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Abstract—Doppler shifts are an undesired effect that takes place
in wireless signal transmission whenever there is relative movement
between transmitter and receiver. In future communication gen-
erations, where low Earth orbit (LEO) satellites play a relevant
role, such a phenomenon is expected to be strong with respect to
satellites in higher altitudes, as LEO satellites travel at very high
speeds. In this paper, we initially study this problem and propose
a simple signal model to develop a standalone multi-step Doppler
estimation approach based on linear estimators. Simulation re-
sults show practically unbiased estimates with variances close to
the Cramer-Rao lower bound even in low signal-to-noise ratio
regimes, demonstrating the potential of this technique in future
non-terrestrial network systems.

Index Terms—Doppler shift, Estimation theory, Satellite com-
munications

I. INTRODUCTION

As 5G communication systems are currently being deployed,
interest in both 5G evolution and the upcoming 6G systems is
large. One of the features of both 5G evolution and 6G is to guar-
antee continuous global connectivity, or coverage everywhere.
Non-terrestrial networks will be highly relevant to meet such a
requirement, especially in areas that are not easily covered by
terrestrial ones [1]. To provide the required quality of service in a
wide range of applications that demand high data rates, coverage
and reliability, low Earth orbit (LEO) satellites are preferred
in relation to geostationary satellites [1], [2]. This is due, for
example, to the shorter propagation delays associated with LEO
satellites and their capability to cover remote areas.

LEO satellites orbit the Earth at relatively high speeds, usually
between 4-7km/s, causing very strong Doppler effects, which
in turn generate carrier frequency offsets [3]. In orthogonal
frequency division multiplexing (OFDM), they may cause time
and frequency synchronization errors, generating inter-carrier
interference [4], [5]. Doppler estimation and synchronization
methods are therefore of great importance.

The Doppler synchronization problem has been studied in the
literature and several techniques have been developed. In [6],
two methods are developed to give frequency offset estimates:
the first one uses primary synchronization signals (PSS), where
the frequency offset estimation is carried out by solving a one-
dimensional optimization problem through a grid search; the
second one, together with PSS, explores the redundancy of
the cyclic prefix in OFDM symbols to improve performance
and reduce the computational complexity. For the latter, in

particular, simulations show suitability for downlink frequency
synchronization.

Another method proposed in [7] utilizes turbo codes and
a Gaussian process model to estimate Doppler offsets in the
low signal-to-noise ratio (SNR) regime without using training
sequences. Initially, the soft outputs of the turbo decoder at
the receiver side are used to coarsely estimate the Doppler
shift. An objective function representing the performance of
the frequency offset compensation is replaced by a prediction
function based on the Gaussian process model, such that the
optimal frequency offset can be efficiently found using the
Newton-Raphson method. Maximum likelihood estimation is
used to improve the coarse estimate. It was shown that the root
mean square error approaches the modified Cramer-Rao lower
bound (CRLB) for Eb/N0 ≥ 2dB, with a computational com-
plexity lower than that of other turbo-code based synchronization
methods.

The orthogonal time-frequency space modulation is explored
in [8], enabling a constant channel representation in the delay-
Doppler domain rather than a varying one in the time-frequency
domain [9]. In this synchronization technique, the carrier fre-
quency offset comprises the sum of the fractional and large-scale
carrier frequency offsets. For the former, the received time signal
is transformed into a delay-time one and the correlation between
consecutive rows is explored to give the best linear unbiased
estimator. For the latter, the maximum length sequence is placed
in the delay domain and the autocorrelation characteristics are
exploited to produce the estimate. Results show a wider fre-
quency offset estimation range and higher accuracy in relation
to the method developed in [10], although with a slightly higher
overhead.

In this paper, we conduct a study on Doppler shift estima-
tion using known pilot signals and linear estimators. Linear
estimators have the advantage of having a relatively simple
implementation and predictable performance. We begin our
investigation with a simple non-linear signal model, on which we
apply a Taylor series expansion to get a linear estimator with a
predictable worst-case estimator bias. Furthermore, we develop
a standalone multi-step procedure to estimate the Doppler shift
based on the mean square error (MSE) criterion. Simulations
show, for an analyzed set of system requirements, that our
proposed algorithm gives a close to unbiased estimate with
variances approaching the CRLB for a wide range of SNR values.
The proposed algorithm shows a better performance, in terms
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Fig. 1. Transmission scenario of a LEO satellite serving a ground terminal.
Here, α is the angle between the LoS component and v⃗, the vector describing
the direction and speed of the satellite.

of bias and variance, than the well-known Tretter’s method for
frequency estimation [11].

The paper is organized as follows. In Sec. II, we present the
reference signal model and in Sec. III we discuss the procedure
to estimate the parameters of interest. In Sec. IV, we show the
achieved results from the proposed estimation algorithm and
compare them to the ones acquired with Tretter’s method. Finally,
in Sec. V, we provide the conclusions from this study.

II. SIGNAL MODEL

Assuming line of sight (LoS) conditions for the transmission
of a pilot signal from a LEO satellite to a ground terminal (or
vice-versa), we consider the scenario illustrated in Fig. 1. We
model the Doppler-shifted received signal as

y[n] = ejεejΩd(n−(L−1
2 ))x[n] + w[n]. (1)

In Eq. (1), ε denotes a constant phase term due to the distance
between the satellite and the Earth device and unknown phase
shifts in the hardware, Ωd the normalized Doppler shift, x[n] an
all-ones vector of length L representing the pilot signal, n =
0, . . . , L− 1 and w[n] ∼ CN (0, σ2

w). For simplicity, we restrict
L to be even, but the developed method can be easily extended
to accommodate odd pilot lengths.

The normalized Doppler shift is given by Ωd = 2πfd/fs,
where fd represents the Doppler shift and fs the sampling
frequency, both given in Hz. The Doppler shift is calculated
by fd = vfc cosα/c, where v = |v⃗|, as depicted in Fig. 1, given
in m/s, fc is the carrier frequency in Hz and c the speed of light in
m/s. We introduce the normalized Doppler shift with the largest
value ΩW , for which α has the smallest analyzed angle. In our
study, we consider the worst case situation where the satellite is
at the horizon, so α = 0 and ΩW = 2πvfc/(cfs).

III. ESTIMATION PROCEDURE

To estimate ε and Ωd, we apply a multi-step approach. Based
on the found estimates, we compensate the received signal y[n]
to recover the pilot signal, x[n]. In this section, we provide the
mathematical foundations behind each step and describe the
procedure for parameter estimation.

The proposed algorithm estimates ε and Ωd based on a lin-
earized version of the signal model described in Eq. (1). We

first estimate ε and use it to compensate y[n]. Starting with
few samples of the compensated signal, in every subsequent
step of the algorithm we provide refined estimates of ε and Ωd

using larger sample sizes. For this, we explore a Taylor series
expansion of the imaginary part of the compensated signals. This
approximation yields a bias and may not be accurate for large
sample batches. The bias originates from the third-order term of
the Taylor series expansion and we determine the sample size
that minimizes the worst-case MSE and apply a linear estimator.

A. Step 1

Initially, we have no knowledge of ε and assume it to be
in the interval [−π, π]. In the worst case, i.e., ε = ±π, this
parameter could have a large influence on the subsequent steps
of the algorithm, which rely on linearizations. Thus, in the first
step of our proposed algorithm, denoted as k = 1, we estimate
the complex exponential ejε and compensate the received signal
to reduce the influence of this constant phase term. For this, we
average y[n] using N1 samples and divide by the absolute value
of the found average. This is done so that the estimate ˆ(ejε)
remains on the unit circle. Introducing P1 = ⌊L−1

2 ⌋ − ⌊
N1−1

2 ⌋
and P2 = ⌊L−1

2 ⌋ + ⌈
N1−1

2 ⌉, this procedure is mathematically
described by

ˆ(ejε) =

1
N1

P2∑
n=P1

y[n]∣∣∣∣∣ 1
N1

P2∑
n=P1

y[n]

∣∣∣∣∣
. (2)

We wish to find the number of samples N1 for which the
estimate ˆ(ejε) is close to unbiased but still with a relatively low
variance. Let us first consider the case where the received signal
has no noise. Recall that x[n] is an all-ones vector, the summation
in Eq. (2) is written as

P2∑
n=P1

y[n] = ejε

(
e−jΩd(N1−1

2 )
N1−1∑
n=0

ejΩdn

)
. (3)

The summation term in Eq. (3) can be shown to be

N1−1∑
n=0

ejΩdn =

(
ejΩdN1/2

ejΩd/2

)
sin (ΩdN1/2)

sin (Ωd/2)
. (4)

Inserting Eq. (4) into Eq. (3) and substituting into Eq. (2), we
have

ˆ(ejε) = ejε

 sin (ΩdN1/2)
sin (Ωd/2)∣∣∣ sin (ΩdN1/2)
sin (Ωd/2)

∣∣∣
 . (5)

The factor multiplied with ejε in Eq. (5) is always equal to +1 or
-1. If it is equal to +1, the estimate ˆ(ejε) is unbiased. Otherwise,
there is a phase shift and the estimate is biased. For the noiseless
case, this phase shift happens for Ωd(N1/2) = ±π (depending
on the value of Ωd). As Ωd is unknown, we consider the worst-
case scenario when no noise is present, i.e., with ΩW .

The complex-valued noise can make the aforementioned phase
shift take place for lower values of N1. Thus, to avoid this
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situation and provide a conservative estimate while retaining
a relatively low variance, we take

N1 = round

(
1

2

[
2π

ΩW

])
. (6)

To maintain consistency with the derivations based on Eq. (3),
we update N1 ← N1 + 1 if N1 is not even. After calculating
ˆ(ejε) using Eqs. (2) and (6), we get the final estimate for ε as

ε̂1 = ∠ ˆ(ejε) and perform the signal compensation as

yc,1[n] = ˆ(ejε)
∗
y[n] = ej(ε−ε̂1)ejΩd(n−(L−1

2 ))x[n] + w′[n],
(7)

where (·)∗ denotes complex conjugation.

B. Step 2

In step k = 2, we estimate (ε− ε̂1) and provide a first estimate
forΩd. Examining the imaginary part of yc,1[n] and using Euler’s
identity, we have

Im{yc,1[n]} = sin

[
(ε− ε̂1) + Ωd

(
n−

(
L− 1

2

))]
+ Im{w′[n]}. (8)

Using the Taylor expansion of a sine function sin p = p−p3/3!+
p5/5! + . . . , for an arbitrary value p, we truncate Eq. (8) up to
the third-order term of this representation,

Im{yc,1[n]} = (ε− ε̂1) + Ωd

(
n−

(
L− 1

2

))
− 1

6

[
(ε− ε̂1) + Ωd

(
n−

(
L− 1

2

))]3
+ Im{w′[n]}. (9)

Eq. (9) provides a good approximation provided that
Ωd

(
n−

(
L−1
2

))
is not too large. As we do not know the

parameter Ωd before the estimation, we consider Eq. (9) to be
valid as long as ΩW

(
n−

(
N2−1

2

))
yields an angle smaller than

π/3 for an arbitrary pilot length N2.
Based on Eq. (9), we denote a = (ε − ε̂1) and Im{yc,1} =

Im{yc,1[n]} for n = ⌊L−1
2 ⌋ − ⌊

N2−1
2 ⌋, . . . , ⌊L−1

2 ⌋ + ⌈
N2−1

2 ⌉
to yield the linear model

[
a
Ωd

]
= H Im{yc,1} =


1 − (N2−1)

2

1 1− (N2−1)
2

...
...

1 (N2−1)
2

 Im{yc,1}. (10)

Denoting the estimated parameter vector θ̂ =
[
â Ω̂d

]T
, we

can estimate the respective parameters [12, pp. 85, Eq. (4.5)],

θ̂ = (HTH)−1HT Im{yc,1}. (11)

Examining the imaginary part of yc,1[n], the noise power is
reduced by half and the covariance matrix of θ̂ is given by
Cθ̂θ̂ = 0.5σ2

w

(
HTH

)−1
, which is shown to be [12, pp. 85,

Eq. (4.7)]

Cθ̂θ̂ = 0.5σ2
w

[
1
N2

0

0 12
N2(N2

2−1)

]
. (12)

Clearly, the signal model order given by H does
not match the one in Eq. (9). In fact, the term
−
[
(ε− ε̂) + Ωd

(
n−

(
N2−1

2

))]3
/6 introduces an estimator

bias. A large value of N2 reduces the estimator variance while
increasing the bias. Thus, we need to calculate the amount of
samples N2 that gives the best variance/bias trade-off. Since
the term Ωd

(
n−

(
N2−1

2

))
dominates over (ε − ε̂1) as n

increases, we consider that the bias stems from the factor
−
[
Ωd

(
n−

(
N2−1

2

))]3
/6.

Expanding Eq. (11), it is possible to demonstrate that, in the
absence of noise,

Ω̂d =

N2−1∑
n=0

Im{yc,1[n]}
(

−6
N2

2 +N2
+

12n

N3
2 −N2

)

= 12Ωd

[
N2−1∑
n=0

(
n−

(
N2 − 1

2

))
n

N3
2 −N2

]

− 2Ω3
d

[
N2−1∑
n=0

(
n−

(
N2 − 1

2

))3
n

N3
2 −N2

]
. (13)

The second line of Eq. (13) can be shown to be equal to Ωd,
which is the true parameter. The bias therefore comes from the
last summation. The bias, represented as bias(Ωd, N2), can be
shown to be

bias(Ωd, N2) = −2Ω3
d

[
N2−1∑
n=0

(
n−

(
N2 − 1

2

))3
n

N3
2 −N2

]

=
−Ω3

d

15

[
(2N2 − 1)(3N2

2 − 3N2 − 1)

N2 + 1

]
+

3Ω3
d

4

(
N2(N2 − 1)2

N2 + 1

)
− Ω3

d

4

(
(N2 − 1)2(2N2 − 1)

N2 + 1

)
+

Ω3
d

8

(
(N2 − 1)3

N2 + 1

)
. (14)

Recall that all derivations up to this point use a third-order
Taylor series expansion of Im{yc,1[n]}, assuming it to be a close
approximation of the sin function. As a consequence, the bias is
expected to be most significant in the last sample of a pilot with
length Nmax. Assuming the third-order Taylor series expansion
to be valid up to an angle of π/3, we use a maximum analyzed
pilot length that fulfills

ΩW

(
Nmax − 1

2

)
=

π

3
. (15)

At the same time, using relatively short pilots to perform the
estimation yields a large variance. Consequently, the third-order
Taylor series expansion may not provide a good approximation,
since Ω̂d(Nmax − 1)/2 can attain a very high value. Hence,
we start our analysis with a minimum pilot length Nmin that
enables such a representation. In our study, given that the noise
is Gaussian, the estimated parameters also follow a Gaussian
distribution. With the empirical rule that, for this distribution,
95% of the observations fall within two standard deviations from
the mean value, we choose Nmin based on Eq. (12) such that

2

√
6σ2

w

N3
min −Nmin

=
ΩW

2
. (16)
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The criterion we use to choose N2 ∈ [Nmin, Nmax] for ap-
plication in Eq. (11) is the MSE in the last sample, given for
n = Nmax − 1, as the bias is expected to be more pronounced.
Again, since we do not have prior knowledge of Ωd, we use ΩW

to provide a worst-case MSE. Using Eqs. (12) and (14), it is
possible to show that [12, pp. 19, Eq. (2.6)]

MSEworst-case =
σ2
w

2N2
+

6σ2
w

N2(N2
2 − 1)

(
Nmax − 1

2

)2

+ bias2(ΩW , N2)

(
Nmax − 1

2

)2

+
σ2
w

2
. (17)

We choose the value of N2 that minimizes the MSE in Eq. (17).
This can be done, e.g., by line search. If N2 is odd, we take
N2 ← N2 + 1 to preserve the diagonality of Cθ̂θ̂.

Following, we apply Eq. (11) and update the estimates. Their
final values are ε̂2 = ε̂1 + â and Ω̂d,2 = Ω̂d. Finally, the
compensated signal after step 2 for n = 0, . . . , L− 1 is

yc,2[n] = e−jε̂2e−jΩ̂d,2(n−(L−1
2 ))y[n]

= ej(ε−ε̂2)ej(Ωd−Ω̂d,2)(n−(L−1
2 ))x[n] + w′[n]. (18)

C. Step 3 and beyond

In steps k ≥ 3, the error from the previous iterations is
estimated and used to improve the final estimates. Introducing
a = (ε − ε̂k−1) and b = (Ωd − Ω̂d,k−1), the compensated
signal calculated using the most recent available estimates is
represented as yc,k−1[n] = e−jε̂k−1e−jΩ̂d,k−1(n−(L−1

2 ))y[n].
The signal model from Eq. (10) is used to write

[
a
b

]
= H Im{yc,k−1} =


1 − (Nk−1)

2

1 1− (Nk−1)
2

...
...

1 (Nk−1)
2

 Im{yc,k−1}.

(19)
In Eq. (19), Im{yc,k−1} = Im{yc,k−1[n]} for the indices n =
⌊L−1

2 ⌋ − ⌊
Nk−1

2 ⌋, . . . , ⌊L−1
2 ⌋+ ⌈

Nk−1
2 ⌉. As in Sec. III-B, we

wish to find a pilot length Nk that minimizes the worst-case MSE
for use with the estimator as in Eq. (11), Im{yc,k−1} and θ̂ =[
â b̂

]T
. Proceeding as in Step 2 of the algorithm, now assuming

that the estimates in the previous iteration are located according
to the mentioned empirical rule in Section III-B, we can apply

Eqs. (14) and (17) as a function of Nk, utilizing 2

√
6σ2

w

N3
k−1−Nk−1

instead of ΩW . Nmax and Nmin are given by

2

√
6σ2

w

N3
k−1 −Nk−1

(
Nmax − 1

2

)
=

π

3
, (20)

2

√
6σ2

w

N3
min −Nmin

=

√
6σ2

w

N3
k−1 −Nk−1

. (21)

The final estimates are ε̂k = ε̂k−1+ â and Ω̂d,k = Ω̂d,k−1+ b̂.
The estimation procedure runs until a defined stop criterion is met.
This can for example be when |b̂| ≤ δ for some δ. In addition,
if at any step of the algorithm we find Nmin, Nk or Nmax > L,

we can set them to L respectively. As in the previous steps, if
Nk is odd, we take Nk ← Nk + 1.

For any iteration k, we write the compensated signal as

yc,k[n] = e−jε̂ke−jΩ̂d,k(n−(L−1
2 ))y[n]

= ej(ε−ε̂k)ej(Ωd−Ω̂d,k)(n−(L−1
2 ))x[n] + w′[n]. (22)

Algorithm 1 Estimation procedure
Inputs: ΩW , all-ones vector x[n] with even length L, ob-

servations y[n], σ2
w, δ

Outputs: ε̂, Ω̂d

1: k = 1 ▷ Start of step 1
2: Calculate N1 (Eq. (6))
3: N1 ← min (N1, L)
4: N1 ← N1 + mod (N1, 2)

5: Calculate ε̂1 = ∠ ˆ(ejε) (Eq. (2))
6: Calculate yc,1[n] (Eq. (7)) ▷ End of step 1
7: k ← k + 1 ▷ Start of step 2
8: Calculate Nmin (Eq. (16)) and Nmax (Eq. (15))
9: Nmin ← min (Nmin, L), Nmax ← min (Nmax, L)

10: N2 = argmin MSEworst-case (Eq. (17)) using bias(ΩW , N2)
11: N2 ← N2 + mod (N2, 2)
12: Calculate â and Ω̂d (Eq. (11))
13: Update ε̂2 ← ε̂1 + â and Ω̂d,2 ← Ω̂d

14: Calculate yc,2[n] (Eq. (18)) ▷ End of step 2
15: while |b̂| < δ do
16: k ← k + 1 ▷ Start of step k
17: Calculate Nmin (Eq. (21)) and Nmax (Eq. (20))
18: Nmin ← min (Nmin, L), Nmax ← min (Nmax, L)
19: Nk = argmin MSEworst-case (Eq. (17)) using

bias
(
2

√
6σ2

w

N3
k−1−Nk−1

, Nk

)
20: Nk ← Nk + mod (Nk, 2)
21: Calculate â and b̂ (Eq. (11)) using Im{yc,k−1}
22: Update ε̂k ← ε̂k−1 + â and Ω̂d,k ← Ω̂d,k−1 + b̂
23: Calculate yc,k[n] (Eq. (22)) ▷ End of step k
24: end while

IV. SIMULATION RESULTS

The performance of the proposed algorithm is evaluated in
terms of estimator bias and variance at SNR = [−10, 15] dB us-
ing 105 realizations for each SNR value. The system parameters
are listed in Tab. I.

TABLE I
SYSTEM SIMULATION VARIABLES

Variable Value Variable Value Variable Value
fc 75GHz L 500 Ωd 0.027071
v 7km/s α 10◦ ΩW 0.027489
fs 400MHz ε 1.2 δ 10−14

The CRLB for each parameter is found directly in Eq. (12),
since Cθ̂θ̂ is diagonal. First, the variance of the estimates
using our proposed method is shown in Fig. 2, together with
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Fig. 2. Estimator variances for ε̂ and Ω̂d and their associated CRLBs.

the estimator variance using Tretter’s method, which assumes
a signal model similar to that of Eq. (1) and has a simple
implementation. Observe that the estimator variances of the
proposed algorithm are very close to the respective CRLBs, even
at low SNRs. The variances start to deviate significantly from
the CRLBs at SNR = −6dB. In contrast, using Tretter’s method,
the respective variances considerably diverge from the CRLB
already at 10dB, highlighting the difference in performance
between the compared approaches. The estimator biases from
each method are shown in Fig. 3.

For the simulated SNR range, the strongest biases for ε̂ and Ω̂d

using our proposed method are, respectively, −1.29× 10−3 and
−1.58× 10−4, which gives a pronounced difference. However,
the errors in the estimation for ε are not as significant, since this
parameter does not strongly contribute to the worst-case error,
i.e., at n = L− 1. The errors in the estimation for Ωd are more
relevant, as this parameter scales with n.

The achieved bias using Tretter’s method for ε̂ and Ω̂d is
relatively relevant at SNR levels of 7dB and 5dB respectively,
showing the limited performance of this approach. An explana-
tion for such degradation is the fact that Tretter’s method applies
phase unwrapping, which is difficult at low SNR regimes [13].

V. CONCLUSIONS AND FUTURE WORK

In this paper, a simple signal model was used to estimate
Doppler shifts in satellite communications. Based on a lineariza-
tion of this model, a multi-step algorithm to estimate a constant
phase term and a normalized Doppler shift based on linear
estimators was developed. The estimation procedure shows close
to unbiased estimates with variances approaching the CRLB
for a broad range of SNR regimes, performing better than the
well-known Tretter’s method. This shows the potential of the
proposed algorithm in problems based on the respective signal
model. Furthermore, as a standalone procedure, the proposed
algorithm does not depend on other subsystems, such as the
global navigation satellite system, to estimate Doppler shifts.

Fig. 3. Estimator biases for ε̂ and Ω̂d.
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