
Domain generalization through meta-learning: a survey

Downloaded from: https://research.chalmers.se, 2024-10-30 10:11 UTC

Citation for the original published paper (version of record):
Gholamzadeh Khoee, A., Yu, Y., Feldt, R. (2024). Domain generalization through meta-learning: a
survey. Artificial Intelligence Review, 57(10). http://dx.doi.org/10.1007/s10462-024-10922-z

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Vol.:(0123456789)

Artificial Intelligence Review          (2024) 57:285 
https://doi.org/10.1007/s10462-024-10922-z

Domain generalization through meta‑learning: a survey

Arsham Gholamzadeh Khoee1 · Yinan Yu1 · Robert Feldt1

Accepted: 22 August 2024 
© The Author(s) 2024

Abstract
Deep neural networks (DNNs) have revolutionized artificial intelligence but often lack 
performance when faced with out-of-distribution data, a common scenario due to the 
inevitable domain shifts in real-world applications. This limitation stems from the com-
mon assumption that training and testing data share the same distribution-an assumption 
frequently violated in practice. Despite their effectiveness with large amounts of data and 
computational power, DNNs struggle with distributional shifts and limited labeled data, 
leading to overfitting and poor generalization across various tasks and domains. Meta-
learning presents a promising approach by employing algorithms that acquire transferable 
knowledge across various tasks for fast adaptation, eliminating the need to learn each task 
from scratch. This survey paper delves into the realm of meta-learning with a focus on 
its contribution to domain generalization. We first clarify the concept of meta-learning 
for domain generalization and introduce a novel taxonomy based on the feature extraction 
strategy and the classifier learning methodology, offering a granular view of methodolo-
gies. Additionally, we present a decision graph to assist readers in navigating the taxonomy 
based on data availability and domain shifts, enabling them to select and develop a proper 
model tailored to their specific problem requirements. Through an exhaustive review 
of existing methods and underlying theories, we map out the fundamentals of the field. 
Our survey provides practical insights and an informed discussion on promising research 
directions.
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1  Introduction

Traditional machine learning approaches assume training and testing data are independ-
ent and identically distributed (i.i.d.). However, this assumption often fails in practice 
due to variations in data acquisition conditions, such as changes in sensor types, light-
ing conditions, or environmental factors, leading to substantial performance degradation 
when models encounter new domains (Khosla et al. 2012); thus, they cannot cope with 
the out-of-distribution (OOD) challenge (Ganin et al. 2016). A domain can be defined 
as a specific distribution of data characterized by its own set of features, statistical prop-
erties, and underlying concepts (Sugiyama and Storkey 2006). Domain generalization 
(DG) and domain adaptation (DA) techniques evolved to deal with domain shifts to 
address out-of-distribution problems (Ghifary et al. 2015; Tzeng et al. 2014). When we 
have two distinct domains, namely the source and target domains, we can apply domain 
adaptation techniques, which focus on adapting a model trained on a source domain to 
perform well on a target domain. Meanwhile, domain generalization aims to general-
ize over any domain, allowing models trained on one set of domains to perform well 
on unseen domains. It is important to note that DA techniques assume access to tar-
get domain data (Patel et al. 2015; Long et al. 2016), whereas DG techniques assume 
no access to the target domain data, which makes it a much harder problem to solve. 
Compared to DA, DG is more applicable in practice. First, machine learning models 
are trained on a specific large dataset to perform well on that exact task. However, in 
real-world scenarios, we often face new tasks with limited labeled data available. Essen-
tially, collecting labeled data and retraining the model for such "unseen" domains can be 
extremely costly and time-consuming. Also, it is often impossible to enumerate all the 
"unseen" domains in advance. Accordingly, enhancing the generalization capability of 
machine learning models is crucial.

Meta-learning has emerged to enable a model to quickly adapt and learn from a small 
amount of data or even generalize to unseen tasks (Huisman et al. 2021). Meta-learning 
algorithms leverage prior knowledge, patterns, and experiences acquired from similar or 
related tasks to make learning transferable (Ravi and Larochelle 2016). Recently, some 
meta-learning algorithms have been used for domain generalization, allowing models to 
generalize across various domains with limited or no access to all domains during train-
ing. These algorithms learn a more generalized representation by identifying patterns 
that generalize across unseen domains. For instance, consider the PACS dataset (Li 
et  al. 2017), which comprises images from four distinct domains: photo, art, cartoon, 
and sketch. The goal is to train a model on a subset of these domains, such as photos, 
art, and cartoons, in such a way that it can also accurately classify sketches despite never 
having “seen" sketches during training. This challenges the model to extract domain-
invariant patterns essential for classifying images across all four domains. This “learn-
ing-to-generalize" paradigm aligns with the human learning process, where knowledge 
acquired from multiple situations enables individuals to adapt quickly to new situations 
(Finn et al. 2017).

Recently, there has been a growing interest in developing meta-learning methods 
for domain generalization. These methods aim to address the limitations of conven-
tional machine learning approaches by incorporating meta-level learning procedures 
that enhance a model’s ability to generalize across domains. More specifically, these 
models achieve cross-domain generalization by learning from a variety of tasks and 
domains during training, which prepares them to handle distributional shifts and 
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enables more effective generalization. It is important to note that in domain generaliza-
tion via meta-learning, the assumption is that there are zero target domain examples 
during training, contrasting with typical meta-learning that often focuses on few-shot 
learning for task adaptation.

Wang et al. (2022) and Zhou et al. (2022) discussed recent advances in domain gen-
eralization, covering the formal definition of the problem, related fields, and theoreti-
cal foundations, and they highlight commonly used datasets and applications. Addi-
tionally, Liu et  al. (2021) recently explored the OOD generalization problem, which 
addresses scenarios where the test data distribution differs from the training data. 
Their review encompasses methodologies categorized into unsupervised representation 
learning, supervised model learning, and optimization. Vilalta and Drissi (2002) pub-
lished one of the first surveys on meta-learning to formalize self-adaptive learner mod-
els. Huisman et al. (2021) later provided a comprehensive survey on meta-learning to 
explore the common challenge of how to leverage meta-knowledge to improve the per-
formance of learning algorithms. Hospedales et al. (2021) also discussed various per-
spectives on meta-learning by providing a novel taxonomy and investigating the utility 
of the most commonly used meta-learning algorithms. Vettoruzzo et  al. (2024) have 
recently examined meta-learning algorithms, discussing their benefits and challenges, 
and categorizing methods into metric-, model-, and optimization-based techniques, 
with a focus on achieving consistent evaluation metrics and computational efficiency. 
In contrast to previous works, to our best knowledge, this paper is the first survey col-
lecting literature and highlighting the overall potential of meta-learning for domain 
generalization. In this paper, we offer a fresh perspective and a new taxonomy for clas-
sifying meta-learning approaches designed for generalization to unseen domains.

As a more detailed explanation, this survey paper provides a systematic overview 
of existing meta-learning methods tailored for domain generalization. We introduce 
the concept of domain generalization and clarify its significance in real-world machine 
learning applications. Subsequently, we delve into the theoretical foundations of meta-
learning and explain its applicability to the domain generalization setting. The paper 
reviews various frameworks and methodologies employed in existing meta-learning 
approaches for domain generalization, highlighting their strengths and limitations. 
Additionally, we present a taxonomy to help with the effective categorization of these 
algorithms. Furthermore, we survey the datasets and evaluation protocols prevalent in 
this research area and point out the principal challenges and open questions for future 
study. Our goal is to present an extensive reference for researchers and practition-
ers interested in understanding and advancing the field of meta-learning for domain 
generalization.

The rest of this survey is structured as follows. In Sect. 2, we provide background 
information on the topic and introduce the fundamental concepts of meta-learning and 
its applicability to the domain generalization setting. Section  3 presents a taxonomy 
that can be used to categorize techniques that will be discussed in this survey. We 
then proceed to explore the different frameworks of meta-learning methods for domain 
generalization in Sect.  4. Section  5 discusses the widely adopted datasets and eval-
uation protocols employed in the field. In Sect.  6, we cover the crucial applications 
of meta-learning for domain generalization and its significance in practical machine 
learning scenarios. Section 7 discusses the significance of the findings, key challenges, 
and promising research directions. Finally, Sect. 8 summarizes the main points of the 
survey and their implications.
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2 � Background

While deep learning models have achieved remarkable results in specific tasks, devel-
oping models that can generalize across tasks and domains remains a challenge. Ini-
tially, we will provide a concise overview of related research areas, highlighting their 
unique characteristics, with a comparison of the discussed learning paradigms available 
in Table 1. Subsequently, we will delve into more details of meta-learning and domain 
generalization, along with providing a formalization of meta-learning for domain gener-
alization, as it represents a research area specifically aimed at addressing the challenges 
of generalization across various tasks and domains.

2.1 � Different learning paradigms

In real-world applications, data availability is often limited and conditions change over 
time. A practical machine learning model must adapt to these changes without retrain-
ing from scratch, as traditional retraining is resource-intensive and inefficient. To 
address this challenge, several learning paradigms have been introduced. This section 
briefly introduces the key learning paradigms to build intuition for designing efficient 
machine learning models.

2.1.1 � Incremental learning

Incremental learning involves gradually training a model on new data over time. The 
model is updated incrementally as new data arrives, often in batches. However, previous 
data is often not retained, so incremental learning can suffer from catastrophic forget-
ting of earlier concepts. It is also necessary to carefully design training data to avoid 
bias and ensure that the AI system can generalize from the new data (Wu et al. 2019; 
He et al. 2011; Castro et al. 2018). The other important challenge is to deal with non-
stationarity in the data, which can prevent the AI system from converging on a solution. 
Incremental learning can be done online or offline (He et al. 2020).

2.1.2 � Online learning

Online learning involves training a model on data that becomes available in a sequential 
order, sample-by-sample or mini-batch by mini-batch (Hoi et  al. 2021). The model is 
updated each time a new sample/mini-batch arrives. Online learning algorithms aim to 
perform updates efficiently to accommodate new data but do not explicitly retain old 
knowledge.

2.1.3 � Continual learning

Continual learning refers to the ability of a model to learn sequentially over time from 
a stream of data. The goal is to learn new tasks without forgetting previous knowledge, 



Domain generalization through meta‑learning: a survey﻿	 Page 5 of 39    285 

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f d
iff

er
en

t l
ea

rn
in

g 
pa

ra
di

gm
s h

ig
hl

ig
ht

in
g 

si
m

ila
rit

ie
s a

nd
 d

is
si

m
ila

rit
ie

s s
m

on
g 

m
et

a-
le

ar
ni

ng
, d

om
ai

n 
ge

ne
ra

liz
at

io
n,

 a
nd

 re
la

te
d 

le
ar

ni
ng

 a
pp

ro
ac

he
s

1   In
 th

is
 ta

bl
e,

 w
e 

us
e �

 to
 d

en
ot

e 
th

e 
se

t o
f a

ll 
tra

in
ab

le
 p

ar
am

et
er

s i
n 

th
e 

m
od

el
2   D

T
 re

pr
es

en
ts

 th
e 

ta
rg

et
 d

om
ai

n
3   �

s
h
 a

nd
 �

�
 d

en
ot

e 
th

e 
sh

ar
ed

 a
nd

 th
e 

ta
sk

-s
pe

ci
fic

 p
ar

am
et

er
s, 

re
sp

ec
tiv

el
y

4   D
tr �
 a

nd
 D

te �
 in

di
ca

te
 th

e 
m

et
a-

tra
in

 a
nd

 m
et

a-
te

st 
sp

lit
s o

f t
as

k 
�
 ’s

 d
at

a,
 re

sp
ec

tiv
el

y
5   D

s
 a

nd
 S

 re
pr

es
en

t a
 d

at
as

et
 fr

om
 so

ur
ce

 d
om

ai
n 

s a
nd

 a
 se

t o
f s

ou
rc

e 
do

m
ai

ns
, r

es
pe

ct
iv

el
y

Le
ar

ni
ng

 P
ar

ad
ig

m
p(

X)
 C

on
si

ste
nc

y
Y 

C
on

si
ste

nc
y

Te
st 

A
cc

es
s

p̂
(Y
|X
;𝜃

1
)

In
cr

em
en

ta
l/O

nl
in

e 
Le

ar
ni

ng
 (H

oi
 e

t a
l. 

20
21

)
✓

✓
✓

m
in

�
�
p
(D

)[
�
(D

;�
)]

C
on

tin
ua

l L
ea

rn
in

g 
(D

e 
La

ng
e 

et
 a

l. 
20

21
)

✗
✓

✓
m
in

�
�
p
(T
)�

p
(D

�
)[
�
(D

�
;�
)]

Tr
an

sf
er

 L
ea

rn
in

g 
(T

rip
ur

an
en

i e
t a

l. 
20

20
)

✗
✗

✓
m
in

�
�
p
(D

T
)[
�
(D

T
;�
)]
2

M
ul

ti-
ta

sk
 L

ea
rn

in
g 

(S
en

er
 a

nd
 K

ol
tu

n 
20

18
)

✓
✓

✓
m
in

�
sh
,�

�
�
p
(T
)�

p
(D

�
)[
�
(D

�
;�

sh
,
�
�
)]
3

M
et

a-
Le

ar
ni

ng
 (W

an
g 

et
 a

l. 
20

24
)

✓
✗

✓
m
in

�
�
p
(T
)�

p
(D

�
)[
�
(D

tr �
,
D

te �
;�
)]
,
D

�
=
D

tr �
∪
D

te
4

�

D
om

ai
n 

A
da

pt
at

io
n 

(F
ar

ah
an

i e
t a

l. 
20

21
)

✗
✓

✓
m
in

�
�
p
(D

T
)[
�
(D

T
;�
)]

H
om

og
en

eo
us

 D
G

 (Z
ho

u 
et

 a
l. 

20
22

)
✗

✓
✗

m
in

�
�
p
(S
)�

p
(D

s
)[
�
(D

s
;�
)]
5

H
et

er
og

en
eo

us
 D

G
 (W

an
g 

et
 a

l. 
20

20
; S

hu
 e

t a
l. 

20
21

)
✗

✗
✗

m
in

�
�
p
(S
)�

p
(D

s
)[
�
(D

s
;�
)]



	 A. G. Khoee et al.  285   Page 6 of 39

handling different distributions in the data over time (De Lange et al. 2019). It involves 
retaining previously learned knowledge and effectively integrating new knowledge.

2.1.4 � Transfer learning

Transfer learning refers to the process of reusing a pre-trained model as the basis for a new 
model, where a model trained on one task is repurposed for a second related task to allow 
rapid progress when modeling the second task (Pan and Yang 2009). Essentially, transfer 
learning involves using the knowledge learned from one task to improve the performance 
of another related task.

2.1.5 � Multi‑task learning

Multi-task learning is a machine learning approach in which we try to learn multiple tasks 
simultaneously, optimizing multiple loss functions at once. The goal of multi-task learn-
ing is to improve learning efficiency and prediction accuracy for the task-specific models, 
when compared to training the models separately (Yang and Hospedales 2014). It leverages 
shared representations, which can help other tasks be learned better.

2.1.6 � Meta‑learning

Meta-learning refers to the process of learning how to learn (Finn et al. 2017). It involves 
training a model to learn new tasks quickly with minimal data by leveraging knowledge 
learned from previous tasks. The goal of meta-learning is to learn a good initialization of 
the model’s parameters that can be adapted quickly to new tasks with only a few samples 
(also referred to as few-shot learning) (Snell et al. 2017). In other words, it transfers knowl-
edge from many source tasks, so it can learn a new task more quickly, more proficiently, 
and more stably (Hospedales et al. 2021).

2.1.7 � Domain adaptation

DA focuses on adapting a model from one source domain to perform well on a related tar-
get domain (Wang and Deng 2018; Csurka 2017; Bousmalis et al. 2016; Long et al. 2015; 
Ben-David et al. 2006). It assumes some similarity or overlap between the two domains. 
It leverages labeled data from the source domain and unlabeled/limited labeled data from 
the target domain. Also, it is closely related to transfer learning, which also aims to transfer 
knowledge from the source domain to the target domain.

2.1.8 � Domain generalization

DG goes a step further in comparison to DA. It involves training a model on multiple 
source domains with the goal of making it perform well on any unseen or new target 
domains (Muandet et al. 2013; Li et al. 2017; Shankar et al. 2018). So, it does not assume 
access to target domain data during training. DG addresses the challenge of adapting to 
diverse and unknown domains by learning representations that capture the underlying 
invariant factors across various domains.
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2.2 � Meta‑learning for domain generalization: promises and challenges

Meta-learning is considered a promising approach for DG, as it trains models to build trans-
ferable knowledge that can be efficiently applied to different tasks and domains. This aligns 
with the goal of DG to generalize to unseen domains. By training on a variety of learning 
tasks, meta-learning enables models to acquire knowledge that is transferable across dif-
ferent domains. In other words, meta-learning enables models to learn how to learn, which 
significantly enhances their ability to adapt to new and unseen domains by leveraging previ-
ously acquired knowledge. This adaptability is crucial for DG, where the goal is to generalize 
beyond the training domains (see Table 2 for a comparison between traditional machine learn-
ing and meta-learning). In meta-learning, models are trained episodically where each task or 
episode simulates a domain shift. This procedure effectively equips the model with the abil-
ity to handle domain shifts by encouraging the development of features that are robust to the 
variations between training and test domains. By repeatedly encountering a variety of tasks, 
the model learns to extract features that are crucial for performance across different domains, 
rather than overfitting to the idiosyncrasies of any single domain. These robust features are 
more likely to be relevant in unseen domains, thus improving the overall generalization of the 
model. Additionally, the intrinsic sample efficiency of meta-learning can lead to more effec-
tive utilization of limited data. Meta-learning is designed to achieve high performance with 
fewer examples by leveraging the knowledge gained from previous tasks. This sample effi-
ciency is particularly beneficial in scenarios where data from new domains is scarce or expen-
sive to obtain.

One of the main challenges of using meta-learning for DG is ensuring a sufficient diver-
sity of learning tasks during the meta-training phase. Without enough diversity, the model 
may lack the capacity to generalize effectively to completely new domains. Additionally, 
the degree of the distributional shift between the training domains and the test domain can 
be substantial. If the unseen test domain differs significantly from the training domains, 
the model may encounter difficulties in generalizing. Furthermore, while meta-learning 
is designed to be sample-efficient, in reality, it often requires a large number of tasks to 
achieve high performance, which might not always be feasible or accessible. It is also 
important to note that effective domain generalization often requires understanding causal 
relationships within the data, which meta-learning algorithms might not capture without 
proper inductive biases or domain knowledge integration.

2.3 � Formalization of meta‑learning for domain generalization

In meta-learning, the goal is to solve new unseen tasks by leveraging the knowl-
edge gained from solving N previous tasks. Each task Ti corresponds to a dataset 
Di = {(xi

j
, yi

j
) | xj ∈ X, yj ∈ Y}n

j=1
 , where Di is divided into a support set DS

i
 and a query set 

D
Q

i
 . It is important to note that in meta-learning, all tasks are sampled from a unique task 

distribution p(T).
In domain generalization, we are given data from M different source domains and aim 

to perform well on a new unseen domain, known as the target domain. Specifically, each 
domain di is defined as follows:

(1)di ≜ {pi(x), pi(y|x)},
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where pi(x) refers to the distribution of the input data for domain di , and this distribution 
may vary across different domains. The term pi(y|x) represents the conditional probability 
distribution of the target y given the input data x. In a homogeneous DG setting, pi(y|x) is 
assumed to be consistent across all domains, meaning the label space is the same. However, 
in a heterogeneous DG setting, pi(y|x) can vary, as there can be disjoint label spaces across 
different domains.

For instance, consider the PACS (Li et al. 2017) dataset for homogeneous DG; this data-
set comprises images from 4 distinct domains: photo, art painting, cartoon, and sketch. 
Each domain shares the same set of 7 classes for labeling. Tasks are drawn from these var-
ying domains, each with its unique statistical characteristics. Consequently, there is a sig-
nificant domain shift between tasks, necessitating a model capable of generalizing across 
these different domains to effectively handle tasks from varied distributions. In contrast, 
the Visual Decathlon (VD) (Rebuffi et al. 2017) dataset includes 10 different domains, each 
encompassing a variety of categories, and is thus suitable for designing tasks for heter-
ogeneous DG. While the aforementioned datasets focus on multi-source DG, where the 
model is trained across several source domains to provide representations that generalize to 
novel unseen domains, there are scenarios where only a single source domain is available. 
In these cases, the model is expected to generalize to target domains without prior expo-
sure to multiple source domains. This challenge is known as single-domain generalization. 
Additionally, some problems require the model to handle an open-set of target domains 

Table 2   This table outlines the key differences between traditional machine learning and meta-learning 
across various aspects such as tasks, training datasets, purpose, loss functions, weights, and the role of these 
weights. The comparison highlights how meta-learning enhances adaptability and generalization to new and 
unseen domains by leveraging knowledge from a variety of tasks, in contrast to traditional machine learning 
which typically focuses on optimizing performance for a specific task

Machine Learning Meta-Learning

Task Image recognition, semantic analysis of text
Training Dataset Typically a large dataset annotated 

for the current task
Variety of tasks, often organized into 

training episodes. Each episode 
contains a small amount of data from 
a particular task

Purpose Learn to perform a specific task 
from a dataset

Learn to perform specific tasks and also 
adapt to new tasks using only a few 
examples or new datasets (domains) 
with unseen distributions

Loss Function A mathematical function that meas-
ures the discrepancy between the 
predicted output and the ground 
truth output

Measures not only the prediction error 
on the current task (same as machine 
learning loss) but also optimizes 
adaptability to new tasks

Weights Learned parameters that are adjusted 
during the training process to 
minimize the loss on that task

Base-level weights which are task-
specific, and meta-level weights or 
hyperparameters that guide the learn-
ing process across tasks and datasets 
(different domains)

What are these weights 
good for

Transforming the raw features into 
a more representative space (for 
example, a more linearly separable 
space for classification tasks)

Should be able to ignore features only 
relevant to domain differences (robust 
against domain shift), focusing on the 
features relevant to the task
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as opposed to a limited or closed-set of target domains. This requirement significantly 
increases the difficulty of domain generalization problems.

As it can be conceived, a domain can be viewed as a special case of a task from the 
perspective of meta-learning. Therefore, the meta-learning paradigm can also be applied to 
domain generalization problems, where each domain is treated as if it were a distinct task, 
defined by a specific source Si and associated with a dataset Di . It’s also worth mentioning 
that we can leverage zero-shot learning capabilities for new unseen domains when integrat-
ing domain generalization techniques with meta-learning.

3 � Taxonomy

To advance DG through meta-learning, it is important to get an overview of the existing 
approaches and their similarities and differences. Here, we introduce a taxonomy and its 
key dimensions (axes) with which different meta-learning approaches can be analyzed. 
The taxonomy provides two axes, the discriminability axis, and the generalizability 
axis, representing how a model learns to generalize to unseen domains. This taxonomy 
aims to highlight the interaction and knowledge transferability between data points from 
different domains and classes. The end goal is to meta-learn domain-agnostic features and 
discriminative classifiers that perform well on unseen domains.

Compared to other meta-learning techniques, a unique characteristic of DG is its design 
principle that prevents the model from adapting to specific test domains. This is because, by 
definition, DG focuses on generalizing to completely unseen test domains, unlike domain 
adaptation, where the model has some form of access or exposure to information from the 
test domain during training. This distinct feature requires the meta-learning approach to 
generalize instead of adapt. Consequently, it is crucial to balance the trade-off between 
domain-invariant and domain-specific features (Chattopadhyay et al. 2020). Specifically, in 
classification tasks, the domain-specific features that are learned must be carefully curated 
to enhance class separability even for unseen domains. The taxonomy presented in this 
survey is designed to address these aspects. We divide the categorization into two principal 
axes: the first concerning the treatment of domain features by the feature extractor (gener-
alizability) and the second relating to the training methodology of the classifier within the 
model (discriminability).

3.1 � Generalizability axis

The feature extractor is a pivotal component in domain generalization, as it determines how 
the model perceives and processes data from diverse domains to learn generalized repre-
sentations applicable across various settings. Approaches along this axis can be divided 
into two categories: (1) Minimization of Inter-Domain Distances and (2) Maximization of 
Intra-Domain Distances.

3.1.1 � Minimization of inter‑domain distances

Some approaches aim to extract domain-invariant features by minimizing the distance 
between feature representations across different domains. The primary objective is to 
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identify and harness the characteristics that are consistent across domains. In other words, 
these methods mainly focus on directly inducing invariant representations without diver-
sifying inputs, concentrating on the consistent and discriminative aspects of the data. By 
doing so, they reduce the model’s sensitivity to the idiosyncrasies of any given domain, 
thereby enhancing the robustness of the model against the shifts that occur in novel 
environments.

3.1.2 � Maximization of intra‑domain distances

Alternatively, certain approaches seek to construct a feature extractor capable of handling a 
more extensive variety of data by maximizing inter-domain distances. These methods uti-
lize strategies like data augmentation, noise injection, and domain randomization to expand 
the training data spectrum and encourage the model to learn features that are broadly appli-
cable rather than domain-specific. By exposing the model to a more diverse set of modified 
inputs, these methods strive to replicate the variability that the model will encounter in 
real-world scenarios, thus promoting the learning of features with better generalizability. 
Through the explicit diversification of inputs from a domain, these approaches develop fea-
ture extractors prepared to handle greater variance in the data.

3.2 � Discriminability axis

The performance of DG models is highly dependent on the effectiveness of the classifier’s 
training methodology. The strategies in this context are categorized into two groups based 
on how the classifier manages distances: (1) Minimization of Intra-Class Distances and (2) 
Maximization of Inter-Class Distances.

3.2.1 � Minimization of intra‑class distances

Most approaches simply rely on minimizing the distances between instances within the 
same class. The intention is to encourage the model to group similar examples together. 
This method ensures that the model’s predictions are consistent for similar instances.

3.2.2 � Maximization of inter‑class distances

Some methodologies also explicitly maximize the distance between different classes by 
incorporating triplet loss to train the classifier. This not only minimizes inter-class dis-
tances but also explicitly maximizes intra-class distances. By doing so, the model is 
encouraged to learn robust representations that distinctly separate different classes. The use 
of triplet loss helps to develop a feature space where classes are well-delineated, result-
ing in clearly separated clusters. This enhances the classifier’s discriminative power and its 
ability to generalize across domains.

Taken together, these two axes allow us to categorize domain generalization techniques 
based on how they train the feature extractor and classifier components to improve 
generalization. Methods can differ in whether they align or diversify representations across 
domains, as well as how they distinguish between classes during training, as illustrated in 
Fig. 1.
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3.2.2.1  Application of the taxonomy  In Fig. 2, we present a decision graph to guide readers 
through the taxonomy to select the most appropriate meta-learning method for DG based 
on data availability and domain shifts. It categorizes meta-learning approaches based on the 
strategies employed for the feature extractor (generalizability axis) and the classifier training 
process (discriminability axis), facilitating an understanding of the relationships between 
various methods and their underlying principles.

4 � Methodologies

In recent years, there has been significant interest in utilizing the meta-learning procedure 
to create models for DG. In this section, we will explore individual meta-learning methods 
for DG by describing the methodologies and motivations behind their designs. We discuss 
the strengths and weaknesses of each method in detail.

Meta-learning focuses on building a general model that can be used to adapt rapidly 
to new situations. For the first time, Li et al. exploited the idea behind meta-learning for 
DG by dividing the data from multiple source domains into non-overlapping meta-train 
and meta-test sets to simulate domain shifts in the training procedure. Therefore, we will 

Fig. 1   An illustrative diagram of the meta-learning taxonomy for domain generalization. The quadrant chart 
highlights two principal axes: the first axis (the generalizability axis) represents the strategy of the feature 
extractor, contrasting the Minimization of Inter-Domain Distances with the Maximization of Intra-Domain 
Distances; the second axis (the discriminability aixs) depicts the classifier training process, distinguishing 
between the Minimization of Intra-Class Distances and Maximization of Inter-Class Distances. This 
diagram visually organizes domain generalization approaches, illustrating their distinct mechanisms for 
promoting generalization across unseen domains
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discuss DG through meta-learning, starting with meta-learning for domain generalization 
(MLDG) and proceeding accordingly.

4.1 � MLDG

Recent meta-learning studies have focused on learning good weight initializations for few-shot 
learning, particularly Model-Agnostic Meta-Learning (MAML) (Finn et  al. 2017). Li et  al. 
(2018) proposed MLDG (meta-learning for domain generalization), which draws inspira-
tion from the MAML approach and trains models capable of performing well on OOD data 
by transferring knowledge across domains instead of tasks. It is important to note that DG 
assumes zero training examples from the target domain, in contrast to conventional meta-
learning methods like MAML, which address few-shot scenarios using few training examples 
of new tasks. Through the meta-learning framework, MLDG will be exposed to domain shifts 
during training, enhancing its ability to handle domain shifts in various situations by learning 
general representations. Accordingly, they divide data from multi-source domains into meta-
train and meta-test sets to simulate domain shifts. In the meta-train phase, parameters � of the 
model are updated by gradient descent using the meta-train sets Str . As a result, the following 
steps will be taken:

where � is the meta-train (inner loop) learning rate. Following that, in the meta-test phase, 
we determine the loss using the meta-test sets (virtual-test domains) Ste with the parameters 

(2)
∇

�
= �

�

�
(Str;�),

�
� = � − �∇

�
,

Fig. 2   A decision graph illustrating how to apply the taxonomy of meta-learning approaches for domain 
generalization. The decision graph categorizes techniques based on the two key aspects: the generalizability 
axis, which focuses on the feature extractor’s strategy (minimizing inter-domain distances or maximizing 
intra-domain distances), and the discriminability axis, which focuses on the classifier’s training process 
(minimizing intra-class distances or maximizing inter-class distances). This decision graph helps the reader 
navigate through the taxonomy, providing use cases, strengths, and weaknesses for each category to make 
the concepts more tangible, applicable, and actionable
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obtained in the meta-train phase. Consequently, this phase involves calculating gradients 
over gradients to update the model’s parameters. The parameters update can be formulated 
as:

where � is the loss function,and � is the meta-test (outer loop) learning rate, and � weights 
meta-train and meta-test.

MLDG is built on top of MAML and improves the generalization of MAML, which is 
model-agnostic and easily applicable to reinforcement learning (RL) problems. However, 
Like MAML, it is computationally expensive since it requires the calculation of second-order 
derivatives.

4.2 � MetaReg

Balaji et  al. (2018) introduced MetaReg (domain generalization using meta-regularization) 
that incorporates a regularization term trained using meta-learning to encourage models to 
extract domain-invariant features and reduce sensitivity to domain-specific variations to train 
models that are robust to domain shifts. Their proposed model consists of a feature network 
� along with p task networks �i for p source domains. The feature network is designed to 
extract more general features, and the tasks networks are utilized to enforce domain-specificity 
in the networks so that they can apply regularizers to make them domain-invariant. Therefore, 
they implement the meta-learning framework to train the regularizer term and incorporate it 
into the loss function. The regularizer term will be trained using every pair of source domains 
(a, b). This procedure can be expressed by the following set of equations:

where Eq. (4) describes the inner loop of the meta-learning paradigm that performs l steps 
of gradient descent using meta-train set on a new task network with parameters �(k)

a
 which 

is the base model’s task network parameters of the ath domain at iteration k to obtain 𝜃̂(k)
a

 . In 
addition, Eq. (5) refers to the outer loop of the meta-learning strategy, which incorporates 
the meta-test set to minimize the unregularized loss with parameters 𝜃̂(k)

a
 with respect to 

the regularizer parameter � . By using the trained regularizer, we fine-tune a new model 
on the entire source dataset. To further add, weighted L1 loss is used as the regularization 
function, i.e., R

�
(�) =

∑
i �i��i� to build a learnable weight decay mechanism and diminish 

domain-specific characteristics in task networks.
Although MetraReg increases the training complexity and requires several domains for 

practical training, it is easily applicable to deep neural networks and helps reduce overfitting.

(3)� = � − �
�(�(Str;�) + ��(Ste;�

�))

��
,

(4)

𝛽
1
← 𝜃

(k)
a

𝛽
t = 𝛽

t−1 − 𝛼∇
𝛽 t−1

[L(a)(𝜓 (k), 𝛽 t−1) + R
𝜙
(𝛽 t−1)]

∀t ∈ {2,… , l}
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(k)
a
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a
)|
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4.3 � Feature‑critic networks

Feature-Critic Networks introduced by Li et al. (2019a) is tailored for heterogeneous domain 
generalization by drawing inspiration from the meta-learning framework. The proposed model 
meta-learns a loss function that promotes domain robustness. In this way, they train a robust 
feature extractor that can be used with any classifier for addressing various problems from 
different domains. More specifically, they introduced a learnable auxiliary loss �(Aux)

�
 resulting 

from optimizing the feature-critic network h
�
 to encourage the base network to extract domain 

agnostic features, as illustrated in Fig. 3.
Based on the following equations, parameters � of the base network is computed using the 

meta-train data Dtr:

where �(CE) is the cross-entropy loss, and the auxiliary loss �(Aux)
�

 is defined as follows:

where f
�
 is the feature extractor. Also, the softplus function is applied to ensure the output 

is non-negative.
In order to determine parameters � of the feature-critic network, the following optimiza-

tion will be used with the meta-test data Dval:

The tanh function can be considered a softer version of gradient clipping in this context.
Ultimately, we can utilize g

�
◦f

�
 , where the trained base network f

�
 will serve as a fixed 

feature extractor for target domains, and g
�
 would be the classifier. For heterogeneous DG, 

(6)
�
(OLD) = � − �∇

�
�
(CE)(Dtr|�),

�
(NEW) = � − �∇

�
(�(CE)(Dtr|�) + �

(Aux)
�

(Dtr|�)),

(7)�
(Aux)
�

∶=
1

N

N∑

i=1

softplus(h
�
(f
�
(xi))),

(8)min
�

tanh(�(CE)(Dval|�
(NEW)) − �

(CE)
�

(Dval|�
(OLD))).

Fig. 3   Visual representation of the Feature-Critic Networks for heterogeneous domain generalization, 
depicting the base network’s feature extraction guided by an auxiliary loss from the feature-critic networks 
to promote domain-invariant feature extraction. The domain-invariant features are generated by minimizing 
the inter-domain distances
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we have N distinct classifiers, denoted as g
�1
, g

�2
,… , g

�N
 . On the other hand, in the homo-

geneous DG, we have a single classifier g
�
 that can be shared across all domains.

Feature-critic networks can effectively deal with heterogeneous DG where label spaces 
differ. Nevertheless, there is no guarantee that the gradients of the feature-critic networks 
will not conflict with those from the supervised loss, which could negatively affect the per-
formance of the model.

4.4 � Episodic training for DG

A novel framework for DG is proposed by Li et al. (2019b) based on episodic training that 
resembles the meta-learning training approach. In particular, they used episodic training to 
train a deep neural network, decomposed into feature extractor and classifier components. 
Each component is trained by simulating interactions with a poorly tuned partner for the 
current domain. Moreover, to construct episodes, the framework uses data from domain A 
to be processed by the classifier trained on domain B, which has not been exposed to data 
from A, and vice versa. This cross-domain exposure ensures that each component becomes 
sufficiently robust at handling OOD data, as depicted in Fig. 4.

The intuition of the episodic training using a mismatched classifier is to regularize the 
feature extractor by asking it to produce features robust enough that even an arbitrary clas-
sifier will be able to perform properly. Accordingly, three episodic training strategies are 
introduced: 1) Train feature extractor to support classifiers from other domains; 2) Train 
classifier to accept features from other domains; 3) Train feature extractor to support a ran-
domly initialized classifier.

The proposed approach requires only a simple modification of the training procedure 
and does not rely on special data augmentation or optimization algorithms. It also allows 
for heterogeneous label spaces across domains since no classifier needs to be shared. How-
ever, there is a risk that the feature extractor could learn degenerate representations if the 
randomness imposed overwhelms the true objectives of the training.

Fig. 4   Overview of Episodic Training for DG framework, illustrating the regularization process where 
a feature extractor is trained with classifiers from different domains and vice versa, promoting out-of-
distribution robustness
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4.5 � Meta‑learning the invariant representation

Learning invariant representations across source domains has shown effectiveness for DG. 
However, overfitting to source domains can limit generalization to a target domain that 
differs greatly from the sources. Jia and Zhang (2022) proposed a meta-learning algorithm 
via bilevel optimization to improve the out-of-domain robustness of the learned invariant 
representation. Most meta-learning algorithms share a common limitation: they use task 
objectives directly as the inner-loop and outer-loop objectives. This approach can be 
suboptimal because it is highly abstracted from the feature representation. To address this 
issue, the authors focus on a meta-learning approach aimed at reducing the discrepancy 
between the target domain and source domains, where in each training iteration, any 
domain can become the meta-target domain while the rest serve as the meta-source 
domains. Specifically, they developed a bilevel meta-learning procedure based on the 
first-order MAML framework, which achieves high computational efficiency. The paper 
employs a Y-discrepancy measure (Zhang et  al. 2012) to quantify domain discrepancy, 
effectively capturing both covariate and conditional shifts between domains. Notably, Y
-discrepancy has been utilized in previous research for domain invariance learning (Zhang 
et al. 2021). The primary goal of this algorithm is to minimize the Y-discrepancy between 
the source domains and the target domain. A gradient-based meta-learning algorithm is 
provided to solve the bilevel optimization problem efficiently. The algorithm alternates 
between sampling meta-tasks, updating the feature embedding and classifiers on the 
meta-training set, and updating the meta-parameters based on the meta-test performance. 
The inner-loop objective aims to minimize discrepancy across different source domains, 
while the outer-loop objective aims to minimize discrepancy between source domains 
and a potential target domain. In particular, adversarial learning is employed to estimate 
and minimize the Y-discrepancy between domains in both the inner and outer loops of 
the bilevel meta-learning algorithm. In essence, this meta-learning approach reduces 
the discrepancy between the target domain and the convex hull of the source domains as 
depicted in Fig.  5. This enables learning a robust invariant representation for improved 
domain generalization.

The introduced model learns a robust invariant representation that generalizes well to 
unseen domains by optimizing the feature embedding to minimize the discrepancy between 
meta-source and meta-target domains during training. However, like other domain gener-
alization methods, the effectiveness of the proposed approach may depend on the diversity 
of the available source domains. If the source domains lack diversity, the learned invariant 
representation may not generalize well to significantly different target domains.

4.6 � MASF

Model-agnostic learning of semantic features (MASF) has been presented by Dou et  al. 
(2019), in which two complementary losses that explicitly regularize the semantic structure 
of the feature space are introduced. This approach aims to enhance domain generalization 
within the meta-learning framework by splitting source domains into meta-train and 
meta-test sets to simulate domain shift through an episodic training procedure. In more 
detail, MASF suggests enforcing semantic features through global class alignment and 
local sample clustering, as illustrated in Fig. 6. These supplementary losses are explicitly 
derived in an episodic learning procedure.
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The objective of global class alignment is to structure the feature space such that it 
preserves the learned inter-class relationships on unseen data via explicit regularization. 
By ensuring consistent class relationships, knowledge transfer across domains is facilitated, 
thus improving domain generalization. This inter-class alignment is done by exploiting 
what the model has learned about class ambiguities in the form of per-class soft labels and 
enforcing their consistency within each two distinct domains by minimizing the symmetric 
KL divergence between their soft confusion matrix created from the collection of soft 
labels.

The objective of local regularization is to enhance robustness by promoting feature 
compactness, grouping features of samples within the same class closely together while 
being distinct from features of different classes. This is crucial to prevent ambiguous 
decision boundaries and sensitivity to unseen domain shifts. As a result, an embedding 
network is utilized to process the extracted features. The output of this network is then used 

Fig. 5   Depiction of the meta-learning for invariant representation method. (a) Compared to the ERM 
baseline, (b) domain invariance learning decreases the discrepancy among source domains and excels 
in source-domain classification, yet it may still result in significant errors on the target domain. (c) The 
proposed approach employs bilevel meta-learning to further minimize the discrepancy between the target 
and source domains, enabling a hypothesis learned from the source domains to generalize effectively to the 
target domain

Fig. 6   Overview of the MASF approach for Domain Generalization, F
�
 , and T

�
 represent the feature 

extractor and task network, respectively, with F
� ′ and T

�′
 being their updated versions after inner gradient 

updates on the task loss L
task

 . M
�
 is the metric embedding network, and D

k
 represents different source 

domains. (a) Illustration of gradients flow of episodic training with domain shift simulation; (b) Global 
alignment for consistent class relationships across domains; (c) Local sample clustering to promote the 
Maximization of Inter-Class Distances
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to measure the distance between the input features of randomly selected pairs of samples 
from all domains. The training procedure employs either contrastive loss or triplet loss.

The proposed model captures inter-class relationships and ensures intra-class compact-
ness, improving the generalization of the model; however, applicability to large-scale prob-
lems with many classes may be a challenge.

4.7 � S‑MLDG

Li et  al. (2020) proposed a framework for sequential learning for domain generalization 
(S-MLDG) based on the MLDG to enhance its performance by incorporating sequential 
learning and lifelong learning. They train a base DG model sequentially along a trajectory 
spanning the source domains, optimizing the cumulative performance across the entire 
trajectory instead of individual steps. In the case of MLDG, it recursively applies MLDG 
along the trajectory, simulating lifelong DG learning, as shown in Fig. 7. This approach 
encompasses more unique DG episodes compared to the base algorithms. While MLDG 
considers N distinct domain-shot episodes, this method considers N! distinct domain-
shift episodes. Furthermore, the approach defines a loss function that aggregates the 
performance on each step of the trajectory through domains. Additionally, it incorporates 
shuffling domain orders and sampling new batches for each iteration, ensuring diversity 
and preventing overfitting.

The fast first-order approximation, denoted as FFO-S-MLDG, constitutes a streamlined 
variant of the S-MLDG algorithm, drawing inspiration from Reptile to mitigate its compu-
tational overhead. FFO-S-MLDG uses a first-order approximation of the original S-MLDG 
algorithm, enabling it to be trained more quickly and efficiently.

Although the training complexity is higher compared to MLDG due to the optimiza-
tion over domain trajectories, this approach consistently demonstrates improvements over 
strong baselines on multiple benchmarks. This is due to its ability to generate more unique 
DG episodes.

4.8 � MetaVIB

Meta variational information bottleneck (MetaVIB) has been introduced by Du et  al. 
(2020) as a probabilistic meta-learning model to handle uncertainty and domain shifts for 

Fig. 7   Illustration of the S-MLDG training procedure, showing the sequential training across multiple 
domain trajectories with random sequences to simulate lifelong learning and increase the diversity of 
domain-shift episodes
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domain generalization by learning domain-invariant representations using variational auto-
encoders. In order to address the uncertainty associated with predictions on the unseen 
target domain, the model represents classifier parameters as distributions inferred from 
source domains. In a similar manner to other algorithms, source domains are split into 
meta-train and meta-test sets in each training episode to simulate domain shift, as illustrated 
in Fig.  8. MetaVIB is derived from novel variational bounds of mutual information 
by leveraging the meta-learning setting. Also, the meta-learning objective maximizes 
performance on meta-test while minimizing domain divergence via MetaVIB. As a result, 
MetaVIB learns to gradually narrow domain gaps to achieve domain invariance, while 
maximizing prediction accuracy through episodic training. This encourages learning 
efficient representations that preserve information for prediction but remove domain-
specific statistics, thereby enabling the learning of domain-agnostic representations.

MetaVIB explicitly addresses the uncertainty associated with predictions for new 
domains through probabilistic modeling. Also, by limiting the information flow from the 
inputs to only what is relevant for the classification task through the information bottle-
neck. This prevents the model from encoding irrelevant domain-specific details. However, 
it does not explicitly align distributions across domains, implying a certain level of domain 
shift might remain.

4.9 � M‑ADA

Qiao et  al. (2020) introduced Meta-learning based Adversarial Domain Augmentation 
(M-ADA) as an effective single domain generalization method. Recognizing that acquiring 
data from multiple training domains might not be feasible due to constraints such as budget 
or privacy concerns, they proposed generating fictitious domains through adversarial 
training to use in the meta-test phase. As shown in Fig.  9, the model consists of a task 
model and a Wasserstein Autoencoder (WAE).

The task model with parameters � encompasses a feature extractor F, which maps the 
input space to embedding space z, and a classifier C that predicts labels from the embed-
ding space z, using cross-entropy as its loss function Ltask . Moreover, Lconst imposes a 
semantic consistency constraint on the adversarially augmented samples x+ . It ensures that 
the augmented domains S+ remain close to the source domain S within the embedding 
space. Accordingly, Lconst is defined as:

Fig. 8   Computational graph of the MetaVIB model for domain generalization, depicting the training 
process where domain-invariant representations are learned. Global parameters ( Θ ) and classifier 
parameters ( � ) are optimized over source domains, which are split into meta-train ( Ds ) and meta-test 
( Dt ) sets to simulate domain shifts within each episodic training phase. During the test phase, Θ generates 
representations for the target domain, while � is used for predictions of data from the source domain. While 
this is a typical example of the inter-domain minimization and intra-class minimization paradigm, the 
distinctive feature of MetaVIB lies in its explicit probabilistic modeling approach
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where 1 {⋅} is the 0- 1 indicator function, so Lconst will be ∞ if x and x+ have different class 
labels. Essentially, Lconst governs the capacity for generalizing beyond the source domain, a 
measure facilitated by the Wasserstein distance.

In addition, the task model learns from domain augmentations with the assistance of 
a WAE, denoted as V, with parameters � . V consists of an encoder Q(x|e) and a decoder 
G(x|e), where x and e denote the input and bottleneck embedding respectively. Also, they 
utilized Maximum Mean Discrepancy (MMD) as the distance metric ( De ) to minimize the 
divergence between Q(x) and a priori distribution P(e). Therefore, we can pre-train V using 
the following optimization on the source domain S:

where � is a hyper-parameter. Following this, the reconstruction error Lrelax should be max-
imized for domain augmentation:

WAEs use the Wasserstein distance metric to measure the distribution distance between the 
input and reconstruction. As such, the pre-trained V is better equipped to capture the distri-
bution of the source domain, and maximizing Lrelax ensures larger domain transportation. 
Finally, the overall loss function is:

where � and � are two hyper-parameters used to balance Lconst and Lrelax.

(9)Lconst =
1

2
‖z − z+‖2

2
+∞ ⋅ 1 {y ≠ y+},

(10)min
�

‖G(Q(x)) − x2‖ + �De(Q(x), p(e)),

(11)Lrelax = ‖x+ − V(x+)‖2.

(12)LADA = Ltask(�;x) − �Lconst(�;z) + �Lrelax(� ;x),

Fig. 9   Overview of M-ADA method for single domain generalization using adversarial domain 
augmentation. The architecture employs a task model comprising a feature extractor F and classifier C, 
alongside a Wasserstein Autoencoder (WAE), to generate fictitious domains
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M-ADA offers a novel adversarial domain augmentation approach using relaxed con-
straints; however, it requires pre-training a Wasserstein autoencoder, which subsequently 
adds computational overhead.

4.10 � MetaNorm

While batch normalization is essential in training deep neural networks, small batch sizes 
and distribution shifts can destabilize batch statistics. MetaNorm, introduced by Du et al. 
(2020), ensures effective batch normalization under such conditions. It uses a meta-learn-
ing setting to infer adaptive normalization statistics from limited samples instead of rely-
ing on direct calculations of batch statistics, which can be unreliable with small batches 
or distribution shifts. Unlike the transductive batch normalization (TBN) method, which 
uses the same statistics for both meta-train and meta-test phases, MetaNorm applies a non-
transductive approach. Given that test samples may not always be available, MetaNorm is 
designed to learn to generate statistics only from the support set, and at the meta-test time, 
it directly applies the model to infer statistics for new tasks.

MetaNorm employs two separate feed-forward networks known as hypernetworks. One 
is for inferring � , denoted as f 𝓁

�
(⋅) , and the other for inferring � , denoted as f 𝓁

�
(⋅) , in order 

to find the statistics for each individual channel in each � convolutional layer in the meta-
learning model. In essence, the hypernetworks accept sample activations as input and pro-
duce the estimated statistics as output. During the meta-training phase, the estimated sta-
tistics of the support set are applied for normalization of both support and query samples:

where � and � are jointly learned with parameters of the hypernetworks during the meta-
training and directly applied at meta-test time, and � is a small scalar to prevent division by 
zero.

As a final step, it minimizes the following KL term to learn the normalization statistics:

where q(m|ai) and p(m|Ds) are defined as a Gaussian distribution based on their respective 
estimated statistics, and also ai is a sample from the meta-source domain Ds . MetaNorm 
learns to generate its own appropriate statistics and applies them to the samples in the 
meta-target domain. Notably, in the meta-target domain, the KL term is not used; instead, 
each example generates its own normalization statistics.

Although adding hypernetworks to infer normalization statistics slightly increases the 
overall model complexity, MetaNorm overcomes the issues of batch normalization with 
small batches and domain shifts, offering a promising approach to domain generalization 
through meta-learning.
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4.11 � DADG

Discriminative Adversarial Domain Generalization (DADG) is a novel framework pro-
posed by Chen et al. (2022) that integrates Discriminative Adversarial Learning (DAL) for 
extracting domain-invariant features and Meta-learning-based Cross-Domain Validation 
(Meta-CDV) for training a robust classifier. DAL aims to learn a domain-invariant feature 
representation to minimize domain variance. It achieves this by training a feature extractor 
to confuse a domain discriminator, which is tasked with predicting the domain of the fea-
tures. Further, as depicted in Fig. 1, the Gradient Reversal Layer (GRL) is placed between 
the feature extractor and the domain discriminator in the DAL component. During forward 
propagation, the GRL functions as an identity transform, conveying the features unchanged 
to the discriminator. Conversely, during backpropagation, the GRL reverses the gradient 
by multiplying it by a negative scalar (e.g., - � ), thereby updating the parameters of the 
feature extractor �m into �m+1 . This reversed gradient, originating from the discriminator, 
encourages the feature extractor to create domain-invariant representations that deceive the 
discriminator.

Subsequently, Meta-CDV applies the feature extractor to supervised learning by training 
a classifier c

�
 with parameters � . This is done in a meta-learning manner, where the 

classification model will be trained on the domains seen in the previous step to update 
�
m+1 to �m+2 and update �m to �m+1 . The model’s performance is then validated on cross 

domains to enhance the classification model. It should be noted that this evaluation 
is performed using the updated parameters �m+2 and �m+1 . In essence, the optimization 
of the classification model involves the third derivative with respect to � and the second 
derivative with respect to � . Particularly, Meta-CDV simulates train/test domain shifts by 
training the model on seen domains and validating it on a held-out domain, thereby making 
the classifier more robust (Fig. 10).

DADG learns domain-invariant features using adversarial discriminative learning with 
GRL, which enables the adversarial mechanism in a simple way. However, the effective-
ness of the discriminative adversarial learning component can diminish as the number of 
source domains increases.

4.12 � Uncertainty‑guided model generalization

Qiao and Peng (2021) proposed a unique solution for single domain generalization using 
Bayesian meta-learning, called uncertainty-guided model generalization. The primary 
strategy of this method is to augment the source domain’s capabilities, not only in the input 
space, as most current data augmentation methods do, but also in the label space, guided 
by an uncertainty assessment. As illustrated in Fig. 11, instead of directly augmenting the 
input space, they introduce an auxiliary network � = {�p,�m} to create feature perturba-
tions h+ by adding softplus of Gaussian noise e ∼ N(�, �) to generate new domain S+ from 
domain S . The distribution parameters (�, �) represent the uncertainty with respect to the 
backbone � . This uncertainty is further utilized to predict learnable parameters (a, b, �) , 
which are used to construct learnable label mixup. In learnable label mixup, learnable 
parameters (a,  b) are used to define � ∼ Beta(a, b) to mixup S and S+ to achieve in in-
between domain interpolations. Notably, learnable parameters (a, b) control the direction 
and strength of domain interpolations. As a result, the following equations are used:
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where ỹ represents a label-smoothing version of y. Particularly, label smoothing is carried 
out with a probability of � , which means that we allocate a value of � ∈ (0, 1) to the true 

(15)
h+ = 𝜆h + (1 − 𝜆)h+,

y+ = 𝜆y + (1 − 𝜆)ỹ,

Fig. 10   Illustration of the DADG framework, which combines Discriminative Adversarial Learning (DAL) 
featuring a Gradient Reversal Layer (GRL) for creating domain-invariant features with Meta-learning-based 
Cross-Domain Validation (Meta-CDV) to improve the performance of classifiers across unseen domains

Fig. 11   Schematic representation 
of the uncertainty-guided 
model generalization approach, 
where an auxiliary network � 
introduces feature perturbations 
to form a new domain S+ . This 
process utilizes uncertainty in the 
form of distribution parameters 
(�, �) to guide the creation of 
domain-augmented data and 
label mixup, thereby enabling 
the model to generalize to 
unseen domains by interpolating 
between the original and 
perturbed features and labels
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class and equally distribute 1−�
c−1

 to the others, where c represents the number of classes. 
Moreover, by learning a and b, the model can learn to modulate the Beta distribution 
to produce optimal � values that result in efficient interpolations between S and S+ . 
Accordingly, this process results in consistent domain shifts in both input and output via �p 
and �m , enhancing generalization across unseen domains.

The authors proposed a practical Bayesian meta-learning framework that optimizes � 
and � to maximize the posterior p(S+) . In other words, they utilized Bayesian inference to 
maximize the posterior of domain augmentations, approximating the distribution of unseen 
domains.

While uncertainty-guided augmentation provides a mechanism to approximate unseen 
target distributions, relying solely on randomized sampling procedures to cover the wide 
range of target domains may be inadequate for real-world distribution shifts.

4.13 � Memory‑based multi‑source meta‑learning

Zhao et al. (2021) proposed a memory-based meta-learning method to address multi-source 
DG for person re-identification (Re-ID) called Memory-based Multi-source Meta-Learning 
( M 3 L ). The purpose of person Re-ID is to match persons with the same identity across 
multiple camera views. Existing works have shown the effectiveness of meta-learning in 
classification tasks, but its parametric classifier falls short for Re-ID. This is due to the 
open-set nature of Re-ID tasks, with each domain having numerous and unique identities. 
Consequently, the M 3 L framework is equipped with a memory-based module that applies 
the identification loss in a non-parametric way, preventing instability in meta-optimization 
commonly associated with traditional parametric methods. Specifically, this framework 
maintains a feature memory Mi for each source domain Di

S
 consisting of ni slots, where 

each slot saves the feature centroid of the corresponding identity. Identification loss is then 
computed using the similarities between these features and memory centroids as follows:

where f (⋅) is the feature extractor and � is the temperature factor. In addition, the following 
triplet loss is utilized to train the model:

where dp represents the Euclidean distance between an anchor feature and a hard positive 
feature, while dn signifies the Euclidean distance between an anchor feature and a hard 
negative feature. Also, � is defined as the margin of the triplet loss and [⋅]+ = max(⋅, 0) . 
As a result, the sum of LTri and LM constitutes the meta-train loss ( Lmtr ) and meta-test loss 
( Lmte).

Furthermore, M 3 L incorporates a meta batch normalization layer (MetaBN) that 
injects meta-train feature statistics into meta-test features, diversifying them and enabling 
the model to simulate an expanded range of feature variations. In this way, through iterative 
generalization processes from meta-train to meta-test domains, the model avoids overfitting 
due to domain bias and acquires domain-invariant representations that generalize well on 
unseen domains.

(16)LM = − log
exp (M[i]T f (xi)∕�)

∑ni
k=1

exp (M[k]T f (xi)∕�)
,

(17)LTri = [dp − dn + �]+,
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During training, as shown in Fig. 12, source domains are divided into meta-train and 
meta-test sets at each iteration, employing a meta-learning approach to simulate the train-
test process of DG. Therefore, it is necessary to consider the following optimization to 
build generalizable representations:

where Θ represents the network parameters, while Θ� denotes the parameters of the model 
optimized by Lmtr.

Although MetaBN further enhances generalization ability by diversifying meta-test fea-
tures, the memory module adds computational overhead in maintaining and updating cen-
troid features for each identity.

4.14 � MetaBIN

Choi et  al. (2021) proposed Meta Batch-Instance Normalization (MetaBIN) as an effective 
heterogeneous single domain generalization method for person re-identification (Re-ID). The 
main goal is to simulate unsuccessful generalization scenarios by combining batch-instance 
normalization layers with meta-learning to address challenging cases caused by both batch and 
instance normalization layers. A key feature of MetaBIN is its learnable balancing parameters 
between Batch Normalization (BN) and Instance Normalization (IN), which, depending 
on their bias, cause the DG model to experience under-style-normalization and over-style-
normalization scenarios during meta-learning. Under-style-normalization occurs in the BN 
model when the model struggles to distinguish identities of samples with unexpected styles 
from unseen target domains. Conversely, over-style-normalization arises in the IN model, 
which, while efficient at eliminating instance-specific style information, can inadvertently 
filter out discriminative information; refer to Fig. 13 for more information.

(18)min
Θ

Lmtr(Θ) + Lmte(Θ
�),

Fig. 12   Overview of the M 3
L framework designed for person Re-ID. The training process includes 

dividing the source domains into one meta-test domain and multiple meta-train domains in each 
iteration. The model utilizes memory-based identification and triplet loss for the meta-training phase and 
then optimizes the meta-test loss on a copy of the model that has been updated with the meta-train loss 
(maximization of inter-class distance). MetaBN is also applied during the meta-test stage to enhance feature 
diversity (maximization of intra-domain distance). Finally, the aggregated meta-train and meta-test losses 
are used to update the original model for improved domain generalization
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MetaBIN consists of a classifier g
�
 with parameter � to predict identities and a feature 

extractor f
�
 with parameters � where � = (�f , ��) . Here, �

�
 signifies the balancing parameters 

between BN and IN, and �f  represents the remaining parameters.
In the base model updating process, classifier parameters � and feature extractor param-

eters �f  are updated by minimizing the cross-entropy loss along with the triplet loss according 
to the following:

where dp represents the Euclidean distance between an anchor feature and the hard-
est positive sample, while dn signifies the Euclidean distance between an anchor feature 
and the hardest negative sample. Also, � is defined as the margin of the triplet loss and 
[⋅]+ = max(⋅, 0).

(19)Ltri = [dp − dn + �]+,

Fig. 13   Visualized here are scenarios where generalization is unsuccessful, along with the MetaBIN 
framework. (a) Under-style-normalization where, the BN model fails to recognize identities in novel 
domains due to a lack of style variation in the training data. (b) Over-style-normalization, where the IN 
model excessively removes style information, including identity-discriminative features. (c) The main idea 
behind the MetaBIN framework is to adjust the balance between BN and IN, simulating and learning from 
both types of normalization errors within a meta-learning framework, thereby enhancing the model’s ability 
to generalize to unseen domains without overfitting to source domain styles



Domain generalization through meta‑learning: a survey﻿	 Page 27 of 39    285 

In the meta-learning step, source domains are split into meta-train set Dmtr and meta-
test set Dmte . First, in the meta-training phase, only �

�
 is updated to obtain �′

�
 using Dmtr to 

simulate over-style-normalization and under-style-normalization cases via the aggregation 
of the following losses: the intra-domain scatter loss ( Lscat ), the inter-domain shuffle loss 
( Lshuf  ), and the triplet loss ( Ltri ). The intra-domain scatter loss is used to spread the feature 
distribution for each domain by minimizing the cosine similarity between each sample 
and its domain centroid. The inter-domain shuffle loss is introduced to shuffle or mix up 
the distributions across different source domains by minimizing the distance between 
anchor samples and inter-domain negatives while maximizing the distance between anchor 
samples and intra-domain negatives. In summary, the intra-domain scatter loss Lscat and 
inter-domain shuffle loss Lshuf  are used to simulate over-style-normalization scenarios 
where styles are confused. At the same time, adding the triplet loss enhances intra-class 
compactness regardless of style differences to simulate under-style-normalization. Next, in 
the meta-testing phase, the model with parameters �f  and �′

�
 is evaluated on Dmte , and �

�
 

will be updated using Ltri . Note that �
�
 contains channel-wise balancing parameters � for 

each normalization layer, with some channels biasing �
�
 toward IN to remove unessential 

style info, while others retain BN properties.
MetaBIN improves generalization to unseen domains without needing extra networks or 

data augmentation; however, it may not perform well on datasets with complex variations 
or highly different styles between domains, as it relies on the simulated scenarios to learn a 
robust representation.

5 � Datasets and evaluations

In the DG and domain adaptation (DA) fields, datasets are specifically constructed to repre-
sent various ’domains’-each a unique distribution of data that captures a certain variation in 
the input space. These variations can include changes in visual appearance, sensor modal-
ity, environmental conditions, or even different tasks. The purpose of these multi-domain 
datasets is to simulate real-world scenarios where a model trained on limited domains must 
perform well on another unseen domain. The richness and diversity of domains within 
these datasets are pivotal to developing and benchmarking algorithms that can generalize 
beyond their training data.

Several important datasets, commonly used in the fields of DG and DA, have been 
examined in studies that leverage meta-learning for DG. Given the fundamental overlap 
between DA and DG, datasets from DA can also be applied to DG purposes, and vice 
versa. Each dataset, associated with a specific application, is summarized in Table 3 and 
will be discussed in this section. This discussion will be followed by an overview of the 
evaluation strategies commonly employed in DG, which differ from the more straightfor-
ward evaluation systems used in DA.

5.1 � Datasets

In the DG landscape, datasets serve as critical benchmarks for evaluating algorithm 
performance across varied scenarios. We begin with Rotated MNIST (Ghifary et al. 2015), 
a synthetic dataset based on the original MNIST. It comprises six domains, each containing 
images of various digits modified by rotations ranging from 0 to 90 degrees at 15-degree 
intervals. This dataset is instrumental in assessing DG algorithms for handwritten digit 
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recognition. Additionally, to serve a similar purpose, another dataset, known as Digits-
Five (Zhou et  al. 2020), has been introduced, which includes five sub-datasets: MNIST 
(LeCun et al. 1998), MNIST-M (Ganin and Lempitsky 2015), SVHN (Netzer et al. 2011), 
SYN (Ganin and Lempitsky 2015), and USPS (Hull 1994), where each of them can be 
considered a different domain.

For object recognition, a task particularly sensitive to domain shifts, notable benchmarks 
include VLCS (Fang et al. 2013), Office-Home (Fang et al. 2013), PACS (Li et al. 2017), 
CIFAR-10-C (Hendrycks and Dietterich 2019), and VD (Rebuffi et  al. 2017). VLCS 
contains images from four domains (VOC2007 Everingham et al. 2010, LabelMe Russell 
et al. 2008, Caltech-101 Fei-Fei et al. 2004, and SUN09 Xiao et al. 2010) (see Fig. 14) and 
five classes. Office-Home includes images of objects from Art, Clipart, Product, and Real-
World domains, spanning 65 categories. PACS covers four contrasting domains (Photo, 
Art painting, Cartoon, and Sketch as depicted in Fig. 14) with seven object classes. VD 
contains ten diverse domains, including handwritten characters, pedestrians, traffic signs, 
etc., with varying image categories and sizes suitable for heterogeneous DG. Also, CIFAR-
10-C (Hendrycks and Dietterich 2019) is a robustness benchmark comprising CIFAR-10 
(Krizhevsky et  al. 2009) test images corrupted through 19 distortion types across five 
severity levels.

IXMAS (Weinland et al. 2006) dataset addresses the domain generalization challenge 
in action recognition, which relies on learning generalizable representations within video 
understanding. It includes recordings of 11 actions performed by various actors, captured 
from multiple angles and with different cameras, to introduce domain shifts.

In autonomous vehicle development, semantic segmentation is essential, yet deep neural 
networks have not fully bridged the performance gap in unexplored environments. SYN-
THIA (Ros et al. 2016) dataset, with its synthetic images of different locations and weather 
conditions, supports research to overcome this limitation.

Fig. 14   Example images from two prominent domain generalization benchmarks, illustrating different types 
of domain shifts. In (a), the PACS dataset highlights domain shifts primarily due to changes in image style. 
In (b), the VLCS dataset reveals domain shifts caused by variations in environment, scene, and viewpoint, 
reflecting dataset-specific biases
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Person Re-Identification (Re-ID) is another area where DG is paramount, especially for 
security and surveillance. While traditional Re-ID has been confined to the same camera 
views, cross-dataset Re-ID seeks to generalize from source to target views across varied 
resolutions, viewpoints, and lighting conditions. Key datasets like Market-1501 (Zheng 
et al. 2015) and DukeMTMC-ReID (Zheng et al. 2017) are essential in the advancement of 
this field.

Lastly, the Amazon Reviews (Blitzer et  al. 2006) dataset, containing reviews from 
domains such as books, DVDs, electronics, and kitchen appliances, is crucial for sentiment 
classification in natural language processing.

5.2 � Evaluations

For evaluating domain generalization algorithms, three principal strategies are commonly 
employed: (i) Leave-one-domain-out validation, which is the most prevalent strategy that is 
applicable when multiple source domains are available during training. It involves leaving 
out one source domain as the validation set while using the others for training. However, 
the final results heavily rely on the selection of the validation domain, leading to results 
that may lack stability. (ii) Training-domain validation, where a subset of the training data 
is held out for validation to select the best model. However, since there is still a divergence 
between real-world unseen data and the training subset, it may not achieve optimal per-
formance. (iii) Test-domain validation: which involves using a random subset of the tar-
get domain data for model selection. This method can lead to the best performance since 
the validation and test data share the same distribution. However, it presupposes access to 
the target domain data, which may not be feasible in real-world applications. Using test 
domain data for model selection can yield misleading results, as an unrepresentative or 
excessively easy subset may result in optimistic performance, or a challenging subset may 
lead to pessimistic results (Gulrajani and Lopez-Paz 2020). Careful interpretation of results 
obtained using this method is therefore necessary.

In general, the average accuracy is used as the primary metric to report the performance 
of a DG model across held-out domains. For image classification on Cifar-10-C (Hend-
rycks and Dietterich 2019), the mean Corruption Error (mCE) metric determines model 
robustness to corruptions, while Relative mCE (RmCE) compares corruption robustness 
relative to a baseline by accounting for clean data performance. This enables fairer com-
parisons between models. For semantic segmentation models evaluated on the SYNTHIA 
(Ros et al. 2016) dataset, the standard mean Intersection Over Union (mIoU) is calculated 
for each unseen domain to quantify segmentation accuracy. Additionally, the VD-score 
metric assesses models trained on the diverse VD (Rebuffi et al. 2017) dataset by evaluat-
ing performance across its ten distinct image classification tasks.

6 � Applications

In real-world scenarios, finding sufficient labeled data to effectively train a model often 
proves challenging. This difficulty is compounded when the model encounters OOD data 
during testing. As such, domain generalization through meta-learning has emerged as a 
highly desirable solution. It enables a model to be trained on one or multiple domains 
and to be applied to unseen domains without the need for retraining. This approach not 
only alleviates the risk of overfitting but also diminishes the costs and time associated 



Domain generalization through meta‑learning: a survey﻿	 Page 31 of 39    285 

with domain-specific retraining, thus boosting the model’s adaptability and operational 
efficiency.

The applicability of domain generalization models is evident across various disciplines, 
such as medical imaging, intelligent fault diagnosis, computer vision, and natural language 
processing. For example, Liu et  al. (2020) utilized meta-learning for domain generaliza-
tion to segment prostate MRI images, demonstrating its potential in medical analysis. Ren 
et al. (2023) proposed Meta-GENE, a model-agnostic meta-learning framework designed 
for fault diagnosis in industrial prognostics and health management scenarios, which can 
operate in both homogeneous and heterogeneous DG settings. Wang et al. (2020) applied 
the technique for cross-lingual semantic parsing, and Balaji et al. (2018) utilized it for sen-
timent analysis within the Amazon Review dataset. In the area of person re-identification 
(Re-ID), both Choi et al. (2021) and Zhao et al. (2021) leveraged meta-learning for DG to 
recognize individuals across varying postures and perspectives. Moreover, meta-learning 
for DG has been applied in cross-view action recognition by Li et al. (2019b) and robot 
control through reinforcement learning by Li et al. (2018). Qiao et al. (2020) showcased its 
utility in semantic segmentation for street scenes, and Dou et al. (2019) explored its appli-
cation in multi-site brain tissue segmentation.

Further extending the applications, DG has been employed in face anti-spoofing (Shao 
et  al. 2019), image compression (Zhang et  al. 2021), and various medical diagnostics, 
including Parkinson’s disease detection (Muandet et al. 2013), activity recognition (Erfani 
et al. 2016), chest X-ray analysis (Mahajan et al. 2021), and EEG-based seizure detection 
(Ayodele et al. 2020). Other studies have used domain generalization for speech utterance 
recognition (Shankar et al. 2018; Piratla et al. 2020), fault diagnosis (Li et al. 2020; Zheng 
et al. 2020; Liao et al. 2020), and brain-computer interaction (Han and Jeong 2021). Addi-
tionally, DG has found its place in brain-computer interfacing (Han and Jeong 2021), and 
promising advancements have been made in time series forecasting for financial markets 
(Du et al. 2021).

The extensive applications of meta-learning for DG position it as a focal point of inter-
est for future research and commercial endeavors. The algorithms developed under this 
paradigm equip models with rapid generalization and adaptation capabilities, even in the 
absence of target domain data. Such a capacity is a stepping stone towards creating more 
powerful AI systems capable of tackling diverse real-world problems. By integrating 
domain generalization with meta-learning, we can unlock zero-shot learning capabilities 
for novel, unseen domains, enabling generalization across various tasks and domains with-
out requiring additional data.

7 � Discussion and future directions

This survey has examined diverse strategies for DG using meta-learning. The presented 
taxonomy provides a structured view of the field, categorizing approaches based on the 
treatment of the input domain and classifier training strategies, as discussed in Sect.  3. 
Initially, DG models employing meta-learning predominantly focused on the minimization 
of inter-domain distances and the minimization of intra-class distances, aiming to find a 
common representation across domains and cohesive grouping of class instances, as this 
approach is the most intuitive way to develop DG methods using meta-learning. However, 
recent algorithms have been exploring the effectiveness of the Maximization of Inter-Class 
Distances or the Maximization of Intra-domain Distances to fully exploit the advantages of 
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meta-learning. For instance, MASF (Dou et al. 2019) leverages the Maximization of Inter-
Class Distances. It is the first model in meta-learning for DG that follows this paradigm, 
resulting in improved class discriminability and enhanced generalization to unseen 
domains. Furthermore, M-ADA first introduced the concept of maximizing intra-domain 
distances through meta-learning, laying the groundwork for future models that employ this 
strategy. This approach aims to diversify the input feature space, thereby enhancing the 
robustness of the feature extractor, particularly when there are limited training domains 
available. Recently, methods such as Memory-Based Multi-Source Meta-Learning ( M3L ) 
(Zhao et al. 2021) and MetaBIN (Choi et al. 2021) have been developed, leveraging the 
Maximization of both Intra-Domain and Inter-Class Distances. This strategic combination 
is designed to diversify the feature space within each domain while simultaneously ensuring 
that features remain discriminative for classification tasks. These methods are beneficial for 
use cases where different classes are not easily distinguishable, such as Re-Identification 
(Re-ID), by further diversifying input features and enhancing class discriminability.

The choice of strategy in DG models tends to vary depending on the nature and num-
ber of available training domains. When multiple diverse domains are available for train-
ing, employing a technique that minimizes inter-domain distances is a natural choice, as 
it exploits the diversity of the available data to extract domain-invariant features. On the 
other hand, if the training data is limited to a few domains, models that maximize inter-
domain distances are preferable, as they focus on augmenting the input or feature space 
to create a generalizable model capable of performing well across various domains during 
inference. In particular, recent advances in generative AI allows more realistic synthetic 
data generation and diversification, which further enhance algorithms that maximize intra-
domain distances.

Additionally, in scenarios where data points within a dataset are highly similar to each 
other, it is beneficial to utilize models that emphasize the Maximization of Inter-Class Dis-
tances. This approach encourages a clear separation between classes, enabling the model 
to learn effective embedding representations that facilitate discrimination between classes 
based on distance.

To alleviate the weaknesses of existing meta-learning approaches for DG which has 
been explored in Fig. 2, a promising future direction is to create a novel distance metric 
that that captures the intra- and inter-domain characteristics. This metric can be utilized as 
a guidance for selecting appropriate methods to enable rapid adaptation to new domains.

It is also worth mentioning that the exploration of biologically plausible models in meta-
learning has gained some attention and aims to bridge the gap between artificial learning 
systems and the mechanisms underlying learning in biological organisms. While artificial 
neural networks have achieved impressive results on meta-learning benchmarks, they differ 
substantially from the learning processes in biological systems, such as the human brain. 
As of recent, there has been growing interest in developing meta-learning models that are 
more biologically grounded and mimic the human learning system. One such model incor-
porates a memory system designed to prevent catastrophic forgetting, functioning similarly 
to an episodic memory system (Khoee et al. 2024). This model enhances the generalization 
capabilities of spiking neural networks by simulating an efficient episodic memory capable 
of storing vast amounts of information and linking similar underlying patterns. A promis-
ing direction for future development is to create innovative policies for memory adapta-
tion within this model to handle more complex tasks, such as DG. By implementing these 
policies, the model can better ignore noise and outlier data and map similar classes from 
different domains to the same memory representation. This would empower the model to 
effectively tackle data from diverse domains, enhancing its generalization capabilities.
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DG is a critical challenge in federated learning, where multiple clients collaboratively 
train a model without sharing their raw data, enhancing privacy and security (Zhang et al. 
2021). However, the domain of the target test data on the server can differ greatly from the 
training data of each client. This discrepancy leads to decreased performance of the feder-
ated model on the target domain. RFDG (Guan et al. 2023) has integrated domain gener-
alization into federated learning via a reinforcement learning-based feature decorrelation 
policy that enables clients to reweight samples from a global perspective to learn domain-
invariant knowledge. The replay mechanism also addresses challenges posed by mini-batch 
training. This field represents a potential area where we should incorporate meta-learning 
for DG to enhance adaptability to different clients with limited labeled data. By leveraging 
meta-learning techniques, the federated model can quickly adapt to new clients by learn-
ing from a small number of labeled examples, even when there are significant distribu-
tional shifts between the source and target domains. Accordingly, meta-learning can be 
used to learn a shared feature extractor that is robust to domain shifts, allowing the model 
to extract transferable knowledge from the source domains and effectively apply it to the 
target domain, thereby improving its ability to generalize to diverse and unseen domains 
encountered in real-world federated learning scenarios.

Although the presented approaches have made notable progress in domain generaliza-
tion using meta-learning, there are still interesting avenues for future research. One such 
direction is Generalizable Label Distribution Learning (GLDL), which aims to learn 
a Label Distribution Learning (LDL) model that can generalize well to unseen target 
domains. LDL is a machine learning paradigm that assigns a label distribution to each 
instance, indicating the relative importance or description degree of each label. By reflect-
ing the varying degrees of association between labels and instances, LDL provides a more 
detailed representation of label information. Consequently, leveraging the full distribution 
of labels can enhance model performance on complex tasks. A recent work by Zhao et al. 
(2023) has expanded the scope of domain generalization research by addressing the spe-
cific challenges of LDL. In this work, the DICE framework was proposed, which learns to 
extract domain-invariant feature-label correlations and label-label correlations. It achieves 
this by aligning the prior distributions and label correlation matrices across different source 
domains. This work opens up new possibilities for applying meta-learning techniques to 
the GLDL problem, potentially enabling more robust and generalizable LDL models that 
can handle distribution shifts between source and target domains. Exploring the integration 
of meta-learning strategies with GLDL could lead to further advancements in this emerg-
ing area of research.

It is also important to note another key challenge that still needs to be addressed in this 
area of research: enabling algorithms to go beyond pattern recognition to understand and 
exploit data causality (Rothenhäusler et al. 2021). This understanding is essential for mod-
els to make consistent predictions across domains, particularly when existing correlations 
are unreliable (Sheth et al. 2022; Lv et al. 2022; Chen et al. 2023). Therefore, it is essen-
tial to provide meta-learning models with proper inductive biases that can guide the learn-
ing process toward causal inference. Inductive biases help in shaping the hypothesis space, 
enabling the model to prioritize learning generalizable patterns that reflect underlying 
causal relationships as opposed to spurious correlations. Despite challenges, meta-learning 
has valuable potential for DG if steered to grasp causal structures rather than merely mimic 
data. Developing meta-learning frameworks that inherently capture causal relationships 
will be pivotal for achieving true domain-agnostic capabilities.
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8 � Conclusions

Meta-learning has experienced rapid growth in interest in recent years and has been 
applied to many significant research topics in machine learning, including DG. In this 
paper, we focus on meta-learning for DG, a promising field that has attracted many 
researchers. We provide a comprehensive review of existing methods and present a 
detailed taxonomy based on two primary axes crucial for designing effective models, as 
well as an overview of relevant datasets, benchmarks, and applications. The taxonomy 
provided in this survey offers a roadmap for understanding the diverse strategies that 
underpin current research in the field. It is clear that both the feature extraction and 
classifier training processes are critical to the development of DG models. Furthermore, 
we share insights from our analysis of these methods and identify potential research 
challenges that could guide future research directions. We hope that this survey will 
assist newcomers and practitioners in navigating this growing field and will also high-
light opportunities for future research.
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