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Abstract
Purpose  This study focuses on updating, improving, and expanding the extrapolation factors needed to convert various acute 
or chronic effect concentration indicators into consistent chronic EC10eq (effect concentration inducing a 10% response 
over background) for use in life cycle assessment (LCA). Our main objectives include (1) to present a detailed approach for 
the harmonization of ecotoxicity data, with a focus on deriving extrapolation factors, and (2) to estimate both generic and 
species group-specific extrapolation factors, facilitating the conversion of effect concentration indicator groups (EC10eq 
and EC50eq) into chronic EC10eq.
Methods  Experimental ecotoxicity data were sourced from CompTox Version 2.1.1, which integrates toxicity information 
from ToxValDB v9.1.1, and the information from REACH registration dossiers. We developed a framework for harmonizing 
ecotoxicity data, ensuring uniformity and high quality of aquatic ecotoxicity information from these sources. Through linear 
regression analysis, both generic and species group-specific extrapolation factors were then derived.
Results and discussion  Harmonization of ecotoxicity data yielded a streamlined dataset with 339,729 datapoints for 10,668 
chemicals, reflecting a 54% reduction in raw datapoints. The geometric mean-based aggregation process produced 79,001 
aggregated effect concentration datapoints at the species level, 41,303 at the species group level, and 23,215 at the effect 
concentration indicator level for these chemicals. This process facilitated the derivation of 3 generic and 24 species group-
specific extrapolation factors, allowing for the conversion of effect concentration indicator groups (EC10eq and EC50eq) to 
a chronic EC10eq across two exposure classes (acute vs. chronic) and species groups, as defined in the US EPA ECOTOX 
knowledgebase, including algae, amphibians, fish, crustaceans, insects/spiders, invertebrates, molluscs, and worms.
Conclusions  The harmonization of ecotoxicity data and the derived extrapolation factors permit the integration of diverse 
datapoints with varying effect concentration indicators and exposure durations into USEtox ecotoxicity characterization 
factors. This has the potential to enhance substance coverage for characterizing ecotoxicity effects across chemicals in LCA 
frameworks by permitting wider species coverage. More generally, this is part of global efforts to extend the potential for 
quantitative assessment of environmental impacts of chemicals in an LCA framework.

Keywords  Ecotoxicity · USEtox · Characterization factor · Extrapolation factor

1  Introduction

Life cycle considerations are increasingly part of chemical 
assessment frameworks to evaluate the potential toxicity 
impacts of chemicals in a product or service (Tickner et al. 
2021) using either life cycle thinking or more detailed life 
cycle assessment (LCA) (Jacobs et al. 2016). LCA methods 
are constantly evolving, but according to its International 
Organization for Standardization (ISO) definition, an analyst 
performing an LCA must perform a life cycle impact assess-
ment (LCIA—the “phase of LCA aimed at understand-
ing and evaluation the magnitude and significance of the 
potential environmental impacts”) which typically demands 
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“characterization factors” (CFs) that convert resource con-
sumption and pollutant emissions to potential impacts (ISO 
2006). For freshwater ecotoxicity impacts, fate-exposure-
effect models such as USEtox can be employed to calculate 
CFs (Fantke et al. 2017; Hauschild et al. 2008; Rosenbaum 
et al. 2008). USEtox is the UNEP/SETAC scientific consen-
sus model for human toxicity and ecotoxicity CFs (Fantke 
et al. 2017). In the USEtox framework, freshwater ecotoxic-
ity CFs (PAF m3 day/kg-emitted) are computed by integrat-
ing three specific factors in a matrix system: fate factors (FF, 
kg kg−1 day−1), environmental exposure factors (XF), and 
freshwater ecotoxicological effect factors (EF, PAF m3 kg−1) 
(Fantke et al. 2017; Owsianiak et al. 2023). This relationship 
is succinctly captured by the equation: CF = FF × XF × EF 
(Fantke et al. 2018). USEtox framework is the basis of 
current European Product Environmental Footprint (PEF) 
norms (EU 2023).

Analysts suffer from a critical shortage of CFs. This 
shortage is apparent if we compare the pre-registered 
substances database of the European Chemicals Agency 
(ECHA), which contains 145,299 unique substances/entries 
(ECHA 2023), to the USEtox database (version 2.01), 
which has only 3077 organic substances and 27 inorganic 
substances (Fantke et al. 2017). The challenge of manag-
ing the shortage of CFs today primarily involves generat-
ing more extensive experimental laboratory toxicity data 
including using in vitro methods along with finding ways to 
extrapolate from existing data to suit LCA purposes (Chang 
et al. 2022; Zhang et al. 2018). The extension of experimen-
tal data includes both in vitro and in vivo data. However, 
due to the difficulty in extrapolating from in vitro to in vivo 
effects (Rodea-Palomares & Bone 2024), this paper only 
uses in vivo data to generate extrapolation factors.

New experimental toxicity data is becoming increasingly 
available as laboratory testing and digitalization of data 
proceeds, which offers data availability to calculate CFs for 
more chemicals (Kristiansson et al. 2021). At present, the 
Registration, Evaluation, Authorisation and Restriction of 
Chemicals (REACH) dossiers and CompTox stand out as 
some of the most extensive and up-to-date online reposito-
ries for ecotoxicity information on chemicals, recognized as 
valuable data sources in numerous regulatory and academic 
domains (Fantke et al. 2020; Gustavsson et al. 2017; Lowe 
& Williams 2021; Müller et al. 2017; Saouter, Biganzoli, 
et al., 2019; Saouter, Wolff, et al. 2019; Silva 2020; Wil-
liams et al. 2021). CompTox is the US Environmental Pro-
tection Agency (EPA) web-based chemistry dashboard that 
integrates chemical data, including physicochemical prop-
erties, environmental fate and transport, exposure, usage, 
in vivo toxicity, and in vitro bioassay data (Williams et al. 
2017). Nevertheless, the generation of robust CFs neces-
sitates careful data curation and harmonization that must 
consider, among other aspects, the test species, the units in 

which results are expressed, different effect concentration 
indicators, and exposure durations.

A new method for calculating USEtox EFs was proposed 
by Owsianiak et al. (2023) based on the collaborative efforts 
of the Ecotoxicity Task Force and the Society of Environ-
mental Toxicology and Chemistry (SETAC) Pellston work-
shop. Whereas CFs have historically been based on chronic 
EC50 values, one of the new recommendations is an HC20-
based approach. HC20 is the hazardous concentration affect-
ing 20% of species in an exposed ecosystem, identified on 
an SSD curve of chronic EC10-equivalent ecotoxicity data 
(Sala et al. 2022). The chronic EC10 data recommended by 
Owsianiak et al. (2023) for calculating HC20 are relatively 
scarce as illustrated by Douziech et al. (2024) and Saou-
ter et al. (2018). To fill the data gaps, extrapolation factors 
are often used to extrapolate ecotoxicity data from different 
effect concentration indicators with different exposure dura-
tions and species groups to chronic EC10 equivalents.

Extrapolation factors that convert between effect concen-
tration indicators like acute and chronic NOEC (no‐observed 
effect concentration), EC50 (concentration inducing a 
50% response), and EC10 (concentration inducing a 10% 
response) values are used to fill data gaps in CF calcula-
tion (Aurisano et al. 2019). Current extrapolation methods 
either employ predefined assessment factors (ECHA 2012) 
or utilize generic acute-to-chronic extrapolation ratios 
derived from a limited set of chemicals (Fantke et al. 2017; 
Payet 2004). These methods consider the type of effect 
concentration indicators and exposure durations but often 
overlook variations across species groups, which can be 
significant as illustrated by Aurisano et al. (2019). Several 
studies have examined the provision of extrapolation fac-
tors in aquatic environment, both at generic and species 
group-specific levels. Notable among these are works by 
Aurisano et al. (2019), Payet (2004), De Zwart (2002), and 
Saouter, Wolff, et al. (2019). Specifically, Aurisano et al. 
(2019) analyzed ECHA 2018 data, comprising 71,343 raw 
datapoints for 1927 chemicals. Their harmonized dataset, 
which distilled down to 9627 datapoints for 1048 chemicals, 
offered extrapolation factors for three species groups, algae/
cyanobacteria, crustaceans, and fish, spanning three effect 
concentration indicators: EC50, NOEC, and EC10. Payet 
(2004), drawing from sources like ECETOC (European Cen-
tre for Ecotoxicology and Toxicology of Chemicals) and US 
EPA, presented data on 134,088 datapoints across three spe-
cies groups, plants and algae, vertebrates, and invertebrates, 
covering effect concentration indicators EC50, LOEC, and 
NOEC. While Payet (2004) provided extrapolation fac-
tors to convert varied exposures and effect concentration 
indicators into EC50, the factors were not species group-
specific, and the data harmonization approach was not fully 
explained. Saouter, Wolff, et al. (2019) utilized ECHA 2015 
data, starting with 305,068 raw datapoints, refining them to 
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a harmonized set of 54,353. They provided extrapolation 
factors for three species groups, algae, crustaceans, and fish, 
focusing on effect concentration indicators EC50 chronic, 
EC50 acute, and NOEC chronic. Currently, for extrapolation 
factors, the literature only covers a limited range of species 
groups, and the endpoints EC50, NOEC, LOEC, and EC10 
vary. This highlights an opportunity for further research, 
particularly regarding the development of additional species 
group-specific extrapolation factors for other species groups 
and harmonizing the classification of effect concentration 
indicators into two categories: EC10eq and EC50eq. Addi-
tionally, the inclusion of more data can expand the number 
of chemicals that the extrapolation factors are based on, 
thereby improving their representativeness and accuracy.

The primary ambition of this study is to improve the use 
of available ecotoxicity data by generating new extrapola-
tion factors to enable the conversion of effect concentration 
indicators (EC10eq and EC50eq) to a chronic EC10eq, based 
on experimental data. Our approach is twofold: firstly, we 
present a strategy for harmonizing ecotoxicity data, which 
will aid in determining extrapolation factors. Secondly, we 
introduce both generic and species group-specific extrapo-
lation factors, tailored to diverse effect concentration indi-
cators and exposure durations. These proposed factors are 
specifically designed for their application in the ecotoxicity 
characterization factor computation within the latest LCA 
framework. We also present factors for effect concentration 
conversion to chronic EC50eq values in the supplementary 
data to allow compatibility with the current PEF norms.

2 � Methods

2.1 � Ecotoxicity data collection

To generate the extrapolation factors, aquatic ecotoxicity 
data were gathered from REACH dossiers and CompTox 
(Adkins 2023; REACH 2020; Williams et al. 2017). The 
REACH data was accessed in August 2020, while CompTox 
data was procured in July 2023.

In the REACH database, dossiers are systematically 
organized into sections, with subsections detailing the out-
comes of various studies. For the purposes of this research, 
which centers on aquatic ecosystems, the “ecotoxicological 
information” section was chosen. Within this, the “aquatic 
toxicity” subsection was of primary interest. This subsec-
tion encompasses a range of studies, including but not lim-
ited to short- and long-term toxicity evaluations for fish and 
aquatic invertebrates, assessments of toxicity to aquatic 
algae, cyanobacteria, and other aquatic plants, as well as 
toxicity tests for microorganisms. Additionally, it covers 
endocrine disrupter testing in aquatic vertebrates conducted 
in vivo and toxicity studies for other aquatic entities. Studies 

within this framework provide the specific effect concen-
tration indicator supplemented with pertinent details such 
as testing methodology, conditions under which tests were 
conducted, organisms tested, and the duration of the test 
(REACH 2020). The accessed database contained 225,517 
records providing toxicity information on 12,411 chemicals 
with an EC Number.

The CompTox data was sourced directly from the US 
EPA ToxValDB (version 9.4), a comprehensive experimen-
tal toxicity database assembled from 49 public sources, with 
REACH dossier data being an exception. Of these sources, 
ten specifically offer ecotoxicity data, namely COSMOS 
(Experimental data for cosmetics ingredients compiled by 
the COSMOS consortium, https://​www.​ng.​cosmo​sdb.​eu/), 
DOE ECORISK (Ecological screening data compiled by Los 
Alamos National Laboratory, https://​rais.​ornl.​gov/​docum​
ents/​ECO_​BENCH_​LANL.​pdf), DOE Wildlife Benchmarks 
(Wildlife benchmark data compiled by Oak Ridge National 
Laboratory, https://​rais.​ornl.​gov/​docum​ents/​tm86r3.​pdf), 
ECHA IUCLID (REACH dossier studies, https://​echa.​
europa.​eu/​infor​mation-​on-​chemi​cals/​regis​tered-​subst​ances), 
ECOTOX (Data for ecological species, https://​cfpub.​epa.​
gov/​ecotox/), EFSA (Data from OpenFoodTox, compiled 
from The European Food Safety Authority (EFSA) risk 
assessment documents, https://​www.​efsa.​europa.​eu/​en/​data-​
report/​chemi​cal-​hazar​ds-​datab​ase-​openf​oodtox), EnviroTox_
v2 (Data from the Envirotox database for ecological species, 
https://​envir​otoxd​ataba​se.​org/), HAWC Project (Toxicology 
study data extracted into HAWC for several public projects, 
https://​www.​epa.​gov/​risk/​health-​asses​sment-​works​pace-​
colla​borat​ive-​hawc), HEAST (Provisional risk assessment 
values from the EPA Health Effects Assessment Summary 
Tables (HEAST), https://​cfpub.​epa.​gov/​ncea/​risk/​recor​displ​
ay.​cfm?​deid=​2877), and HPVIS (Experimental toxicity data 
from the EPA High Production Volume Information Sys-
tem (HPVIS), https://​chemv​iew.​epa.​gov/​chemv​iew/). The 
latest iteration of ToxValDB can be accessed via the EPA, 
CompTox Chemicals Dashboard (https://​compt​ox.​epa.​gov/​
dashb​oard/) (Judson 2018; USEPA 2023). This study con-
tains 517,067 datapoints, detailing ecotoxicity information 
for 8640 chemicals from CompTox, though it is noteworthy 
that this data may include duplicate records.

2.2 � Selection and harmonization framework

We devised a framework for data selection and harmoniza-
tion building on the previous work by Aurisano et al. (2019), 
Aurisano et al. (2023), Saouter, Wolff, et al. (2019), and 
Aggarwal et al. (2024) to ensure a high-quality dataset for 
extrapolation across effect concentration indicators, expo-
sure durations, and test species group. Chemical substances 
with unsatisfactory or missing information, as defined in 
the data harmonization steps, were excluded. The data was 

https://www.ng.cosmosdb.eu/
https://rais.ornl.gov/documents/ECO_BENCH_LANL.pdf
https://rais.ornl.gov/documents/ECO_BENCH_LANL.pdf
https://rais.ornl.gov/documents/tm86r3.pdf
https://echa.europa.eu/information-on-chemicals/registered-substances
https://echa.europa.eu/information-on-chemicals/registered-substances
https://cfpub.epa.gov/ecotox/
https://cfpub.epa.gov/ecotox/
https://www.efsa.europa.eu/en/data-report/chemical-hazards-database-openfoodtox
https://www.efsa.europa.eu/en/data-report/chemical-hazards-database-openfoodtox
https://envirotoxdatabase.org/
https://www.epa.gov/risk/health-assessment-workspace-collaborative-hawc
https://www.epa.gov/risk/health-assessment-workspace-collaborative-hawc
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=2877
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=2877
https://chemview.epa.gov/chemview/
https://comptox.epa.gov/dashboard/
https://comptox.epa.gov/dashboard/
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curated according to five main steps as shown in Fig. 1 
including chemical identification, data reliability control, 
data harmonization, consistency checking, and selection of 
ecologically relevant effects.

The data curation begins with chemical identification. 
Thus, chemicals lacking Chemical Abstracts Service (CAS) 
registry numbers were excluded to ensure that each data-
point is accurately linked with its corresponding chemical. 
Following this, the data reliability control step ensures the 
integrity of the data by using metadata to filter out infor-
mation of lesser reliability. For example, ECHA data with 
Klimisch scores 3 and 4 are excluded (Klimisch et al. 1997). 
During the data harmonization step, uniformity is achieved 
in species naming and grouping based on the nomenclature 
found in the US EPA ECOTOX knowledgebase (U.S.EPA 
2023). Effect concentration indicators are classified into 
two categories: EC10eq and EC50eq. Study durations are 

harmonized into days, and exposure duration classes are 
assigned into two categories: acute and chronic. Addition-
ally, concentration units are converted to milligrams per 
liter (mg/L). The subsequent consistency check verifies 
that all gathered information is purely experimental, is free 
from data gaps, and does not include duplicates. The data is 
collected from different sources, so duplicate records may 
exist, making duplicate exclusion important. Finally, the rel-
evance of effects at the aquatic ecosystem level was assessed 
to exclude datapoints with ambiguous relevance to aquatic 
ecotoxicity, such as biomarkers encompassing biochemistry 
and genetics. The data is processed using Microsoft Excel. 
Detailed descriptions of these steps are available in the Sup-
plementary Information in Sect. 1.1.

One of the most important harmonization steps, dis-
tinct from previous studies by Aurisano et al. (2019), Payet 
(2004), De Zwart (2002), and Saouter, Wolff, et al. (2019), 

Steps of data s framework 

Ecotoxicity raw dataset

Discarded 
data points 

Step 1: C

Step 2: Data reliability control

Step 3: D

Step 4: Consistency checking

Step 5: Ecologically relevant effects

Step 3.1: Numeric qualifiers

Step 3.3: 

Step 3.2: Tested species naming and 

Step 3.4: 

Harmonized dataset

No CAS number

Inadequate Klimisch scores

Other than “=”

Unclassified

Unclassified

Unclassified

Inconsistent

Irrelevant

Step 3.5: 

225,517 (12,411) 517,067 (8,640)

177,296 (9,035)

153,751 (8,854)

110,502 (7,333)

101,541 (6,780)

91,630 (6,728)

90,849 (6,719)

90,849 (6,719)

72,705 (5,318)

339,729 (10,668)

515,803 (8,639)

504,355 (8,549)

477,063 (8,217)

467,909 (7,936)

434,742 (7,704)

412,939 (7,464)

412,939 (7,464)

364,434 (7,464)

REACH CompTox

Fig. 1   Decision tree for ecotoxicity data harmonization framework (Note: In the notation x(y), “x” represents the number of datapoints, and “y” 
signifies the number of chemicals.)
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is related to the harmonization of effect concentration indi-
cators and their grouping into two categories: EC10eq and 
EC50eq. In previous studies, various classifications of effect 
concentration indicators were used, including EC50, NOEC, 
LOEC, and EC10. For example, Aurisano et al. (2019) com-
bined LOEC and EC10, while Saouter, Wolff, et al. (2019) 
included NOEC, LOEC, and EC10 to EC20 under the 
NOECeq category, as well as the threshold of toxicologi-
cal concern (TTC). The change is primarily because it has 
long been recognized that the biological effects observed at 
concentrations reported as NOECs typically affect between 
10 and 30% of the exposed populations in the tests (Crane 
& Newman 2000; Moore & Caux 1997; US EPA 1991). 
This has led to a long debate on the usability of NOEC 
concentrations, and direct inferences of specific low-effect 
concentrations (e.g., the EC10) have been suggested as 
suitable alternatives (Azimonti & et al. 2015). Currently, 
NOEC and EC10 are used interchangeably in the derivation 
of safe concentrations within many regulatory frameworks, 
such as the European Union REACH regulation, the plant 
protection product regulation, and the Water Framework 
Directive (ECHA 2008; EFSA 2013; European Commission 
2011). Therefore, in this study, the 10% effect concentration 
equivalent (EC10eq) group comprises effect concentration 
indicators EC0, EL0, IC0, LC0, NOAEC, NOEC, NOEL, 
EC1 to EC10, IC10, LC10, and LOEC. The 50% effect con-
centration equivalent (EC50eq) group encompasses effect 
concentration indicators reported as EC50, ErC50, ErL50, 
IC50, and LC50. Datapoints that could not be classified into 
these two groups or had missing information were excluded. 
Additional steps incorporated into this study, which expand 
upon the previous work by Aurisano et al. (2019) and Saou-
ter, Wolff, et al. (2019), include the use of numeric qualifiers 
(Step 3.1), consistency checking to remove duplicates (Step 
4), and a focus on ecologically relevant effects only (Step 5). 
In this study, potential duplicates were identified based on 
similarities in the metadata. For the REACH data, potential 
duplicates were identified based on having the same CAS, 
type of information, reliability, media type, effect, numeric 
qualifier, common species name, species group, effect con-
centration indicator, and effect concentration units and 
value. For CompTox, duplicates were identified based on the 
same CAS, media type, critical effect, year of the data, data 
reference source, reference title, author of the data, numeric 
qualifier, common species name, species group, effect con-
centration indicator, and effect concentration unit and value. 
It should be noted that distinguishing between freshwater 
and marine environments in the aquatic system could lead 
to a higher level of harmonization; however, at least for pes-
ticides, there is no evidence for any systematic differences 
in sensitivity between these environmental compartments 
(Klok et al. 2012). Based on toxicity data in the database 
of De Zwart (De Zwart 2002) and added toxicity data from 

recent publications, we concluded that there is no systematic 
difference in toxicity between fresh and saltwater species 
(including marine and estuarine species).

In this study, we also attempted to provide generic extrap-
olation factors for available chemicals based on a classifi-
cation according to the EPA DSSTox Tree as provided by 
PubChem Classification Browser (https://​pubch​em.​ncbi.​
nlm.​nih.​gov/​class​ifica​tion/#​hid=​105). In total, 15 chemical 
groups were selected as detailed in the supplementary infor-
mation in Table G2.

2.3 � Ecotoxicity extrapolation factor calculation 
strategy

After harmonization, the primary attributes retained from 
both databases for subsequent analysis were the Chemical 
Abstracts Service (CAS) registry number, tested species 
naming and grouping, exposure classification, effect con-
centration indicator classification, and effect concentration 
units.

The refined and harmonized data provides a curated 
dataset for each chemical. Every datapoint is categorized 
by a unique species name, species group, exposure class, 
and effect concentration indicator classification. The calcu-
lations occur at three levels: initially at the species level, 
followed by the species group level, and finally at an over-
arching generic (species group independent) level as shown 
in Table 1. For the species level, the geometric mean was 
calculated for each combination of specific chemical, expo-
sure class, effect concentration indicator classification, spe-
cies group, and species name. This approach produces an 
aggregated effect concentration for each chemical, defined 
by its effect concentration indicator, exposure class, spe-
cies group, and species name. At the species group level, 
the geometric mean is derived from the species-level data 
associated with each particular chemical, exposure class, 
effect concentration indicator, and species group, such as 
melamine (CAS: 108–78-1) chronic EC10eq Algae or mela-
mine acute EC10eq Algae. Lastly, for the generic level, the 
geometric mean is determined using data from the species 
group level, linked to a specific chemical, exposure class, 
and effect concentration indicator classification, thus leading 
to an overall effect concentration for each chemical based on 
its effect concentration indicator and exposure class.

The harmonized dataset served as the foundation for 
deriving extrapolation factors. These factors were deter-
mined through pairwise comparisons of effect concentra-
tion indicator combinations (EC10eq and EC50eq) for 
chemicals with data spanning across both exposure classes 
(acute vs. chronic) and various species groups, including 
algae, amphibians, fish, crustaceans, aquatic plants (includ-
ing flowers, trees, shrubs, and ferns), fungi, insects/spiders, 
invertebrates, molluscs, moss and hornworts, and worms. 

https://pubchem.ncbi.nlm.nih.gov/classification/#hid=105
https://pubchem.ncbi.nlm.nih.gov/classification/#hid=105
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All effect concentration data underwent log10 transforma-
tion before comparisons. Regression analysis assessed the 
correlation between paired effect concentration indicators. 
Initially, generic extrapolation factors were proposed for 
effect concentration indicator combinations across exposure 
classes, irrespective of species groups, by merging data from 
all species groups. Subsequently, species group-specific 
extrapolation factors were developed for effect concentra-
tion indicator combinations across different exposure classes 
and species groups. Note that in this study, the extrapolation 
factor is conceptualized as a multiplier. When applied to 
the effect concentration indicator under examination, it con-
verts the value to the desired extrapolated chronic EC10eq 
measurement.

In our calculations, we employed linear regressions in two 
distinct manners: one with a free slope and the other with 
a slope set to 1. In both cases, the purpose of these regres-
sions was to gauge the strength of correlation, as denoted 
by the coefficients of determination (R2), and to estimate the 
extrapolation factors. Specifically, the free-slope regression 
was utilized to derive the regression equation for converting 
various effect concentration indicators to chronic EC10eq 
across different exposure classes and species groups. On 
the other hand, the regression with a slope set to unity was 
instrumental in determining the default extrapolation factors 
for the same conversion as used by previous studies includ-
ing Aurisano et al. (2019). Through pairwise comparison, 
we derived a regression equation with a free slope in the 
form: log(effect concentration indicator1) = a + b*log(effect 
concentration indicator2). This translates to effect concen-
tration indicator1 = effect concentration indicator2b × 10a. 
When the slope is constrained to unity (b = 1), the equation 
simplifies to effect concentration indicator1 = effect con-
centration indicator2 × 10a, where 10a represents the default 
linear extrapolation factor.

3 � Results and discussion

3.1 � Selection and harmonization framework results

The data retrieved from REACH and CompTox were used 
as raw inputs in the framework for data selection and harmo-
nization, ensuring a high-quality dataset for extrapolation. 
Initially, the ECHA database provided toxicity informa-
tion on 12,411 chemicals with EC Numbers, encompassing 
225,517 records. In contrast, the CompTox database con-
tained 517,067 datapoints detailing ecotoxicity information 
for 8640 chemicals. After the harmonization process (Fig. 1 
and Sect. 2.2 in brief, supplementary information in detail), 
the harmonized data after Step 5 comprised a streamlined 
dataset of 339,729 datapoints for 10,668 chemicals (Table 2).

3.2 � Harmonized data aggregation results

Each datapoint in the dataset is uniquely categorized by its 
CAS, species name, species group, exposure duration class, 
and effect concentration indicator classification. The refined 
and harmonized data were then aggregated at three distinct 
levels: initially at the species level, then at the species group 
level, and finally at the effect concentration indicator level. 
For the species level, the geometric mean of the datapoints—
categorized by a unique CAS, species group, exposure class, 
and effect concentration indicator—was calculated, yielding 
79,001 aggregated effect concentration datapoints for 10,668 
chemicals. For the species group level, the geometric mean 
was derived from the species-level data associated with a 
specific chemical, exposure class, effect concentration indi-
cator, and species group. This process resulted in 41,303 
aggregated effect concentration datapoints for the same set 
of chemicals. Lastly, at the effect concentration indicator 

Table 2   Overview of the 
distribution of harmonized 
aggregated ecotoxicity 
datapoints at the species group 
level

Species groups EC10eq acute EC10eq chronic EC50eq acute EC50eq chronic Total

Algae 2675 22,000 2741 18,981 46,397
Amphibians 3490 3467 3310 263 10,530
Crustaceans 12,382 19,280 42,078 4510 78,250
Fish 38,042 29,521 72,877 2409 142,849
Aquatic plants 4186 2951 2064 1249 10,450
Fungi 28 299 4 75 406
Insects/spiders 2232 2436 10,226 1030 15,924
Invertebrates 5275 1047 5257 193 11,772
Molluscs 4957 3672 7848 715 17,192
Moss hornworts 11 96 5 172 284
Reptiles 55 - 34 - 89
Worms 1301 1012 3026 247 5586
Total 74,634 85,781 149,470 29,844 339,729
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level, the geometric mean was determined using data from 
the species group level associated with a particular chemical, 
exposure class, and effect concentration indicator classifica-
tion. This aggregation produced 23,215 effect concentration 
datapoints for the 10,668 chemicals.

3.3 � Ecotoxicity extrapolation factor results

The final harmonized dataset, once aggregated, served as 
the foundation for deriving a consistent set of extrapolation 
factors. Before making comparisons, all effect concentra-
tion data underwent a log10 transformation. If fewer than 
50 overlapping chemicals were available for any pairs, the 
regression was not performed. If there were multiple data-
points available, aggregation was done using the geometric 
mean, as detailed in Sect. 3.2. Pairwise correlations were 
then conducted to evaluate the linear correlation between 
paired effect concentration indicators, with the correlation 
coefficient, r, gauging the strength and direction of the linear 
relationship between these effect concentration indicators. 
Subsequently, linear regressions, both with a free slope and 
with a slope forced to unity, were executed to assess the 
correlation strength, as indicated by the coefficients of deter-
mination (R2). These regressions were performed between 
paired effect concentration indicators to compute generic 
extrapolation factors and then within each species group to 
determine species group-specific extrapolation factors.

The primary objective of this study was to identify extrap-
olation factors that can convert various effect concentration 
indicators to EC10eq chronic, in line with the requirements 
of USEtox recommendations. This conversion is essential 
to effectively utilize the available ecotoxicological effect 
data in the calculation of characterization factors through 
extrapolation factor computation. Consequently, extrapola-
tion factors were first calculated for each species group as 
shown in Table 3 along with Fig. 2 and subsequently generic 
default extrapolation factors as shown in Table 4 along with 
Fig. 3 to transform different effect concentration indicators 
at varying exposure levels to EC10eq chronic. Additionally, 
the study also provides the best-fit regression equation spe-
cifically for EC10eq chronic conversion.

Table 3 and Table 4 present both generic and species-
specific extrapolation factors (with the slope set to unity) 
alongside the available datapoints for each regression. For 
several combinations, particularly for species groups of 
aquatic plants, fungi, moss hornworts, and reptiles, data 
were insufficient to support robust regressions, so extrapo-
lation factors were not calculated. Consequently, for these 
particular species groups, one might consider applying 
generic default extrapolation factors at the effect concentra-
tion indicator level or resorting to extrapolation factors from 
closely related species groups, if available.

The species group-specific extrapolation factors exhibit 
considerable variation across different species groups, as 
shown in Table 3. In many cases, these values differ consid-
erably from the overall generic extrapolation factors. These 
differences might arise from the diverse data availability 
across species groups and effect concentration indicators, 
with data predominantly coming from algae, crustaceans, 
and fish. Such findings suggest that studies relying solely 
on generic extrapolation factors, while overlooking more 
detailed data for specific species groups, could introduce 
significant uncertainties. The magnitude of this uncertainty 
may vary depending on the species group, effect concentra-
tion indicator, exposure duration, and the number of data-
points considered. For example, converting acute EC10eq 
data to chronic EC10eq for algae using a generic default 
extrapolation factor of 0.3 instead of a species group-specific 
default extrapolation factor of 0.79 would underestimate 
extrapolated chronic EC10eq by a factor of 0.79/0.3 = 2.63.

As illustrated in Table 3 and Table 4, robust correlations 
with R2 > 0.80 were not observed when comparing EC10eq 
chronic from any effect concentration indicator with either 
acute or chronic exposure. However, correlations were 
weaker when acute effect concentration indicators were 
compared to EC10eq chronic than when chronic datapoints 
were compared with the same effect concentration indicators 
within a species group. This highlights that comparisons 
within the same exposure type across a combination of effect 
concentration indicators and species groups tend to be more 
consistent than those across different exposure types.

Given that default ecotoxicity extrapolation factors were 
derived using a simplified regression approach with a slope 
set to unity, while regression equations were based on best-
fit regressions with a free slope, it is essential to approach 
the use of these factors judiciously. When studies neces-
sitate EC10eq chronic values, the general approach should 
be to source unextrapolated EC10 chronic values, whether 
through direct experimentation, literature reviews, in silico 
tools, or other relevant methods (Fantke et al. 2017). If 
experimental EC10 chronic values are not readily available, 
then extrapolation factors can be employed, but with cau-
tion. Best-fit regressions with a free slope (i.e., two param-
eters) are generally preferred over default (single parameter) 
ecotoxicity extrapolations, both generically and at the spe-
cies group level. When considering specific species, it is 
advisable to prioritize species group-specific extrapolation 
factors over generic ones, provided that relevant species 
group information is available. In situations where species 
group-specific factors are not available for certain species 
groups, one could either apply the generic default extrapola-
tion factors or use their own judgement to select a species 
group related to the species in question. Additionally, given 
that correlations vary in strength across species groups, 
effect concentration indicators, and exposure durations as 
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n = 342
r = 0.77
R2= 0.59
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n = 443
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Fig. 2   Pairwise comparison of various ecotoxicological effect con-
centration indicators (log mg/L), as detailed in Table 3. The red line 
depicts a linear regression fit with an unconstrained slope, while the 
green line showcases a linear regression fit where the slope is set 

to unity. The dotted line represents the 95% confidence interval of 
the linear regression fit with an unconstrained slope (n = number of 
chemicals, r = correlation, and R2 = Rsquare)
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depicted in Table 3 and Table 4, chronic extrapolations are 
preferred over acute ones, especially for species groups with 
higher correlations.

The REACH and CompTox data underwent rigorous 
harmonization using a framework, ensuring a high-quality 
dataset for the extrapolation factor calculation strategy 
rooted in regression analysis; the process was stringent, 
leading to a 51% reduction in datapoints. Nevertheless, we 
were challenged by limitations and gaps in available infor-
mation. For instance, databases fail to implement checks to 
update old species names when changes are made leading 
to uncertainty in species naming and classification. Addi-
tionally, exposure classifications present inconsistencies. 
In the case of algae, tests do not distinguish between acute 
and chronic effects, which is why we adopted a 24-h expo-
sure duration threshold (Aurisano et al. 2019). Given the 
rapid reproduction rate of algae, these tests inherently lean 
towards chronic evaluation (Hahn et al. 2014). Effect con-
centration indicator classification remains ambiguous due 
to significant uncertainties, especially in the lower range 

of species sensitivity distributions, making it challenging 
statistically to distinguish between NOEC, LOEC, and EC 
1–10 values (Iwasaki et al. 2015). One of the most signifi-
cant challenges faced during the harmonization process is 
neglecting the effect type. For a given effect concentration 
indicator, species, and exposure type, tests can analyze a 
broad spectrum of effects. The sensitivity of these effects 
can cause variations in exposure concentrations, leading 
to inconsistencies that are challenging to harmonize given 
data constraints. These factors can significantly influence 
the outcomes of ecotoxicity tests and, by extension, our 
derived extrapolation factors.

In addition, individual datapoints and consequently 
the pairs used to derive the extrapolation factors can be 
influenced by several additional factors, for example, the 
merger of several similar effect concentration indica-
tors into EC10eq (see Sect. 2.2). However, as discussed 
in the method, the NOEC is itself not indicative of any 
specific level of effect. Likewise, simply classifying spe-
cies based on the grouping used by the US EPA ECOTOX 

n = 152
r = 0.70
R2= 0.49

n = 119
r = 0.53
R2= 0.28

n = 253
r = 0.63
R2= 0.40

n = 221
r = 0.64
R2= 0.40

n = 120
r = 0.64
R2= 0.40

n = 98
r = 0.43
R2= 0.18

n = 55
r = 0.73
R2= 0.54

n = 107
r = 0.80
R2= 0.65

n = 55
r = 0.86
R2= 0.75

Fig. 2   (continued)
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knowledgebase (U.S.EPA 2023) might miss relevant rela-
tionships which could be observed using a classification of 
higher taxonomic resolution. Utilizing detailed taxonomic 
information, such as more relevant taxonomy grouping, 
species name, genus, family, order, and phylum for each 
species, as identified by Saouter et al. (2018), can enhance 
the analysis and drive the development of a comprehensive 
database of species with detailed taxonomic information 
to be used in relation to toxicological data. There is also a 
possibility that individual chemical groups behave differ-
ently and that extrapolation factors should be calculated by 
group. Finally, the way the average is calculated for groups 
of datapoints, e.g., using the arithmetic mean or the geo-
metric mean, could influence the final results. To assess 
these uncertainties, we also calculated for specific species 
groups and generic extrapolation factors, as detailed in the 
supplementary information from Table S1 to Table S12. 
The default generic extrapolation factors for different sce-
narios to EC50eq chronic are within the range of 0.48 to 
1.07 from EC10eq acute, 2.47 to 4.90 from EC10eq chronic, 
and 0.19 to 0.45 from EC50eq acute, with median values 
of 0.88, 3.17, and 0.36, respectively. These correspond to 
values of 0.97, 3.38, and 0.45 calculated for all chemicals 
in this study. For extrapolation to EC10eq chronic, the fac-
tors range from 0.15 to 0.31 from EC10eq acute, 0.06 to 
0.14 from EC50eq acute, and 0.20 to 0.40 from EC50eq 
chronic, with median values of 0.30, 0.13, and 0.32. These 
correspond to values of 0.30, 0.14, and 0.30 calculated for 
all chemicals in this study. The largest differences were 
observed when using arithmetic mean aggregation, which 
resulted in lower R2 values along with higher uncertainty, 
particularly in the marine ecosystem due to the lack of 
representative data compared to the freshwater ecosystem. 
These variations are more pronounced in species-specific 
extrapolation factors, which we therefore consider the next 
natural step to investigate in order to provide further refine-
ment of extrapolation factors.

3.4 � Comparison of ecotoxicity extrapolation factors 
with prior research

When examining extrapolation at the species level, there 
are differences between the factors calculated in this study 
and those from previous research as shown in Table 5. It 
should be noted that effect concentration indicators vary 
across different studies and that here EC10eq and EC50eq, 
which involve combining different effect concentration 
indicators, as detailed in Sect. 2.2. However, other studies 
may use some of these indicators independently or in dif-
ferent combinations. For example, Aurisano et al. (2019) 
combined LOEC and EC10, while Saouter, Wolff, et al. 
(2019) included NOEC, LOEC, and EC10 to EC20 under 
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the NOECeq category, as well as the threshold of toxico-
logical concern (TTC).

For the transition from EC50eq acute to EC10eq 
chronic, Aurisano et al. (2019) determined species group-
specific factors of 0.13 (n = 26) and 0.30 (n = 93) for fish 
and invertebrates, respectively. For the transition from 
EC50 acute to NOEC chronic, Aurisano et al. (2019) deter-
mined factors of 0.16 (n = 54), 0.18 (n = 155), and 0.49 
(n = 11) for fish, invertebrates, and algae respectively. In 
contrast, Saouter, Wolff, et  al. (2019) found factors of 
0.09 (n = 322), 0.09 (n = 876), and 0.24 (n = 2342) for fish, 
crustaceans, and algae. Our study presents different values: 
0.07 for fish, 0.05 for invertebrates, 0.12 for algae, and 
0.09 for crustaceans. For the extrapolation from EC50eq 
chronic to EC10eq chronic, Aurisano et al. (2019) reported 
factors of 0.65 (n = 9) for fish, 0.52 (n = 76) for inverte-
brates, and 0.45 (n = 312) for algae and for the transition 
from EC50eq chronic to NOEC chronic, factors of 0.29 
(n = 19) for fish, 0.37 (n = 89) for invertebrates, and 0.26 
(n = 399) for algae. Our study however used EC10eq com-
bining NOEC and EC10 as described in Sect. 2.2 in brief 
and in the supplementary information in detail, the factors 
found were 0.25 for fish, 0.36 for invertebrates, and 0.28 
for algae. Moving from NOEC acute to EC10eq chronic, 
Aurisano et al. (2019) identified factors of 0.25 (n = 12) 
for fish and 0.65 (n = 77) for invertebrates, whereas our 
study determined them to be 0.2 and 0.42 respectively. The 
species group-specific extrapolation factors calculated in 
this study, compared to those reported in previous litera-
ture, differ by a maximum factor of 4 for algae, 2.6 for 
crustaceans, 2.6 for fish, and 6 for invertebrates (a very 
heterogenous grouping).

Comparing the default generic extrapolation factors 
from this study with those previously published offers 
insights into the evolution of the results as more data 
is incorporated. For instance, when extrapolating from 
EC50eq acute to EC10eq chronic, our study determined 

a default generic extrapolation factor of 0.14. This differs 
from the 0.25 and 0.20 found in studies by Aurisano et al. 
(2019) for EC10eq chronic and NOEC chronic respectively; 
however, it roughly aligns with the results from Länge 
et al. (1998), Warne et al. (2015), King et al. (2017), and 
Posthuma et al. (2019). In the case of extrapolating from 
EC50eq chronic to EC10 eq chronic, our derived factor is 
0.3, which is different from 0.21 proposed by Payet (2004) 
for NOEC chronic and 0.5 by Aurisano et al. (2019) for 
EC10eq chronic but similar to 0.3 proposed by Aurisano 
et al. (2019) for NOEC chronic. However, it is considerably 
similar to the factors of 0.33, presented by De Zwart (2002) 
and Posthuma et al. (2019) respectively for NOEC chronic. 
For the transition from EC10eq acute to EC10eq chronic, 
this study factor is 0.3, closely mirroring the 0.32 from 
Aurisano et al. (2019) and 0.33 from De Zwart (2002) and 
Posthuma et al. (2019). Thus, the default generic extrapo-
lation factors reported in the literature for EC50eq acute 
to EC10eq chronic are within a factor of 4.2 (0.25/0.06).

The differences observed between our results and those 
from previous studies can be attributed to several factors. 
One primary distinction lies in the aggregation process. 
While Aurisano et al. (2019) employed a presumably arith-
metic average across datapoints for aggregation, Saouter, 
Wolff, et al. (2019) utilized the geometric mean. In our 
study, we adopted the geometric mean approach as detailed 
in Sect. 2.3. Additionally, the methodology for calculat-
ing extrapolation factors varied among studies. Aurisano 
et al. (2019) and Payet (2004) relied on regression analyses, 
considering both a free slope and a slope forced to unity, 
and incorporated a 95% confidence interval (CI) range. 
Conversely, Saouter, Wolff, et al. (2019) determined their 
factors using the geometric mean of the ratios of the com-
pared effect concentration indicators. In our research, we 
employed regression analyses with a free slope for best-fit 
regression equations and a slope forced to unity for default 
factors. Another reason is the type of effect concentration 

n = 3192
r = 0.74
R2= 0.55

n = 3679
r = 0.71
R2= 0.51

n = 3543
r = 0.84
R2= 0.70

Fig. 3   Pairwise comparison of various ecotoxicological effect con-
centration indicators (log mg/L), as detailed in Table 4. The red line 
depicts a linear regression fit with an unconstrained slope, while the 
green line showcases a linear regression fit where the slope is set 

to unity. The dotted line represents the 95% confidence interval of 
the linear regression fit with an unconstrained slope (n = number of 
chemicals, r = correlation, and R2 = Rsquare)
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indicators considered in different studies ranging from 
NOEC, EC10, and EC50, but in this study, we considered 
only EC10eq and EC50eq based on available knowledge 
and evidence for combining EC10 and NOEC to EC10eq.

Duplicate management would also have played a role. 
There is no mention of the removal of duplicates in Auris-
ano et al. (2019) whereas we eliminated approximately 8% 
of our initial dataset in the process of removing duplicates. 
While duplicate removal ought to increase the accuracy 
of the analysis, it will also have the effect of reducing the 
correlation coefficients associated with the extrapolation 
factors. There is a possibility that our approach may have 
eliminated some false positive matches, where apparently 
duplicate results reflect precise reproducibility in toxico-
logical testing, but given the inherent variability of biologi-
cal tests and our use of multiple duplicated metadata fields 

to identify duplicates, we consider our approach is likely to 
have eliminated more duplicate records than exactly repro-
duced toxicological results.

Perhaps, the most important factor is that, compared 
to earlier research, this study benefits from a significantly 
larger dataset. While Aurisano et al. (2019) had 9,627 data-
points, Payet (2004) featured 134,088, and Saouter, Wolff, 
et al. (2019) presented 54,353, our research encompasses 
339,729 datapoints across 10,668 chemicals. Furthermore, 
in terms of effect concentration indicator and exposure 
duration combinations, our study uniquely offers two effect 
concentration indicators, EC10eq and EC50eq, paired with 
both acute and chronic exposure types. This approach pro-
vides the analyst with a wider range of options for extrapo-
lation factors. Notably, our study delves into eight species 
groups, offering a more granular perspective on species 

Table 5   Comparison of default generic and species group-specific ecotoxicity extrapolation factors with prior research

1 To NOEC chronic from EC50 acute
2 To NOEC chronic from EC50 chronic
3 To NOEC chronic from NOEC acute
4 To NOEC chronic from LOEC chronic
5 To NOEC chronic from LOEC acute, “-“ indicates that extrapolation factors were not calculated in the reference study for the effect concentra-
tion indicator associated with the box

Default extrapolation factor  
to EC10eq chronic from 
different effect concentration 
indicators

EC10eq acute EC10eq chronic EC50eq acute EC50eq chronic Reference/s

EC10  
acute

NOEC  
acute

LOEC  
acute

NOEC  
chronic

LOEC  
chronic

Species group-specific  
extrapolation factors

Algae 0.79 1 0.12 0.28 In this study
- - - 2.27 - 0.491 0.45, 0.262 (Aurisano et al. 2019)
- - - - - 0.241 - (Saouter, Wolff et al. 2019)

Amphibians 0.26 1 0.07 0.14 In this study
Crustaceans 0.22 1 0.09 0.35 In this study

- - 0.091 0.91 (Saouter, Wolff et al. 2019)
Fish 0.2 1 0.07 0.25 In this study

- 0.25, 0.323 - - - 0.13, 0.161 0.65, 0.292 (Aurisano et al. 2019)
- - - - - 0.091 - (Saouter, Wolff et al. 2019)

Insects/Spiders 0.17 1 0.06 0.47 In this study
Invertebrates 0.42 1 0.05 0.36 In this study

- 0.65, 0.323 - 1.05 - 0.30, 0.181 0.52, 0.372 (Aurisano et al. 2019)
Molluscs 0.26 1 0.04 0.32 In this study
Worms 0.29 1 0.08 0.34 In this study
Generic extrapolation  

factors
0.3 1 0.14 0.3 In this study
- 0.56, 0.323 1.67 0.25, 0.201 0.5, 0.302 (Aurisano et al. 2019)
- - - - - 0.061 - (Länge et al. 1998)
- - 0.405 - 0.404 0.11 0.202 (Warne et al. 2015)
- - - 1 0.404 0.11 0.202 (King et al. 2017)
- 0.333 - 1 0.11 0.332 (Posthuma et al. 2019)
- 0.333 - - - - 0.332 (De Zwart 2002)
- - - - - - 0.212 (Payet 2004)
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group-specific extrapolation factors compared to prior stud-
ies that primarily focused on algae/cyanobacteria, crusta-
ceans, and fish.

The primary aim of this study was to calculate extrapola-
tion factors at various specific species and generic levels 
using a new harmonization of effect concentration indica-
tors. Deriving extrapolation factors for individual chemical 
subgroups is a natural next step to enhance the accuracy 
of these factors. However, to avoid erroneous assignments, 
the precise definition of such subgroups based on chemical 
structure, known modes of action, or uses requires careful 
consideration. For example, in the PFAS grouping used in 
this study, a total of 202 chemicals were found in the fresh-
water ecosystem with available data. The R2 values were 
low due to the high diversity within the group, indicating 
that further classification into different PFAS subgroups may 
be necessary to increase coherence and improve R2 values.

Although this is beyond the scope of this study, we 
attempted to provide generic extrapolation factors for dif-
ferent chemical groups utilizing chemical groups based on 
the EPA DSSTox Tree. In total, generic extrapolation fac-
tors were calculated for 15 chemical groups as detailed in 
the supplementary information in Table G3. Due to limita-
tions in the number of datapoints per group, species-specific 
extrapolation factors were not calculated, but generic factors 
were provided. The default extrapolation factors for different 
chemical groups to EC50eq chronic are within the range of 
0.77 to 2.56 from EC10eq acute, 2.71 to 7.69 from EC10eq 
chronic, and 0.21 to 0.59 from EC50eq acute, with median 
values of 0.99, 3.48, and 0.42, respectively. These corre-
spond to values of 0.99, 3.51, and 0.45 calculated for all 
organic chemicals in the freshwater ecosystem in this study. 
For extrapolation to EC10eq chronic, the factors range from 
0.24 to 0.41 from EC10eq acute, 0.05 to 0.15 from EC50eq 
acute, and 0.13 to 0.37 from EC50eq chronic, with median 
values of 0.30, 0.11, and 0.29. These correspond to values 
of 0.29, 0.13, and 0.29 calculated for all organic chemicals 
in the freshwater ecosystem in this study. This indicates 
that future refinements in extrapolation factors for different 
chemical groups will not primarily result from the addition 
of new data, but also from a more detailed examination of 
already available data.

4 � Conclusions

This paper presents three steps forward in relation to previ-
ous work: it uses a more extensive database of experimental 
ecotoxicity data than its predecessors accounted for 339,729 
datapoints across 10,668 chemicals, it uses a modified cura-
tion process compared with them, and it delivers extrapola-
tion factors converting various effect concentration indica-
tors to EC10eq chronic that is recommended for calculating 

USEtox EFs. This research calculated 3 generic and 24 spe-
cies group-specific extrapolation factors, tailored to vari-
ous effect concentration indicators and exposure durations, 
facilitating the conversion of effect concentration indicator 
groups (EC10eq and EC50eq) to a chronic EC10eq. This, 
in turn, will enable ecotoxicity characterization factor cal-
culations in USEtox. It is to be expected that more data will 
be available for calculations like ours in the future as toxi-
cological testing and digitalization proceed. However, it is 
unlikely that large differences will occur as each individual 
new datapoint will have less and less impact on the end 
results. Thus, either looking specifically at now understud-
ied groups or generating specifically more EC10eq chronic 
data should be prioritized.
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