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A B S T R A C T

Reclamation of copper from waste printed circuit boards (WPCBs) is critical in advancing eco-friendly 
manufacturing methods by considering viable secondary metal resources. Herein, this study introduced a 
novel hybrid intelligence model that relies on a support vector regression–grey wolf optimization (SVR-GWO) 
approach to predict, validate, and optimize the leaching of WPCBs in nitrate solution and copper purification 
using LIX 973 N. The hybrid model’s performance surpassed that of the standalone SVR model due to fine-tuning 
hyperparameters using the GWO approach, as indicated by the lower values of MSE and narrow error distribution 
in the leaching, extraction, and stripping experiments. The modeling data indicated that 96.1 % of the copper in 
the WPCB material was dissolved during leaching at 75◦C, using a pulp density of 7 % for 2 h. During the 
extraction phase, the hybrid model optimized the structure performance of equilibrium pH, extractant concen-
tration, contact time, and O/A ratio, resulting in values of 2.5, 30 %, 20 min, and 1, respectively. The predicted 
isotherm data for the McCabe-Thiele diagram, derived from the developed model, suggested four operational 
stages for extracting copper from the leach solution. Under optimized conditions of 2 M H2SO4 and 0.3 A/O phase 
ratio at 25 ◦C for 20 min, the complete stripping process from the loaded organic phase required applying three 
counter-current stages. These developments highlight the capability of the SVR-GWO method to improve copper 
extraction from WPCBs, thereby making a substantial contribution to sustainable recycling efforts.

1. Introduction

Worldwide, the demand and production for electrical and electronic 
equipment (EEE) are increasing fast, which leads to the creation of 
electronic waste (e-waste) [1]. Discarded printed circuit boards (PCBs) 
represent a significant portion of e-waste, with waste PCBs (WPCBs) 
comprising approximately 3–6 % of the total e-waste by weight [2]. 
Currently, the predominant disposal method for PCBs involves inciner-
ation or deposition in landfills, resulting in adverse environmental im-
pacts associated with generating toxic chemicals such as dioxins, furans, 

and other hazardous substances [3]. The foundational structure of PCBs 
serves as the electronic infrastructure of the device, with copper being 
the primary conducting material. The quantity of copper in PCBs can 
vary based on the number of layers and the level of electricity it is 
designed to handle [4]. Typically, it accounts for approximately 
15–35 % of the overall weight of the PCB [5]. Copper, an essential 
element for the health of humans and organisms, has raised concerns for 
the ecosystem because of increased environmental exposure resulting 
from human activities [6]. An increased amount of Cu in the water can 
lead to protein inactivation and damage to the natural defense system 
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against oxidation. This can disrupt metabolic processes and hinder the 
growth of aquatic organisms [7]. It is imperative to emphasize the 
importance of effectively recycling WPCBs, as this practice holds 
considerable environmental importance. Moreover, Cu plays a crucial 
role in facilitating the shift towards a more sustainable future due to its 
widespread use as a conductor and its significant pertinence to virtually 
every industry. Also, the depletion of Cu resources necessitates the 
sustainable recovery of the metal from secondary sources.

The recent literature reviews have discussed the findings of re-
searchers who have conducted studies on the recycling process of 
WPCBs using hydro-, pyro-, and bio-metallurgical methods [8,9]. High 
temperatures are involved in the pyro-metallurgy process, and they are 
linked to several disadvantages, such as the depletion of noble metals 
into slag, the production of substantial quantities of gaseous emissions, 
and the limited retrieval of other metallic elements [10]. Microorgan-
isms in bio-metallurgical processes break down metals, but despite being 
environmentally friendly, this process is slow and doesn’t always result 
in complete metal recovery [11]. Conversely, the hydro-metallurgy 
technique demonstrates comparatively lower initial investment ex-
penses, limited atmospheric pollution concerns, and superior specificity 
in metals retrieval [12]. The first step in this method is preparing the 
discarded end-of-life PCBs for treatment, followed by leaching, separa-
tion, and purification processes [13].

One commonly used method for separating base metals involves 
using aqueous acids like sulfuric or hydrochloric acid for leaching ex-
periments. Combining acids with an oxidizing agent is essential when 
attempting to recover metals from WPCBs, as the metals in the electronic 
boards exist in their pure elemental states. Appropriate oxidizing agents 
for leaching reactions include hydrogen peroxide, chlorine gas, oxygen, 
bacteria, or nitric acid [14,15]. So far, several researchers have reported 
the procedures for removing and intensifying valuable metals from 
exhausted PCB solutions. Oh and co-workers observed that using a 
mixture of 2 M H2SO4 with 0.2 M H2O2 as an oxidizing agent, Cu 
leaching from WPCBs exceeded 95 % after being heated at 85 ◦C for 
12 h, which there was also a reported simultaneous dissolution of Ni, Al, 
Zn, and Fe [16]. Rao and co-workers have suggested two stages of an 
oxidative leaching technique for retrieving Cu and Au from outdated 
mobile phone PCBs, yielding a metal composition containing 84 % Cu 
and 0.05 % Au [17]. Subsequently, purification process solutions were 
acquired using liquid-liquid extraction, wherein Cu was extracted using 
a diluted phenolic oxime extractant in kerosene. Yang and co-workers 
analyzed the impact of operational parameters on the separation of Cu 
from WPCBs, looking at operating variables like H2SO4 concentration, 
H2O2 dosage, particle size, cupric ions presence, reaction temperature, 
and contact duration in the leaching process [18]. The optimal condition 
for leaching 10 g of waste powder with a pulp density of 10 % for 3 h at 
ambient temperature was to combine 100 ML of 15 % H2SO4 with 10 ML 
of 30 % H2O2. In a similar study, Birloaga and co-workers reported on Cu 
and Au recovery when they examined how adjusting the H2SO4 con-
centration, H2O2 addition, temperature, stirring rate, and leaching time 
affected the results [19]. Kumar and co-workers conducted a compara-
tive analysis of the efficacy of nitric acid and a sulfuric acid/hydrogen 
peroxide mixture in the leaching of Cu from WPCBs [20]. Experimental 
results revealed that under the experimental conditions of a pulp density 
of 100 g/L and a temperature of 90◦C for 5 h, 3 M HNO3 leached 96 % of 
the copper. In contrast, the mixture of 1.2 M H2SO4 and 10 % H2O2 
facilitated the leaching of 75.7 % copper with the equivalent pulp den-
sity at 50◦C for 4 h.

The extensive array of conditions documented in existing literature 
necessitates the utilization of a methodology capable of evaluating the 
specific influence of each process circumstance on total efficacy in un-
dertaking the task of process optimization. Nowadays, machine learning 
(ML) models have gained considerable prominence across multiple 
sectors as significant focus is directed toward leveraging this technology 
to enhance diverse processes [21,22]. The utility of this methodology is 
primarily evident in its ability to facilitate data analysis within a 

framework that enables the assessment of the impact of various inputs 
believed to influence a specific response. A literature review reveals 
various investigations on applying artificial intelligence (AI) techniques 
to model and optimize reactive extraction systems. Table 1 provides an 
overview of some of these studies.

Support vector regression (SVR) is a well-established machine 
learning technique that has demonstrated efficacy across various disci-
plines and domains. Despite its widespread application, SVR has not 
been utilized for predictive capability evaluation of leaching and liq-
uid–liquid extraction. Notwithstanding the SVR advantages, optimizing 
its parameters demands meticulous adjustment of hyperparameters, a 
process characterized by substantial computational requirements. To 
address this issue, the Grey Wolf Optimization (GWO) algorithm, a 
meta-heuristic optimization technique founded on grey wolf social hi-
erarchy and hunting behaviors, was utilized to improve the precision of 
the model. The integrated SVR-GWO approach proficiently addresses 
the intricate interactions and non-linear relationships among various 
factors that affect the leaching and extraction processes, which is 
essential for enhancing the recovery of copper from waste printed circuit 
boards (WPCBs). Also, a thorough uncertainty assessment was carried 
out through stochastic simulation to address the intrinsic uncertainties 
associated with copper separation from WPCBs in the process parame-
ters, improving the reliability of the predictive model.

Previous research on the separation of copper from WPCBs has not 
adequately addressed the interactive relationships among the variables 
that affect the results, nor has it incorporated uncertainty analysis, 
performance prediction, selectivity enhancement, or structural 

Table 1 
Summary of some recent studies on modeling reactive extraction systems using 
machine learning algorithms.

AI 
methods

Goals Studied parameters Recovery rate Ref

ANN-GA Extraction of Ce 
with Cyanex 572

pH, Cyanex 572 
concentration, 
nitrate ion 
concentration, and 
contact time

95.2 % 
cerium

[42]

ANN- 
PSO

Cu removal with 
ZVI/rGO magnetic 
nanocomposites

Temperature, initial 
pH, initial 
concentration, and 
contact time

87.2 % 
copper

[43]

ANN-GA Extraction of 
C4H6O6 with 
Amberlite LA− 2

Tartaric acid 
concentration, pH, 
and amine 
concentration

96.1 % 
tartaric acid

[44]

ANN-GA Ferulago angulate 
extraction with 
super critical carbon 
dioxide

Pressure, 
temperature, particle 
size, and dynamic 
time

86.3 % 
essential oil

[45]

ANN Sulfate removal with 
chemical 
precipitation

Temperature, BaCl2 

dosage, and mixing 
speed

99.5 % 
Sulfate

[46]

ANN Removal of Ni and 
Co with ion 
exchange

pH, initial 
concentration, 
clinoptilolite dosage, 
particle size, and 
temperature

92.8 % Ni 
and 33.6 % 
Co

[47]

ANN Extraction of Fe and 
Zn with LIX 984 N 
and D2EHPA

pH, temperature, and 
extractants 
concentration

99.1 % Fe 
and 4.5 % Zn

[48]

SVR Cr removal with bio- 
sorption process

Contact time, sorbate 
concentration, pH, 
and temperature

∼14 mg/g 
sorption 
capacity

[49]

ANFIS Cu leaching with 
sulfuric acid

Time, pH, Cu and Fe 
concentration

92.6 % Cu [50]

ANFIS Cu adsorption with 
Clinoptilolite

Initial pH, adsorbent 
dosage, contact time

93.6 % Cu [51]

ANFIS Cr adsorption with 
cellulose 
nanocrystals and 
sodium alginate

Contact time, 
adsorbent dosage, Cr 
concentration, and 
pH

350.23 mg/g 
sorption 
capacity

[52]
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optimization. Consequently, the present study represents the novel 
application of a hybrid hydrometallurgical approach for separating 
copper from WPCBs by integrating the developed ML model with Monte 
Carlo simulation (MCS) techniques. To this end, a series of experiments 
on Cu leaching and liquid–liquid extraction were conducted and used to 
train and validate the applied model. The optimized hybrid model-based 
experimental data allowed for a detailed study of Cu sustainable sepa-
ration from WPCBs, validation, prediction, leaching kinetics, necessary 
counter-current stages, and the risk analysis associated with operational 
parameters.

2. Experimental and modeling methods

2.1. Materials

Scrap PCBs were obtained from a local computer recycling company 
in Daejeon, Republic of Korea, and subjected to pre-treatment. Initially, 
the scrap underwent heat treatment on the back side of the PCB to 
eliminate small components. Moreover, the flat PCBs were segmented 
into smaller units with dimensions of 7×7 cm and subsequently pro-
cessed through a shredding mechanism to reduce their sizes to 2×2 mm. 
The solid samples were assembled and dissolved in aqua regia by 
considering replicates two times to analyze and confirm the metal 
content using HNO3 (60 % purity) and HCl (35 % purity) obtained from 
Junsei Chemical Co., Ltd. The processed sample of powdered WPCBs 
was characterized by its composition of 35.6 wt% Cu, 1.1 wt% Al, 0.7 wt 
% Fe, 0.4 wt% Ni, 1.2 wt% Sn, 0.2 wt% Pb, and 60.8 wt% epoxy resins 
and ceramics. Kerosene (95 % purity), supplied by Samchun Chemical 
Co., Ltd., with a boiling point range of 180–270 ◦C, was employed as a 
diluent in the organic phase preparation. The chelating extractant LIX 
973 N, a mixture of 5-dodecyl-salicylaldoxime and 2-hydroxy-5-nonyla-
cetophenone oxime, procured from Cognis Ireland Ltd., was employed 
for Cu separation from the leach solution in combination with 5 %(v/v) 
1-Decanol obtained from Alfa Aesar Co., which served as a modifier. The 
99.0 % pure TBP extractant provided by Samchun Chemical Co., Ltd. 
was used to treat the leach liquor of WPCBs to recycle and recover 
HNO3. Also, H2SO4 (95.0 %, Samchun Chemical Co., Ltd.) and NH4OH 
(26.0 %, Daejung Chemicals Co., Ltd.) were employed to modulate the 
pH levels of solutions. All employed chemical materials were in their as- 
received state without undergoing additional purification processes.

2.2. Analysis methods

The pH of the aqueous solution was determined using a digital pH 
meter (Thermo Scientific Orion 3-Star model) equipped with a com-
bined glass electrode. The concentration of metal ions in the aqueous 
phase was quantified using an ICP-OES, specifically the PerkinElmer 
Optima 8300 model. Also, a mechanical shaker (SI 600 R Refrigerated 
Incubator) was employed for phases mixing to achieve equilibrium 
during the liquid–liquid extraction phase. Fourier Transform Infrared 
Spectroscopy (FTIR) was employed to analyze the characteristics of the 
organic phases, utilizing a Thermo Scientific Nicolet 6700 model. The 
characterization and analysis of the crystal structure of the material was 
investigated using an X-ray diffractometer (XRD) equipped with a 
PHILLIPS X′pert MPD instrument, and the observable morphology of the 
final sample was examined utilizing a scanning electron microscope 
(SEM) model Merlin Compact from Carl Zeiss in Germany.

2.3. Experiment procedure

The obtained WPCBs from the pre-processing stage were utilized for 
all leaching studies in 100 ML flat-bottomed three-neck glass flasks 
connected to a water bath. In the leaching procedure, intensified HNO3 
concentrations led to substantial quantities of NOx gases. Thus, a fully 
jacketed scrubber was implemented to manage the system effectively, 
and a water-cooled condenser was employed to capture and disperse the 
induced heat during the gas condensation [23]. HNO3 concentration 
was pre-adjusted with deionized water and then maintained at a speci-
fied temperature range of 15–75 ◦C for a predetermined leaching time. 
During the leaching tests, the process was agitated at a consistent speed 
of 700 rpm, and periodic samples of the resulting leach liquor solution 
were obtained and subsequently diluted to a predetermined volume for 
ICP-OES analysis. In each stage, the effectiveness of metal leaching was 
evaluated from: 

L(%) =
C1V1

C1V1 + C2V2
× 100 (1) 

where the variables C1 and C2 denote the concentrations of metals in 
the leaching solution and filter residue solution, expressed in mg/L 
units. V1 and V2 denote the measured volumes of the leaching solution 
and filter residue solution in liters. The bench-scale for extraction and 
stripping experiments involved the combination of equal volumes 
(10 ML) of leach liquor and organic extractant, excluding A/O ratio 
experiments, utilizing a mechanical shaker for mixing. Once the desig-
nated time had elapsed, the liquids’ mixture was relocated to a decanter 
to enable the process of settling and separation. The determination of 
extraction and stripping percentages was performed using the following 
calculations: 

E(%) =
[M]t − [M]aq

[M]t
× 100 (2) 

S(%) =
[M]aq,a

[M]org,t
× 100 (3) 

The variables [M]t and [M]aq denote the concentrations of the metal 
ions in the feed solution and final aqueous phase, respectively. Addi-
tionally, the symbol [M]aq,a represents the equilibrium concentration of 
metal ions in the stripping solution, while [M]org,t denotes the initial 
concentration of the metal ion in the loaded organic phase.

2.4. Support vector regression (SVR) model

SVR is a widely utilized the machine learning algorithm (MLA) 
derived from the concept formulated by Vapnik [24]. This approach is 
grounded in the statistical learning theory, which involves the concept 
of structural risk minimization. The utilization of this method is proven 
to be highly effective for both linear and non-linear classification, in 
addition to its efficacy in addressing non-linear regression challenges. 
The connection of the non-linear concept of SVR can be articulated as 
demonstrated below [25]: 

Min
1
2
||ν| |2 +P

∑N

i=1

(
ξi + ξ∗i

)
subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yb − (ν∅(zb) + cb ) ≤ ε + ξb

(νϕ(zb) + cb ) − yb ≤ ε + ξ∗b
ξb, ξ∗b ≥ 0

(4) 
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The penalty parameter, denoted as P, serves to reconcile the empir-
ical risk and model flatness, while the variables ξb and ξ∗b are slack fac-
tors. Additionally, the constant ε, referred to as the tube size, embodies 
the optimization implementation [26]. The issue of dual convex opti-
mization, as defined by Eq. (1), is addressed by the employment of the 
Lagrangian function:  

The Lagrangian multipliers δb, δ∗b, βb, and β∗
b were denoted in the 

given context. The regression function of the SVR algorithm was sub-
sequently computed in the following manner [27]: 

k(z) =
∑l

b=1

(
βb − β∗

b
)
m(z, zb)+ c (6) 

The kernel function m(z, zb) and the dual variables βb and β∗
b are 

significant components in this scenario. The utilization of the radial 
basis function (RBF) kernel was derived from the following equation to 
assess its performance in the analysis. 

m(z, zb) = exp
(
− γ||z − zb| |

2
)

(7) 

The parameter γ denotes the kernel function and the selection of the 
values for P and γ is of great significance in achieving optimal results.

2.5. Grey wolf optimizer (GWO) algorithm

The GWO algorithm is a meta-heuristic optimization technique that 
was devised through the emulation of the social hierarchy and hunting 
behavior exhibited by gray wolves [28]. The hierarchical structure of 
leadership is exemplified in this study through the use of four distinct 
categories of wolves: alpha [α], beta [β], delta [δ], and omega [ω]. 
Moreover, the simulation of wolves’ predatory behavior involves 
locating, pursuing, and surrounding prey before initiating an attack 
[29]. The α-wolves are situated at the apex of the social hierarchy and 
are responsible for making decisions, with other wolves subsequently 
adhering to their leadership. The β-wolves assist the alpha members of 
their pack and collaborate with them to develop strategies. The δ-wolves 
are positioned hierarchically above other wolves and adhere to the au-
thority of the α- and β-wolves. Ultimately, the ω-wolves are required to 
adhere to the regulations imposed on them [30]. The phenomenon of 
encircling behavior is subsequently initiated and demonstrated in the 
following manner: 

D→=

⃒
⃒
⃒C→.X→p − X→(t)

⃒
⃒
⃒ C→= 2. r→2 (8) 

X→(+1) = X→p − A→.D→ A→= 2 a→. r→1 − a→ (9) 

where the position vectors X→ and X→p represent the location of a gray 
wolf and its prey, respectively. The variable t denotes the current iter-
ation, while the coefficient vectors C→ and A→ are also involved. Notably, 
the random vectors r→1 and r→2 are constrained to the interval [0,1]. In 
the act of hunting, the three optimal solutions (α, β, and δ) are utilized to 
approximate the position of the prey, with the resulting location being 
recorded. Subsequently, the remaining wolves are required to adjust 
their positions randomly in the vicinity of the prey: 

D→α =

⃒
⃒
⃒C
→

1.X
→

α(t) − X→(t)
⃒
⃒
⃒, D→β =

⃒
⃒
⃒C→2.X

→
β(t) − X→(t)

⃒
⃒
⃒, D→δ

=

⃒
⃒
⃒C
→

3.X
→

δ(t) − X→(t)
⃒
⃒
⃒ (10) 

X→1(t) = X→α(t) − A→1.D
→

α, X→2(t) = X→β(t) − A→2.D
→

β, X→3(t)

= X→δ(t) − A→3.D
→

δ (11) 

X→(t+ 1) =
X→1(t) + X→2(t)+X→3(t)

3
(12) 

2.6. Performance assessment

The variation in process variables and the unequal sizes of some 
variables may affect the model’s suitability negatively. Input values are 
regularized to 0–1 to avoid computational problems using: 

Xn =
X − Xmin

Xmax − Xmin
(13) 

where the variable Xn is the normalized value, with X, Xmin, and Xmax 
denoting the raw, minimum, and maximum values, respectively. The 
predictive accuracy of the models was determined by analyzing their 
absolute-average deviation (AAD), mean-squared error (MSE), root- 
mean-squared error (RMSE), and coefficient of determination (R2) 
values. Their calculations are conducted as follows, wherein a lower 
AAD and a higher R2 value indicate superior model performance. 

AAD =
1

NDP
∑NDP

i=1

⃒
⃒
⃒Yexp

i − Ypred
i

⃒
⃒
⃒

Yexp
i

(14) 

MSE =
1

NDP
∑NDP

i=1

(
Ypred

i − Yexp
i

)2
(15) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
NDP

∑NDP

i=1

(
Ypred

i − Yexp
i

)2

√
√
√
√ (16) 

R2 = 1 −

∑NDP

i=1

(
Ypred

i − Yexp
i

)2

∑NDP

i=1

(
Ypred

i − Yexp
)2

(17) 

The NDP refers to the numerical values of the data points.

2.7. Model development

The machine learning-based SVR-GWO model can be deconstructed 
into several sequential steps. These steps include identifying target 
variables and selecting relevant input parameters, partitioning the data 
into training and testing subsets, optimizing model inputs, validating the 
model’s performance, and assessing the predicted data. Fig. 1 depicts a 
comprehensive flowchart delineating the modeling process on Cu 
reclamation from WPCBs, providing more in-depth details about the 
procedure.

L
(
ν, c, ξb, ξ∗b, βb, β

∗
b, δb, δ∗b

)
=

1
2
||ν| |2 +D

∑l

b=1
ξb + ξ∗b −

∑l

b=1
βb(ξb + ε − yb + νϕ(zb)+ c ) −

∑l

b=1
β∗

b
(
ξ∗b + ε+ yb − νϕ(zb) − c

)
−

∑l

b=1

(
δbξb + δ∗bξ∗b

)
(5) 
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3. Results and discussion

3.1. Development of ML models

The leaching performance involved analyzing input parameters used 
in the SVR and its hybrid model, focusing on HNO3 concentration, pulp 
density, time, and temperature. The output of interest in these experi-
ments was the target’s leaching efficiency. A randomly selected sample 
of 176 data points, constituting 80 % of the total dataset, was utilized for 
training the developed model on Cu leaching from WPCBs. The 
remaining 20 % of the data, consisting of 44 data points, was reserved 
for validating the model’s performance. In the optimization measures 
evaluation, it is imperative to assess their efficacy to identify the most 
optimal model and the meta-heuristic algorithms’ usefulness for the 
given task. Fig S1 (a) presents the predictive accuracy of two models on 
the Cu leaching training dataset, with the hybrid SVR-GWO model 
demonstrating MSE and RMSE values of 14.6 and 7.70, respectively. The 
results of the models’ performance on the target variable are depicted in 
Fig. 2(a), presenting the corresponding targets and outputs of both 
models’ validation data sets. Fig. 2(b) displays the MSE and RMSE values 
for the standalone SVR and its hybrid model for the validation phase. 
The standalone model’s MSE, RMSE, and R2 values were 19.49, 4.41, 
and 0.96, while the corresponding values for the hybrid approach were 
9.89, 3.14, and 0.98. Results show that the meta-heuristic coupled al-
gorithm of SVR-GWO outperformed the SVR model due to the optimi-
zation of search parameters. Likewise, in Fig. 2(c), the dataset employed 
for validation sets exhibited a similar trend in the frequency of errors.

Fig. 3 shows the model predictions of Cu extraction from the leach 
solution, encompassing the validation data and the corresponding error 
values. The process optimization involved modeling the extraction pa-
rameters, including equilibrium pH, extractant concentration, duration, 
and O/A ratio, to consider their impact on Cu separation from the leach 
liquor. The 90 experimental runs were divided randomly into two sets: 
80 %, or 72 runs, were allocated for training data, while the remaining 
20 %, or 18 runs, were designated for validation purposes. For model 

training, the SVR model demonstrates an MSE value of 21.62 in Fig S1
(b), and the hybrid model exhibits a learning performance for Cu 
extraction from the leach solution with an MSE value of 2.55, empha-
sizing its improved accuracy and efficiency. Fig. 3(a) depict the objec-
tives and results of the validation set for models, illustrating the 
effectiveness of the combined model’s output with Cu extraction. Based 
on Fig. 3(b), the examination of the MSE and RMSE outcomes demon-
strates that during the validation phase, the hybridized approach ex-
hibits the lowest level of error (MSE=6.25 and RMSE=2.50) when 
compared to the standalone SVR algorithm (MSE=34.16 and 
RMSE=5.84). Moreover, an analysis of the error distribution for model 
validation indicated that the coupled model shows a more uniform 
distribution than the standalone model, as visualized in Fig. 3(c).

The stripping stage prediction from the loaded LIX 973 N was con-
ducted to evaluate the collective interactions of input factors, namely 
H2SO4 concentration, temperature, duration, and A/O ratio, on Cu re-
covery. Among 90 data points, a random sample to train both models, 
comprising 80 % of the data, was utilized, while the remaining 20 % was 
reserved for model validation. The SVR model yielded MSE, RMSE, and 
R2 values of 30.00, 5.47, and 0.96 for the training step, while the hybrid 
SVR-GWO model produced values of 5.72, 2.39, and 0.99, respectively. 
Fig. 4 shows the accuracy of the integrated model using a goodness-of-fit 
test, which considered metrics such as MSE, RMSE, mean, and Standard 
deviation (StD). The SVR model produced values of 52.94, 7.27, − 4.01, 
and 6.24 for MSE, RMSE, mean, and StD, respectively, in the validation 
dataset of Cu stripping process. The validation dataset’s poor metrics 
suggested that the SVR model failed to adapt to the training data during 
its learning phase. In contrast, when using the SVR-GWO model, the 
validation data yielded 7.88, 2.80, − 1.29, and 2.56 values for the MSE, 
RMSE, mean, and StD, respectively. The SVR-GWO model can be 
considered a more resilient predictive model for Cu stripping projection 
owing to its significantly higher accuracy than the independent model. 
Table S2 delineates the hyperparameter values utilized in the predictive 
modeling and optimization of Cu reactive extraction data. The GWO 
optimizes the parameters of the SVR model by iteratively adjusting these 

Fig. 1. Schematic processing steps presented in the copper reclamation from WPCBs.
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parameters to minimize prediction and validation errors.

3.2. Models’ uncertainty analysis

The values of independent variables were effectively validated ac-
cording to the developed hybrid SVR-GWO model by integrating the 
PERT distribution function and pseudo-random numbers in Monte Carlo 

simulations (MCS). The histogram (Fig. 5(a)) depicts the probability 
density distribution of the Cu leaching efficiency, simulating values 
spanning from around − 0.85–89.96, suggesting a notable diversity in 
the uncertainty. The simulation, performed over 10,000 iterations, 
yields a 90 % confidence interval for the predicted leaching efficiency 
between 39.33 and 39.82, demonstrating the model’s strong capability 
in estimating the efficiency with a high degree of confidence. The 

Fig. 2. Performance of models on the validation dataset of the copper leaching: a) Target and outputs; b) MSE and RMSE values; c) Frequency of errors.
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statistical metrics suggest a moderately broad distribution characterized 
by a skewness of 0.16 and a kurtosis of 2.62, which indicates a slight 
positive skew and moderate tail behavior. Fig. 5(b), the uncertainty 
simulated histogram for extraction efficiency includes a mean value of 
26.87 and a standard deviation of 12.15, suggesting a narrower distri-
bution than the leaching efficiency. The distribution demonstrates a 
slight positive skewness of 0.44 and a kurtosis of 2.88 with a moderate 
departure from normality, characterized by relatively heavier tails. 
Fig. 5(c) presents the simulated uncertainty associated with the 

optimized hybrid model for copper stripping, with a mean stripping 
efficiency value of 70.45. The distribution ranged from 22.64 to 101.29, 
with a median value of 71.61 and a standard deviation of 14.91, indi-
cating a considerable variability in the values derived from the sto-
chastic model methodology. The distribution exhibits a minor negative 
skewness of − 0.34, with the tail extending toward the lower range of the 
predicted values. Also, the kurtosis value of 2.47 suggests that the dis-
tribution’s tails are similar to those found in a normal distribution, with 
a slight inclination towards platykurtosis. The leaching and extraction 

Fig. 3. Performance of models on the validation dataset of the copper extraction: a) Target and outputs; b) MSE and RMSE values; c) Frequency of errors.
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processes exhibited greater consistency in their simulative outcomes, 
whereas the stripping process demonstrated notable variability and 
uncertainty.

3.3. Copper leaching process

The MLA was employed to optimize the interaction effects among all 
independent variables in leaching experiments, in contrast to previous 
studies that utilized the one-factor-at-a-time approach. In Fig. 6(a-c), the 

leaching efficiency of WPCBs was indicated by utilizing differing con-
centrations of HNO3 while taking into account the collective impact of 
pulp density, temperature, and time. The coupled model prediction re-
sults of Cu leaching were found to be positively correlated with the 
concentration of HNO3, demonstrating an increase in leaching as acid 
concentration increased. Under optimum conditions (with a 120 min 
time, 75◦C temperature, and 7 % pulp density), this trend culminated in 
a recovery rate exceeding 96 % at an HNO3 concentration of 4.0 M, after 
which efficiency experienced a slight decline with an increase in acid 

Fig. 4. Performance of models on the validation dataset of the copper stripping: a) Target and outputs; b) MSE and RMSE values; c) Frequency of errors.
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concentration to 5.0 M. The observed behavior may be attributed to an 
increase in nitrate ion concentration within the solution, as a greater 
concentration of acid aids in stabilizing surface oxide layers, thereby 
inhibiting the release of metal ions into the overall acidic solution. The 
overall reaction of Cu dissolution in the HNO3 system can be represented 
by Eq. (18), wherein Cu reacts with HNO3 to yield copper nitrate and 
nitrogen peroxide. 

Cu+4HNO3→Cu2+ +2NO−
3 +2H2O+2NO2 (18) 

The empirical data-based predicted results demonstrated that an 
increase in pulp density of up to 10 % resulted in a gradual decline in Cu 

leaching efficiency when subjected to prolonged leaching times or high 
temperatures. However, beyond this threshold, a substantial reduction 
in the leaching efficiency was observed at higher pulp densities ranging 
from 10 % to 20 %. The increased pulp densities lead to limited mass 
transfer, a phenomenon consistent with observations made by Chen and 
co-workers [31], and a reduction in residual acid concentration, as 
shown in the research by Panda and co-workers [32]. Fig. 6(b and d) 
indicate the correlation between the leaching of Cu and the reaction 
temperature concerning HNO3 concentration and pulp density, respec-
tively The hybrid approach found that the concurrent influence of 
temperature and HNO3 concentration exerted a more pronounced effect 
on leaching efficiency than the interplay between temperature and pulp 
density. Specifically, as temperature increased across a range of acid 
concentrations, the resulting impact on the Cu leaching efficiency out-
weighed the effects of varying pulp densities. The findings showed that 
the temperature influence on Cu leaching is relatively minimal when it 
falls within the range of 15–35 ◦C. However, the heightened effect of 
temperature on the leaching reaction was observed within the range of 
35–75 ◦C, leading to an escalation in the rate of reaction and decom-
position of nitrate ions as the temperature was elevated within this in-
terval. Fig. 6(c, e, and f) depicts the predicted data on Cu separation 
from WPCBs through leaching about the residence time. The output 
parameter prediction demonstrated an improvement in Cu recovery 
when the residence time increased. However, the rate of improvement 
began to slow down after the leaching time exceeded 100 min. Ac-
cording to the applied algorithm, the optimized time of 120 min was 
suggested to investigate the impact of system variables on the maximum 
efficiency of the recovery. Under the optimized point, the solution ob-
tained from the leach experiments of WPCBs contained Cu, Fe, Al, Ni, 
Pb, and Sn concentrations of 23.96, 0.32, 0.40, 0.27, 0.13, and 0.05 g/L, 
respectively.

3.3.1. Leaching kinetic study related to modeling data
The shrinking core model and multiple reaction equations contribute 

to an increased depth and complexity in the leaching study [33]. The 
mathematical expressions obtained from these equations offer a quan-
titative depiction of the leaching kinetics, illuminating the underlying 
processes involved. These equations can be expressed as follows [34]: 

1 − 3(1 − x)2/3
+2(1 − x) = ktPore diffusion control (19) 

1 − (1 − x)1/3
= ktChemical reaction control (20) 

x = ktFluid film diffusion control (21) 

where, the fractional conversion, reaction time, and rate constant 
were assumed with x, t, and k variables, respectively. Based on Fig S2, 
the R2 value for the chemical control reaction in the precise shrinking 
core model exhibited a near equivalence to unity, in contrast to the 
regression lines of other distinct equations. Consequently, the central 
region diminishes as the reaction progresses, while the surface reaction 
retains its predominant role in regulating the rate. The rate of reaction 
occurring at the interface of the solid and liquid phases consistently 
serves as the predominant constraining factor throughout most of the 
leaching process. Determining activation energy involves applying an 
Arrhenius equation, which accounts for the impact of temperature on 
the rate constant [35]. The data analysis in Fig S2(d) yielded an acti-
vation energy of 15.5 kcal/mol, consistent with the anticipated range of 
10–25 kcal/mol for the chemically controlled model.

3.4. HNO3 recycling process

Nitric acid is classified as a potent mineral acid with highly corrosive 
properties, and the unintended discharge of HNO3 into the surrounding 
environment presents potential hazards to human, animal, and plant 
populations [36]. Furthermore, the reutilization of recycled HNO3 from 

Fig. 5. Uncertainty analysis of independent parameters based-hybridized SVR- 
GWO model: (a leaching; b) extraction; c) stripping.
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the obtained solution can be incorporated into the leaching process, 
reflecting a circular recycling approach to reduce reagent consumption. 
To achieve the best separation conditions, experiments were conducted 
to examine the effect of TBP concentration and the phase ratio on the 
recycling of HNO3. The results depicted in Fig. 7(a) demonstrated that 
the extraction efficiency of nitric acid at ambient temperature enhanced 
from 20 % to 45.7 % during a single contact as the concentration of TBP 
elevated from 20 to 100 (v/v)% while maintaining an equivalent phase 
ratio. Utilizing the log-log plot to analyze the relationship between the 
distribution coefficient and the concentration of TBP under constant 
conditions enables the determination of the number of extractant mol-
ecules involved in forming the extracted acid complex. The indicated 
slope of 0.76 in Fig. 7(b) suggested that a stoichiometric ratio of one 
mole of TBP was required to extract one mole of HNO3 from the leach 
liquor of WPCBs. Hence, the extraction of HNO3 using TBP can be 

explained through the hydrate-solvate mechanism [37], with the 
extraction process being represented by the following reaction: 

[TBP](org) + [HNO3](aq)→[TBP • HNO3 ](org) (22) 

Based on Fig. 7(c), the impact of HNO3 recycling from waste acid 
solution was observed to increase from 20.1 % to 62.8 % with variations 
in O/A ratio within the range of 0.25–3.0, utilizing concentrated TBP at 
ambient temperature for 15 min. The McCabe-Thiele plot was con-
structed to ascertain the theoretical number of stages necessary for the 
quantitative extraction of nitric acid, with results delineated in Fig. 7(d). 
The extraction isotherm analysis revealed that near-complete recycling 
of nitric acid could be attained in four sequential stages at an O/A ratio 
of 3, as corroborated by counter-current experimentation. During the 
back-extraction operation, deionized water was employed for HNO3 
recovery from the loaded organic phase. A nearly complete HNO3 

Fig. 6. The interactive impact of parameters on the copper leaching efficiency: a) HNO3 and pulp density; b) HNO3 and temperature; c) HNO3 and time; d) pulp 
density and temperature; e) pulp density and time; f) time and temperature.
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recovery was accomplished by implementing a five-stage counter-cur-
rent process, utilizing an equal phase ratio, as illustrated in Fig S3.

3.5. Copper extraction process

The decrease in volume due to acid recycling for future leaching 
experiments led to changes in the leach solution of WPCBs, resulting in 
increased concentrations of Cu, Fe, Al, Ni, Pb, and Sn, measuring 31.80, 
0.42, 0.52, 0.32, 0.17, and 0.07 g/L, respectively. The process of pur-
ifying and recycling Cu from impurities involved using a liquid–liquid 
extraction method by employment of LIX973N. By fine-tuning hyper-
parameters of the SVR model with the GWO, the optimal performance 
for Cu extraction process was determined at an equilibrium pH of 2.5, 
extractant concentration of 30 %(v/v), 20 min contact time, and equal 
phase ratio. The developed model predicted an extraction efficiency of 
73.0 % from the leaching solution. Fig. 8(a) is a 3D surface plotted by 
Origin software demonstrating the impact of equilibrium pH and LIX 
973 N concentration on the Cu extraction yield under fixed conditions 
with the same phase ratio for 20 min. The efficiency Cu at different 
equilibrium pH ranges from 0.5 to 2.5 versus 30 % (v/v) LIX973N 
indicated an increase in the efficiency from 4.5 to 73.0. Based on the 
Eh–pH diagram for the Cu-H2O system at ambient temperature, the 
predominant copper species present at acidic pH values are observed as 
Cu2+ and Cu+ [38]. The successful separation of copper using LIX 973 N 
can be attributed to the specific copper species present within the 
equilibrium pH range of 2–2.5. Sridhar and Verma also observed similar 
results when they conducted experiments on extracting copper from 

aqueous solutions using LIX 984 N [39]. Their findings revealed that the 
efficiency of Cu extraction significantly rose from 15 % to 98 % as the 
solution pH increased from 0.5 to 3.0. Fig. 8(a-b) shows the impact of the 
interactions of LIX 973 N with Cu. As the concentration of the extractant 
increased, the efficiency of extracting Cu from the leach solution also 
increased. This behavior can be attributed to more solvent molecules 
being available for Cu extraction. The impact of the contact time on the 
yield of Cu extraction is shown in Fig. 8(c). The output data revealed an 
increase in Cu extraction from 63.7 to 73 with an increase in contact 
time from 5 to 20 min while maintaining a constant concentration of LIX 
973 N at 30 % and an O/A phase ratio of 1. Fig. 8(d) presents the 
modeling results concerning extraction behavior as a function of varying 
phase ratios and equilibrium pH values. The data indicate a predicted 
optimal point of 73.0 %, attained at an equal phase ratio and an equi-
librium pH of 2.5. The extraction isotherm results, which determine the 
necessary number of theoretical stages for achieving complete recovery 
under specific conditions, were predicted using the combined model at 
various O/A ratios ranging from 0.2 to 2 under optimized points. The 
predicted data employing the SVR-GWO model and further aided by the 
McCabe-Thiele diagram determined that four counter-current extraction 
stages were needed to extract almost entirely metal (Fig S4).

3.6. FTIR analysis on organic phase and Cu-loaded LIX973N

The FT-IR technique has been widely employed in the analysis of 
bonding within metal-organic complexes, providing essential informa-
tion on reaction mechanisms and the structural characteristics of such 

Fig. 7. Investigation of HNO3 recycling from the leaching solution: a) impact of TBP concentration; b) Log (D) vs. Log [TBP]; c) impact of different phase ratio; d) 
McCabe-Thiele diagram.
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metal complexes [40]. The comparative analysis of the spectra corre-
sponding to the organic phase composed of LIX973N and kerosene, as 
well as the spectrum of the Copper-LIX973N complex, is shown in Fig. 9. 
The organic phase analysis indicates that the O-H stretching band 
around 3400 cm⁻1 is due to the hydroxide group found in the oxime. The 
oxime groups’ existence in LIX 973 N leads to peaks in the 
1600–1700 cm⁻1 range associated with C––N Stretching vibration. 

Moreover, the oxime functional group is characterized by a C––N-OH 
structural framework, where the stretching vibration of the C-N band 
may manifest in the wavenumber range of 1000–1200 cm⁻1. The C-H 
stretching modes were observed as pronounced peaks in the 
2850–2950 cm⁻1 range, characteristic of aliphatic hydrocarbons. Be-
sides, the C-H bending vibrations manifested as peaks in the 
1350–1450 cm⁻1 spectral range, indicating the presence of hydrocarbon 
compounds. A comparison of the infrared spectra of the Cu-LIX 973 N 
complex with that of LIX973N in isolation revealed that the interaction 
between Cu and the hydroxyl, as well as oxime groups, resulted in al-
terations or shifts in the intensity of the O-H stretching vibrations 
observed at 3400 cm⁻1. A significant alteration in the C––N stretching 
region indicates the development of a copper-oxime complex. This 
complexation generally shifts towards lower wavenumbers, reflecting 
modifications in the electronic environment surrounding the C––N band. 
Also, the observed alteration in the transmission band at around 
1010 cm⁻1 can be attributed to the Cu-O band or interaction, signifying 
changes in the metal-ligand coordination sphere.

3.7. Copper stripping process

Cu was stripped from a loaded organic solution using H2SO4 as a 
stripping agent to achieve copper sulfate salt. The response surface 
plotted by the software in Fig. 10 (a–d) illustrates the correlation be-
tween the input and target variables in three dimensions. The integrated 
model estimated the stripping yield of 73.6 % in the optimum condition, 
with a respective H2SO4 concentration of 2 M and the A/O ratio of 0.3 
for 20 min at ambient temperature. The increase in the stripping proc-
ess’s efficiency was linked to the simultaneous enhancement in the 

Fig. 8. The interactive impact of parameters on the copper extraction efficiency: a) LIX 973 N and equilibrium pH; b) LIX 973 N and O/A ratio; c) equilibrium pH and 
contact time; d) equilibrium pH and O/A ratio.

Fig. 9. The infrared spectra of LIX973N in Kerosene and the loaded 
organic phase.
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concentration of the stripping reagent, which improved the reactivity 
between copper and sulfate ions. The reduction in reaction temperature 
alongside an extension in contact time demonstrated a beneficial impact 
on the Cu stripping process. Similarly, enhancing the A/O ratio resulted 
in improved process efficiency. Consequently, the optimal conditions for 
recovering copper from the loaded LIX 973 N phase involved a lower 
temperature, higher A/O ratio, and extended mixing time. However, 
considering the significance of cost savings in industrial settings and the 
negligible effect of temperature on the stripping process, the room 
temperature was the most favorable. In addition, the MLA outcomes 
predicted that a contact time of 20 min proved sufficient to attain an 
equilibrium state. The necessary number of counter-current stages in the 
Cu stripping process was determined by applying the SVR-GWO results 
to the McCabe-Thiele diagram, utilizing the predicted phase variation 
data. Fig S5 shows that at an A/O ratio of 0.3, three theoretical stages 
were necessary to achieve nearly complete stripping, and an approxi-
mately threefold increase in Cu enrichment, reaching 104 g/L, was 
attainable under optimized conditions.

3.8. Morphology and phase analysis

Fig. 11 depicts the XRD pattern obtained from the crystallized Cu 
sample under the optimized condition, revealing varying relative in-
tensities of the dominant peaks. The appearance of the CuSO4 phase 
offers promising prospects as a precursor for the fabrication of innova-
tive electronic devices. The samples exhibit a crystalline arrangement, 
and the distinctive peaks at 2θ values of 18.4, 25.9, 26.3, 28.4, and 36.2 
are indicative of their pattern. These observed peaks can be attributed to 
the copper sulfate phases [41]. The copper sulfate product underwent 

SEM analysis at various scales to illustrate surface morphology and 
topography data. The images revealed the presence of considerably 
large near-crystal particles. Copper and impurities were also reclaimed, 
and the results are outlined in Table S2, highlighting the promising 
potential for copper reclamation at a purity level of up to 99.7 %.

4. Conclusions

This study conducted a comprehensive experimental analysis of the 
interactive impacts of operational parameters and performance predic-
tion on Cu reclamation from WPCBs from hydrometallurgy aspects for 
the first time using the hybrid ML approach. SVR-GWO modeling was a 
powerful decision-support tool for deciphering intricate connections 
among system variables, including copper separation from WPCBs, 
which is crucial for ensuring the sustainable development and effective 
management of waste resources. The leaching modeling findings 
demonstrated 96.1 % Cu efficiency when the optimal process parame-
ters, such as HNO3 concentration, pulp density, temperature, and 
duration, were determined to be 4 M, 7 %, 75 ◦C, and 2 h, respectively. 
TBP, as a solvent, to facilitate the recycling of nitric acid from the leach 
liquor of PCBs presented a viable solution to the ecological challenges 
posed by the processing industry while enabling a more favorable lower 
concentration of HNO3 for downstream separations through liquid-
–liquid extraction. The McCabe-Thiele plot indicated that undiluted TBP 
could attain recycling in four theoretical stages with an O/A ratio of 3 for 
15 min. The behavior prediction of Cu separation from an acid-free 
leaching solution obtained utilizing LIX 973 N was analyzed by stand-
alone and hybrid SVR models. The validated model confirmed the 
experimental findings by quantitatively verifying the recovery of Cu at 

Fig. 10. The interactive impact of parameters on the copper stripping efficiency: a) H2SO4 and A/O ratio; b) contact time and A/O ratio; c) H2SO4 and temperature; 
d) H2SO4 and contact time.
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optimum conditions, including an equilibrium pH of 2.5, 30 % extrac-
tant concentration, 20 min time, and equal phase ratio. The isotherm 
data, predicted using the model and complemented by the McCabe- 
Thiele diagram, indicated that four counter-current stages were 
required to achieve nearly complete extraction. The developed model 
optimized the stripping process by applying 2 M H2SO4 as the stripping 
agent with a 0.3 A/O ratio at 25 ◦C for 20 min. In the models’ validation 
stages, the performance of the coupled model surpassed that of the 
standalone SVR model, as evidenced by the lower values of MSE 
observed in the leaching, extraction, and stripping stages, which were 
9.89, 6.25, and 7.87, respectively. Finally, the effectiveness of the 
optimized hydrometallurgical process for copper reclamation was sub-
stantiated by applying XRD and SEM analyses. The experimental data 
uncertainty analysis using MCS, with 10,000 iterations, demonstrated 
the robustness and reliability of the SVR-GWO model, reinforcing its 
credibility as a decision-support tool for sustainable e-waste 
management.
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