
the one on the right-hand side is {x+1.) Then the auxiliary Yang—Baxter equations in
(27) induce a solution to the Yang—Baxter equation in (25) for the fused system.
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Fig. 5 Auxiliary Yang—Baxter equations. These imply a Yang—Baxter equation for the fusion situation in
Fig. 4. In these equations, the R-matrix changes after moving past the vertical edges. After m such changes,
it is back to its original form

Proof This follows from the usual train argument. Each time the R-matrix moves to
the right, ¢ is replaced by 1. Since ¢ = {41 = ¢, the statement follows. O

Remark 5.5 We have chosen to call the method for producing new solutions to the
Yang—Baxter equation outlined in this section ‘fusion,” despite some differences with
the prior notion in the literature (see for example [46] and Appendix B of [9]). Both
methods construct new solutions from old by forming new weights using one-row
partition functions. The typical fusion construction features two steps: first summing
over all one-row systems with given multiset of spins on its vertical edges (which
is the graphical manifestation of the R-matrix of a tensor product of quantum group
modules) and then taking a further weighted average (which manifests the resulting
R-matrix for projection onto irreducible constituents of the tensor product; see for
example (B.2.1) of [9]). However, our fusion prescribes a set of labels for each vertex
in the one-row system, our weights are allowed to vary based on the label, and we
do not require a second summation acting as a projection. Our example of weights
for fusion in the next section (see Fig.7) will have vertices labeled by colors and the
weights depend critically on this color.

6 Yang-Baxter equations for colored models

We shall describe Yang—Baxter equations for systems that generalize the Tokuyama
model introduced in Sect. 2 by replacing its © spins by a set 3 (called the palette) of
r different colors. The set B is ordered, and when convenient we may take ‘3 to be
the set of integers 1 < c < r.

If A is a horizontal edge, the spinset X4 is {@} U ‘B. On the other hand if A is
a vertical edge, the spinset X 4 is the power set of 33 where it will be convenient to
identify the empty set with @® as before. Now in a state s of such a system, we say
that a horizontal edge A carries the color ¢ if s4 = c. If A is a vertical edge, we
say that A carries the color c if ¢ € s4, remembering that s4 is a subset of 3. The
vertical edges are thus allowed to carry more than one color. But since X4 is a set
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Fig.6 The colored R-vertex weights. The colors ¢ and d are an arbitrary choice of distinct colors in ‘B. If a
configuration does not appear in this table, the Boltzmann weight is zero. The associated R-matrix equals
that of evaluation modules V(z;) ® V (z;) of the quantum supergroup Ug (gl(r[1)) for g = 1/4/v

@ © © @ ©) ©
D | D | OO | @D |OO® |
® © © ® © ®

zi ifd=c e
1 UZ ife>d —v i' 1fcfa? (1—v)z 1
o otherwise
1 ife<d

Fig. 7 Boltzmann weights for monochrome ordinary vertices. The weight depends on a pair of labels: a
complex number z; (suppressed in pictures above) and a color (denoted ¢ above). Note that admissible
vertical edges adjacent to the monochrome vertex may only carry the color ¢ of the vertex, while adjacent
horizontal edges may carry any color. In particular, in the diagrams above, ¢ = d is allowed

(instead of a multiset as in bosonic models) each color appears along a vertical edge
with multiplicity at most 1. The horizontal edges may carry at most one color.

Having described the admissible configurations at each vertex, it remains to describe
the Boltzmann weights for both the ordinary and the R-vertices in colored systems.
The Boltzmann weights of the R-vertex are given in Fig. 6.

Remark 6.1 It may be checked that with the Boltzmann weights in Fig. 6, the R-matrix
agrees with a Drinfeld twist of the (ungraded) R- matrlx of evaluation modules V (z;) ®
V (z;) for the quantum affine Lie superalgebra U, / f(g[(r| 1)) (cf. [44, Definition 2.1]).
The r colored spins span one graded piece in the super vector space, while the @ spin
spans the remaining one-dimensional piece.

The Boltzmann weights of the ordinary vertices, which adjoin two horizontal edges
and two vertical edges with many coloring possibilities, are harder to describe. We
will define these by means of fusion, starting with simpler monochrome vertices:
vertices that adjoin only monochrome edges that are only allowed to carry at most
one particular color. Each monochrome vertex is itself assigned a color ¢ € ‘3, and
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(1 —v)z if ¢ >d, left: 1 left: (1 —v)z
(—v)(1—wv)z ife<d. right: (1 —v)z; right: —v

Fig. 8 Ordinary fused vertex constructed from monochrome vertices by fusion for r = 2. Left: a fused
vertex (compare with Fig. 10). Middle: The case ¢ > d, using weights from Fig. 7. Right: The case d > ¢

the spinset of a vertical edge attached to that vertex is {®, c}. For horizontal edges,
the spinset is {®} U P just as before. The Boltzmann weights for the monochrome
(ordinary) vertices are given in Fig.7.

Convention 6.2 (Monochrome vertices) Now the admissible ordinary vertices and
their weights may be described by fusion of monochrome vertices as detailed in
Sect.5. In a model with r colors, we replace each ordinary vertex by a single row
of r monochrome vertices with color labels arranged in ascending order from left to
right. Recall that a vertical edge A adjacent to an ordinary vertex is decorated by a
subset 54 of . For the corresponding monochrome vertices we color the c-th such
edge (with color ¢) if and only if the color ¢ appears in the set s 4.

Remark 6.3 Looking ahead to Sect.7, we will consider systems made from these ordi-
nary, fused vertices. Regarding the vertex as a fusion, we may replace the entire system
by an expanded or monochrome system with monochrome vertices; each column of
vertices is replaced by r different vertices. Then we may refer to the system with fused
edges as the fused system. See Fig. 16 for an example of this procedure. It follows
from the definition of the fused weights that the fused and expanded systems have the
same partition function. Indeed, there is a bijection between the states of the fused
and expanded systems, and corresponding states have the same Boltzmann weight, by
definition.

As described in Sect. 5, the Boltzmann weight of the fused vertex is just the partition
function of the single row of these ordered » monochrome vertices, which has at most
one admissible state. In Fig. 8, we compute an example of a fused Boltzmann weight
when r = 2 from the corresponding monochrome vertices. In Fig.9 we give all the
fused Boltzmann weights (for any r) in which the vertical edges carry at most one color.
The possible cases in which vertical edges carry two colors are shown in Fig. 10. For
r > 2 one would have to complete these with similar tables for vertical edges carrying
more colors. At the end of this section we will give all the fused weights in a closed
form in a notation similar to the one used in [9]. See Fig. 12.

It remains to discuss the Yang—Baxter equation for fused vertices, which will
result from auxiliary Yang—Baxter equations for the monochrome model according
to Lemma 5.4. We first need to define monochrome R-vertices for use in (27), gen-
eralizing the R-vertices in Fig.6. These will play a role of the vertices labeled ¢
in Lemma 5.4, but now each such R-matrix depends not only on a pair of complex

) Birkhauser



78  Page 28 of 58 B. Brubaker et al.

oo oo oo

® @

1 zi ife>d | (1—v)z ife>d
vz, ife<d | O ife<d

@%@ @ -® @?@

©
Y 2 (1 —v)z

Fig.9 Fused weights (I). These are the Boltzmann weights in which the vertical edges carry no more than
one color. Since edges can carry more than one color, this is not a complete list of the possibilities. In this
figure, ¢ # d except where explicitly allowed
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Fig. 10 Fused weights (II). The vertical edges can carry more than one color, with multiplicity at most one
(so ¢ # d in this figure). These are the extra possibilities when at most two colors appear

parameters z;, z j, but also on a color c¢. The Boltzmann weights for these are given in
Fig.11.

Let R(z;, z;) denote the R-matrix constructed with the weights in Fig. 6 according
to (24), and if 1 < ¢ < r is a color, let R© (zi, zj) denote the colored R-matrix
constructed from the Boltzmann weights in Fig. 11 where the vertex is labeled by
the color c. Note that R = R. Also, let 7()(z;) denote the matrix associated with
the monochrome (ordinary) vertices labeled by the color ¢ whose Boltzmann weights
are described in Fig.7. We recall that the colors ¢ are identified with the integers
1 < ¢ < r, so there is a next color ¢ + 1 unless c is the last color ¢ = r, in which
case we define R D := R. We may now describe auxiliary Yang-Baxter equations
involving the monochrome vertices.

Proposition 6.4 If 1 < ¢ < r, then

ROz, z))12T () 13T (2)23 = T(2)3 T (2)13R“TV (21, 2j)12. (28)

W Birkhauser



Colored vertex models and lwahori...

Page290of58 78

®_o
©
& B

Q_p
& o

CWo
& o

Q.2
& o

2y — 0z

Zp —VZj

¢ = d allowed.

v(z—z) ife>d
Zp T %4 ifd>e
¢ =d or e allowed

(I1—-wv)z; ife>c>d
orc>d>e
ord>e>c
ifd>c>e
orc>e>d
ore>d>c

(1 —v)z

Qo
& o

Q_p

oo

@_o
oo

EWo

(1—v)z

(1—v)z

v(z — z;)
¢ = d allowed

o

c= d allowed

@@/@

ofRO

@Q_o
& w

(1—v)z
¢ = d allowed

(1—-v)z
¢ = d allowed

Fig. 11 R-vertices for auxiliary Yang—Baxter equations. These are labeled by a color ¢ and a pair of
parameters (z;, z;) (suppressed in the pictures above). If the color ¢ is minimal, that is if ¢ < d, e for all
colors that appear in this figure, this agrees with the R-vertices in Fig. 6. In this figure, the colors ¢, d, e are
distinct except when ¢ = d or ¢ = e is explicitly allowed

Proof Note that since we are using monochrome edges, at most three different colors
can appear in the boundary (and interior) spins in the equivalent description (27) of
(28). There are two more colors ¢ and ¢ 4+ 1 which must also be compared with these
three in the values for 7, R, R(tD from Figs. 6 and 7. All possibilities are covered
if we take 5 colors and we conclude that if the Yang—Baxter equation is checked for
r = 5 then it is true for all . We checked the Yang—Baxter equation for r = 5 using
a computer and (28) is proved. O

Theorem 6.5 The Yang—Baxter equation for colored models is satisfied:

R(zis zj)12T (zi) 13T (zj)23 = T(27)23T (zi)13R(zi, 2j) 12
Proof This follows from Proposition 6.4 and Lemma 5.4. O
Remark 6.6 Restricting the palette I3 to a single color, the weights in Figs. 9 recover
the weights used to compute Tokuyama’s deformation of the Weyl character formula

as seen for example in the row labeled ST (i) of [20, Table 2] if we replace this color
with a © spin. The R-matrices for the two models are also equal.
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Fig. 12 Colored Boltzmann weights in a style resembling [9] (2.2.2) or (2.2.6), except that we are using
+ for the ‘colorless’ horizontal edges, and in place of their multiset I of colors, we use a subset X of the
palette. We are assuming ¢ < d

We will now describe the fused weights in a closed form. For comparison with [9],
we will choose a notation close to theirs. In [9], vertical edges are labeled by tuples
I= (I, -, 1) € N representing a state in which the k-th color has multiplicity /.
The principal difference between their systems and ours is that colors can only occur
with multiplicity O or 1 in our systems. In other words, if we imitate their setup, each
I € {0, 1}. Hence the same data can be specified by the subset ¥ = {k | Iy = 1} of
the palette ‘.

In [9], an operation adds (resp. removes) a color a to the tuple I, that is, increments
(resp. decrements) I, and the resulting tuple is denoted I} (resp. I,). We therefore
introduce the corresponding operations on the set ¥ and denote £ = ¥ U {a}, to be
used only if a ¢ X, and X = ¥ \ {a}, tobe used only if ¢ € X. Finally ifa € X
and b ¢ X, we will denote E;rb_ = X U {a} \ {b}, also corresponding to the I:b_ in
Ol If1 <a<b<r,wewilldefine X, ={c€ X |a <c<b}.

In Fig. 12 we give our Boltzmann weights in closed form using these notations. It is
easy to see that these are the correct weights obtained from the monochrome weights
by fusion.

Remark 6.7 The weights in Fig. 12 closely resemble weights presented in Section 2.2
of [9]. One important distinction is that our weights are ‘fermionic’ — we do not
allow multiple copies of any given color on an edge — while their weights are
‘bosonic’ (allowing multiplicities). Nevertheless, we may compare the weights of
the multiplicity-free colored vertices in [9] with those in Fig. 12; even allowing for
changes of variables and Drinfeld twisting, small differences persist. For example, we
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may take the mirror image of the weights in [9] (2.2.2) specialized by setting s = 0 and
compare to the weights in Fig. 12 by making the substitutions v = ¢! and z; = x.
Note that if no color occurs more than once on the top boundary then no vertical edge
on the interior of the grid will ever have a color with multiplicity larger than one,
so that the distinction between bosonic and fermionic weights becomes unimportant.
Then both weight schemes have the same admissible vertices grouped into types as
in Fig. 12. Upon Drinfeld twisting, the Boltzmann weights agree in their powers of x
and (1 — ¢~ ") but differ by various factors of —1 and ¢ that cannot be resolved. Fur-
thermore, although we have noted that bosonic weights can be excluded by imposing
boundary conditions they are still important for the Yang—Baxter equation, so the R-
matrices for [9] and for our system must definitely be different. Indeed, our R-matrix is
a Drinfeld twist of the R-matrix for the quantum group for gl(r|1) while the R-matrix
in [9] is a Drinfeld twist of the one for sl,41. For further comparison of our models
with [9] see arXiv version 1 of this paper [14].

7 The lwahori lattice model

We now describe a family of statistical-mechanical systems made from fused vertices
whose partition functions may be shown to give values of Iwahori Whittaker functions
in the case G = GL,. Indeed, if g € GL,(F), where F is a nonarchimedean local
field, we will see that the Whittaker function ¢,,(g) defined by (2) can be represented
as the partition function of such a model. First note that, as mentioned in Remark 3.3,
we may assume that g is of the form @ ~*w, for some weight A and Weyl group
element w;. By Lemma 3.5, we may assume that A is wp-almost dominant. Finally,
multiplying g by @ - I, for some N just multiplies ¢,,(g) by (z1 - - - z,)", which
corresponds to adding N to each part of L. Using this flexibility we may assume with
no loss of generality that g € Mat, (0) and that the entries in A are nonnegative.

Having already explained how the Boltzmann weights for fused vertices are defined,
it remains to explain the boundary conditions for the model and the labels on each
of the vertices. For any positive integer r, the boundary conditions and vertex labels
depend on three pieces of data: a partition denoted A + p with at most r nonzero parts,
a pair of permutations wi, w2 € S, = W, the Weyl group of GL,, and r complex
parameters z = (z1, ..., zr). The systems we present here, denoted G 3 ;. w, and
referred to as Iwahori systems, may be considered as simultaneous generalizations of
those appearing previously in the Tokuyama model and in the colored systems of [17].
Our goal in this section is to equate the partition function of &y ; ), w, With the value
of the Whittaker function ¢y, (z; @ ~*wy) of Sect. 3.

With r fixed, let p = (r —1,..., 1,0 andlet A +p = (A +7r —1,---,A)
be a partition, whose parts are written in weakly decreasing order as usual. In the
identification of the weight lattice of GL, with Z", the corresponding weight A satisfies
(o, A) = —1 for all simple roots ¢, a necessary condition for the non-vanishing of the
Whittaker function according to Lemma 3.5.

Given the partition A 4 p, we form a rectangular lattice consisting of N + 1 columns
and r rows, where N is any integer at least A; +r — 1. The columns will be numbered
from left to right from N to O in decreasing order. The rows are numbered 1 to 7, in
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Fig. 13 Summary of boundary conditions for the colored systems. Let ¢ = (cy, - - - , ¢,) be a semistandard
flag of colors ¢ = - - - 2> cr; for the systems &y ), w,w,, if we identify the colors ¢; with integers we take
¢j =r + 1 —i, while in Sect. 8 we will take more general flags. On the top boundary the minus signs are
positioned at columns A; + r — i with color (wp¢); = sz’l (i) and on the right boundary the edge in row

i is colored (wc); = wal(i)

increasing order from top to bottom. Given z, each vertex in the i-th row receives the
label z;. The Boltzmann weights are the fused weights in Fig. 12. Unless otherwise
stated we will henceforth assume that the parameter v appearing in the Boltzmann
weights (as well as in the Demazure-Whittaker operators among other places) equals
g~ ! with ¢ the cardinality of the residue field of F. We will prefer the use of v to avoid
confusion in later sections where, to follow tradition, ¢ will have another meaning.

It remains to describe the boundary spins and colors located around the edge of the
rectangular grid. They depend on the choice of the weight A and the two Weyl group
elements wy, wy as follows and summarized in Fig. 13.

We have colors numbered 1, .. ., r at our disposal. For the top boundary, we assign
the color r + 1 — w, 1(i ) to the edge in the column labeled A; + r — i for each
i €{l,...,r} and a @ spin in the remaining columns. That is, we color each edge
whose column index is a part of A + p and we have multiple colors on a given top
boundary edge according to the multiplicity of parts in the partition. Then, we put
a @ spin on all the left and bottom boundary edges. This leaves the right boundary
edges to be described. These will depend on the choice of permutation w; € W for the
system. The right boundary edge in the i-th row is assigned the color r + 1 — wl_1 @).
For wy = 1, these boundary conditions are exactly as in [17]. A particularly simple
admissible state in an Iwahori system is given in Fig. 14.

In any state of the system &y ) w,,w,, the edges of any one particular color form
a line or path starting at the top boundary and ending at the right boundary. This
depiction of admissible states as configurations of lines is present in many works on
lattice models, for example Baxter’s book [5], Chapter 8. The idea of using colored
lines and refined systems that specify starting and ending points of each colored line
is presented in [9]. We exploited this idea in a prior paper [17] to give a new theory of
Demazure atoms, nonsymmetric pieces of Schur functions. The colored weights in this
paper specialize to those of [17] by setting v = 0, which leads to a vast simplification.
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Fig. 14 The ground state for r = 3, A = (5,2,0) so A + p = (7,3,0), w; = wy = 1 (the identity
permutation), and z = (z1, 27, z3) is an arbitrary triple of complex numbers. The top row colors read from
left to right are are (3, 2, 1). The colors on the right edge, read from top to bottom, are also (3, 2, 1). This
is the unique state of the system &, 1 1. Its Boltzmann weight is 2P Assuming wy stays fixed, the
monomial partition function of the ground state is the “seed” from which the partition functions for systems
corresponding to other wy are derived by application of Demazure operators

10~
D@
1@ -
©-1-0-

@
-
-
-
-
)
o)
N

In particular, every edge in [17] may carry at most one color (even in the fused model)
and two colored lines can cross at most once. In this paper, weights and subsequent
Yang—Baxter equations are understood via fusion, and two colored lines can cross
more than once.

Let Z(S,.2,w,.w,) denote the partition function of the system G 5 y;,w,. We will
now demonstrate that this partition function satisfies the same functional equation
as the Iwahori Whittaker function ¢,,, in Theorem 3.8 under Demazure-Whittaker
operators using the Yang—Baxter equation. It will be convenient to conjugate the
Demazure-Whittaker operators T; of (11) as follows

T, =z°%;27". (29)
such that
T @ =l s+ @) (30)
1 —z% 1 —z%
and
1 %= _ (v—1)z%
T, ‘f(l)——v(l_zai)f(szl)-l-—v(l_zai)f(l)- 3D

Proposition 7.1 For any partition ) + p, simple reflection s;, and any pair of Weyl
group elements wi, wy € W,

TiZ(Gz,A,wl,wz) ifL(siwy) > £(wy),

-1 . (32)
T Z(Spnwywy) if Llsiwy) < £(wy).

Z(Gz,k,siuu ,wz) =

) Birkhauser



78  Page 34 of 58 B. Brubaker et al.

Fig. 15 Top: the system I I
Sy;z.0,wy ,w, With the R-matrix ‘ ‘

attached. Bottom: after using the Zidl— e+ —Zit1 @
Yang—Baxter equation ﬁ

Proof Repeated use of the Yang—Baxter equation gives the equality of the partition
functions in Fig. 15.

Using the R-matrix weights from Fig. 6, we obtain the following identity of partition
functions:

(zi — UZi+1)Z(6siz,k,w1,w2)

_ A= 02i41 26z p wywy) + Gkt = 2D Z(Gzp 5wy wy) i Esiwr) > Lwy),
(I =)z, Z(Gz 0wy, wy) +V(@it1 — 20) Z(Sz n 5;wy,wp) if £(s;wy) < £(wy).
(33)

Consulting the table in Fig. 6, there is one possible configuration for the R-matrix for
the top state in Fig. 15, and two possible configurations for the bottom state, account-
ing for the three terms in the identity (33). The weights for the latter two R-matrix
configurations are separated into the two cases shown for the right-hand side of (33)
where £(s;wi) > €(wq) is equivalent to d > c using the color-assignment of Fig. 15.
Note that we take (i, j) in Fig.6 tobe (i + 1, i).

Setting z% = z;/z;+1, and rearranging terms in (33) upon division by z;4+1, we
obtain the desired equality. O

We have noted in Remark 6.3 that we may replace a system such as &gz j w;,w,
made with fused Boltzmann weights by an equivalent system with r times as many
vertices, using monochrome weights. The expanded monochrome system will appear
in the following proof. See Fig. 16 for an example.
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Theorem 7.2 Given any wi, wy € W, let A be a wy-almost dominant weight and let
Sy, p,wy,wy be the corresponding Iwahori system. Then

Z(Gpiwywn) = 2w, (z; & wn). (34)

Proof Comparing Proposition 7.1 and Theorem 3.8 while bearing in mind (29), both
sides of (34) satisfy the same recursive formula, so if (34) is true for one value of wy,
it is true for all w;. Thus we may assume that w; = w;.

We will show that when w; = wy = w the system has a unique state. We will use
the monochrome model, in which each vertical edge has been broken into r distinct
vertical edges, and the color c, if we identify ¢ with an integer 1 < ¢ < r can only be
carried by the c-th such vertical edge. The following argument shows that the condition
that X is wy-dominant implies that the sequence of colors on the top boundary edges
are the same as the sequence of colors on the right boundary edges. By definition of
&2, w,w the sequence of colors on the right edge are r + 1 — w~ (). On the top edge,
the color in the A; +r — i column is also r + 1 — w™! (i), and the sequence of integers
A; +r — i is weakly decreasing. Since columns are labeled in decreasing order, we
see that if the A; 4+ r — i are distinct, then the colors are in the same order on the top
boundary and on the right boundary, as claimed. But we must consider what happens
if several A; +r — i are equal, asin Fig. 16. If A; +r —i = Aj4+1 +7r — (i + 1) then
(A, ") = —1 so our condition that % is w-almost dominant implies that w e is a
negative root. Therefore w~Y(@) > w1 + 1) and so the colors on the right edge
intowsi,i +larer+1—w ') <r+1— w4+ 1). Now let us see that this
agrees with the condition for the top boundary. Indeed, when we split the vertices into
monochrome vertices as in Convention 6.2, they are in increasing order.

We have shown that the colors of the top boundary edges of the monochrome
model are in the same order as those of the right boundary edges. From this it is
easily deduced that there is only one possible state, and that every colored line crosses
every other colored line (exactly once). We need to consider the Boltzmann weights
that arise from these crossings. Consulting the second case in Fig. 7 we see that when
¢ > d, the crossing produces a factor of v, otherwise it does not. The total number of
such crossings is the number of inversions of w1, that is £(w). Also in the i-th row,
using the fused (non-monochrome) description, the number of factors z; will be the
number of vertices with a colored edge to the left, which will be z?" +7=1 Therefore the
Boltzmann weight of the state is therefore v¢*)z**#. By Proposition 3.6 this equals
z° ¢y (2, @ ~*w), and this concludes the proof. O

Proposition 7.3 Let ' € 7. There exists a unique pair (w, 1), withw € W and A a
w-almost dominant weight, such that

w(p) =21+ p.

Proof We may find w and A = (A1,---,A,) such that w(u') = A+ p and A + p
is dominant. Clearly A is unique but w may not be if we only require w(u') to be
dominant. However the stronger condition that w(u’) — p is w-almost dominant will
force w to be unique as follows.
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Fig. 16 The unique state of &z 5 v w, for G = GL3 withw; = wy = sy in W = S3and 2 = (2, 1,2)

shown with fused vertices (top) and monochrome vertices (bottom). Note that while A is not dominant, it

is wp-almost dominant. The partition function vz‘l‘z%z% of this system equals z* ¢y, (> —X5)

We recall that w—la; € AT if and only if £(s;w) > €(w). The w such that
w(') = A + p lie in a single left coset of the stabilizer of A + p, which is a Coxeter
group generated by the s; such that A; + 1 = A;1 1. But the condition that w(u') — p
is w-almost dominant is equivalent to the assumption that £(s;w) < £(w) whenever
Ai + 1 = A;41. So this condition means that any s; among the generators of this
stabilizer is a left descent of w. Thus clearly there is a unique w in this coset such that
A is w-almost dominant, and that is the longest element of W such that w(u) = A+ p.

O

Remark 7.4 As noted above, the ‘standard basis’ of Iwahori Whittaker functions ¢,
are determined by their values at z ~*w,. We have shown in Theorem 7.2 that these
values are partition functions of certain systems Sy 3 w,,w,. Proposition 7.3 shows
that the partition function of every Iwahori system is a value of an Iwahori Whittaker
function. Indeed, the data describing the system are colorings of the top and right
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boundary edges in the fused model. In other words, the data are two maps from the
set of colors to the top boundary edges (labeled by columns) and to the right boundary
edges (labeled by rows). The map to rows is bijective but the map to columns can be
any map; as in Fig. 16, where colors 1 and 2 (blue and green) map to the same column,
it does not need to be injective. Let 1; be the column corresponding to the (r +1—i)-th
color. Applying Proposition 7.3 to " = (), - - - , u;.) produces a pair (w2, 1) such that

A is wa-almost dominant and wou’ = A + p. In column A; + p; = (wau'); = u;)_,(l,)
2

we then have the color 7 + 1 — w, 0 exactly as specified for the top boundary edges
in Fig. 13. Thus, from every p’ we obtain a system Sy, 1, w, With w; determined by
the permutation of colors on the right edge.

8 The parahoric lattice model

In this section we will generalize the Iwahori lattice model to allow multiple colored
lines of the same color. This allows us to represent parahoric Whittaker functions as
partition functions. See Fig. 17 for an example.

We will call a sequence of r colors a flag. The boundary conditions of the colored
systems are represented by two flags: one on the top edge, and one on the right edge,
which is a permutation of the former. A flag ¢ = (y1, ..., ) is called standard if
y1 > --+ > V¥, and semistandard if y; > --- > y,. Since we have a palette of r
colors there is a unique standard flag, and if, as in Sect. 6, we identify the colors with
integers 1 < ¢ < r, then the unique standard flag is (r,r — 1, ..., 1). Any flag may
be represented as we = (¥,,-1(1ys - - - » Viy-1(r))» Where ¢ is a semistandard flag and
w € W = §,. For the Iwahori systems in Sect. 7 every color appeared exactly once on
the top boundary and on the right boundary, meaning the boundaries were represented
by permutations wi, wy € W of a standard flag ¢. For the parahoric systems these
boundaries will instead be represented by permutations of a semistandard flag.

If ¢ is a semistandard flag then we may write

=W L) =L b (35)
withcy > -+ > cxand Y r; = r. Here the notation means that we have r| copies of ¢
followed by r, copies of ¢, and so forth. The stabilizer of this flag in W is the parabolic
subgroup Wy = §,; x - - - x §,,, which is the Weyl group of GL,, x - -- x GL,,. Here,
using the notation of Sect.4, J is the index set of simple reflections generating this

subgroup of W, that is, all simple reflections except s,,, Sr,4r,, - - - . If a general flag
is written we with ¢ = (c?1 s cgz, e, c,?‘) then we may choose the representative w to

be in WJ, meaning that it is the shortest element of the coset w Wj.

We now explain the parahoric lattice model generalizing the Iwahori lattice model
of Sect.7. Let ¢ be a semistandard flag parametrized as above and let wy, w, € WJ.
Assume that A is wp-almost dominant.

To this data we associate a parahoric system 6‘;’ owp.w, s follows. We start from
the same construction as for the Iwahori lattice model, with the only difference being
which boundary conditions we allow. We take the top boundary edge spin in column
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Fig. 17 Two states for parahoric Whittaker functions corresponding to the Levi subgroup GLy x GLj C

GL3. The set of simple reflections in this Levi subgroup indexed by J is {s1}. On the left we have a state
for the system Gg awy,wy with A = (2,1,0), w; = 1 and wy = s2, and on the right we have a state for

the system with A = (2,2, 1), w; = l and wy = 53

Ai +r —i to be the color (wpc); = Yyl iy the remaining top boundary edge spins are
@®. The right boundary spin in row i is (wj¢); = Yur iy The boundary spins on the
left and bottom edges are @. For the interior, we use the same Boltzmann weights in
Fig. 12 as before. Note that if ¢ is a standard flag we recover the Iwahori lattice model
from the parahoric model.

Recall that our ‘fermionic’ Boltzmann weights do not allow more than one instance
of the same color on a given vertical edge. The following proposition implies that this
requirement is satisfied for the top boundary edges (and therefore for all vertical edges).

Proposition 8.1 Suppose that wy € WY, and assume that X is a wo-almost dominant
weight. If Aj +r —i = Aj +r — j then Vst # Yust(y:

Proof If 1 < i, j < r let t;; denote the transposition in W = S, that interchanges i
and j. Then obviously

Vi =Yj < tij € Wy. (36)

Without loss of generality assume i < j. If A is wy-almost dominant then A + p is
dominant, so the sequence A; 4+ r — i is monotone nonincreasing. Therefore

Aitr—i=Ap+r—i—l=---=%j+r—j
and so (A,’) = (L, q7,) = -+ = ()»,ajyfl) = —1. Because A is ws-
almost dominant, it follows that w, 1(oe,~), Cee LWy l(oz j—1) are all negative roots.

Thus wz_l(ai + oy + ...+ aj_1) is a negative root. Now the reflection in the
hyperplane orthogonal to the root o;; + «j41 + ... + aj_1 is t;; so by [7] Propo-
sition 4.4.6 we have Z(w;ltij) < Z(w;l), or equivalently £(t;jwz) < £(wz). Now
lijwy = wgth_l w3 ()" We claim that this implies that th" w3 () ¢ Wj. Indeed,
wy € WY so wy is the shortest element in the coset wo Wj. Since we have shown that
E(wzth—l(i)’wz—l(j)) < £(w3), this would be a contradiction if th—l(i)’wz—l(j) e Wy. It
now follows from (36) that Vst # Yust Gy O
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Remark 8.2 We observe that the Boltzmann weights of Fig. 12 are constructed from the
monochrome weights of Fig. 7 and that the monochrome weights involving more than
one color only depend on the orders of the colors. Therefore if we choose another set
of colors such that ¢} > - -- > ¢} and replace each color ¢; by c’, the partition function
is unchanged. We refer to this type of transformation as reparametrization. Because
of this, we are permitted to omit the colors ¢, . .., ¢k from the notation 6‘21, awpwy

We may now state the main theorem of this section that relates a parahoric Whittaker
function W;L , of Sect.4 to the partition function of a parahoric system.

Theorem 8.3 Assume that wi, wy € WY and that \ is wy-almost dominant. Then

Z(&); ywy) =2V, (20 wy). (37)

Before we prove this we will establish a result about lattice models that implies it.
Once this is established, it is easy to see that the two results are equivalent. We will
make use of two sets K and J of simple reflections such that K € J. Then W € Wj
and WX > Wi, We will prove

Proposition 8.4 Assuming that K C J, we have

J K
Z(Gz,k,wl,wz) = Z Z(gz,)\,wly,wz)’ (38)
yeWy/Wk

where we may choose the coset representatives y so that wiy € W,

The proof of Proposition 8.4 and hence of Theorem 8.3 will occupy most of this
Section. These proofs will follow from Lemmas 8.5 and 8.6 below. Proposition 8.4 is a
global lifting property expressing the partition function of a system with fewer colors
as a sum over systems with more colors. Lemma 8.6 is a more precise statement whose
proof shows how to do this reduction at the level of individual states. The idea is to
show that each state of the system with fewer colors can be split up into states of the
systems with more colors [Lemma 8.6 (i)]. On the other hand, some states of the system
with more colors will cancel, and these are accounted for in Lemma 8.6 (ii). Both these
properties depend on local lifting properties here called Property A and Property B,
which are phenomena concerning the Boltzmann weights at a single vertex. Local
lifting properties such as these were called color-blindness in [9]. Our proof that the
local lifting properties imply the global lifting property will make use of an argument
in which states of the system with more colors are arranged in a tree. For a more
informal treatment of a similar result see Bump and Naprienko [24], Section 5. See
also arXiv Version 1 of this paper ( [14]) for further discussion related to the models
of this paper.

Lemma 8.5 Suppose that whenever J is nonempty, there exists a proper subset K of J
such that (38) is true. Then Proposition 8.4 is true.
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Proof We may prove (37) by induction. For the base case J = @, (37) is true by The-
orem 7.2 because 1//5 = ¢y and GZA,wl,wz = Gy, w;,w,- Now assume inductively
that (37) is true for proper subsets K of J. By our assumption there exists such a K
such that (38) is satisfied. Then (37) follows for J by combining (38), (48) and (37)

for K. O

In preparation for applying Lemma 8.5 assume that J is nonempty, so r; > 1 for
some i. Then, recalling that Wy = S,; x --- x S,,, the last simple reflection that is
contained in S, is s, where m = r; + ... +r; — 1. Let K be obtained by removing
m from J so that Wg = S, x -+ x §,-1 x 81 x -+ x S, and let the system
&= Gg’)\’wl’wz be described by the semistandard flag (c}', ¢3*, -+ -, ¢}) as in (35).
Let ¢ = ¢;. We wish to insert a color between c¢; and c;1. Reparametrizing by

Remark 8.2 if necessary, we may assume that there is a color ¢’ such that
ciL>c>-->c=c>c >ciyl > > C. (39)

The color ¢’ corresponds to the color m in the last paragraph, but since we are
reparametrizing, we are changing the notation. Note that the colors ¢ and ¢’ are adja-

cent. We may use these colors to describe 65)\,101 v, Let
r_ K
&= || SNy (40)
yeWy/Wk

Note that each state in &’ has one line of color ¢’ that starts at a fixed location in the top
row, replacing one of the top vertical edges colored ¢ in G‘ZI’ hwy.w, - SINCE W € w,
the edge containing the instance of the color ¢ that is replaced by ¢’ is the rightmost
such top vertical edge. The ¢’ colored line ends up on the right edge, replacing one of
the horizontal vertical edges colored c. There are r; possible such locations and the
decomposition of &' into the r; = |Wy/Wk| ensembles 6;(,)»-,101 v corresponds to
these r; possibilities.

We will now instead decompose &' into two parts. We call a state 5" € &’ strict if
it has no vertical edge carrying both colors ¢ and ¢’. Let &, ., consist of strict states
in &', and let &), be the remaining, nonstrict states.

Lemma8.6 Let & . . and & be as above. Then,

strict

(i) Z(G;trict) = Z(Gg,k,wl,zl)z)’
(i) Z(S,,) = 0.

Note that Lemma 8.6 implies (38) for the above chosen subset K of J, which
together with Lemma 8.5, proves Theorem 8.3. We will prove Lemma 8.6 later in this
section, but first we will need to introduce some terminology.

Let L be the set of vertices for our lattice models as first introduced in Sect.7. We
order the vertices £ lexicographically from left to right, top to bottom. We will denote
this total order on vertices <. Thus x < y if and only if x is in a row above y, or x
and y are in the same row and x is to the left of y. An initial segment of L is either
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the empty set For [(x) ={y € L | y < x} forsome x € L. Let L be the set of initial
segments of L. If I € L is not £ then I has a unique successor succ(/) in £, which is
the unique initial segment of cardinality |/| + 1. If x is a vertex of £ we will call the
edges above and left of x inputs, and the edges below and to the right outputs.

For a state s in some system with lattice £ and a vertex x in £ we denote by s|,
the vertex configuration of s at x, that is, the sequence of spins for the four adjacent
edges. Similarly, for any sequence I of vertices in £ we denote by s|; the sequence of
vertex configurations of s for vertices in /. We may extend our previous notation and
denote by B(s|;) the product of the Boltzmann weights for the state s at the vertices
in [.

Let I' be a finite directed graph with no cycles. We call I" a tree if it has a unique
initial node, called the root; the terminal nodes are called leaves. If X, Y € T" we say
that Y is a child of X if X — Y is an edge of I". Let R be an abelian group, which in
our applications will be C(v). We call a function F : I' — R additive if for every
non-leaf X € ' we have F(X) = ) F(Y) where the sum is over the children of
X (but not over further descendants). If T" is a tree with root X4, and an additive
function F then clearly

F(Xwo) = Y F(Y).

leaves Y

We will now define a tree and an additive function that we will use to prove
Lemma 8.6. Let & be defined as in (40). If I € L define an equivalence relation
on states in &’ where 5] =; s, if §||; = s,|;, that is, the two states have the same
vertex configurations at each vertex in 1. Let [s']; be the equivalence class of a state s’
under this relation. We may define a directed graph I whose nodes are pairs (7, [s];)
and with edges of the form (7, [s}17) — (J, [s5]) where J = succ(/) and s}, € [s]];.
Note that the equivalence class [5’1] 7 is a union of =; equivalence classes.

We may enumerate the children of a parent node (, [Spyencl7) as follows. Let
J = succ(l) = I U {x} where x is the last vertex in J. A child of (7, [5;arem]1) has
the form (J, [5éhﬂd] 7) where the class [5’Chi]d] J is determined by the spins of the four
edges adjacent to x in a representative s;.,. Moreover, the input spins for s, at x
are determined by s{)arem since the input edges at x are either output edges for vertices
in I or boundary edges. Thus, [s;; 417 is determined by the two output spins at x. We
see that the graph I' is a tree, and its branching at the node (7, [5£mem] 1) is determined
by the different ways that the two inputs at the vertex x can be completed with the
output spins to an admissible configuration at the vertex x. The root of the tree I'
is (&, &) where all states in &’ are equivalent under =g, and each leaf of the tree
corresponds to an individual state in &'.

We define a function F on I" as follows

F(LISID = ) B, (41)

sels’]y
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Fig. 18 Illustrating local lifting Property A in the case where the vertex x carries the colors ¢ and ¢’ and no
others. Here d and d’ are ¢ and ¢’ in some order

which is additive by the fact that [s']; is a union of its child =ucc(s) equivalence
classes. The root value is the partition function, and the leaf values are the Boltzmann
weights of the individual states.

We will consider subgraphs of the tree I' to prove Lemma 8.6. These graphs are
used to organize the application of the following two properties of the Boltzmann
weights, which are explained in Figs. 18 and 19.

Property A We consider the situation where, for a state s’ € &’ and a vertex x in L,
the vertex configuration s'|, has one input edge carrying the color ¢ while the other
carries ¢/, but with no vertical edge carrying both colors ¢ and ¢’. In this case one
output edge must carry the color ¢ and the other must carry ¢’. There are in total four
configurations to consider but we group together the configurations that are mapped
to each other under the interchange of ¢ and ¢’. We denote these groups as I and III
shown in Fig. 18. Because of the allowed vertex configurations, only one of the two
configurations within each group is possible for any given pair of input edges. If
the color ¢’ is replaced by ¢, the four vertex configurations map to a single vertex
configuration for G that we denote by I. The fact that we need is that the Boltzmann
weights satisfy

B (D) + B (1) = By (D), (42)

for any given input edges on the left-hand side of the equation. This is shown in Fig. 18.
It is possible that both vertical edges carry other colors besides ¢ and ¢’ but if ¢” is such
a color, since ¢ and ¢’ are adjacent (cf. (39)), we have either ¢ > ¢, ¢’ orc, ¢’ > ¢”.
In other words, other colors cannot distinguish between ¢ and ¢’. Using this, we see
that (42) remains true even with these extra colors.

Property B We also consider the situation where the vertical edge above vertex x
carries both ¢ and ¢/, but one color exits to the right, and the other to the bottom. There
are two ways this can happen, as shown in Fig. 19, and the Boltzmann weights of these
patterns cancel:

Bx (V) + B (V) = 0. (43)
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Fig. 19 Illustrating Property B, 6/
in which the Boltzmann weights

of two nonstrict configurations 1V. V. @
are negatives of each other
O-5-0| 0-5@

©

—v (%

As for Property A, this relation also remains true even if the vertical edges carry one
or more additional colors.

If &’ is a strict state of the system &’ then there is a corresponding state 7 (s") of the
system & in which every instance of the color ¢’ is replaced by c. For each s € & there
exists at least one s € & ., such that 7 (s") = s and can be obtained by coloring one
c-path in the color ¢’.

For I € L, let I be the complement of 7 in the set of vertices for the lattice L.
We say that a state ' is I-strict if for all x € I no vertical edge of §'|, carries both ¢
and ¢’. That is, if the vertex configurations §’|; are strict. In this case (generalizing the
above notation) we may define 7 (s'|) to be the I-sequence of vertex configurations
obtained from the sequence s'|; by replacing every instance of ¢’ by c. Note that these
vertex configurations are admissible only when s’ is /-strict.

Lemma 8.7 Let s, € & and Xo = (Io, [5,11,) be a node of T such that sy is Iy-strict.

Consider the subtree I x, of T" with its root at X together with all its descendants. Let
F;ﬁg’) be the tree obtained from Tx, by selecting the branches whose leaves s’ € &'

are Iy-strict and such that 7 (s'| i) = (s i,)- Then
Fg (1, [s']7) == B(' B (s50]7)) (44)
is additive on F;f’).

Note that the representative s' € &’ in (44) need not be a leaf of Fgf(;’); Fy, is still
well-defined and independent of the representative in [s'];.

Proof Let X = (I, [8yen]r) be anode of I'¢®’ and let ¥ = (J, [s]y34]4) be a child

parent] 1

of X, where J = succ(/) = I U{x}. Denote the set of leaves of F;f(f’) by E and choose
the representatives sy, e and sg;4 such that they are in E. That is, 5y,en and ¢
are Iy-strict and n(simem| i) = (84l i) = 7 (55 i)-

The fact that 5, is a child of s, means that 5, |1 = 5417 Furthermore
Sparent aNd Sgpiq agree on the two input edges of x, but they may differ on the two
output edges of x. Since n(sioarem| x) = 7(84i1q]x) = 7(s(|x), this can happen only if,

for both states, one of the input edges carries the color ¢ and the other carries ¢’ while
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the output edges for the two states have ¢ and ¢ interchanged. Note that since s,
is lo-strict, no edge of x carries both ¢ and ¢”. If s}, and ;4 do agree on the two
output edges of x, then they are J-equivalent, so the node (/, [5£>arem] 1) has at most
two children,

Thus, Fif(:)) is a binary tree and to prove that F, s is additive we need to check two
cases: X has one or two children.

Assume first that X = (I, [5£)arent] 1) has two children Y| = (J, [s]];) and V> =

(J, [s517) where we have chosen the representatives s} and s/, in &. Then,

Foy (X) = B(Sparent )BT (501:)) B (7 (5] 1)

(45)
Fg (Yi) = B(s;|DB(s; 1) B (s0l7) = /3(5£)arem|1),3(5;|x)/3(77(56|j))-

As argued above, 7 (sy|x), 5| and s} |, are in the situation of Property A meaning
that B((s(|x)) = B(s|[x) + B(s5]x) and thus F(X) = F (Y1) + F(Y2).

For the case where X = (I, [ﬁg)arent] 1) has a single child Y1 = (J, [s}]y) equa-
tion (45) is still valid and the vertex configuration §/[, is uniquely determined
by [Sparenc]r and . Since s is Io-strict this means that the vertex configuration does
not contain both ¢ and ¢’. Because other colors cannot differentiate between ¢ and ¢’
we then have that B(s}[x) = B(Sparenclx) = B(T(5p]x)), which concludes the proof.
O

If we apply Lemma 8.7 to the full tree 'y, = I" we get the following corollary.

Corollary 8.8 Ifs is a state of S then

Be)= Y BE). (46)
E/EG/Sll’iCl
(s )=s

Proof Let X( be the root X0 = (&, &) of I'. Foreach s € & there exists s, € &,
such that 77 (s() = s. Then FSOO) contains all branches of T" for which the leaves s are
strict and map to s under 7 independent of the choice of s(,. The value of F, 5 At the
root X oo equals B(s) while at a leaf 5" it equals B(s’) also independent of s, and the
statement follows from the additivity of Fg on F;soo). O
Proof of Lemma 8.6 and Proposition 8.4 We have already noted that Lemma 8.6 implies
Proposition 8.4, so we turn to the proof of the Lemma. Statement (i) follows from
Corollary 8.8 by summing over s € G.

For statement (ii) we will start with the tree I'. Let I be a maximal initial segment
such that there is a nonstrict state 5’1 that is I-strict. This means that all states in [5/1 11
are strict at the vertices in I, but if x is the last vertex in I, then the colors ¢ and ¢’ of
s | are in one of the two configurations in Fig. 19 of Property B (disregarding other
colors). The node X1 = (1, [s}];) has a single sibling X, = (1, [s}];) for which s/,
is in the other configuration of Fig.19. Indeed, we can construct a representative s,
by starting from s/, apply 7 on &/ |; and then apply the color ¢’ to one of the c-paths
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going in the other direction at x. By construction 7 (s |;) = 7(s5|7) while s}|; and
s, |7 only differ at the vertex x with an overall minus sign for their Boltzmann weights.

Let E1 and E; be the sets of leaves for Fgfl') and Fgf;) respectively. By Lemma 8.7,

> B

s'€g

Fy (1, [s)1) = B(s DB (s11p)

—BEINB((s51) = —Fg, (1, [85]1) = — Z B  (47)

s'€By

Note that the freedom in constructing s, above is given by E. Any other choice of

the pair (s, 5,) in E1 x E; would give the same trees F;;ll) and F;f;) with the sames
sets of leaves, as well as the same equation (47) for these leaves. We may thus choose
pairs of representatives in [5’1]1 X [5’2]1 such that the corresponding sets B x &, are
disjoint and their union equals E(I'y,) x E(I'x,) where E(I'y,) is the set of leaves
for the tree I'y,.

Hence, we can remove the nodes X| and X, together with their descendants from
the tree I" without affecting the values and additivity property of the function F on
the remaining nodes of I". That is, we may remove these nodes without changing the
partition function of the leaves of I". Repeating the process with a new maximal initial
segment and [ and siblings X| and X» of the remaining I" we have thus shown that we
may remove all branches with non-strict states as leaves without changing the partition
function. Together with statement (i) that was shown above, this proves statement (ii).

|

Proof of Theorem 8.3 From the definition (18) of 1] we have

Yl @)= Y U@, (48)

yeWy/ Wk

where, as in Proposition 8.4, we are choosing the coset representatives y so that wyy €
wk, Comparing (38) with (48), the Whittaker functions have the same restriction
property as the partition functions. So if Theorem 8.3 is true for some set K of simple
reflections it is true for any larger set J. But if K = & then (37) reduces to the Iwahori
case (Theorem 7.2). This completes the proof. O

The case of the maximal compact subgroup K = K is a special case of the parahoric
system where J = 1 is the set of all simple reflections. As previously mentioned, the
Boltzmann weights for the Tokuyama model, shown for example in the row labeled
Sr (i) of [20, Table 2], are a special case of the weights in Figs. 7 (where © is replaced
by one fixed color ¢). The partition function with these Boltzmann weights depends
only on the partition A and is given by the formula

Z(z A =1z ]_[ (1 — vz~ %)s; (z) (49)

aeAt
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which is one version of Tokuyama’s formula [20, 35, 63]. It also agrees with the
Casselman-Shalika formula for the spherical Whittaker function.

9 Whittaker functions and Macdonald polynomials

The purpose of this section is to give a dictionary between values of Whittaker functions
on GL, (F) and certain specializations and generalizations of Macdonald polynomials,
as introduced in Table 1 and further detailed here in Table 2. The second and last of
these identities are new to our knowledge and will be proved later in this section.
Both sides of the dictionary can be studied either algebraically, usually involving
some variations of Demazure-Lusztig operators, or combinatorially which, for the
Whittaker functions, can be achieved via the theory of solvable lattice models.

We start with the well-known case of the spherical Whittaker function, which can
be expressed as the product of a quantized Weyl denominator and a Schur polynomial.
This resultis due to Shintani [61] and was generalized to all quasi-split reductive groups
by Casselman-Shalika [26]. It may be proved by studying the more refined Iwahori
fixed vectors. One can use the Yang—Baxter equation to give a lattice model interpre-
tation of the spherical function; this was done in [20] based on ideas of Tokuyama
[63].

Parallel to this work, Li [50] studied certain Iwahori fixed vectors in the unramified
principal series and their associated Whittaker functions which can be used to identify
the unique genuine subquotient of /(z). Li computed a variation of the Casselman-
Shalika formula for these Whittaker functions each of which we will express in terms
of a Hall-Littlewood polynomial in Proposition 9.4. A (bosonic) lattice model called
the g-boson model exists for Hall-Littlewood polynomials (see [64]); it has success-
fully been used to study Hall-Littlewood polynomials in both combinatorics [65] and
representation theory [45]. By our results we can then associate this lattice model to
Li’s Whittaker function.

To understand both examples presented above, we need to understand the passage to
the Iwahori level. As documented earlier, these Whittaker functions may be described
in terms of certain divided difference operators. The definition of the Demazure-
Lusztig and Demazure-Whittaker operators £; and ‘¥; associated to simple reflections
s; in the Weyl group W were given in (14) and (11), respectively. They also arise
naturally in certain induced representations of the affine Hecke algebra made from the
trivial and sign characters of the finite Hecke algebra, respectively (see [21, 22]).

Given any w € W and a reduced expression w = s;, - - - 8, set T, = T, -+ - Ty,
which is well-defined because the ¥; satisfy the braid relations. We will similarly write
Lw = £, -+ £i;. Then the following relation holds between these operators, where
we add v-dependence to the notation for £,, and T,.

Proposition 9.1 For any w € W, as operators on the ring o(T) of regular (polyno-
mial) functions on T (C) = (C*)",

Lop = (—0)W2PT, 12" (50)
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Proof Using (11) and (14) it follows that —v&; -1 = z°%; ,z~” which implies (50).
O

In order to understand the spherical Whittaker functions (which are sums of standard
Iwahori Whittaker functions), we must compute how the corresponding spherical
idempotents in the Hecke algebra act on a dominant weight. Define

®@=z" ]_[ 1—z"! (Z (—1)‘<W>w) 7’

aeAt weWw
The operator ® was denoted €2 in [21].

Proposition 9.2 The following identities of operators hold in O(f):

Yogu=z| [[a-ve oz, Y g,=0]]0-vu™.

wew aEAT weWw aeAt
Proof Consider the operator (9) of [21] with the specialization 7%+ 2z~ and taking
q to be our v. If we choose ¢ to be the character of the Hecke algebra such ¢(7;) = ¢,
the operator (9) becomes our £; ;. On the other hand if we instead take ¢(7;) = —1,
we obtain the operator

2Tz f @ — DTN =24 f) —v@ — DTN =),
that is, the operator of (29). Therefore Theorem 14 of [21] gives both formulas. O

By the Weyl character formula if A is a partition then ®z* = s;(z) is the corre-
sponding Schur function. Thus

Zzplwz*p 2P =g l_[ (1 —vz %5 (2).
w

acdt

This identity agrees with Proposition 8.4 with J being the set of all simple reflections,
K = @ and wy = 1. In this case the sum in (38) is over the entire Weyl group. To see
this, note that the right-hand side agrees with the uncolored partition function (49),
while each term z°%,,z—” z*** is one of the colored partition functions Z(Sz . w.1)
by Proposition 32.

On the other hand, the sum over £,, produces a (symmetric) Hall-Littlewood poly-
nomial. While Proposition 9.1 gives a relationship between £,,z* and T,,z* for any
w, it is remarkable that their sums over all w € W result in such different functions.

Next we explain precisely how these operators ¥; and £; may be used to compute
various specializations of non-symmetric Macdonald polynomials. In general, these
polynomials depend on two parameters which are usually denoted ¢ and ¢. There
are differing notations in the literature, but in this paper we will follow the notation
E,(z; g, t) of Haglund, Haiman and Loehr [34]. Note that this ¢ is not the cardinality
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of the residue field of F as in earlier sections; in this section, the notation v—! will be
used for this quantity, where the ¢ of [34] equals our v.

If g = 0 or oo the polynomials E;(z; ¢, t) are non-symmetric variants of Hall—
Littlewood polynomials. According to [22], one such specialization arises from
successively applying the operators ¥; to a dominant weight A. The notation of
Haglund, Haiman and Loehr [34] that we follow here differs from the notation in
[22] by the variable change (g, t) +— (q’], t~1), so Theorem 7 of [22] will now be
written

buw (@ @) =Ty o (@) = (—0) P27 Pwo Egu(t p) (25 00, V). (51)

The next result is an analog of this for the £,, ,, using Proposition 9.1.

Proposition 9.3 If X is dominant, then
Lu.0@ ) = wo Euguorp) (2 00, v71). (52)

Proof This follows by comparing (50) and (51). Another proof may be based on the
Knop-Sahi recurrence ([28, 42, 59]) and other facts that can be found in [34]. For
brevity we will not give this alternative proof. O

Having made this connection, we can now relate Li’s Whittaker functions to the
Hall-Littlewood polynomials P; ([52], Chapter III). If we denote by W ;(z, @ ")
the Whittaker function described by Jian-Shu Li in [50], we have the following result:

Proposition 9.4 Let A be a dominant weight. Then

W o) =2 ) (—0) Wy o) = Py, o).
weW

Proof By (1.1) in Chapter III of Macdonald [52], if A is a partition then

Y Lu7" = Ru(z v) = v(v) Pz v) (53)
weW

where R;,, vy and P are asin [52] Section III.1. Multiplying (51) by z° (—v)~¢™) and
summing over w, then using (52) and (53), the left-hand side of the desired identity
equals

D woEuwgup # 00, 0) = Y L, 1 @) = vy, Pz v,
weW weW

Because A + p is strongly dominant vy 4, = 1 and the statement follows. O

To conclude this section, we relate parahoric Whittaker functions to generalizations
of Macdonald polynomials called Macdonald polynomials with prescribed symmetry.
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They were introduced by Baker, Dunkl and Forrester [2] and studied further by Mar-
shall [53] and Baratta [3]. We shall follow the conventions in [3].

For 1, J disjoint subsets of {1,--- ,r — 1} suchthati £ 1 ¢ J fori € I and
jEt1¢IforjeJ, wedefine

! .
Sel@a. = —5 Y (DL Ey@ g0, (54)

Ay weWjyy

where 1* is a composition such that n; > n;, | for alli € I and n;'f > n;’?H for

(,J)
n

all j € J, nis any composition in Wy n*, and a is a normalization factor as

described in [3, eq. (16)].

Proposition 9.5 Let A be a dominant weight, I = @, J = Yandt = v™='. Then

— a, a,
vlonz =275 0 @ 0.0a7).

Proof From (51) and (52) with # = v~! we have that
bw(@ ) = (=) Wzre, (2. (55)

Since Ej1,(z;0,1) = zMtP for dominant weights A, the result follows from (18)
and (54). O

The following corollary follows immediately from Theorem 4.7:

Corollary 9.6 Let ) be a dominant weight and t = v, Then

@Dy 0y L —ay,J
Sirp @ 0.0 =~z [] 0 —vz)xl@.
Atp aeA}‘

At this point in time, we have a good understanding of the dictionary relating
Whittaker functions to special polynomials when the group we are working with is
GL,. It would be interesting for both combinatorial and number theoretic reasons
to understanding generalizations of this dictionary to the metaplectic cover of GL,
and to other reductive groups. In the metaplectic setting, earlier results suggest these
questions merit further inquiry: in [16], metaplectic spherical Whittaker functions are
related to supersymmetric LLT polynomials, while in [60] a new family of special
polynomials is introduced that generalizes metaplectic Iwahori Whittaker functions
and non-symmetric Macdonald polynomials.

10 Intertwining integrals and R-matrices

In this section, we will explore the dictionary between p-adic representation theory
and R-matrices of quantum groups, using lattice models for a pictorial interpretation of

) Birkhauser



78  Page 50 of 58 B. Brubaker et al.

either side. Roughly speaking, we will show that parts of the R-matrix for the quantum
superalgebra Uy, (g (r|1)) corresponding to the smaller quantum groups U, (g[(r)) and
Uy ( g[( 1)) neatly express the action of intertwining operators on standard Iwahorl fixed
vectors (Theorem 10.5) and on Whittaker functionals (Remark 10.8), respectively. To
prove Theorem 10.5, we identify the R-matrix for U, (a[(r)) and the intertwining
integral acting on standard Iwahori fixed vectors with a part of the colored R-matrix
in Fig. 6. This allows us to give a pictorial interpretation of the functional equations
used to prove Theorem 3.8 [see Egs. (63) and (64)].

Before proving these facts, we will first make several comments related to Theo-
rem 10.5. A common principle in the theory of symmetric functions (related to Schur
duality) is to consider the coefficient of 71z - - - z, in the r variables z; as having some
combinatorial significance. Applying this to Schur functions gives the representation
degrees of the irreducible representations of the symmetric group, and this principle
was also used by Stanley [62] in counting the number of reduced words for the longest
element of S,..

A somewhat analogous procedure (related to Schur-Jimbo duality [38]) is to con-
sider the space of vectors of the form (60) below in a tensor representation of Uy (gl(r)).
These vectors are like the monomials z1z2 - - - Z», because there are no repetitions
allowed among the indexing set. The R-matrix acts on these vectors and we will relate
this fact to the action of the intertwining operators on the Iwahori fixed vectors.

The larger quantum group U, (g[(r|1)) will not appear in Theorem 10.5, only
Uy (g[(r)) Concretely, the reason for this is that @ spins do not appear on the right
boundary of our systems. We relate the @ spins with the Whittaker functional in
Remark 10.8. We therefore want to think of the boundary condition for the left side
of our lattice model as indexing the unique Whittaker functional of the unramified
principal series, while the boundary conditions for the right side index the basis of the
space of Iwahori fixed vectors. This can be generalized to the parahoric case as well,
per Remark 10.7.

In this section, g will not denote the cardinality of the residue field; instead it
will stand for the quantum parameter g in U, (gl(r)) as is customary in the theory of
quantum groups. We will continue to denote the cardinality of the residue field of F
by v~!. With these conventions, we set q2 = 1/v for Theorem 10.5, consistent with
our relation between quantum groups and residue field cardinalities in earlier sections
(where we wrote Uy ).

Consider the quantum loop group U, (g’;\[(r)), which is a quantization of a central
extension of the loop algebra of gl(r); for its formal definition see Section 12.2 in [27].
The quantum loop group acts on the evaluation representation V,(z) for z € C*. The
evaluation representation has a basis {v;(z), 1 < i < r}. Denote V,(z) := V,:(z1) ®

- ® Vi(zy).

There is an affine R-matrix, initially due to Jimbo [37], that intertwines between
tensor products of evaluation representations. We denote it by R, (z*) : V,(zx) ®
Vi(zk+1) = Vi(zk+1) ® Vi (zk) and it is given by the following formula:

W Birkhauser



Colored vertex models and Iwahori... Page510f58 78

Qo] @ © @ O
do| oo & o

0w ifewqd | 225 ife>d

1 1—vz%k 1—vz%k
1—0)z% . v(l—2z% .
(ot ife>d | g ife<d

Fig.20 The colored R-matrix R (z%k ). The colors ¢, d € 3 which we will represent by {1,2, --- , r} are
always distinct

Ry (z™) = — —ZZak > (g —2"%g Hei ®eii
1<i<r
1 _
+ T—g 2z Z((—q DA —2%)eij ® eji + (—q)(1 — 2%)ej; @ e;)
i>j
1 _ _
iErern Y (@ =g Dej; @ei +7%(q — g eir @ ¢jj).
i>j

(56)

In the above, e;; stands for the r x r matrix with a 1 in the (i, j) entry and all other
entries equal to 0. It is a map V,(zx) — V,(zx41) if it is on the left of the tensor
product and V;-(zx+1) — Vi-(zx) if it is on the right of the tensor product.

Remark 10.1 This is not exactly the R-matrix in [37]; it is a Drinfeld twist by —g. See
[13] for a definition of the Drinfeld twist and details on how it modifies an R-matrix.
This particular Drinfeld twist appears very often when one deals with U, (gl(r)) lattice
models. Let us consider the weights in our Fig. 20 in which we restrict to conﬁ gurations
with all edges colored. This is the U, (g[(r)) portion of the larger U, (g (r|1)) R-matrix.

These are the same as the weights in equation (2.1.8) of [9] (up to a factor, and their
q is our g 2) Both R-matrices come from the same Drinfeld twist of U, (g[(r))

Throughout this section, when we write Uy, (g[(r)) we will in fact refer to a Drinfeld
twist of the usual affine quantum group that produces the R-matrix R, (z*).

It is a standard fact in the theory of quantum groups that R, (z*) is a U, (a[(r))-
module homomorphism. We will also denote by (R, (%)) x+1 : Vi (2) — V,(sx2)
the map that acts as R, (z*) on the k and k + 1 tensor components of V,.(z) and the
identity elsewhere.

Consider the R-matrix in Fig. 6 restricted to vertices where all edges are colored.
It is preferable to normalize the weights of R(zx41, zx) by dividing by zx1 so that
they may be expressed in terms of z* = z;/zx+1. We further normalize by a factor
of 1 — vz*. Denote the resulting restricted R-matrix by Ro1(z*), and similarly the
restricted version of R(zg, zx+1) 1S then Rco(z7%). The vertices and weights are
pictured in Fig. 20.

Letip := (1,2, ---,r) and let I be the set of all permutations of iy. Given w € S,
andi € {l,---,r}, let w; = w(i) which equals the i-th component of the r-tuple
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w(ip). For example, if 5157 € S3, then (s152)(ip) = (312) and therefore (s1s52)3 = 2.
The following lemma is well-known:

Lemma 10.2 (spw) > £(w) if and only if w1 > wg.

In the notation of Sect. 3, let flik = ll:uz;fk) A where A7, 1 1(z) — I(wz) is the
standard intertwining integral (6).

Proposition 10.3 Equation (9) can be rewritten as

Wi+1 Wk41 Wi Wk+1
A% (D%) = wt 7% DK 4wt 7% O (57)
k w w Skw
g fefe)

Proof Let s, w € S, and let us prove the statement for the case £(syw) > £(w);
the opposite case is similar. Lemma 10.2 implies that w41 > wi. By consulting the
weights in Fig. 20, we see that

Wk41 Wk+1 Wk Wil
- Q O 1— g%
wt 2%k = —, wt al = —.
1 — vz 1 — vz
Wk Wk Wi+1 Wk
and the equivalence follows immediately by comparison with equation (9). O
Remark 10.4 We will represent the colors of the palette 3 by the integers {1, ..., r}.
In this section, our color ordering will be opposite to the ordering we used in previous
sections, so 1 > 2 > ... > r. We use this ordering because we want to match

the largest color (in this case 1) with the highest weight vector of a quantum group
representation which is customarily denoted by vj.

Since the edges of the R-matrix Ro(z*) are specified by these colors, we can then
think of it as a map Reo1(z%) : Uy (zk) ® Ur(2k+1) — Ur(2k+1) ® Ur(2k), where
U, (2) is a vector space with formal basis elements u; (z) associated to the colors i for
1 <i < r. One can write the R-matrix in Fig. 20 in matrix form as follows:
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j joi

Q 0O Q 0O

Reol(z7) = Z wt|  #% e ®ejj + ZWt 2K eij®eji  (58)
I<isr d \(? i>j (l)/ \Cj>

i

i J

Q 0O Q
“FZWt 7k ej,-®e,~j+2wt 2% ejj®e,~,-

(jj tz) i>j q

-~ O~

—i—ZWt (jzakb eii ®ejj.

Define U, (z) := U, (z1) ® - - - ® U, (z,) and, fori = (i1, --- , i) €1, let
ui(z) == u; (z21) ® -+ - Qu; (zr) € Ur(2). (59)

Let Ura“(z) be the subspace of U,.(z) with basis {uj(z),i € I[}. The R-matrix
Reot(z%)k k41 © Ur(2) = Uy (sx2) restricts to Reol (2% g k11 1 UM (2) — UM (sx2)
by removing the first term of (58). We similarly define

vi(2) == v;,(21) @ - - ®v;, (z) € V,(2), (60)

and denote by Va"(z) the subspace of V,.(z) with basis {vj(z), i € II}. Note that this is
notaUy, (g (r)) submodule of V,(z). Even so, the restriction of R, (z** ) x+1 to Va“(z)
maps into Valt(vkz) because R, (z*') maps vi(z1) ® v2(z2) toa hnear combination of
v1(22) ® v2(z1) and v2(z2) ® v1(Z1) as seen in (56).

Consider the following isomorphisms of vector spaces 6 : I(z)! — Uf‘“(z) and
& : U(z) — V3(z) defined by

02(DY) 1= tw(ip) (@),  E(Uwiip) (Z)) = Vuip) (Z). (61)

In this basis we have that

gskz(q)fjjz) = (ewk,wk ® ewk+1,wk+1)9z(cbz;)’ evkz(q)skw
= (ewk+1,wk Q eU)k,U)k+1)ez(®z))’
(62)

where we have suppressed the notation that the operators (e, ® ec4) here act on the
k and k + 1 factors of the tensor product of Ura“(z). We may use this to rewrite the
action of Afk (®7%) in (57) in terms of the action of R (z*) in (58), or similarly the
action of R, (z%) in (56), to obtain the following result.
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Theorem 10.5 The following diagram commutes assuming q> = 1/v:

1@/ —% vtz =y vl

lAgk chul (2 )k k41 J,qfl Ry (2% ) k41
0,

SLZ ES z
1(s32)) =5 UM(s32) —5 VA(sez)

Proof The commutativity of the left side of the diagram follows from Proposition 10.3
noting that after the identification between (z)’ and Uralt (z) via 6y, the action of flgk
and Rco1(z% ) k+1 are the same as seen from Eqs. (57), (58) and (62). The right half
of the diagram commutes because the restriction of the two R-matrices are equal.
Indeed we have matching entries of the R-matrices in Eqgs. (56) and (58) (we need to
match each entry except for the first term which does not occur in the restriction). For

example, the last entry in Eq. (58) has weight (%:ﬁiﬁzk , while the last entry in Eq. (56)
(I—g~2)z%
1—q—22% *

multiplied by ¢! has weight O
Remark 10.6 The theorem above can also be proved if we set g> = v (as opposed
to g2 = v~!). In that setting the quantum group needs to be Drinfeld twisted by the
parameter —g (as opposed to by ¢~!). We emphasize this as both choices might be
useful when considering representation theoretic applications of this result.

Remark 10.7 One can generalize Theorem 10.5 to the parahoric setting by choosing
elements of the form in Eq. (60) with repetitions determined by the chosen Levi
subgroup or by the possible right boundary conditions of the lattice model associated to
the parahoric Whittaker function. For example, if the Levi subgroup is GL, x GL1, the
space of Kj-fixed vectorsin I (z) has a basis indexed by elements in wd = {1, 52, 51852}
which is in bijection with {v112, v121, v211}. For each basis element we also have
a corresponding right boundary condition for the colored lattice model in Sect. 8.
Assume R > B. If (in accord with Remark 10.4) we let the integers 1 and 2 be
identified with the colors R and B respectively, v12 corresponds to right boundary
condition (R, R, B), viz1 to (R, B, R), and vy11 to (B, R, R).

Remark 10.8 Note that Proposition 3.7 can be rewritten as

1 —vz=%

Qgz 0 Az =
g S ] — vz

The factor above agrees up to a scalar with the fully uncolored Boltzmann weight
for R(zx+1, zx) in Fig.6 and should be thought of as an entry of the R-matrix for
the evaluation module of U, (gT[(r| 1)). This remark and the previous theorems realize
the action of intertwiners on both the space of Whittaker functionals and Iwahori (or
parahoric) fixed vectors as entries in the R-matrix of U, (gl(r[1)).

The purpose of this section was to give a dictionary between objects related to
different areas of mathematics: intertwiners for p-adic groups, R-matrices for quantum
groups, and R-matrices for lattice models. Let us now upgrade this dictionary by
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matching two techniques used in the theory of p-adic groups and lattice models.
For lattice models we used the train argument to derive functional equations for the
partition function. This argument was first used by Baxter to prove commutativity of
transfer matrices and in our setting can be summarized as follows:

wt @,zak\@ Z(Sy, 1, w,.wp) = intermediate states appearing in the train argument
Wk4+1 Wk+1 Wi4+1 Wk+1
= wt 7% Z(Sgz.wi wy) + Wt 7k Z(Sgz,0,s5w1,w2)-
Wk Wk Wk Wk
(63)

For p-adic groups we used the intertwiner to derive functional equations for Iwahori
Whittaker functions based on results and ideas of Casselman and Shalika. This process
can be reimagined using Proposition 10.3 and Remark 10.8 as follows (we denote
@~ ws by g):

wi | | Qur(0)9%) = Quu 0 A (1() V%) = Qo () A% D% )

g © ‘

Wi+1 Wk+1 Wi Wi+1
= Quz | 7(g) | Wt 7 Dy E 4wt 7 ik
‘ dgo | " g o | ©4)
W W Wi+l Wk
Wi4+1 Wi+1 Wg+1 Wi+1
=wt| | Qum@E +wi|  #L | Q@@ ).
1 k SEw1
gV o

We see that the beginning and the end of the equations (63), (64) correspond to each
other by use of Theorem 7.2 and Proposition 10.3. The idea of both arguments is also
the same. In the p-adic setting one moves the intertwiner from the “Whittaker side’ to
the ‘Iwahori side’, while in the lattice model setting one moves the R-matrix from the
left side (which corresponds to the Whittaker functionals as we argued before) to the
right side (corresponding to the space of Iwahori fixed vectors).

This phenomena also appears in the theory of metaplectic spherical Whittaker
functions for an n-fold metaplectic cover of GL,(F), which can also be realized as
partition functions of a solvable lattice model [12]. In that case the action of the
intertwining integral on the space of Whittaker functionals is the Kazhdan-Patterson
scattering matrix, which has been interpreted (up to a Drinfeld twist) as the U, (gl(n))
R-matrix in [12, Theorem 1], while the action of the intertwining integral on the
spherical vector is the Gindinkin-Karpelevich factor which can be interpreted as the
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spin @ part of a larger R-matrix. The train argument and the p-adic argument for
producing functional equations work in the same way. This compelling connection
between two a priori different methods of argument should be useful in further relating
the representation theories of p-adic and quantum groups.
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