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Let A and B be C∗-algebras with A separable, let I be an 
ideal in B, and let ψ : A → B/I be a completely positive 
contractive linear map. We show that there is a continuous 
family Θt : A → B, for t ∈ [1, ∞), of lifts of ψ that are 
asymptotically linear, asymptotically completely positive and 
asymptotically contractive. If ψ is of order zero, then Θt can 
be chosen to have this property asymptotically. If A and B
carry continuous actions of a second countable locally compact 
group G such that I is G-invariant and ψ is equivariant, we 
show that the family Θt can be chosen to be asymptotically 
equivariant. If a linear completely positive lift for ψ exists, 
we can arrange that Θt is linear and completely positive for 
all t ∈ [1, ∞). In the equivariant setting, if A, B and ψ are 
unital, we show that asymptotically linear unital lifts are only 
guaranteed to exist if G is amenable. This leads to a new 
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characterization of amenability in terms of the existence of 
asymptotically equivariant unital sections for quotient maps.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The existence of lifts for maps is a recurring theme in many mathematical fields. In the 
theory of C∗-algebras and its applications, one of the most prominent examples of this 
is the question about sections for a surjective ∗-homomorphism between C∗-algebras; 
for example in the work of Choi and Effros in [6] and in the theory of extensions of 
C∗-algebras, initiated in [5] and [2]. In view of the recent increased activity in research 
on C∗-dynamical systems, it seems inevitable that questions about lifts and sections will 
become more important than they already are in this category. Addressing questions of 
this nature is the main motivation for the present work, while concrete applications will 
be given elsewhere; see [8].

Let G be a second countable locally compact group. We shall work with pairs (A, α)
where A is a C∗-algebra and α : G → Aut(A) is a homomorphism from G into the group 
Aut(A) of automorphisms of A (also called an action). When α is continuous in the sense 
that for all a ∈ A, the assignment g �→ αg(a) is continuous as a map G → A, we say 
that (A, α) is a G-algebra. In many cases it is clear from the context what α is and we 
shall then use the notation g · a = αg(a) for g ∈ G and a ∈ A, since it often clarifies the 
statements.

We are concerned with short exact sequences of G-algebras of the form

0 (I, γ) ι (A,α)
q

(B, β) 0,

where ι : I → A and q : A → B are G-equivariant ∗-homomorphisms such that ι is 
injective, q is surjective and ker(q) = im(ι). Given another G-algebra (S, δ) and a map 
ψ : S → B, which is not necessarily a ∗-homomorphism, a lift of ψ is a map ψ′ : S → A

such that the diagram

A

q

S
ψ

ψ′

B

commutes. The most important case is when ψ is linear and completely positive, and 
this is also the case we shall consider. In a setting where the group actions are absent (or 
trivial), the question about existence of a lift which is also linear and completely positive 
was considered by Choi and Effros in [6]. They showed that a completely positive linear 

http://creativecommons.org/licenses/by/4.0/
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lift exists when the map ψ is nuclear, which is in particular the case if either of A, B
or S is nuclear. The main impetus for their work was the theory of extensions of C∗-
algebras, which was also the main motivation for many subsequent examples, beginning 
with that of J. Anderson [1], showing that linear completely positive lifts do not always 
exist outside of the nuclear case.

The present work was motivated by a study of G-algebras which made two of the 
authors suspect that if ψ is G-equivariant and if a completely positive linear lift exists, 
then there also exists an almost equivariant, completely positive linear lift ψ′, in the 
sense that given ε > 0 and compact subsets K ⊆ G and F ⊆ S, we have

max
g∈K

‖ψ′(g · s) − g · ψ′(s)‖ ≤ ε

for all s ∈ F . That this is indeed the case when S is separable is a consequence of our 
Theorem A below, which is inspired by the E-theory of Connes and Higson [7]. In fact, 
the main result of this paper, Theorem 3.2, deals with the same setting except that 
we neither assume that ψ is equivariant nor that there is a linear completely positive 
contractive lift. We now reproduce part of its statement, and comment on it below.

Theorem A. Let G be a second countable locally compact group, let q : A → B be a 
surjective equivariant map between G-algebras, let S be a separable G-algebra, and let 
ψ : S → B be a completely positive linear contraction. Then there is a continuous family 
Θ = (Θt)t∈[1,∞) : S → A of lifts for ψ which moreover is:

(a) asymptotically linear, asymptotically completely positive and asymptotically com-
pletely contractive (see Definition 2.10);

(b) asymptotically (G, ψ)-equivariant, meaning that for all s, s′ ∈ S, we have

lim
t→∞

‖g · Θt(s) − Θt(h · s′)‖ = ‖g · ψ(s) − ψ(h · s′)‖ ,

uniformly for g, h in compact subsets of G.
(c) For all s, s′ ∈ S, we have

lim
t→∞

‖Θt(s)Θt(s′)‖ = ‖ψ(s)ψ(s′)‖ .

Moreover, if a linear, unital completely positive lift for ψ exists, then the continuous 
family Θ as above can be chosen so that, in addition, each map Θt is unital and completely 
positive.

Note that we do not assume ψ to be equivariant in the theorem above. In particular, 
condition (b) above implies that Θ is asymptotically equivariant whenever ψ is equivari-
ant, which is often the most interesting case. For some of the applications in [8], however, 
the more general case is necessary.
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We now comment on the conclusion in part (c). Following its introduction by Winter 
and Zacharias in [21], the notion of order zero for completely positive maps has become 
important in the classification of simple C∗-algebras. (Recall that a completely positive 
map ψ : S → B is said to be of order zero if ψ(s)ψ(s′) = 0 whenever ss′ = 0.) In this 
setting, results that allow one to lift order zero maps from quotients are very relevant, 
and this often requires strong assumptions on the ideal (such as Kirchberg’s notion 
of a σ-ideal; see Definition 1.5 in [17], and see Definition 7.2 in [9] for its extension 
to the equivariant setting). The conclusion in part (c) of Theorem A above implies 
that order zero maps admit asymptotically order zero lifts. We expect our results to be 
relevant in the study of the structure of C*-dynamical systems, particularly for actions of 
nonamenable groups on stably finite C*-algebras, which has recently received increased 
attention; see [10–12,15,13].

When S, A and B are unital and ψ is also unital, it is natural to look for asymptotically 
(G, ψ)-equivariant lifts that are also unital. These, however, will generally not exist even 
with the relaxed algebraic requirements described above. As it turns out, their existence 
characterizes amenability of G (see Theorem 4.1):

Theorem B. Let G be a second countable locally compact group. Then the following are 
equivalent:

(1) For every surjective equivariant map q : A → B between G-algebras, for every 
separable G-algebra S, and for every unital completely positive linear contraction 
ψ : S → B, there exists a continuous family Θ as in the conclusion of Theorem A
which moreover satisfies Θt(1) = 1 for all t ∈ [1, ∞).

(2) G is amenable.

Even without the G-actions, our Theorem A provides new information. As pointed out 
above, there are by now a wealth of examples where the quotient map in an extension 
of separable C∗-algebras does not admit a completely positive and linear section. It 
follows from Theorem 3.2 below that there always exists a family of sections which has 
these properties asymptotically, and at the same time is asymptotically orthogonality 
preserving. This result should be compared with the examples in [19] showing that there 
are separable C∗-algebras with extensions by the compact operators such that no other 
extension can be added to result in an extension for which the quotient map admits 
a family of sections that constitute an asymptotic ∗-homomorphism. Thus there are 
certainly limits to which properties of sections one can hope to get by relaxing algebraic 
conditions to asymptotic ones. Although it is conceivable that a linear lift can be proved 
to exist in the setting of Theorem A, our results appear to come close to being optimal.

Since this paper is almost exclusively devoted to the proof of Theorem A, which is 
quite long and technical, we describe the main conceptual steps in its proof. For the sake 
of the exposition, we focus on constructing a sequence (Θn)n∈N as above.
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Step 1: By taking (forced) unitizations everywhere, we may assume that S, A and ψ
are unital, and that there exists a G-invariant state χ on S. This is done in 
Theorem 3.2.

Step 2: Using standard arguments involving the Busby invariant of 0 → I → A → B →
0, we may assume that A = M(I) is the multiplier algebra of I, that B = Q(I)
is the associated Calkin algebra, that S is a subalgebra of B and that ψ is the 
canonical inclusion. This is done in Proposition 3.1.

Step 3: Let (Fn)n∈N be an increasing sequence of finite subsets of S with dense union. 
Using the Bartle-Graves theorem, one obtains the existence of a sequence 
(ψn)n∈N of continuous lifts for ψ such that
(a) ψn is linear on the span of Fn;
(b) ψn+1 agrees with ψn on the span of Fn.
This is done in Lemma 2.8. When a cp lift ψ̃ for ψ exists, then we may take ψn

to be ψ̃ for all n ∈ N.
Step 4: Using arguments of Kasparov [16], we carefully construct an almost G-invariant 

approximate identity (yn)n∈N in I, such that, when setting Δn = (yn−yn−1)1/2, 
the sequence (ψn)n∈N of maps S → M(I) given by

ψn(s) = χ(s)yn +
∞∑

k=n

Δkψk(s)Δk

is approximately Q[i]-linear and approximately cpc on a dense subalgebra S0 of 
S, and approximately equivariant on S0 with respect to a dense subgroup G0 of 
G. This is done in Lemma 2.9.
One would like to deduce, using continuity, that those properties then hold 
globally on S and G. For this, one would need to know that for every s ∈ S, the 
sequence (ψn(s))n∈N is uniformly bounded. This is, however, not guaranteed in 
our construction, and fixing this is the goal of the next step.

Step 5: Set

A =
{
(an)n∈N bounded sequence in A : an − a1 ∈ I for all n ∈ N

}
and let I denote the ideal of A consisting of all bounded sequences in I. For 
n ∈ N, write πn : A → A for the projection onto the n-th coordinate.
The sequence (ψn(s))n∈N obtained in the previous step gives us a map Ψ0 : S0 →
A/I which is Q[i]-linear, G0-equivariant, and bounded. Thus, Ψ0 extends by 
continuity to a G-equivariant linear map Ψ: S → A/I which is then completely 
positive and contractive.
Use Bartle-Graves again to find a continuous section σ : A/I → A, and set 
Θn = πn ◦σ◦Ψ: S → A for all n ∈ N. Then (Θn)n∈N has the desired properties. 
This is done in detail in Theorem 2.13.
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2. Lifting from Calkin algebras

In this section, we solve a particular case of the lifting problem described in the 
introduction. More specifically, we will assume that in the extension 0 → I → A →
B → 0 we actually have A = M(I) and B = M(I)/I, so that we will focus on lifting 
maps from the Calkin algebra Q(I) = M(I)/I of a not necessarily unital C∗-algebra I. 
In the following subsection, we focus on induced actions on Calkin algebras and aim at 
producing a suitable sequence (Δn)n∈N of positive contractions in M(I); see Lemma 2.5. 
In the second subsection we will then use these elements to solve the special case of the 
lifting problem described above.

2.1. Actions on Calkin algebras

For a locally compact group G and a C∗-algebra D, we define an action of G on D
to be a group homomorphism δ : G → Aut(D). Moreover, we say that δ is continuous if 
for every d ∈ D, the map G → D given by g �→ δg(d) is continuous. In this case, we say 
that (D, δ) is a G-algebra.

It is common in the literature to drop the adjective “continuous” when discussing 
group actions, and implicitly assume that all actions on C∗-algebras are continuous. 
There are, however, some relevant constructions in C∗-dynamics that produce non-
continuous actions, even if one starts with continuous ones. Examples of such construc-
tions are multiplier and Calkin algebras as well as ultraproducts and relative commutants 
(see [14] for the latter). Since Calkin algebras play an important role in our work, we 
need to introduce some terminology in order to deal with non-continuous actions.

Definition 2.1. Let δ : G → Aut(D) be a (not necessarily continuous) action of a locally 
compact group G on a C∗-algebra D. We let

Dδ = {d ∈ D : the map G → D given by g �→ δg(d) is continuous}

denote the continuous part of D with respect to δ.

It is not difficult to check that Dδ is a C∗-subalgebra of D which is left invariant 
under δ, and thus δ restricts to a continuous action of G on Dδ. In other words, (Dδ, δ)
is a G-algebra. The following is the main example of a not necessarily continuous action 
that we will consider in this work.
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Example 2.2. Let G be a locally compact group and let (I, γ) be a G-algebra. Then γ
extends to an action γ̃ of G on the multiplier algebra M(I) of I satisfying γ̃g(m)x =
γg(mγg−1(x)) for all x ∈ I and all g ∈ G. This action is in general not continuous (unless 
G is discrete or I is unital). Denote by Q(I) = M(I)/I the associated (generalized) 
Calkin algebra and by qI : M(I) → Q(I) the quotient map. Since I is γ̃-invariant, there 
is a (not necessarily continuous) action γ : G → Aut(Q(I)) such that γg ◦ qI = qI ◦ γ̃g
for all g ∈ G. Then (M(I)γ̃ , ̃γ) and (Q(I)γ , γ) are G-algebras, and

qI :
(
M(I)γ̃ , γ̃

)
→

(
Q(I)γ , γ

)
is an equivariant ∗-homomorphism.

The following lemma, which is a direct consequence of work by L. Brown [4], will be 
very useful to us.

Lemma 2.3. Let G be a locally compact group and let (I, γ) be a G-algebra. Then

0 (I, γ) (M(I)γ̃ , γ̃)
qI (Q(I)γ , γ) 0,

is a short exact sequence of G-algebras.

Proof. The only non-trivial fact is that Q(I)γ ⊆ qI (M(I)γ̃), which follows from The-
orem 2 in [4] since that theorem implies that the restriction of γ̃ to q−1

I (Q(I)γ) is 
continuous. �

Our starting point is the following variation of the lemma on the top of page 152 
in [16]. We include a proof because it is a key lemma and we shall rely on properties of 
the construction that are not explicit in [16].

Lemma 2.4. (Kasparov, [16]) Let G be a locally compact group and let (I, γ) be a σ-unital 
G-algebra. Let 0 ≤ d ≤ 1 be a strictly positive element in I and let M0 ⊆ M(I)γ̃ be a 
separable C∗-subalgebra. Then there exists a countable approximate unit (xn)∞n=1 for I
contained in C∗(d) with the following properties:

(a) 0 ≤ xn ≤ 1 for all n ∈ N;
(b) xn+1xn = xn for all n ∈ N;
(c) lim

n→∞
‖xnb − bxn‖ = 0 for all b ∈ M0;

(d) lim
n→∞

max
g∈K

‖γg(xn) − xn‖ = 0 for all compact subsets K ⊆ G.

Proof. For each n ∈ N, let gn : [0, 1] → [0, 1] be the continuous function which vanishes 
between 0 and 1

2

(
1
n + 1

n+1

)
; is linear between 1

2

(
1
n + 1

n+1

)
and 1

n , and is constant 
equal to 1 for t ≥ 1 . Using functional calculus, we set an = gn(d) ∈ I. Then 0 ≤ an ≤
n
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1, an+1an = an, and limn→∞ and = d. In particular, (an)n∈N is an approximate unit in 
I since dI = I. Since G is σ-compact, the set{

γg(m) : g ∈ G,m ∈ M0 ∪ {d}
}

generates a separable γ-invariant C∗-subalgebra M00 ⊆ M(I)γ̃ which contains d and M0. 
Let (Fn)∞n=1 be an increasing sequence of finite subsets with dense union in M00 and let 
(Vn)n∈N be an increasing sequence of open subsets of G with compact closures such that ⋃

n∈N Vn = G. For N ∈ N, let XN denote the convex hull of {ak : k ≥ N}.
We claim that given n, N ∈ N and ε > 0, there is x ∈ XN such that ‖γg(x) − x‖ ≤ ε

for all g ∈ Vn and ‖xb − bx‖ ≤ ε for all b ∈ Fn. To establish the claim, set I00 = I ∩M00. 
For x ∈ XN , let fx ∈ C(Vn, I00) and hx : Fn → I00 be given by

fx(g) = γg(x) − x and hx(b) = xb− bx

for g ∈ Vn and b ∈ Fn. Then Ω = {(fx, hx) : x ∈ XN} is a convex subset of the C∗-algebra 
C(Vn, I00) ⊕C(Fn, I00). Assuming that the claim is not true, we can find n, N ∈ N such 
that the norm-closure of Ω does not contain 0. By Hahn-Banach’s separation theorem, 
there is then a δ > 0 and elements Φ1 ∈ C(Vn, I00)∗ and Φ2 ∈ C(Fn, I00)∗ such that

|Φ1(fx) + Φ2(hx)| ≥ δ

for all x ∈ XN . Write Φ1 = ω1 − ω2 + i(ω3 − ω4), where the ωj ’s are positive linear 
functionals on C(Vn, I00). For each k ≥ N define Ak, Bk ∈ C

(
Vn, I00

)
by Ak(g) = ak

and Bk(g) = γg(ak) for g ∈ Vn. Then (Ak)k∈N and (Bk)k∈N are both approximate units 
in C(Vn, I00) and hence ‖ωj‖ = limk→∞ ωj(Bk) = limk→∞ ωj(Ak) for all j ∈ N. This 
implies that

lim
k→∞

Φ1 (Bk −Ak) = 0.

Since Bk −Ak = fak
it follows that there is an L ≥ N such that

|Φ2(hx)| ≥ δ

2 (2.1)

for all x ∈ XL. Let Cx ∈ C(Fn, I00) and B ∈ C(Fn, M00) be the elements defined such 
that Cx(b) = x and B(b) = b for b ∈ Fn. Then (Cx)x∈XL

is a convex approximate unit 
in C(Fn, I00) which is an ideal in C(Fn, M00). Since hx = CxB − BCx, the inequality 
(2.1) contradicts the lemma on page 330-331 in [2]. This proves the claim.

It is now straightforward to use the claim to construct an increasing sequence (kn)n∈N
in N, and an element xn is the convex hull of

{aj : kn ≤ j ≤ kn+1 − 1}

such that
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• ‖xnb − bxn‖ ≤ 1
n for all b ∈ Fn;

• ‖γg(xn) − xn‖ ≤ 1
n for all g ∈ Vn, and

• ‖xnd− d‖ ≤ 1
n .

The sequence (xn)n∈N will then have the desired properties. �
The following is the main technical lemma of this subsection, and will be needed in the 

upcoming one in order to produce suitable lifts along the quotient map M(I) → Q(I).

Lemma 2.5. Let G be a locally compact group, let (I, γ) be a σ-unital G-algebra, and let 
d ∈ I be a strictly positive element. Let (Zn)n∈N be an increasing sequence of compact 
subsets of M(I)γ̃, and let (Vn)n∈N be an increasing sequence of open subsets of G with 
compact closures. Then there is an approximate unit (yn)∞n=1 for I contained in C∗(d), 
such that, if we set

Δ0 = √
y1 and Δn =

√
yn+1 − yn,

for n ≥ 1, then the following properties are satisfied:

(i) 0 ≤ yn = yn+1yn ≤ yn+1 ≤ 1 for all n ∈ N,
(ii) lim

n→∞
max
g∈K

‖γg(yn) − yn‖ = 0 for all compact subsets K ⊆ G,

(iii) ‖z(1 − yn)‖ ≤ ‖qI(z)‖ + 1
n for all z ∈ Zn,

(iv) Δn+1yn = 0,
(v) ‖Δnz − zΔn‖ ≤ 2−n for all z ∈ Zn,
(vi) ‖γg(Δn) − Δn‖ ≤ 2−n for all g ∈ Vn,

for all n ≥ 1.

Proof. Let M0 be the C∗-subalgebra of M(I)γ̃ generated by 
⋃∞

n=1 Zn, and let (xn)∞n=1
be an approximate unit in I contained in C∗(d) satisfying properties (a), (b), (c) and 
(d) in Lemma 2.4. It is easy to see, by approximating the square root function on [0, 1]
by polynomials, that for every ε > 0 there is δ > 0 such that when a ∈ I is a positive 
contraction satisfying ‖γg(a) − a‖ ≤ δ, then ‖γg(

√
a) −√

a‖ ≤ ε. Combined with the 
lemma on page 332 in [2], it follows that for each n ∈ N there is a δn > 0 such that 
whenever a ∈ I is a positive contraction, then

‖γg(a) − a‖ ≤ δn ∀g ∈ Vn

‖az − za‖ ≤ δn ∀z ∈ Zn

}
⇒

{
‖γg(

√
a) −√

a‖ ≤ 2−n ∀g ∈ Vn

‖√az − z
√
a‖ ≤ 2−n ∀z ∈ Zn .

We extract therefore a subsequence (yn)n∈N from (xn)n∈N such that

‖γg(yn+1 − yn) − (yn+1 − yn)‖ ≤ δn



10 M. Forough et al. / Journal of Functional Analysis 287 (2024) 110655
for all g ∈ Vn and ‖(yn+1 − yn)z − z(yn+1 − yn)‖ ≤ δn for all z ∈ Zn. Since 
limn→∞ ‖m(1 − xn)‖ = ‖qI(m)‖ for all m ∈ M(I), we can also arrange that (iii) holds. 
Then (yn)∞n=1 will have all the stated properties. �

The following is Lemma 3.1 in [18], and we reproduce it here for the convenience of 
the reader, as we will use it repeatedly.

Lemma 2.6. Adopt all the assumptions and notations from Lemma 2.5, and let (yn)∞n=1
and (Δn)∞n=0 be as in its conclusion. Let (mn)∞n=0 be a uniformly bounded sequence in 
M(I). Then the sum

∞∑
n=0

ΔnmnΔn

converges in the strict topology of M(I) and for k ∈ N we have

∥∥∥∥ ∞∑
n=k

ΔnmnΔn

∥∥∥∥ ≤ sup
n≥k

‖mn‖.

2.2. Producing lifts into multiplier algebras

As the main step towards more general cases, we consider first a unital linear com-
pletely positive map ψ : U → Q(I)γ , and we seek to construct a lift ψ′ in the diagram

M(I)γ̃

qI

U
ψ

ψ′

Q(I)γ

such that ψ′ has properties as close as possible to those of ψ. (This is rather vague at 
this point, but it will soon become clear; see Definition 2.12.)

While the focus in the following is on the general case, we want to simultaneously 
handle the case where there exists a unital completely positive linear lift ψ′, in which 
case the problem reduces to that of making adjustments to ψ′ so that it respects the 
G-actions as much as possible. As will become clear, the arguments necessary to handle 
the latter situation are much simpler than the ones we present to handle the general 
case, but they also lead to stronger conclusions. We will treat both situations in parallel.

We shall work with maps between C∗-algebras that may not respect anything of the 
algebraic structure. For this reason, we will be very explicit about the properties of the 
maps we consider.
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Definition 2.7. Let θ : A → B be a (not necessarily continuous or linear) map between 
C∗-algebras. We say that θ is

• self-adjoint, if θ(a∗) = θ(a)∗ for all a ∈ A.
• unital, if A and B are unital and θ(1) = 1.

Let n ∈ N. We denote by θ ⊗ idMn
the map θ ⊗ idMn

: Mn(A) → Mn(B) given by 
entry-wise application of θ.

The following lemma, which is essentially an application of the Bartle-Graves selec-
tion theorem (stating that every bounded, surjective map between Banach spaces admits 
a not-necessarily linear, continuous section), will allow us to consistently construct so-
lutions to our lifting problem that are linear on larger and larger finite-dimensional 
subspaces.

Lemma 2.8. Let U and E be C∗-algebras, with U unital, and let L : D → Q(E) be a 
unital, continuous, self-adjoint, linear map.

(i) For each finite set F ⊆ U there is a unital continuous and self-adjoint map LF : U →
M(E) which is linear on Span(F ) and satisfies qE ◦ LF = L.

(ii) Let F1 ⊆ F2 be finite subsets of U , and let L1 : U → M(E) be a unital, continuous 
self-adjoint map which is linear on Span(F1) and satisfies qE ◦ L1 = L. There is a 
unital continuous and self-adjoint map L2 : U → M(E), which is linear on Span(F2)
and satisfies qE ◦ L2 = L and L2(x) = L1(x) for x ∈ Span(F1).

Proof. (i) Set F ′ = {1} ∪ F ∪ F ∗. By the Bartle-Graves selection theorem, [3], there 
is a continuous map s0 : Q(E) → M(E) such that qE ◦ s0 = idQ(E). By exchanging 
s0 with s0 − s0(0) we may assume that s0(0) = 0. Consider the Banach space quotient 
Q(E)/L(Span(F ′)) and the corresponding quotient map π : Q(E) → Q(E)/L(Span(F ′)). 
The Bartle-Graves selection theorem gives a continuous map

s1 : Q(E)/L(Span(F ′)) → Q(E)

such that π ◦ s1 is the identity on Q(E)/L(Span(F ′)), and again we may assume that 
s1(0) = 0. Since SpanL(F ′) is finite dimensional and 1 ∈ L(F ′), there is a continuous 
and linear map

sF : L(Span(F ′)) → M(E)

with sF (1) = 1 such that qE ◦ sF = idL(Span(F ′)). Since x − s1(π(x)) ∈ L(Span(F ′)) for 
all x ∈ Q(E), we can define θ : Q(E) → M(E) by

θ(x) = s0 (s1(π(x))) + sF (x− s1(π(x))).
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Then θ is continuous, linear on L(Span(F ′)), and satisfies θ(1) = 1 and qE ◦ θ = idQ(E). 
By replacing θ(x) with 1

2 (θ(x) + θ(x∗)∗) for x ∈ Q(E), we may also assume that θ is 
self-adjoint. Then LF = θ ◦ L has the desired properties.

(ii) Apply first (i) to get a continuous and self-adjoint unital map L′
2 : U → M(E)

which is linear on Span(F2 ∪ F ∗
2 ) and satisfies qE ◦ L′

2 = L. Since Span(F1 ∪ F ∗
1 ) is 

finite-dimensional, there is a continuous linear projection P ′ : U → Span(F1 ∪ F ∗
1 ). Set

P (u) = 1
2 (P ′(u) + P ′(u∗)∗)

for all u ∈ U . Then the map L2 : U → Q(E) given by

L2(u) = L1(P (u)) + L′
2(u− P (u)),

for all u ∈ U , has the desired properties. �
The following is the main technical lemma of this section, and, roughly speaking, 

asserts that the lifting problem we are interested in can be solved on dense subsets of U
and G.

Lemma 2.9. Let G be a locally compact, second countable group, let (I, γ) be a σ-unital 
G-algebra, and let d ∈ I be a strictly positive element. Denote by qI : M(I) → Q(I) the 
canonical quotient map. Let (U, δ) be a separable, unital G-algebra, let χ : U → C be a 
state, and let ψ : U → Q(I)γ be a unital, completely positive linear map.

Let G(0) be a countable dense subset of G, and let (Fn)n∈N be an increasing sequence 
of self-adjoint finite subsets of U whose union U (0) is dense in U and satisfies

SpanQ[i](U (0)) ⊆ U (0), G(0) · U (0) ⊆ U (0) and u− χ(u) ∈ U (0) (2.2)

for all u ∈ U (0). (This choice is always possible.1)
Then there exists a family ψt : U → M(I), for t ∈ [1, ∞), of self-adjoint maps with 

the following properties:

(1) ψt(1) = 1 for all t ≥ 1;

1 For example, let (F ′
n)n∈N be an increasing sequence of finite subsets of U with dense union, and assume 

that F ′
1 contains {0, 1}. Let (Qn)n∈N be an increasing sequence of finite subsets of Q[i] with ⋃∞

n=1 Qn = Q[i]
and such that {0, 1} ⊆ Q1. Let (Gn)n∈N be an increasing sequence of finite subsets of G, all containing 
the unit, with G(0) =

⋃
n Gn. Set F1 = F ′

1 and define Fn for n ≥ 2 recursively such that Fn = F ′′
n ∪ F ′′

n
∗ ∪

F ′
n ∪ F ′

n
∗, where

F
′′
n =

{ n∑
j=1

gj · (qjuj) : gj ∈ Gn, qj ∈ Qn, uj ∈ Fn−1

}
∪ {u − χ(u) : u ∈ Fn−1} .

Then (Fn)n∈N satisfies the desired properties.
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(2) The assignment t �→ ψt(u) is continuous for all u ∈ U ;
(3) ψt is continuous for all t ≥ 1;
(4) ψt is linear on Span(Fn) when t ≥ n + 1;
(5) qI ◦ ψt = ψ for all t ≥ 1;
(6) ψt(U) ⊆ M(I)γ̃ for all t ≥ 1.
(7) Let u, v ∈ U (0), g, h ∈ G(0), and let m ∈ {1, d}. Then

lim sup
t→∞

∥∥m (
g · ψt(u) − ψt(h · v)

)∥∥
≤ max {|χ(u− v)| , ‖qI(m) (g · ψ(u) − ψ(h · v))‖} .

(8) Let u, v ∈ U (0). Then

lim sup
t→∞

∥∥ψt(u− χ(u))ψt(v − χ(v))
∥∥

≤ ‖ψ(u− χ(u))ψ(v − χ(v))‖ .

(9) For j ∈ N, write Mj(U (0)) for the subset of Mj(U) of matrices with entries in U (0). 
For u ∈ Mj(U (0)), we have

lim sup
t→∞

∥∥(ψt ⊗ idMj
)(u)

∥∥ ≤ max
{∥∥(χ⊗ idMj

)(u)
∥∥ ,∥∥(ψ ⊗ idMj

)(u)
∥∥} .

Moreover, if a unital and completely positive lift for ψ exists, then we can choose the 
maps ψt as above to additionally be linear, completely positive and contractive.

Proof. We first present the construction of the maps ψt, and later verify that they satisfy 
the properties claimed above.

By part (i) in Lemma 2.8, there is a unital continuous and self-adjoint map ψ1 : U →
M(I) such that qI ◦ψ1 = ψ and ψ1 is linear on Span(F1). By repeatedly using of part (ii) 
in Lemma 2.8, we get unital continuous self-adjoint maps ψn : U → M(I) satisfying the 
following for all n ∈ N:

(a) qI ◦ ψn = ψ

(b) ψn is linear on Span(Fn), and
(c) ψn+1(x) = ψn(x) for all x ∈ Fn.

It follows from (a) and Lemma 2.3 that

(d) ψn(U) ⊆ M(I)γ̃ for all n ∈ N.

In the case where a unital completely positive linear lift ψ̃ of ψ is given, we take all the 
ψn’s above to be equal to ψ̃.
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Let e ∈ V1 ⊆ V2 ⊆ V3 ⊆ · · · be open subsets of G with compact closures Vn such that ⋃
n∈N Vn = G. For each n ∈ N, set

Yn =
n⋃

j=1

{
γ̃g(ψj(u)) − ψj(δh(v)) ∈ M(I)γ̃ : g, h ∈ Vn, u, v ∈ Fn

}
⊆ M(I)γ̃ ,

and let Zn ⊆ M(I)γ̃ be a compact set containing the set

Yn ∪ dYn ∪
n⋃

j=1
(ψj(Fn)ψj(Fn) ∪ ψj(Fn)) .

We fix from now on an approximate unit (yn)n∈N for I contained in C∗(d) satisfying 
the conclusion of Lemma 2.5 for the sets (Vn)n∈N and (Zn)n∈N , and set Δ0 = √

y1 and 
Δn = √

yn+1 − yn for n ≥ 1.
For k ∈ N and using Lemma 2.6, we define a map ψk : U → M(I) by

ψk(u) = χ(u)yk +
∞∑

n=k

Δnψk(u)Δn (2.3)

for all u ∈ U . Moreover, for t ∈ [k, k + 1], we define the map ψt to be

ψt = (t− k + 1)ψk + (k − t)ψk−1. (2.4)

We thus obtain a family ψt : U → M(I), for t ≥ 1. We now check that the maps ψt

satisfy the properties in the statement in the lemma.
(1) This follows immediately from (2.3) and (2.4), since χ and the ψn’s are all unital.
(2) This follows directly from (2.4).
(3) By (2.4), it suffices to show that ψk is continuous for each fixed k ∈ N. Moreover, 

by (2.3) it suffices to show that the assignment u �→
∞∑

n=k

Δnψk(u)Δn is continuous. Let 

u ∈ U and ε > 0 be given. Using continuity of ψk, find α > 0 such that ‖ψk(u) −ψk(v)‖ ≤
ε when ‖u − v‖ ≤ α. It thus follows from Lemma 2.6 that

∥∥∥ ∞∑
n=k

Δn(ψk(u) − ψk(v))Δn

∥∥∥ ≤ ε,

when ‖u − v‖ ≤ α, as desired.
(4) This follows from (2.4), since ψk, and thus also ψk by (2.3), is linear on Span(Fn)

when k ≥ n.
(5) By (2.4), it suffices to show that qI ◦ ψk(u) = ψ(u) for all k ∈ N. Fix k ∈ N. 

Since U (0) is dense in U and ψk is continuous by part (3), it suffices to show that for 
every r ∈ N and every u ∈ Fr, we have qI ◦ ψk(u) = ψ(u). Fix r ∈ N. Without loss of 
generality, we assume that r ≥ k.
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We need some auxuliary maps, which we define next. For each n ∈ N ∪ {0}, set

ψk
n(u) =

{
χ(u), n ≤ k − 1
ψk(u), n ≥ k,

for all u ∈ U . Then

ψk(u) =
r−1∑
n=0

Δnψ
k
n(u)Δn +

∞∑
n=r

Δnψk(u)Δn (2.5)

for all u ∈ U . It follows from (v) in Lemma 2.5 and the fact that ‖Δn‖ ≤ 1 that

∥∥Δ2
nψk(u) − Δnψk(u)Δn

∥∥ ≤ ‖Δnψk(u) − ψk(u)Δn‖ ≤ 2−n

for all u ∈ Fr, when n ≥ k. Using that the series 
∑∞

n=r Δ2
n converges in the strict 

topology of M(I) to 1 − yr at the first step, we therefore have

(1 − yr)ψk(u) −
∞∑

n=r

Δnψk(u)Δn =
∞∑

n=r

Δ2
nψk(u) −

∞∑
n=r

Δnψk(u)Δn

=
∞∑

n=r

[
Δ2

nψk(u) − Δnψk(u)Δn

]
,

where the last sum converges in norm by the previous norm estimate. In particular, since 
Δ2

nψk(u) − Δnψk(u)Δn belongs to I (because Δn ∈ I), it follows that

(1 − yr)ψk(u) −
∞∑

n=r

Δnψk(u)Δn ∈ I.

We combine the above with (2.5), writing =I for equality modulo I:

ψk(u) − ψk(u) = ψk(u) − (ψk(u) − yrψk(u)) − yrψk(u)

=I ψk(u) −
∞∑

n=r

Δnψk(u)Δn

=
r−1∑
n=0

Δnψ
k
n(u)Δn =I 0.

It follows that qI(ψk(u)) = qI(ψk(u)) = ψ(u), as desired.
(6) This follows from part (5) and Lemma 2.3, since ψ(U) ⊆ Q(I)γ by assumption.
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(7) By (2.4), it suffices to show that

lim sup
k→∞

‖m(g · ψk(u) − ψk(h · v))‖

≤ max
{
|χ(u− v)|, ‖qI(m)(g · ψ(u) − ψ(h · v))‖

}
.

(2.6)

Let n ∈ N such that u, v ∈ Fn and g, h ∈ Vn, and fix k ≥ n + 1. We write

g · ψk(u) − ψk(h · v) = a + b,

where

a =
k−1∑
j=0

[
γg(Δj)χ(u)γg(Δj) − Δjχ(v)Δj

]
and

b =
∞∑
j=k

[
γg(Δj)γ̃g (ψk(u)) γg(Δj) − Δjψk(δh(v))Δj

]
.

Note that a = χ(u)γg(yk) − χ(v)yk and hence

‖a− a′‖ ≤ |χ(u)| ‖γg(yk) − yk‖ (2.7)

where

a′ =
k−1∑
j=0

Δj(χ(u) − χ(v))Δj .

Set

b′ =
∞∑
j=k

Δj (γ̃g(ψn(u)) − ψk(δh(v)) Δj .

Since

‖γg(Δj)γ̃g (ψk(u)) γg(Δj) − Δj γ̃g (ψk(u)) Δj‖ ≤ 2 ‖ψk(u)‖ ‖γg(Δj) − Δj‖

and ψk(u) = ψn(u), we find that

‖b− b′‖ ≤ 2 ‖ψn(u)‖
∞∑
j=k

‖γg(Δj) − Δj‖ ≤ 2 ‖ψn(u)‖
∞∑
j=k

2−j , (2.8)

thanks to property (vi) in Lemma 2.5. Property (iv) in Lemma 2.5 implies that
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b′ =
∞∑
j=k

Δj (γ̃g(ψn(u)) − ψk(δh(v))) (1 − yj−1)Δj .

Using the above, together with the fact that m commutes with Δj , we get

ma′ + mb′ =
k−1∑
j=0

Δjm(χ(u) − χ(v))Δj

+
∞∑
j=k

Δjm
(
γ̃g(ψn(u)) − ψk(δh(v))

)
(1 − yj−1)Δj

when m ∈ {1, d}. By property (iii) in Lemma 2.5 we have that

∥∥m(
γ̃g(ψn(u)) − ψk(δh(v))

)
(1 − yj−1)

∥∥ ≤
∥∥qI(m)

(
g · ψ(u) − ψ(h · v)

)∥∥ + 1
j − 1

for j ≥ k ≥ n +1, since γ̃g(ψn(u)) −ψk(δh(v)) belongs to Zj−1. It follows therefore from 
Lemma 2.6 that

‖ma′ + mb′‖ ≤ max{|χ(u) − χ(v)|, ‖qI(m)(g · ψ(u) − ψ(h · v))‖} + 1
k − 1

for m ∈ {1, d} when k ≥ n + 1. Combined with (2.7) and (2.8) we find that∥∥m (
g · ψk(u) − ψk(h · v)

)∥∥
= ‖m(a− a′) + m(b− b′) + ma′ + mb′‖

≤ |χ(u)| ‖m‖ ‖γg(yk) − yk‖ + 2‖m‖ ‖ψn(u)‖
∞∑
j=k

2−j

+ max{|χ(u) − χ(v)|, ‖qI(m)(g · ψ(u) − ψ(h · v))‖} + 1
k − 1 ,

when k ≥ n + 1. This estimate and property (ii) in Lemma 2.5 show that (2.6) holds.
(8) Set u′ = u −χ(u), v′ = v−χ(v), and find n ∈ N with u′, v′ ∈ Fn. Let ε > 0. Since 

ψ(u′)ψ(v′) = qI(ψn(u′)ψn(v′)) there is an x ∈ I such that

‖ψn(u′)ψn(v′) + x‖ ≤ ‖ψ(u′)ψ(v′)‖ + ε. (2.9)

Let t ≥ n + 2 and let k ∈ N satisfy t ∈ [k, k + 1]. Define sk = t − k and sj = 1 for 
j ≥ k + 1. Using that χ(u′) = χ(v′) = 0 at the first step, and using that ΔlΔj = 0 when 
|l − j| ≥ 2 at the second step, we get

ψt(u′)ψt(v′) =

⎛⎝ ∞∑
Δjsjψn(u′)Δj

⎞⎠⎛⎝ ∞∑
Δjsjψn(v′)Δj

⎞⎠

j=k j=k
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=
1∑

l=−1

∞∑
j=k+1

Δjsjψn(u′)ΔjΔj+lsj+lψn(v′)Δj+l

+
1∑

l=0

Δkskψn(u′)ΔkΔk+lsk+lψn(v′)Δk+l.

Using property (v) of Lemma 2.5, we get

‖Δjψn(v′) − ψn(v′)Δj‖ ≤ 2−j (2.10)

when j ≥ n. Set

a =
1∑

l=−1

∞∑
j=k+1

Δjsjsj+lψn(u′)Δj+lψn(v′)Δj+lΔj

+
1∑

l=0

Δksksk+lψn(u′)Δk+lψn(v′)Δk+lΔk.

Since k ≥ n + 1, we conclude from (2.10) that

∥∥ψt(u′)ψt(v′) − a
∥∥ ≤ 5‖ψn(u′)‖

∞∑
j=k+1

2−j+1. (2.11)

Similarly, by setting

b =
1∑

l=−1

∞∑
j=k+1

Δjsjsj+lψn(u′)ψn(v′)Δ2
j+lΔj

+
1∑

l=0

Δksksk+lψn(u′)ψn(v′)Δ2
k+lΔk

=
∞∑

j=k+1

Δj

( 1∑
l=−1

sjsj+lψn(u′)ψn(v′)Δ2
j+l

)
Δj

+ Δk

( 1∑
l=0

sksk+lψn(u′)ψn(v′)Δ2
k+l

)
Δk,

we have

‖a− b‖ ≤ 5‖ψn(u′)‖
∞∑

j=k+1

2−j+1. (2.12)

Set
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c =
∞∑

j=k+1

Δj

( 1∑
l=−1

sjsj+l(ψn(u′)ψn(v′) + x)Δ2
j+l

)
Δj

+ Δk

( 1∑
l=0

sksk+l(ψn(u′)ψn(v′) + x)Δ2
k+l

)
Δk.

Then

c− b =
∞∑

j=k+1

Δj

( 1∑
l=−1

sjsj+lxΔ2
j+l

)
Δj + Δk

( 1∑
l=0

sksk+lxΔ2
k+l

)
Δk. (2.13)

Note that ∥∥xΔ2
j+l

∥∥ = ‖x(yj+l+1 − yj+l)‖ ,

which will be very small when j is big since x ∈ I. More precisely, there is a K ∈ N such 
that ∥∥∥∥∥

1∑
l=−1

sjsj+lxΔ2
j+l

∥∥∥∥∥ ≤ ε and

∥∥∥∥∥
1∑

l=0

sksk+lxΔ2
k+l

∥∥∥∥∥ ≤ ε

when j ≥ k+1 and k ≥ K. When we use these estimates in (2.13) and apply Lemma 2.6
it follows that

‖c− b‖ ≤ ε, (2.14)

provided k ≥ K. Note that∥∥∥∥∥
1∑

l=−1

sjsj+l(ψn(u′)ψn(v′) + x)Δ2
j+l

∥∥∥∥∥ ≤ ‖ψn(u′)ψn(v′) + x‖
∥∥∥∥∥

1∑
l=−1

sjsj+lΔ2
j+l

∥∥∥∥∥
≤ ‖ψn(u′)ψn(v′) + x‖

∥∥∥∥∥
1∑

l=−1

Δ2
j+l

∥∥∥∥∥
= ‖ψn(u′)ψn(v′) + x‖ ‖yj+2 − yj−1‖
≤ ‖ψn(u′)ψn(v′) + x‖ ,

and similarly, ∥∥∥∥∥
1∑

l=0

sksk+l(ψn(u′)ψn(v′) + x)Δ2
k+l

∥∥∥∥∥ ≤ ‖ψn(u′)ψn(v′) + x‖ .

It follows therefore from the definition of c and Lemma 2.6 that
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‖c‖ ≤ ‖ψn(u′)ψn(v′) + x‖ .

Combining with (2.11), (2.12), (2.14) and (2.9) we find that

∥∥ψt(u′)ψt(v′)
∥∥ ≤ ‖ψ(u′)ψ(v′)‖ + 10‖ψn(u′)‖

∞∑
j=k+1

2−j+1 + 2ε

when t ∈ [k, k + 1] for some k ≥ max{n + 2, K}. This proves (8).
(9) Fix j, n ∈ N and fix u ∈ Mj(Fn). We make the following abbreviations: χ′ =

χ ⊗ idMj
, ψ′ = ψ ⊗ idMj

, q′I = qI ⊗ idMj
, ψ′

k = ψk ⊗ idMj
, y′k = yk ⊗ 1Mj(C) and 

Δ′
k = Δk ⊗ 1Mj(C) for k ∈ N. Using property (iv) in Lemma 2.5, for k ≥ n we get

(ψk ⊗ idMj
)(u) =

k−1∑
�=0

Δ′
�χ

′(u)Δ′
� +

∞∑
�=k

Δ′
�ψ

′
k(u)Δ′

�

=
k−1∑
�=0

Δ′
�χ

′(u)Δ′
� +

∞∑
�=k

Δ′
�ψ

′
n(u)(1 − y′�−1)Δ′

�.

It follows from Lemma 3.1 in [18] that

∥∥(ψk ⊗ idMj
)(u)

∥∥ ≤ max
{
‖χ′(u)‖, sup

�≥k

∥∥ψ′
n(u)(1 − y′�−1)

∥∥} . (2.15)

Since (y′k)k∈N is an approximate unit in Mj(I) = ker(qI ⊗ idMj
),

lim
�→∞

∥∥ψ′
n(u)(1 − y′�−1)

∥∥ = ‖q′I(ψ′
n(u))‖ = ‖ψ′(u)‖ .

It follows therefore from (2.15) that

lim sup
k→∞

∥∥(ψk ⊗ idMj
)(u)

∥∥ ≤ max
{
‖χ′(u)‖ , ‖ψ′(u)‖

}
.

Thanks to (2.4) this proves (9).
Finally, for the last statement, assume that a unital completely positive linear lift ψ̃ of 

ψ exists, and that we have chosen all ψn’s to be equal to ψ̃. It then follows immediately 
from their definition that each ψt will be a linear, completely positive contraction. This 
completes the proof. �

Next, we introduce some terminology relative to families Θ = (Θt)t∈[1,∞) of maps 
Θt : A → B between C∗-algebras. The cone of positive elements in a C∗-algebra A will 
be denoted by A+. Given a self-adjoint element a = a∗ ∈ A, there are unique elements 
a+, a− ∈ A+ such that a+a− = 0 and a = a+ − a−. This notation is used in (e) of the 
following
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Definition 2.10. Let A and B be C∗-algebras. We say that a collection Θ = (Θt)t∈[1,∞) of 
maps Θt : A → B is a continuous path, when (Θt)t∈[1,∞) is an equicontinuous family of 
maps and for every a ∈ A, the assignment [1, ∞) → A given by t �→ Θt(a) is continuous. 
Additionally, we say that Θ is

(a) unital, if Θt(1) = 1 for all t;
(b) self-adjoint, if Θt is self-adjoint for all t ∈ [1, ∞);
(c) asymptotically linear, if

lim
t→∞

‖Θt(λ1a1 + λ2a2) − λ1Θt(a1) − λ2Θt(a2)‖ = 0

for all λ1, λ2 ∈ C and all a1, a2 ∈ A;
(d) asymptotically contractive, if lim sup

t→∞
‖Θt(a)‖ ≤ ‖a‖ for a ∈ A;

(e) asymptotically positive, if Θ is self-adjoint and

lim
t→∞

Θt(a)− = 0

for all positive elements a ∈ A+;
(f) asymptotically completely positive, if the continuous family

Θ ⊗ idMn
= (Θt ⊗ idMn

)t∈[1,∞) : Mn(A) → Mn(B)

is asymptotically linear and asymptotically positive for all n.

The following is an analog, in the context of continuous families of maps between 
C∗-algebras, of the well-known fact that self-adjoint, linear maps are positive.

Lemma 2.11. Let A and B be unital C∗-algebras, and let Θ: A → B be a continuous 
family of maps which is self-adjoint, unital, asymptotically linear and an asymptotic 
contraction. Then Θ is asymptotically positive.

Proof. Let a ∈ A+. In order to reach a contradiction, assume that Θt(a)− does not 
converge to 0 as t → ∞. Then there are ε > 0 and a sequence (tn)n∈N in [1, ∞) such 
that limn→∞ tn = ∞ and ‖Θtn(a)−‖ ≥ ε for all n ∈ N. Find states ωn on B, for n ∈ N, 
such that ωn (Θtn(a)+) = 0 and ωn (Θtn(a)−) ≥ ε for all n ∈ N. Using that Θt is 
asymptotically linear, we have.

lim
n→∞

‖Θtn(‖a‖ − a) − (‖a‖ − Θtn(a))‖ = 0.

Similarly, using that Θt is an asymptotic contraction at the second step, we have

lim sup ‖Θt(‖a‖ − a)‖ ≤ ‖‖a‖ − a‖ ≤ ‖a‖.

t→∞
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We deduce that there is n ∈ N such that

‖a‖ + ε

3 ≥ ωn(Θtn(‖a‖ − a)) ≥ ωn(‖a‖ − Θtn(a)) − ε

3

= ‖a‖ + ωn(Θtn(a)−) − ε

3 ≥ ‖a‖ + 2ε
3 ,

which is a contradiction, and thus Θ is asymptotically positive. �
We now make explicit what we meant at the beginning of this subsection when we 

said that we want out lifts for ψ to have properties that are “as close as possible to those 
of ψ”. Among others, we would like ψ′ to be as close as possible to being completely 
positive, and if ψ is equivariant, then we would like something similar to be true to for 
ψ′. More generally, we would like the failure of equivariance for ψ′ to be approximately 
controlled by the failure of equivariance for ψ. These notions are made precise in the 
following definition, in a slightly more general setting.

Definition 2.12. Let (A, α), (B, β) and (S, δ) be G-C∗-algebras, and let q : (A, α) →
(B, β) an equivariant ∗-homomorphism. Let ψ : S → B be a linear completely positive 
contraction, and let Θ = (Θt)t∈[1,∞) : S → A be a continuous path of maps.

(1) We say that Θ is an asymptotically (G, ψ)-equivariant lift of ψ when
• q ◦ Θt = ψ for all t ∈ [1, ∞);
• Θ is asymptotically completely positive;
• for all s ∈ S we have

lim
t→∞

‖g · Θt(s) − Θt(h · s)‖ = ‖g · ψ(s) − ψ(h · s)‖,

uniformly for g and h in compact subsets of G; and
• for all s ∈ S, g ∈ G and ε > 0, there is an open neighborhood W of g such that 

for all h ∈ W we have

sup
t∈[1,∞)

‖h · Θt(s) − g · Θt(s)‖ ≤ ε.

(2) We say that Θ is a completely positive asymptotically (G, ψ)-equivariant lift of ψ
when
• q ◦ Θt = ψ for all t ∈ [1, ∞);
• Θt is a linear completely positive contraction for all t ∈ [1, ∞); and
• for all s ∈ S we have

lim
t→∞

‖g · Θt(s) − Θt(h · s)‖ = ‖g · ψ(s) − ψ(h · s)‖,

uniformly for g and h in compact subsets of G.
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We are now ready to prove the main result of this section. The main technical difficulty 
in proving it is making sure that the family (θt(u))t∈[1,∞) is uniformly bounded for all 
u ∈ U , not just for all u in a dense subalgebra. (If we were only interested in the latter, 
then we could take θt to be the map ψt constructed in Lemma 2.9.)

Theorem 2.13. Let G be a locally compact, second countable group, let (I, γ) be a σ-unital 
G-algebra, and let d ∈ I be a strictly positive element. Denote by qI : M(I) → Q(I) the 
canonical quotient map. Let (U, δ) be a separable, unital G-algebra, let χ : U → C be a 
state, and let ψ : U → Q(I)γ be a unital, completely positive linear map.

Then there is a unital asymptotically (G, ψ)-equivariant lift

Θ = (Θt)t∈[1,∞) : U → M(I)γ̃

of ψ with the following additional properties:

(i) For all u, v ∈ U , every compact subset K ⊆ G and every ε > 0, there is T ≥ 1 such 
that

sup
t≥T

‖g · Θt(u) − Θt(h · v)‖

≤ max {|χ(u− v)|, ‖g · ψ(u) − ψ(h · v)‖} + ε

for all g, h ∈ K,
(ii) for all u ∈ U and all x ∈ I, we have lim

t→∞
Θt(u)x = χ(u)x,

(iii) for all n ∈ N and all u ∈ Mn(U), we have

lim
t→∞

‖(Θt ⊗ idMn
)(u)‖ = max

{
‖(ψ ⊗ idMn

)(u)‖ , ‖(χ⊗ idMn
)(u)‖

}
,

and
(iv) for u, v ∈ ker(χ), we have limt→∞ ‖Θt(u)Θt(v)‖ = ‖ψ(u)ψ(v)‖.

Finally, if a unital linear completely positive lift for ψ exists, then the maps Θt above 
can be chosen to additionally be unital and completely positive.

Proof. Consider the C∗-algebra

A = {f ∈ Cb ([1,∞),M(I)γ̃) : f(1) − f(t) ∈ I for all t ∈ [1,∞)} ,

and define an action μ : G → Aut(A) by μg(f)(t) = γ̃g(f(t)) for all g ∈ G, all f ∈ A and 
all t ∈ [1, ∞). Set

A0 = A ∩ C0 ([1,∞),M(I)γ̃) ,
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which is an ideal in A. Note that A0 = C0([1, ∞), I), that μg(A0) = A0 for all g ∈ G, and 
that A0 is contained in the continuous part Aμ of A. We denote by π : A → A/A0 the 
quotient map and let μ : G → Aut(A/A0) be the action defined such that μg ◦π = π ◦μg

for all g ∈ G.
Let ψt : U → M(I)γ̃ be a family of maps satisfying the conclusion of Lemma 2.9. By 

(7) in said lemma (with g = e and v = 0), we get supt∈[1,∞) ‖ψt(u)‖ < ∞ when u ∈ U (0). 
In combination with (2) and (5) of Lemma 2.9, this gives us a map Φ0 : U (0) → A defined 
by

Φ0(u)(t) = ψt(u)

for all u ∈ U (0) and all t ∈ [1, ∞). Set Ψ0 = π ◦ Φ0 : U (0) → A/A0. It follows then from 
(7) in Lemma 2.9 that

‖Ψ0(u) − Ψ0(v)‖ ≤ max{|χ(u− v)|, ‖ψ(u− v)‖}

for all u, v ∈ U (0). Since U (0) is dense in U , it follows from this estimate that Ψ0 extends 
by continuity to a continuous map Ψ: U → A/A0 with the property that

‖Ψ(u) − Ψ(v)‖ ≤ max{|χ(u− v)|, ‖ψ(u− v)‖}

for all u, v ∈ U . Note that Ψ is self-adjoint because each ψt is and (U (0))∗ = U (0).
Let u1, . . . , un ∈ U (0) and let λ1, . . . , λn ∈ Q[i], so that 

∑n
j=1 λjuj belongs to U (0) by 

(2.2). Using (4) of Lemma 2.9 and linearity of π, we have

Ψ
( n∑

j=1
λjuj

)
= Ψ0

( n∑
j=1

λjuj

)
=

n∑
j=1

λjΨ0(uj) =
n∑

j=1
λjΨ(uj).

Hence Ψ is Q[i]-linear on U (0), and by continuity it is linear on all of U . Note that Ψ is 
unital by (1) of Lemma 2.9.

Let k ∈ N. Then Ψ ⊗ idMk
is self-adjoint because Ψ is and it follows from (9) of 

Lemma 2.9 that Ψ ⊗ idMk
is a contraction, since χ ⊗ idMk

and ψ ⊗ idMk
are. Since 

Ψ ⊗ idMk
is also unital, we deduce from Lemma 2.11 that Ψ ⊗ idMk

is positive. We 
conclude that Ψ is completely positive.

Let g, h ∈ G and u, v ∈ U (0). Since G(0) is dense in G, we can find a sequence (hn)n∈N
in G(0) such that limn→∞ hn = h. By (2.2), we have hn · v ∈ U (0) for all n ∈ N. Taking 
hn · v ∈ U (0) in place of v and e in place of h in (7) of Lemma 2.9, we get

‖g · Ψ(u) − Ψ(hn · v)‖ = lim sup
t→∞

∥∥g · ψt(u) − ψt(hn · v)
∥∥

≤ max {|χ(u− v)|, ‖g · ψ(u) − ψ(hn · v)‖} .

By continuity of Ψ and ψ, we can take the limit on n to get
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‖g · Ψ(u) − Ψ(h · v)‖ ≤ max {|χ(u− v)|, ‖g · ψ(u) − ψ(h · v)‖} . (2.16)

Since U (0) is dense in U and Ψ and ψ are continuous, we conclude that (2.16) above 
holds for all u, v ∈ U . It follows, in particular, that

lim
g→e

μg(Ψ(u)) = Ψ(u),

showing that Ψ takes values in the continuous part (A/A0)μ of A/A0. It follows from [4]
that π(Aμ) = (A/A0)μ and then from the Bartle-Graves selection theorem, [3], that there 
is a continuous map Ψ′ : U → Aμ such that π◦Ψ′ = Ψ. By substituting Ψ′ with Ψ′−Ψ′(0)
we can assume that Ψ′(0) = 0, and by substituting Ψ′(u) with Ψ′(u) + χ(u)(1 − Ψ′(1)), 
also that Ψ′(1) = 1. By substituting Ψ′(u) with 1

2 (Ψ(u) + Ψ(u∗)∗), we may assume that 
Ψ′ is self-adjoint. For t ∈ [1, ∞), let evt : A → M(I)γ̃ be evaluation at t and set

Θt = evt ◦Ψ′ : U → M(I)γ̃ .

Then Θ = (Θt)t∈[1,∞) is a unital and self-adjoint continuous family of maps U → M(I)γ̃ . 
In the remainder of the proof, we check that Θ has the properties required in the state-
ment of the lemma.

Fix t ∈ [1, ∞). To show that qI ◦Θt = ψ, it suffices to check the identity on U (0). Fix 
u ∈ U (0). Then Ψ′(u) − Φ0(u) ∈ A0 and hence Θt(u) − (evt ◦Φ0)(u) belongs to I. Since 
evt(Φ0(u)) = ψt(u), it follows that qI(Θt(u)) = qI(ψt(u)), which equals ψ(u) by (5) of 
Lemma 2.9.

To check that Θ is asymptotically linear, let λ1, λ2 ∈ C and u1, u2 ∈ U . Using the 
linearity of Ψ we find that

lim sup
t→∞

‖Θt(λ1u1 + λ2u2) − λ1Θt(u1) − λ2Θt(u2)‖

= lim sup
t→∞

∥∥evt

(
Ψ′(λ1u1 + λ2u2) − λ1Ψ′(u1) − λ2Ψ′(u2)

)∥∥
=

∥∥π(Ψ′(λ1u1 + λ2u2) − λ1Ψ′(u1) − λ2Ψ′(u2)
)∥∥

= ‖Ψ(λ1u1 + λ2u2) − λ1Ψ(u1) − λ2Ψ(u2)‖ = 0,

as desired. To show that Θ is asymptotically completely positive, we fix k ∈ N and will 
prove that Θ ⊗ idMk

is asymptotically positive. Note that Θ ⊗ idMk
is self-adjoint, unital 

and asymptotically linear. By Lemma 2.11, it suffices to show that

lim sup
t→∞

‖(Θt ⊗ idMk
)(u)‖ ≤ max{‖(ψ ⊗ idMk

)(u)‖, ‖(χ⊗ idMk
)(u)‖} (2.17)

for all u ∈ Mk(U), since ψ ⊗ idMk
and χ ⊗ idMk

are contractions. This estimate follows 
from equicontinuity of the continuous family Θ ⊗ idMk

together with (8) of Lemma 2.9, 
since Mk(U (0)) is dense in Mk(U). We conclude that Θ is asymptotically completely 
positive.
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To obtain (i), let u, v ∈ U and let K be a compact subset of G. Let ε > 0. Since Ψ′(u) ∈
Aμ and since Θ is equicontinuous, for every g, h ∈ K there are open neighborhoods Vg

of g and Wh of h such that

‖g′ · Θt(u) − Θt(h′ · v)‖ ≤ ‖g · Θt(u) − Θt(h · v)‖ + ε

3

for all (g′, h′) ∈ Vg × Wh and for all t ∈ [1, ∞). By shrinking Vg and Wh we can also 
arrange that

‖g · ψ(u) − ψ(h · v)‖ ≤ ‖g′ · ψ(u) − ψ(h′ · v)‖ + ε

3

for all (g′, h′) ∈ Vg ×Wh. By compactness of K ×K, there is a finite set K0 ⊆ K ×K

such that {Vg ×Wh : (g, h) ∈ K0} covers K×K. Since K0 is finite, it follows from (2.16)
that there is a T ≥ 1 such that

‖g · Θt(u) − Θt(h · v)‖ ≤ max{|χ(u− v)|, ‖g · ψ(u) − ψ(h · v)‖} + ε

3

for all (g, h) ∈ K0 when t ≥ T . An easy application of the triangle inequality then yields

‖g · Θt(u) − Θt(h · v)‖ ≤ max{|χ(u− v)|, ‖g · ψ(u) − ψ(h · v)‖} + ε

for all g, h ∈ K when t ≥ T , which establishes (i). On the other hand it follows from 
(2.16) that

lim sup
t→∞

‖g · Θt(u) − Θt(h · u)‖ = ‖g · Ψ(u) − Ψ(h · u)‖

≤ ‖g · ψ(u) − ψ(h · u)‖ ,

for all g, h ∈ G, u ∈ U , which combined with (i) shows that Θ satisfies the condition 
in the third bullet of (1) in Definition 2.12. The fourth bullet of (1) in Definition 2.12
follows because Ψ(U) ⊆ Aμ.

It remains now only to establish the last three items, (ii)-(iv), in the statement. For 
(ii) consider first an element u ∈ U (0). Taking m = d, g = h = e and v = χ(u) ∈ U (0) in 
(7) of Lemma 2.9 gives

lim
t→∞

∥∥d(ψt(u) − χ(u))
∥∥ = 0.

Hence, upon identifying d with the element of A which is constant with value d, we have 
π(dΨ′(u)) = χ(u)π(d). This identity means that dΨ′(u) −χ(u)d belongs to A0. It follows 
that

lim Θt(u)d− χ(u)d = lim (dΘt(u∗) − χ(u∗)d)∗ = 0 .

t→∞ t→∞
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Since dI = I and ‖Θt(u)‖ is uniformly bounded, it follows that

lim
t→∞

Θt(u)x = χ(u)x (2.18)

for all x ∈ I. Since Θ is an equicontinuous family of maps this conclusion extends to all 
elements u ∈ U .

To obtain (iii) from (ii), fix u ∈ Mn(U) and ε > 0. Since Θt⊗ idMn
is a lift of ψ⊗ idMn

, 
we have

‖(ψ ⊗ idMn
)(u)‖ ≤ ‖(Θt ⊗ idMn

)(u)‖ (2.19)

for all t ∈ [1, ∞). Since Mn(M(I)) ∼= M(Mn(I)), we can choose x ∈ Mn(I) with ‖x‖ ≤ 1
such that

‖(χ⊗ idMn
)(u)x‖ > ‖(χ⊗ idMn

)(u)‖ − ε.

It follows from (2.18) that

lim
t→∞

(Θt ⊗ idMn
(u))x = (χ⊗ idMn

)(u)x,

and hence

‖(Θt ⊗ idMn
)(u)‖ ≥ ‖(Θt ⊗ idMn

)(u)x‖ > ‖(χ⊗ idMn
)(u)‖ − ε

for all t big enough. In combination with (2.19), this shows that

lim inf
t→∞

‖(Θt ⊗ idMn
)(u)‖ ≥ max

{
‖(ψ ⊗ idMn

)(u)‖ , ‖(χ⊗ idMn
)(u)‖

}
.

In combination with (2.17) this gives us (iii).
Finally, from (8) of Lemma 2.9 we get the estimate

lim sup
t→∞

∥∥Θt(u− χ(u))Θt(v − χ(v))
∥∥ ≤ ‖ψ(u− χ(u))ψ(v − χ(v))‖

for all u, v ∈ U (0). This estimate extends to all u, v ∈ U by equicontinuity of Θ, implying 
that

lim sup
t→∞

‖Θt(u)Θt(v)‖ ≤ ‖ψ(u)ψ(v)‖

when u, v ∈ kerχ. Since ‖ψ(u)ψ(v)‖ = ‖qI(Θt(u)Θt(v))‖ ≤ ‖Θt(u)Θt(v)‖ for all t, we 
have established (iv).

The last assertion in the theorem follows from the last assertion of Lemma 2.9, once 
we choose the maps ψt to also be linear, unital and completely positive. �
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3. Asymptotic lifts

In this section, we prove our main result, Theorem 3.2, which implies Theorem A
from the introduction. Before doing this, we first prove an auxiliary result in the unital 
setting, Proposition 3.1, assuming that S, A and ψ are unital, and that there exists a 
G-invariant state on S. This result will follow from the work done in the previous section 
by using the Busby invariant to relate an arbitrary extension to a Calkin extension. The 
general case will be reduced to this one by taking (forced) unitizations.

Proposition 3.1. Let G be a second countable, locally compact group, let

0 (I, γ) ι (A,α)
q

(B, β) 0 (3.1)

be an extension of G-algebras. Let (S, δ) be a separable G-algebra and let ψ : S → B be 
a linear completely positive contraction. Assume moreover that A, S and ψ are unital, 
and that there is a G-invariant state χ on S.

Then there is a unital asymptotically (G, ψ)-equivariant lift Θ = (Θt)t∈[1,∞) : S → A

of ψ with the following additional properties:

(a) For all s, s′ ∈ S, every compact subset K ⊆ G and every ε > 0, there is T ≥ 1 such 
that

sup
t≥T

‖g · Θt(s) − Θt(h · s′)‖

≤ max {|χ(s− s′)|, ‖g · ψ(s) − ψ(h · s′)‖} + ε

for all g, h ∈ K,
(b) for all n ∈ N and all s ∈ Mn(S), we have

lim
t→∞

‖(Θt ⊗ idMn
)(s)‖ = max

{
‖(ψ ⊗ idMn

)(s)‖ , ‖(χ⊗ idMn
)(s)‖

}
,

(c) for s, s′ ∈ ker(χ) we have limt→∞ ‖Θt(s)Θt(s′)‖ = ‖ψ(s)ψ(s′)‖, and
(d) if I is σ-unital, we can also arrange that lim

t→∞
Θt(s)x = χ(s)x for all s ∈ S and all 

x ∈ I.

Moreover, if a linear, unital completely positive lift for ψ exists, then the continuous 
family Θ as above can be chosen so that, in addition, each map Θt is unital and completely 
positive.

Proof. We first explain how to reduce to the case where I is σ-unital (in fact, we reduce 
to the case where A is separable). Since S is separable and G is second countable, we 
can choose separable G-subalgebras B0 ⊆ B and A0 ⊆ A with q(A0) = B0 such that 
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ψ(S) ⊆ B0. When I is σ-unital, we may arrange that A0 contains a strictly positive 
element of I. In either case, I0 = I ∩ A0 is separable, (I0, γ) is a G-algebra, and the 
following diagram commutes:

0 (I0, γ) (A0, α)
q

(B0, β) 0

0 (I, γ) (A,α)
q

(B, β) 0.

Since ψ takes values in B0 it follows from the preceding discussion that there is an 
asymptotically (G, ψ)-equivariant lift of ψ to A0, and by the above diagram this is also 
a lift of ψ to A. Thus, it suffices to prove the result for the extension 0 → I0 → A0 →
B0 → 0; in other words, we may assume from now on that A is separable.

Define r : A → M(I) by ι(r(a)x) = aι(x) for all a ∈ A and all x ∈ I. 
Then r : (A, α) → (M(I)γ̃ , ̃γ) is a unital G-equivariant ∗-homomorphism, and thus 
qI ◦ r : (A, α) → (Q(I)γ , γ) is G-equivariant as well. Since ι(I) ⊆ ker(qI ◦ r), we obtain 
an equivariant ∗-homomorphism φ : (B, β) → (Q(I)γ , γ) making the following diagram 
commute:

A

r

q
B

φ

M(I)γ̃ qI
Q(I)γ .

The map φ is known as the Busby invariant of the extension (3.1). Set

E = {(m, b) ∈ M(I)γ̃ ⊕B : qI(m) = φ(b)} .

Define μ : G → Aut(E) by μg(m, b) = (γ̃g(m), βg(b)) for all g ∈ G and all (m, b) ∈ E. 
Then (E, μ) is a G-algebra. Define ∗-homomorphisms ι′ : I → E, p : E → B, and ξ : A →
E by ι′(x) = (x, 0), p(m, b) = b, and ξ(a) = (r(a), q(a)), for x ∈ I, (m, b) ∈ E and a ∈ A. 
Then

0 (I, γ) ι (A,α)

ξ

q
(B, β) 0

0 (I, γ)
ι′

(E, μ)
p

(B, β) 0

is a commuting diagram of G-algebras with exact rows. In particular, ξ is an isomorphism 
of G-algebras. Let Θ′ = (Θ′

t)t∈[1,∞) : S → M(I)γ̃ be a unital asymptotically (G, φ ◦ ψ)-
equivariant lift of the unital completely positive contraction φ ◦ψ : S → Q(I)γ satisfying 
the conclusion of Theorem 2.13. Define Θ = (Θt)t∈[1,∞) : S → A by
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Θt(s) = ξ−1 ((Θ′
t(s), ψ(s)))

for all t ∈ [1, ∞) and all s ∈ S. One readily checks that Θ is a unital asymptotically 
(G, ψ)-equivariant lift of ψ to A satisfying the conclusion of this theorem.

Finally, if a unital linear completely positive lift for ψ exists, then a unital linear 
completely positive lift for φ ◦ ψ exists as well. Applying the last part of the statement 
of Theorem 2.13, we may choose Θ′ so that Θ′

t is additionally unital and completely 
positive, in which case the same is true for Θ. �

We now present the main result of this work.

Theorem 3.2. Let G be a second countable, locally compact group, let

0 (I, γ) ι (A,α)
q

(B, β) 0

be an extension of G-algebras. Let (S, δ) be a separable G-algebra and let ψ : S → B be 
a linear completely positive contraction. Then there is a lift Θ = (Θt)t∈[1,∞) : S → A of 
ψ with the following properties:

(a) For all s, s′ ∈ S, we have

lim
t→∞

‖g · Θt(s) − Θt(h · s′)‖ = ‖g · ψ(s) − ψ(h · s′)‖ ,

uniformly for g, h in compact subsets of G;
(b) for all n ∈ N and all s ∈ Mn(S), we have

lim
t→∞

‖(Θt ⊗ idMn
)(s)‖ = ‖(ψ ⊗ idMn

)(s)‖.

(c) for s, s′ ∈ S, we have limt→∞ ‖Θt(s)Θt(s′)‖ = ‖ψ(s)ψ(s′)‖;
(d) if I is σ-unital, we can also arrange that lim

t→∞
Θt(s)x = 0 for all s ∈ S and x ∈ I.

Finally, if a completely positive lift for ψ exists, then the continuous family Θ as above 
can be chosen so that, in addition, each map Θt is completely positive.

Proof. We begin by introducing some notation. Let D be a C∗-algebra. We denote by 
D† the “forced” unitization of D, namely D† is the (minimal) unitization of D if D is 
not unital, and D† = D⊕C if D is unital. Note that D is an ideal in D†. We denote by 
χD : D† → C the unique state satisfying ker(χD) = D. This construction is functorial, 
and for a linear map φ : D → E between C∗-algebras, we write φ† : D† → E† for the 
unique linear extension of φ which satisfies χB ◦φ† = χD. It is easy to see that φ† is a ∗-
homomorphism if φ is. Moreover, it is easy to see that the functor † preserves short exact 
sequences of C∗-algebras. When φ is a completely positive contractive linear map, then 
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the same is true for φ† by Lemma 3.9 in [6], or by A.4 on page 266 in [20]. In particular, 
if (D, δ) is a G-algebra, then δ extends uniquely to an action δ† : G → Aut(D†) satisfying 
χD ◦ α†

g = χD for all g ∈ G. Finally, if φ : (D, δ) → (E, ε) is an equivariant linear map 
between G-algebras, then φ† : (D†, δ†) → (E†, ε†) is also equivariant.

Applying the above observations to our setting, we get the extension

0 (I, γ) ι (A†, α†)
q†

(B†, β†) 0

of G-algebras. Moreover, ψ† : S† → B† is a unital linear completely positive contraction 
satisfying χS = χB ◦ ψ†. Using that χS is G-invariant, let Θ′ = (Θ′

t)t∈[1,∞) : S† → A†

be a unital asymptotically (G, ψ†)-equivariant lift of ψ† to A† satisfying the conclusion 
from Theorem 3.1. Given s ∈ S, we have

χA ◦ Θ′
t(s) = χB ◦ q† ◦ Θ′

t(s) = χB ◦ ψ†(s) = χS(s) = 0.

Hence, the restriction of Θ′ to S, which we denote by Θ, is an asymptotically (G, ψ)-
equivariant lift of ψ to A. Parts (b), (c) and (d) of this theorem follow, respectively, from 
(b), (c) and (d) in Theorem 3.1, since S = ker(χS). Part (a), which is a strengthening of 
asymptotic (G, ψ)-equivariance, follows from (a) in Theorem 3.1 together with the fact 
that

‖g · ψ(s) − ψ(h · s′)‖ = ‖q(g · Θt(s) − Θt(h · s′))‖
≤ ‖g · Θt(s) − Θt(h · s′)‖

for all g, h ∈ G, all s, s′ ∈ S, and all t ∈ [1, ∞). Finally, the last part of this theorem 
follows from the last part of the statement of Theorem 3.1. �
4. Unital asymptotic sections and amenability

Let q : (A, α) → (B, β) be a surjective ∗-homomorphism between G-algebras. An 
asymptotically equivariant linear section for q is an asymptotically linear asymptotic 
contraction Θ = (Θt)t∈[1,∞) : B → A such that q ◦ Θt = idB for all t and such that

lim
t→∞

Θt(g · b) − g · Θt(b) = 0

for all g ∈ G and all b ∈ B.
Theorem 3.2 guarantees the existence of an asymptotically equivariant linear section 

for any extension of G-algebras (3.1) with B separable, and in fact one which is also 
asymptotically completely positive. However, when A is unital so that B is also unital, it 
is natural to look for an asymptotically equivariant linear section Θ which is also unital, 
or at least asymptotically unital in the sense that
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lim
t→∞

Θt(1) = 1.

The section provided by Theorem 3.2 is never unital, as item (d) shows. Theorem 3.1, on 
the other hand, does provide a unital asymptotically equivariant linear section and in fact 
one which is also asymptotically completely positive, provided there is a G-invariant state 
on B. When G is amenable, it is a consequence of Day’s fixed point theorem that every 
unital G-algebra has an invariant state. Therefore, when G is amenable, Theorem 3.1
guarantees the existence of a unital asymptotically equivariant linear section for any 
equivariant surjection (A, α) → (B, β) whenever A is unital and B separable. In fact, 
said theorem provides a unital asymptotically (G, idB)-equivariant lift of idB . We show 
next that this property characterises amenability within the class of second countable 
locally compact groups.

Theorem 4.1. Let G be a second countable locally compact group. The following are equiv-
alent:

(1) For every compact metrizable G-space X, the natural extension

0 → C → C(X) ⊕C → C(X) → 0

admits an asymptotically equivariant linear section which is also aymptotically uni-
tal.

(2) For every extension (3.1) of G-algebras with B separable and A unital there is a 
unital asymptotically (G, idB)-equivariant lift of idB.

(3) Every G-algebra (B, β) with B unital and separable has a G-invariant state.
(4) G is amenable.

Proof. The implication (4) ⇒ (3) follows from the characterization of amenability men-
tioned above and (3) ⇒ (2) follows from Theorem 3.1. Since (2) ⇒ (1) is trivial it suffices 
to show that (1) ⇒ (4). Assume therefore that G has the property stipulated in (1), and 
let X be a compact, metrizable G-space. Then C(X) is a G-algebra in the natural way 
and C(X) is separable. Let p1 : C(X) ⊕ C → C(X) and p2 : C(X) ⊕ C → C be the 
canonical projections. By assumption, there is an asymptotically equivariant linear sec-
tion Θ: C(X) → C(X) ⊕ C for p1 which is also asymptotically unital. By exchanging 
Θt(f) with

1
2 (Θt(f) + Θt(f∗)∗)

for f ∈ C(X), we may assume that Θ is self-adjoint. Let Cb[1, ∞) be the C∗-
algebra of continuous bounded functions on [1, ∞) and denote by C0[1, ∞) the ideal 
in Cb[1, ∞) consisting of the functions vanishing at infinity. Define Φ: C(X) → Cb[1, ∞)
by Φ(f)(t) = p2(Θt(f)) for f ∈ C(X), and let
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π : Cb[1,∞) → Cb[1,∞)/C0[1,∞)

be the quotient map. Then

π ◦ Φ: C(X) → Cb[1,∞)/C0([1,∞)

is a linear unital self-adjoint contraction satisfying that

(π ◦ Φ)(g · f) = (π ◦ Φ)(f)

for all g ∈ G and all f ∈ C(X). Let ω be a state of Cb[1, ∞)/C0[1, ∞). The composition 
ω ◦ π ◦ Φ is then a self-adjoint G-invariant linear contraction into C which takes 1 to 1, 
and it is therefore a state on C(X). It follows that X has a G-invariant Borel probability 
measure. We have shown that all compact metrizable G-spaces have a G-invariant Borel 
probability measure which is one of the many equivalent conditions for amenability 
of G. �
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