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Linear response theory for light dark matter-electron scattering in materials
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We combine the nonrelativistic effective theory of dark matter (DM)-electron interactions with linear response
theory to obtain a formalism that fully accounts for screening and collective excitations in DM-induced electronic
transition rate calculations for general DM-electron interactions. In the same way that the response of a dielectric
material to an external electric field in electrodynamics is described by the dielectric function, so in our formalism
the response of a detector material to a DM perturbation is described by a set of generalized susceptibilities,
which can be directly related to densities and currents arising from the nonrelativistic expansion of the Dirac
Hamiltonian. We apply our formalism to assess the sensitivity of non-spin-polarized detectors, and find that in-
medium effects significantly affect the experimental sensitivity if DM couples to the detector’s electron density,
while being decoupled from other densities and currents. Our formalism can be straightforwardly extended to
the case of spin-polarized materials.

DOI: 10.1103/PhysRevResearch.6.033230

I. INTRODUCTION

The particles forming our Milky Way dark matter (DM)
halo have so far stubbornly escaped detection. A simple hy-
pothesis that could explain this lack of detection is that the
DM particle is lighter than the nucleons bound to atomic
nuclei, and therefore too light to be directly detected with
conventional methods based on the observation of rare nuclear
recoils [1]. Indeed, an observable elastic nuclear recoil would
require the incoming DM particle to carry a kinetic energy
of a few keV or so, and thus to have a mass that lies above
the 1 GeV threshold [2]. This hypothesis motivates the search
for DM in electronic transitions induced by the scattering
of Milky Way DM particles in detector materials, as these
can be triggered by smaller energy depositions than nuclear
recoils [3].

Recent experimental proposals for the detection of DM
particles with mass in the MeV to GeV range include the
search for atomic ionizations in noble gas xenon and argon
detectors [1,4–8] and for electronic transitions in semiconduc-
tor crystals [9–23] as well as in superconductors [24,25] and
3D Dirac materials [26–28]. They also include the search for
electron ejections from graphene layers [29,30] and carbon
nanotubes [31,32], as well as for excitations of collective phe-
nomena such as phonons [33,34] and magnons [35]. Further
examples can be found in, e.g., Refs. [3,36].
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The standard theoretical framework for assessing the po-
tential of these proposals is the dark photon model, where the
DM candidate, typically a spin 0 or 1/2 particle, couples to the
electrically charged fermions of the standard model through
the exchange of a “heavy” or “light” spin-1 mediator particle
(i.e., the dark photon) [37–41]. In this context, a mediator is
heavy (light) if the typical momentum transfer in a nonrela-
tivistic DM-electron scattering event is much smaller (larger)
than its mass. Within this framework, a critical theoretical
input to the predicted rate of electronic transitions induced
by the scattering of DM particles by the electrons bound to
a given material is the overlap integral between the initial
and final electron wave functions. In the standard treatment of
DM-induced atomic ionizations, the modulus squared of this
integral is called the atomic or ionization form factor, and has
been computed using nonrelativistic single-particle atomic
wave functions [42], as well as accounting for many-body [43]
and relativistic corrections [44]. In the case of DM-induced
electronic transitions from the valence to the conduction band
in crystals, the modulus squared of this overlap integral is
called the crystal form factor, and has been computed in
density functional theory (DFT) by expanding the Bloch states
describing electrons in a crystal lattice in plane waves [10],
in an atom-centered Gaussian basis [45], or by combining
plane waves with atomic orbitals to capture higher momentum
contributions [19].

An important observation that has been made recently is
that, within the dark photon model, the rate of DM-induced
electronic transitions in dielectric materials can be expressed
in terms of the underlying dielectric function [20,21], i.e., the
linear response of a dielectric to an external electric field.
While the atomic/crystal form factor and dielectric function
formalisms are in principle equivalent, the latter allows one
to directly account for screening and collective excitation
effects, which would otherwise be missed by the former when
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electrons are described using a basis of single-particle states,
and in-medium electron-electron interactions are neglected.
Notice that screening occurs when the electron density in the
target material rearranges itself to partially cancel out the DM-
electron interaction. On the other hand, collective excitations
occur when the momentum transferred from the DM particle
to the medium is smaller than the inverse spacing between
separate nuclei, or separate electrons, and the DM particle
interacts with multiple particles in the target.

Going beyond the dark photon model, a variety of products
of electron wave function overlap integrals can in principle
contribute to the rate of DM-induced electronic transitions in
materials. We have proven this statement in a recent series
of papers [6,18,30,32,46], where we have used effective field
theory (EFT) methods to describe the interaction between
DM and electrons in materials. EFT is a powerful method
to address multiscale physics problems involving a finite set
of relevant degrees of freedom and known symmetries. In
the case of DM-electron scattering, there is a first separation
of scales between the small momentum transfer in the scat-
tering and the electron mass, and a second one between the
nonrelativistic DM speed in the Milky Way and the speed of
light. The relevant degrees of freedom are the DM particle
and the electron, while their interactions are constrained by
Galilean invariance, and momentum and energy conservation.
Combining these building blocks, EFT methods allowed us
to write the amplitude for DM-electron scattering as a power
series in the small momentum transfer to electron mass ratio,
and DM speed to speed of light ratio. This amplitude can
describe virtually any model for sub-GeV DM in terms of a
finite set of S-matrix elements.

Exploiting our EFT approach to DM-electron interactions,
we have found that up to seven products of overlap integrals
can appear in electron transition rate calculations. These re-
duce to five in the case of crystals and within a simplified
treatment of the local DM velocity distribution [18]. They
further reduce to four in the case of isolated atoms [6], and
to one when the final state electron is described by a plane
wave [30,32]. While the framework we have developed in
[6,18,30,32,46] allows a rigorous description of previously
intractable DM models, such as models where DM has an
anapole or a magnetic dipole moment, it does not account for
the aforementioned screening and collective excitation effects,
as it does not include the many-body response of the remain-
ing electrons to an electronic transition between two bound
states. This makes it impossible to assess whether “in-medium
effects” are important in the case of general DM-electron
interactions. Furthermore, it prevents us from properly mod-
eling them in cases where they are actually significant.

The main purpose of this paper is to extend the dielec-
tric function formalism to the case of general DM-electron
interactions in materials. This will enable us to account for
in-medium effects in theories beyond the dark photon model.
We achieve this goal through the following steps:

(1) We start by identifying the electron densities and cur-
rents that a spin-1/2 DM particle can couple to in a material.
In the dark photon model, DM couples to the electron number
density only. In the case of general DM-electron interactions,
we find that DM can couple to the electron number density,
the paramagnetic current, the spin current, the scalar product

of spin and paramagnetic current, and the Rashba spin-orbit
current. We then write down the time-dependent potential
V ss′

eff (t ) in Eq. (42), which describes the scattering of DM
particles by the bound electrons in any solid-state system in
terms of these five densities and currents.

(2) We apply linear response theory to calculate the re-
sponse of a given material to the external, time-dependent
DM perturbation described by the potential V ss′

eff (t ). As in
electrodynamics the response of a dielectric material to an
external electric field is described by the dielectric function,
so in our formalism the response of a detector material to a
DM perturbation is described by a set of generalized suscep-
tibilities. These susceptibilities are associated with the above
densities and currents.

(3) Using Fermi’s golden rule, we express the rate of DM-
induced electronic transitions in detector materials in terms of
our set of generalized susceptibilities.

(4) We derive and solve a time-evolution equation for
the generalized susceptibilities describing the response of a
generic solid-state system to an external DM perturbation.
Focusing on non-spin-polarized and nearly isotropic materi-
als, we evaluate the solution to this equation, and interpret it
diagrammatically.

(5) Combing the results from point (3) and point (4)
above, we apply our formalism to reassess the sensitivity of
hypothetical silicon and germanium detectors.

The linear response theory for light DM direct detection
we develop in this paper enables us to study the impact of in-
medium effects on electronic transition rate calculations in the
presence of general DM-electron interactions. Furthermore, it
provides us with a framework where we can disentangle in a
neat manner the solid state physics contribution, encoded in a
set of generalized susceptibilities, from the astro- and particle
physics inputs to the rate of DM-induced electronic excita-
tions in materials. While in this paper we focus on materials
used in existing detectors, our framework can straightfor-
wardly be extended to the case of anisotropic materials, as
well as to the case of spin-polarized detectors.

This paper is organized as follows. In Sec. II, we iden-
tify the densities and currents that DM can couple to in
a material. In Sec. III we apply linear response theory to
obtain the set of generalized susceptibilities describing the
response of a solid-state system to a DM perturbation that
couples to the aforementioned densities and currents. We also
provide an explicit expression for the rate of DM-induced
electronic transitions in materials as a function of our gen-
eralized susceptibilities. In Sec. IV we derive and solve a
time-evolution equation for the generalized susceptibilities
identified in Sec. III. This equation enables us to perform
explicit electronic transition rate calculations in the presence
of general DM-electron interactions. We apply our formalism
to a sample of DM direct detection experiments in Sec. VI and
conclude in Sec. VII.

II. DARK MATTER-ELECTRON SCATTERING IN
MATERIALS

A. Free scattering amplitude in effective theories

In the nonrelativistic effective theory of DM-electron in-
teractions [6], the amplitude for DM scattering by a free
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TABLE I. Operators defining the nonrelativistic effective theory
of spin 1/2 DM-electron interactions [6] (see [47,48] for the case of
nucleons). Se (Sχ ) is the electron (DM) spin, 1e (1χ ) the identity in
the electron (DM) spin space, q the momentum transfer, and v⊥

el the
relative DM-electron velocity component that is perpendicular to q
when the scattering is elastic.

O1 = 1χ1e O9 = iSχ · (
Se × q

me

)
O3 = iSe · ( q

me
× v⊥

el

)
1χ O10 = iSe · q

me
1χ

O4 = Sχ · Se O11 = iSχ · q
me
1e

O5 = iSχ · ( q
me

× v⊥
el

)
1e O12 = Sχ · (

Se × v⊥
el

)
O6 = (

Sχ · q
me

)(
Se · q̂

me

)
O13 = i

(
Sχ · v⊥

el

)(
Se · q

me

)
O7 = Se · v⊥

el1χ O14 = i
(
Sχ · q

me

)(
Se · v⊥

el

)
O8 = Sχ · v⊥

el1e O15 = iO11

[(
Se × v⊥

el

) · q
me

]

electron, M, can be expressed in terms of the DM particle
and electron spin operators, Sχ and Se, respectively, the mo-
mentum transfer q and the transverse relative velocity v⊥

el , i.e.,
the component of the relative DM-electron velocity that is
perpendicular to q when the scattering is elastic

v⊥
el ≡ v⊥

χ + v⊥
e ≡

(
p + p′

2mχ

)
−

(
k + k′

2me

)
. (1)

Here k (k′) is the initial (final) electron momentum, while
p (p′) is the momentum of the incoming (outgoing) DM
particle. The electron mass and DM particle mass are de-
noted by me and mχ , respectively. In the case of spin-1/2
DM, Sχ = σχ/2 and Se = σe/2, where the components of the
three-dimensional vectors σχ and σe consist of the three Pauli
matrices, and the indexes χ and e identify the DM particle
or electron spin, respectively. For this choice of DM particle
spin, and to first order in v⊥

el , the amplitude for nonrelativistic
DM-electron scattering is [6]

M =
∑

i

(
cs

i + c�
i

q2
ref

|q|2
)

〈Oi〉, (2)

where the interaction operators Oi are defined in Table I, and
qref ≡ αme is a reference momentum, with α the fine-structure
constant. We denote the coupling constants of the ith operator
in Table I by cs

i and c�
i , where cs

i �= 0 and c�
i = 0 corresponds

to the case of interactions mediated by a heavy particle, while
cs

i = 0 and c�
i �= 0 refer to the case of a light mediator. Angle

brackets in the amplitude M denote matrix elements between
the two-component spinors ξ s

χ and ξ s′
χ for the DM particle, and

ξ r
e and ξ r′

e for the electron. For example, in the case of O4,

〈O4〉 ≡ ξ s′†
χ

σχ

2
ξ s
χ ξ r′†

e

σe

2
ξ r

e . (3)

By promoting the coupling constants cs
i and c�

i to functions of
the momentum transfer, virtually any model for DM-electron
interactions can be matched onto the free scattering amplitude
in Eq. (2) in the nonrelativistic limit.

Inspection of Table I shows that, after “factorizing out the
electronic contribution”, Eq. (2) can be rewritten as follows:

M = F ss′
0 ξ r′†

e 1eξ
r
e + F ss′

A

(
k + k′

2me

)
· ξ r′†

e σeξ
r
e

+ Fss′
5 · ξ r′†

e σeξ
r
e + Fss′

M ·
(

k + k′

2me

)
ξ r′†

e 1eξ
r
e

+ Fss′
E ·

(
−i

k + k′

2me
× ξ r′†

e σeξ
r
e

)
, (4)

where 1e is the 2 × 2 identity matrix in the electron spin
space. We provide explicit expressions for the “partial ampli-
tudes” F ss′

0 , F ss′
A , Fss′

5 , Fss′
M , Fss′

E in Appendix A. They depend
on cs

i and c�
i , the momentum transfer, the initial DM velocity,

and the initial (final) DM spin configuration s (s′). Notice that
the operator O13 in Table I constitutes an exception to the
factorization in Eq. (4). This follows from

O13 = i(Sχ · v⊥
χ )

(
Se · q

me

)
+ i(v⊥

e × Se)

(
Sχ × q

me

)
+ i(Se · Sχ )

(
v⊥

e · q
me

)
. (5)

While the first (second) term in Eq. (5) would contribute to the
third (last) line in Eq. (4), the term in the last line of Eq. (5)
would generate a new tensor in Eq. (4), namely (Sel )l (v⊥

el )m,
l, m = 1, 2, 3 because v⊥

e · q is in general not zero in the
inelastic DM-electron scattering. However, since the operator
O13 only arises at next-to-leading order in the nonrelativistic
reduction of simplified models [46], we prefer not to introduce
an additional tensor specific to the operator O13 and set simply
cs

13 = c�
13 = 0 in Eq. (2).

B. Effective potential: Free electrons

In this section, we derive an explicit relation between the
nonrelativistic scattering amplitude in Eq. (4), M, and the
associated potential, V̂ . To this end, we start by noticing that
the matrix element of V̂ between two DM-electron states |φ〉
and |ψ〉, 〈φ|V̂ |ψ〉, can be written as

〈φ|V̂ |ψ〉 =
∫

dre

∫
dr′

e

∫
drχ

∫
dr′

χ 〈φ|r′
e, r′

χ 〉 V̂X

× 〈re, rχ |ψ〉, (6)

where

V̂X ≡ 〈r′
e, r′

χ |V̂ |re, rχ 〉 (7)

while the one-particle states |re〉 and |r′
e〉, and |rχ 〉 and |r′

χ 〉,
are eigenstates of the electron and DM particle position oper-
ators, respectively. Furthermore, we notice that

V̂X =
∑
k,k′

∑
p,p′

∑
ss′

∑
rr′

〈r′
e, r′

χ |k′, r′; p′, s′〉

× 〈k′, r′; p′, s′|V̂ |k, r; p, s〉
× 〈k, r; p, s|re, rχ 〉, (8)

where we introduced a complete set of one-particle states la-
beled by the initial (final) electron and DM particle momenta,
k (k′) and p (p′), as well as by the initial and final electron
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and DM particle spins, r (r′) and s (s′), respectively. Taking
the continuum limit in Eq. (8), that is

1

V

∑
k

−→ 1

(2π )3

∫
dk, (9)

and evaluating 〈k′, r′; p′, s′|V̂ |k, r; p, s〉 in the Born
approximation

〈k′, r′; p′, s′|V̂ |k, r; p, s〉 = − M
4memχV 2

(2π )3δ(3)

× (k′ + p′ − k − p), (10)

we finally obtain

V̂X = −
∫

dk
(2π )3

∫
dk′

(2π )3

∫
dp

(2π )3

∫
dp′

(2π )3
eik′ ·r′

e eip′ ·r′
χ

× M̃ e−ik·re e−ip·rχ (2π )3δ(3)(k′ + p′ − k − p), (11)

where

M̃ ≡
∑
ss′

∑
rr′

ξ r′
e ξ s′

χ

M
4memχ

ξ s†
χ ξ r†

e (12)

and we made use of the position representation wave functions

〈r′
e|k′, r′〉 = 1√

V
eik′ ·r′

eξ r′
e ,

〈r′
χ |p′, s′〉 = 1√

V
eip′ ·r′

χ ξ s′
χ ,

〈k, r|re〉 = 1√
V

e−ik·reξ r†
e ,

〈p, s|rχ 〉 = 1√
V

e−ip·rχ ξ s†
χ , (13)

where V = (2π )2δ(3)(0) is the spatial volume and ξ s
χ , ξ s′†

χ and
ξ r

e , ξ r′†
e are two-component spinors for the DM particle and

electron, respectively. For local interactions, one has

V̂X = V̂X (re, rχ )δ(3)(re − r′
e)δ(3)(rχ − r′

χ ) (14)

where

V̂X (re, rχ ) ≡ 1

N 2
〈re, rχ |V̂ |re, rχ 〉 (15)

and N = δ3(0). In this particular case, Eq. (11) reduces to

V̂X (re, rχ ) = − 1

N 2

∫
dk

(2π )3

∫
dk′

(2π )3

∫
dp

(2π )3

∫
dp′

(2π )3

× eik′ ·re eip′ ·rχ M̃ e−ik·re e−ip·rχ

× (2π )3δ(3)(k′ + p′ − k − p). (16)

As one can see from Eq. (14), the only local interactions in
Table I are O1 and O4, as all other interaction operators
involve combinations of particle velocities. The potential as-
sociated with a nonlocal interaction is in general a function of
re, r′

e, rχ and r′
χ , as shown in Eq. (7). As a first application of

Eqs. (11) and (16), we now focus on the case of the local in-
teraction O1. In this example, the amplitude for DM-electron
scattering can be written as follows:

M = c1 δss′
δrr′

, (17)

and Eq. (16) yields

V̂X (re, rχ ) = − c1

4memχ

δ(3)(re − rχ )1χ1e. (18)

Let us next turn our attention to the nonlocal interaction oper-
ator O7. The amplitude for DM-electron scattering is now

M = c7

[
(p + p′)

2mχ

− (k + k′)
2me

]
· ξ r′†

e σeξ
r
e δss′

. (19)

By applying Eq. (11) to this amplitude, for the operator V̂X
we find

V̂X = c7

4memχ

{
1

2mχ

[
i∇r′

χ
δ(3)(r′

χ − r′
e)δ(3)(r′

e − rχ )

− i∇rχ
δ(3)(r′

e − rχ )δ(3)(r′
χ − r′

e)
]
δ(3)(r′

e − re)

− 1

2me

[
i∇r′

e
δ(3)(r′

e − r′
χ )δ(3)(r′

χ − re)

− i∇reδ
(3)(r′

χ − re)δ(3)(r′
e − r′

χ )
]

× δ(3)(r′
χ − rχ )

}
· σe1χ . (20)

While the interaction in Eq. (20) is formally nonlocal, in the
evaluation of matrix elements it is equivalent to a potential of
the type V̂X = V̂X (re, rχ )δ(3)(re − r′

e)δ(3)(rχ − r′
χ ) with

V̂X (re, rχ ) = c71χ

4memχ

{
−i

2mχ

[←−∇ rχ
· σe δ(3)(re − rχ )

− δ(3)(re − rχ ) σe · −→∇ rχ

]
+ i

2me

[←−∇ re · σe δ(3)(re − rχ )

− δ(3)(re − rχ ) σe · −→∇ re

]}
, (21)

if we impose that
−→∇ re (

←−∇ re ) only acts on the initial (final)

electron wave function and
−→∇ rχ

(
←−∇ rχ

) on the initial (final)
DM particle wave function. In order to show the equivalence
of the two expressions for potential, Eqs. (20) and (21), we
set |ψ〉 = |k, r; p, s〉 and |φ〉 = |k′, r′; p′, s′〉 in Eq. (6) and
then calculate the matrix element 〈φ|V̂ |ψ〉 in two ways. In
the first one, we assume that V̂X is given by Eq. (20). In the
second one, we take V̂X from Eq. (14) and set V̂X (re, rχ )
as in Eq. (21). We find that the two calculations lead to the
same matrix element. Because of this equivalence, we use
Eq. (14) with V̂X (re, rχ ) given by Eq. (21) as the interaction
potential associated with the O7 operator. The advantage of
this approach is that it allows us to treat the local and nonlocal
interactions underlying Eq. (4) in the same manner.

C. Effective potential: Bound electrons

The potential V̂ associated with the amplitude M describes
the nonrelativistic interaction between free electrons and DM
particles. We can now evaluate matrix elements of V̂ between
states involving a bound electron and a free DM particle to
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identify the effective potential that directly enters the calcula-
tion of scattering cross sections and transition rates, where the
initial (and final) electron is bound to the detector material. In
particular, we are interested in evaluating matrix elements of
V̂ of the type below,

〈 f ; p′, s′|V̂ |p, s; i〉 = 1

V

∫
dre

∫
drχ ψ∗

f (re)e−ip′ ·rχ

× ξ s′†
χ V̂X (re, rχ )ξ s

χeip·rχ ψi(re), (22)

where |i〉 (|p, s〉) is the initial electron (DM particle) state and
| f 〉 (|p′, s′〉) the final electron (DM particle) state. In Eq. (22),
the overall 1/V factor arises from the initial and final DM
particle wave functions, defined here as in Eq. (13). Notice
that V = (2π )3δ(3)(0) �= N is the spatial volume, while N =
δ(3)(0) is the momentum space volume, i.e., it has dimension
[momentum]3. Here, we also introduce the initial and final
state electron wave functions

ψi(re) = 〈re|i〉,
ψ f (re) = 〈re| f 〉, (23)

respectively. We can now perform the integral over the DM
particle position in Eq. (22) by noticing that V̂X (re, rχ ) de-
pends on the coordinates as follows (see Sec. II B):

V̂X (re, rχ ) = V̂X
(
re − rχ ,

−→∇ re ,
←−∇ re ,

−→∇ rχ
,
←−∇ rχ

)
. (24)

This expression for V̂X (re, rχ ) allows us to rewrite Eq. (22) as

〈 f ; p′, s′|V̂ |p, s; i〉 = 1

V

∫
dre ψ∗

f (re)eiq·reξ s′†
χ ṼX

× (
q,

−→∇ re ,
←−∇ re , ip,−ip′)ξ s

χψi(re)
(25)

where q = p − p′. In Eq. (25), we changed integration vari-
ables from (re, rχ ) to (re, re − rχ ), acted with

−→∇ rχ
(
←−∇ rχ

) on
the initial (final) DM matter plane wave, and performed the
Fourier transform,

ṼX (q, . . . ) =
∫

d(re − rχ ) e−iq·(re−rχ ) V̂X (re − rχ , . . . ),

(26)

where the dots stand for the four nabla operators in Eq. (24).
Equation (22) naturally leads us to define the effective
potential

V ss′
eff

(−→∇ re ,
←−∇ re ; q, v

) ≡ 1

V
eiq·reξ s′†

χ ṼX

× (
q,

−→∇ re ,
←−∇ re , ip,−ip′)ξ s

χ , (27)

where v = p/mχ . Within this notation, we can rewrite
Eq. (22) as

〈 f ; p′, s′|V̂ |p, s; i〉 =
∫

dre ψ∗
f (re)V ss′

eff

× (−→∇ re ,
←−∇ re ; q, v

)
ψi(re), (28)

and, therefore [49],

〈 f ; p′, s′|V̂ |p, s; i〉 = 〈 f |V ss′
eff |i〉. (29)

We are now ready to calculate the effective potential V ss′
eff

associated with the amplitude M in the general case, where
all coupling constants are different from zero in Eq. (4). From
our analysis of the O1 and O7 operators, we find

V ss′
eff = − 1

4memχV

{
F ss′

0 eiq·re1e

+ F ss′
A

i

2me

[←−∇ re · σe eiq·re − eiq·re σe · −→∇ re

]
+ Fss′

5 · σe eiq·re + Fss′
M · i

2me

[←−∇ re e
iq·re − eiq·re

−→∇ re

]
1e

+ Fss′
E · 1

2me

[←−∇ re × σe eiq·re + eiq·re σe × −→∇ re

]}
.

(30)

The functions F ss′
0 , F ss′

A , Fss′
5 , Fss′

M and Fss′
E depend on coupling

constants, q and v, and are given in Eq. (A1). Since n0(r) ≡
δ(3)(r − re) is the electron density at r, and

ñ0(q) =
∫

d3r e−iq·r n0(r) = e−iq·re (31)

is its Fourier transform at q, we can rewrite the exponen-
tial factor in the first line of Eq. (30) as eiq·re = ñ0(−q).
Consequently, when the underlying DM-electron interaction
contributes to the “strength function” F ss′

0 , then the DM
couples to the electron density ñ0(q) in the target material.
Similarly, when the DM particle contributes to the strength
functions F ss′

A , Fss′
5 , Fss′

M , and Fss′
E , it couples, respectively, to

the additional electron densities and currents

ñA(q) = i

2me

[←−∇ re · σe e−iq·re − e−iq·re σe · −→∇ re

]
,

j̃5(q) = σe e−iq·re ,

j̃M (q) = i

2me

[←−∇ re e
−iq·re − e−iq·re

−→∇ re

]
,

j̃E (q) = 1

2me

[←−∇ re × σe e−iq·re + e−iq·re σe × −→∇ re

]
. (32)

The electron densities and currents introduced in Eq.(32) have
an electromagnetic analog. For example, j̃M and j̃5 can be
identified with, respectively, the paramagnetic current and
electron spin current. In this analogy, Fss′

M plays the role of
an electromagnetic vector potential while Fss′

5 is a magnetic
field. Notice that paramagnetic and spin current can be derived
by expanding the Dirac Hamiltonian at zeroth order in 1/c,
where c is the speed of light [50]. Within the same analogy, the
density ñA and the current j̃E can be identified with the spin-
paramagnetic current coupling and the Rashba term arising at
second order in the 1/c expansion of the Dirac Hamiltonian
[50]. There is also a close analogy between the densities and
currents identified here and those found in the context of the
effective theory for DM-nucleon interactions of [48], from
which we adapted our notation. Notice that while ñ0, ñA, j̃5

and j̃M are hermitian, j̃E is anti-Hermitian because of the −i
factor in the last line of Eq. (4).
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D. Rate of dark matter-induced electronic transitions

Given the effective potential V ss′
eff , we can now calculate the

total rate of DM-induced electronic transitions in a detector
material, R, by applying Fermi’s golden rule. We first rewrite
the effective potential in a compact form,

V ss′
eff = − 1

4memχV

∑
α

F ss′
α jα (−q), (33)

where the index α labels the components of the arrays collect-
ing the strength functions, electron densities and currents,

( j1, . . . , j11) = (̃n0, ñA, j̃5, j̃M, j̃E ),(
F ss′

1 , . . . , F ss′
11

) = (
F ss′

0 , F ss′
A , Fss′

5 , Fss′
M , Fss′

E

)
. (34)

We now apply Fermi’s golden rule and obtain the differential
rate of DM-induced transition in a detector material

d
 = 2π

V

∑
αβ

〈FαF ∗
β 〉

∑
i, f

e−βEi

Z
〈 f | jα (−q)|i〉〈i| j†

β (q)| f 〉

×
(

1

16m2
em2

χ

)
δ(E f − Ei + �Eχ )

dq
(2π )3

, (35)

where

�Eχ = q2

2mχ

− q · v (36)

is the energy deposited by the DM particle in the scattering,
Ei (E f ) is the initial (final) electron energy, β = 1/T is the
reciprocal of the thermodynamic temperature of the material,
Z = ∑

i exp(−βEi ) is the partition function, and

〈FαF ∗
β 〉 = 1

2

∑
ss′

F ss′
α F ss′∗

β . (37)

Recalling that the correlation function of two density or cur-
rent operators Kj†

β jα
(q, ω) can be written as in Eq. (C4),

Kj†
β jα

(q, ω) = 2π

V

∑
i, f

e−βEi

Z
〈 f | jα (−q)|i〉〈i| j†

β (q)| f 〉

× δ(E f − Ei − ω) (38)

where

Kj†
β jα

(q, ω) =
∫

d(t − t ′)eiω(t−t ′ )
∫

d(r − r′)e−iq·(r−r′ )

× Kj†
β jα

(r − r′, t − t ′) (39)

is the double Fourier transform of Kj†
β jα

(r − r′, t − t ′), we find

d
 =
(

1

16m2
em2

χ

) ∫ +∞

−∞
dω

∑
αβ

〈FαF ∗
β 〉 Kj†

β jα
(q, ω)

× δ(ω + �Eχ )
dq

(2π )3
, (40)

Here and in the following, we implicitly assume that corre-
lation functions depend on the difference r − r′, and not on
r and r′ separately. This is true in the case of translationally
invariant systems, and it applies to a good approximation to

the case of crystals [51]. We will further comment on the
meaning and impact of this assumption at the end of Sec. III A.

Finally, in order to obtain the total rate of DM-induced
electronic transitions in a given detector material, we integrate
the differential rate in Eq. (35) over transfer momentum, q,
and DM particle velocities in the laboratory frame v,

R = nχV
∫

dq
∫

dv f (v)
d


dq
, (41)

where f (v) is the DM velocity distribution in the laboratory
frame, while nχ is the local DM number density at the de-
tector. For f (v), we assume a truncated Maxwell-Boltzmann
distribution with local standard of rest speed v0 = 238 km s−1

[52], galactic escape speed vesc = 544 km s−1 [52] and Earth’s
speed in a reference frame where the mean DM particle ve-
locity is zero, ve = 250.5 km s−1 [52]. For nχ = ρχ/mDM, we
assume ρχ = 0.4 GeV cm−3 [53].

It is important to note that the effective potential V ss′
eff

in Eq. (33) is evaluated at a reference time, say t = 0.
In the interaction picture, we obtain the effective potential
at a generic time t , V ss′

eff (t ), by replacing V̂X (re, rχ ) with
exp(iH0t )V̂X (re, rχ ) exp(−iH0t ) in Eq. (22), where H0 is the
Hamiltonian of the DM-electron system with V ss′

eff = 0. V ss′
eff (t )

can then be written as follows:

V ss′
eff (t ) = −

∑
α

∫
dr Bα (r) Sss′

α (r, t ), (42)

with

Bα (r) =
∫

dq′

(2π )3
eiq′ ·r jα (q′), (43)

and

Sss′
α (r, t ) = 1

4memχV
F ss′

β eiq·r ei�Eχ t . (44)

III. THE GENERALIZED SUSCEPTIBILITY FORMALISM

A. Generalized susceptibilities in linear response theory

The effective potential V ss′
eff (t ) in Eq. (42) can be interpreted

as an external perturbation affecting the physical observables
of any given detector material. Here, the physical observables
of interest are the electron densities and currents in Eqs. (31)
and (32), which we collectively denoted by jα , α = 1, . . . , 11.
In linear response theory, the fluctuation 〈� jα (r, t )〉 induced
on the generic electron density or current jα by the potential
V ss′

eff (t ) is given by

〈� jα (r, t )〉 =
∑

β

∫ t

−∞
dt ′

∫
dr′ χ jα jβ (r − r′, t − t ′)

× Sss′
β (r′, t ′), (45)

where

χ jα jβ (r − r′, t − t ′) = iθ (t − t ′)〈[ jα (r, t ), jβ (r′, t ′)]〉 (46)

is the generalized susceptibility associated with jα and jβ .
Since χ jα jβ (r − r′, t − t ′) = 0 for t − t ′ < 0, χ jα jβ expresses
the response of the electron density or current jα to the
perturbation Sss′

β jβ in terms of a retarded Green’s function.
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Similarly, one can introduce a generalized susceptibility as-
sociated with jα and jβ that quantifies the same response in
terms of an advanced correlation function,

χA
jα jβ (r − r′, t − t ′) = −iθ (t ′ − t )〈[ jα (r, t ), jβ (r′, t ′)]〉.

(47)

From the spectral representations of χ jα jβ , Eq. (C8), and of the
correlation function Kjα jβ , Eq. (C4), we also find

χ jα jβ (q, ω) = − 1

2π

∫ +∞

−∞
dω′ Kjα jβ (q, ω′)

ω − ω′ + iδ

× (1 − e−βω′
), (48)

where δ is an infinitesimal parameter larger than zero, and

χ jα jβ (q, ω) =
∫

d(t − t ′)eiω(t−t ′ )
∫

d(r − r′)e−iq·(r−r′ )

× χ jα jβ (r − r′, t − t ′) (49)

is the double Fourier transform of χ jα jβ (r − r′, t − t ′).
Similarly,

χA
jα jβ (q, ω) = − 1

2π

∫ +∞

−∞
dω′ Kjα jβ (q, ω′)

ω − ω′ − iδ

× (1 − e−βω′
). (50)

Notice that

lim
δ→0+

χ jα jβ (q, ω) = i

2
Kjα jβ (q, ω)(1 − e−βω )

− 1

2π
P

∫ +∞

−∞
dω′ Kjα jβ (q, ω′)

ω − ω′

× (1 − e−βω′
) (51)

where P denotes the principal value. Analogously, one has

lim
δ→0+

χA
jα jβ (q, ω) = − i

2
Kjα jβ (q, ω)(1 − e−βω )

− 1

2π
P

∫ +∞

−∞
dω′ Kjα jβ (q, ω′)

ω − ω′

× (1 − e−βω′
), (52)

which implies

χ jα jβ (q, ω) − χA
jα jβ (q, ω) = iKjα jβ (q, ω)(1 − e−βω ). (53)

For jβ = j†
α , the above equation reduces to the simple relation

Kjα j†
α
(q, ω) = 2(1 − e−βω )−1Im

(
χ jα j†

α
(q, ω)

)
, (54)

being

χ∗
j†
β j†

α
(q, ω) = χA

jα jβ (q, ω), (55)

as we show in Appendix C [see Eq. (C12)]. Equations (53) and
(54) are our starting point to relate the rate of DM-induced
electronic transitions to a set of generalized susceptibilities
associated with the electron densities and currents jα .

As anticipated, here we assume that correlation functions
and generalized susceptibilities depend on r − r′. When χ jα jβ

depends on r and r′ separately, the above equations have to be
revisited by using the Fourier transform,

χ jα jβ (q, q′, t − t ′) =
∫

dr
∫

dr′ e−q·re−q′ ·r′

× χ jα jβ (r, r′, t − t ′), (56)

which depends on two conjugate momenta, q and q′. The
latter are such that q + q′ is a reciprocal lattice vector. In this
case, it is customary to restrict q and q′ to the first Brillouin
zone, and express the double Fourier transform of χ jα, jβ as a
matrix in reciprocal space, namely

χGG′
jα, jβ (q, ω) ≡ 1

V
χ jα, jβ (q + G,−q − G′, ω), (57)

where q is in the first Brillouin Zone, while G and G′ are
reciprocal lattice vectors. With this notation, Eq. (45) implies

〈� jα (q + G, ω)〉 =
∑

β

∑
G′

χGG′
jα, jβ (q, ω)Sss′

β (q + G′, ω).

(58)

Notice that when the correlation functions and generalized
susceptibilities depend only on r − r′ rather than r and r′
separately, Eq. (57), reduces to

χGG′
jα, jβ (q, ω) ≡ 1

V
δGG′χ jα, jβ (q + G,−q − G, ω). (59)

Consequently, the r − r′ assumption corresponds to neglect-
ing the G′ �= G terms in the sum in Eq. (58). These terms
account for variations of the external DM perturbation over
atomic distances, and correspond to so-called local-field cor-
rections. Our r − r′ assumption is supported by recent studies
[20,21,54] in which local-field corrections have been studied
in models where DM couples to the density n0, finding that
they are a sub-leading effect compared to screening. The
role of the electron density-density response function in DM-
electron scattering is also discussed in [55], with a focus on
anisotropic scattering.

B. Electronic transition rate and generalized susceptibilities

Without restricting q to the first Brillouin zone, we can now
use Eqs. (53) and (54) to rewrite the differential rate of DM-
induced electronic transitions in materials as

d
 =
(

1

8m2
em2

χ

)∫ +∞

−∞
dω

1

(1 − e−βω )
δ(ω + �Eχ )

×
∑

β

∑
α�β

2−δαβ Re
[〈FαF ∗

β 〉 i
(
χA

j†
β jα

− χ j†
β jα

)] dq
(2π )3

.

(60)

When DM couples to the electron density n0, we can apply
Eq. (54) to express our rate formula, Eq. (60), as in [20,21],

d
 =
(

1

8m2
em2

χ

) ∫ +∞

−∞
dω

1

(1 − e−βω )
〈F0F ∗

0 〉Im(
χn†

0n0

)
× δ(ω + �Eχ )

dq
(2π )3

. (61)
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In this particular case, we can use the relation between sus-
ceptibility, χn†

0n0
, and dielectric function of the material,

1

εr (q, ω)
= 1 − 4πα

q2
χn†

0n0
(q, ω) (62)

to express d
 in terms of the measurable quantity εr (q, ω).
The minus sign on the right-hand side arises from our defini-
tion of generalized susceptibility in Eq. (46).

Similarly, if jα and jβ , are the spatial components of the
same current, e.g., j5 l , l = 1, 2, 3, Eq. (60) reduces to

d
 =
(

1

16m2
e m2

χ

) ∫ +∞

−∞
dω

1

(1 − e−βω )
δ(ω + �Eχ )

×
∑
αβ

Re
[〈Fjα F ∗

jβ 〉 i
(
χA

j†
β jα

− χ j†
β jα

)] dq
(2π )3

. (63)

IV. EVALUATION OF THE GENERALIZED
SUSCEPTIBILITIES

Let us now focus on the evaluation of the generalized sus-
ceptibilities associated with the electron densities and currents
in Eqs. (31) and (32). We start by deriving a time evolution
equation for χ jα jβ (q, t ) in second quantization. We then find
a “mean field” solution to this equation, for which we also
provide a useful diagrammatic interpretation. This approach
enables us to account for potentially important screening and
collective excitation effects, which previous descriptions of
general DM-electron interactions in materials [6,18,30,32]
could not capture.

A. Second quantization form for jα

Let us start by writing the densities and currents in
Eqs. (31) and (32) in second quantized notation. For n0, we
find

n̂0(r, t ) = 1

Ncell

∑
ii′

∑
σσ ′

ψ̂
†
i′σ ′ (r, t ) ψ̂iσ (r, t ), (64)

where

ψ̂iσ (r, t ) ≡ 1√
V

∑
k

eik·r uik(r) ησ cσ
ik(t ), (65)

and uik(r) is a periodic function with the same periodicity as
the underlying lattice, and with Fourier modes uik+G,

uik(r) =
∑

G

eiG·r uik+G, (66)

where G is a reciprocal lattice vector. Here cσ
ik (cσ†

ik ) is the
annihilation (creation) operator for an electron in band i,
with reciprocal space vector in the first Brillouin zone k and
spin configuration labeled by σ . Spin-up electrons correspond
to η↑ = (1, 0)T , whereas spin-down electrons correspond to
η↓ = (0, 1)T . Notice also that the Fourier transform of the

density operator in Eq. (64) can be written as

n̂0(q, t ) = 1

Ncell

∑
ii′

∑
σσ ′

∑
kk′GG′

u∗
i′k′+G′ uik+G ησ ′†ησ (2π )3

V
δ(3)

× (k′ + G′ + q − k − G)cσ ′†
i′k′ (t )cσ

ik(t ), (67)

or in a more compact form as

n̂0(q, t ) =
∑

ii′σσ ′k

J ii′σσ ′
n0

(k + q, k) cσ ′†
i′k (t )cσ

ik+q(t ), (68)

where

J ii′σσ ′
n0

(k + q, k) ≡
∑

G

u∗
i′k+G uik+q+G δσ ′σ . (69)

Here we used the definition V = NcellVcell, as well as
(
∑

k 1) = Ncell. Notice that the expectation value of n̂0(q, t )
between single-particle states with q = p − p′ gives

〈p′ j′ρ ′|n̂0(q, t )|p jρ〉 = J j j′ρρ ′
n0

(p, p − q), (70)

which shows the equivalence between Eqs. (67) and (31),
and explains the 1/Ncell factor in Eq. (64). By performing an
analogous calculation for the density nA, we find

n̂A(q, t ) =
∑

ii′σσ ′k

J ii′σσ ′
nA

(k + q, k) cσ ′†
i′k (t )cσ

ik+q(t ), (71)

where now

J ii′σσ ′
nA

(k + q, k) ≡
∑

G

u∗
i′k+G uik+q+G(2me)−1

× [2(k + G) + q] · ησ ′†σησ . (72)

Similarly, writing the current j5 in second quantized notation,
we find

ĵ5 l (q, t ) =
∑

ii′σσ ′k

J ii′σσ ′
5 l (k + q, k) cσ ′†

i′k (t )cσ
ik+q(t ), (73)

where

J ii′σσ ′
5 l (k + q, k) ≡

∑
G

u∗
i′k+G uik+q+G ησ ′†σl ησ , (74)

Equation (73) holds true for the currents jM and jE if one
replaces J ii′σσ ′

5 l (k + q, k) with, respectively, the two vectors

J ii′σσ ′
M l (k + q, k) ≡

∑
G

u∗
i′k+G uik+q+G(2me)−1

× [2(k + G) + q]lδσ ′σ , (75)

and

J ii′σσ ′
E l (k + q, k) ≡ −i

2me

∑
G

u∗
i′k+G uik+q+G

3∑
m,n=1

εlmn

× [2(k + G) + q]mησ ′†σ nησ . (76)

By introducing a notation similar to the one we used in
Eq. (34), i.e.,

ĵα = (n̂0, n̂A, ĵ5, ĵM, ĵE ), (77)

and

Jα = (Jn0 ,JnA ,J5 1,J5 2,J5 3,JM 1, . . . ,JE 1, . . . ),
(78)
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we collectively write all density and current operators as fol-
lows:

ĵα (q, t ) =
∑

ii′σσ ′k

J ii′σσ ′
α (k + q, k) cσ ′†

i′k (t )cσ
ik+q(t ), (79)

where now α = 1, . . . , 11.

B. Equation of motion for χ jα jβ

Next, we introduce the momentum-, band-, and spin-
resolved susceptibility,

χ ii′σσ ′
jα jβ (k, q, t − t ′) = iθ (t − t ′)

∑
k′

∑
j j′

∑
ρρ ′

1

V
J ii′σσ ′

α

× (k + q, k)J j j′ρρ ′
β (k′, k′ + q)

× 〈[
cσ ′†

i′k (t )cσ
ik+q(t ), cρ ′†

j′k′+q(t ′)cρ

jk′ (t ′)
]〉
,

(80)

such that

χ jα jβ (q, t − t ′) =
∑

k

∑
ii′

∑
σσ ′

χ ii′σσ ′
jα jβ (k, q, t − t ′). (81)

We obtain a differential time evolution equation for the sus-
ceptibility χ ii′σσ ′

jα jβ (k, q, t − t ′) by acting on Eq. (80) with the
operator id/dt , and rewriting the right-hand side of the latter
as a function of χ ii′σσ ′

jα jβ (k, q, t − t ′). In the right-hand side
of Eq. (80), id/dt acts nontrivially on θ (t − t ′) and on the
product cσ ′†

i′k (t )cσ
ik+q(t ). When id/dt acts on θ (t − t ′), it gen-

erates the Dirac delta iδ(t − t ′), which implies t ′ = t in the
commutator in the right-hand side of Eq. (80). Evaluating this
equal-time commutator, we find〈[

cσ ′†
i′k cσ

ik+q, cρ ′†
j′k′+qcρ

jk′
]〉 = δσρ ′δi j′δkk′

〈
cσ ′†

i′k cρ

jk′
〉

− δρσ ′δ ji′δkk′
〈
cρ ′†

j′k′+qcσ
ik+q

〉
= δσρ ′δσ ′ρδi j′δi′ jδkk′

× [
f0

(
εσ ′

i′k
) − f0

(
εσ

ik+q

)]
. (82)

where the equilibrium occupation numbers f0, e.g.,

f0
(
εσ

ik

) ≡ Ncell
e−βεσ

ik

Z
, (83)

arise from 〈
cσ ′†

i′k cρ

jk′
〉 = δi′ jδσ ′ρδkk′ f0

(
εσ ′

i′k
)
,〈

cρ ′†
j′k′+qcσ

ik+q

〉 = δi j′δσρ ′δkk′ f0
(
εσ

ik+q

)
. (84)

When id/dt acts on cσ ′†
i′k (t )cσ

ik+q(t ), it generates the commuta-
tors,

i
d

dt

[
cσ ′†

i′k (t )cσ
ik+q(t )

] = −[
H0 + He−e, cσ ′†

i′k (t )
]
cσ

ik+q(t )

− cσ ′†
i′k (t )

[
H0 + He−e, cσ

ik+q(t )
]
,

(85)

where in the right-hand side of Eq. (85) we used the Heisen-
berg equations for the operators cσ ′†

i′k (t ) and cσ
ik+q(t ). Here,

H0 and He−e are the free-electron and electron-electron inter-
action Hamiltonians in second quantization, which for Bloch
electrons can be written as follows:

H0 =
∑
ikσ

εσ
ik cσ†

ik (t )cσ
ik(t ), (86)

He−e = 1

2V

∑
pp′q′

∑
σ1σ2

∑
n1n2n3n4

∑
G1G2

U (q′)

× u∗
n1p+q′+G1

u∗
n2p′−q′+G2

un3p′+G2 un4p+G1

× cσ1†
n1p+q′ (t )cσ2†

n2p′−q′ (t )cσ2
n3p′ (t )cσ1

n4p(t ), (87)

where U (q′) is the Fourier transform of the Coulomb potential
for electron-electron interactions. Contrary to the external DM
perturbation V ss′

eff , our choice for He−e assumes that electron-
electron interactions do not induce spin-flips. We also assume
that V ss′

eff can be neglected in the Heisenberg equations for
cσ ′†

i′k (t ) and cσ
ik+q(t ), although it is taken into account in the

time evolution equation for χ ii′σσ ′
jα jβ (k, q, t − t ′) via the Jα

functions in Eq. (80). With these expressions for H0 and He−e,
we now evaluate the commutators in the right-hand-side of
Eq. (85), [

H0, cσ ′†
i′k (t )

] = εσ ′
i′k cσ ′†

i′k (t ),[
H0, cσ

ik+q(t )
] = −εσ

ik+q cσ
ik+q(t ), (88)

as well as[
He−e, cσ ′†

i′k (t )
] = 1

V

∑
p′q′

∑
σ2

∑
n1n2n3

∑
G1G2

U (q′)

× u∗
n1k+q′+G1

u∗
n2p′−q′+G2

un3p′+G2 ui′k+G1

× cσ ′†
n1k+q′ (t )cσ2†

n2p′−q′ (t )cσ2
n3p′ (t ), (89)

and[
He−e, cσ

ik+q(t )
] = − 1

V

∑
p′q′

∑
σ2

∑
n2n3n4

∑
G1G2

U (q′)u∗
ik+q+G1

× u∗
n2p′−q′+G2

un3p′+G2 un4k+q−q′+G1

× cσ2†
n2p′−q′ (t )cσ2

n3p′ (t )cσ
n4k+q−q′ (t ). (90)

Inserting the commutators in Eqs. (88)–(90) into the right-
hand-side of Eq. (85), one generates two products of pairs of
creation and annihilation operators, which, in a “mean-field
approximation”, we decouple as follows:

cσ ′†
n1k+q′c

σ2†
n2p′−q′c

σ2
n3p′cσ

ik+q � 〈
cσ2†

n2p′−q′c
σ2
n3p′

〉
cσ ′†

n1k+q′cσ
ik+q

− 〈
cσ ′†

n1k+q′c
σ2
n3p′

〉
cσ2

n2p′−q′cσ
ik+q

+ 〈
cσ ′†

n1k+q′cσ
ik+q

〉
cσ2†

n2p′−q′c
σ2
n3p′

− 〈
cσ2†

n2p′−q′cσ
ik+q

〉
cσ ′†

n1k+q′c
σ2
n3p′ , (91)

and

cσ ′†
i′k cσ2†

n2p′−q′c
σ2
n3p′cσ

n4k+q−q′ � 〈
cσ2†

n2p′−q′c
σ2
n3p′

〉
cσ ′†

i′k cσ
n4k+q−q′

− 〈
cσ2†

n2p′−q′cσ
n4k+q−q′

〉
cσ ′†

i′k cσ2
n3p′

+ 〈
cσ ′†

i′k cσ
n4k+q−q′

〉
cσ2†

n2p′−q′c
σ2
n3p′

− 〈
cσ ′†

i′k cσ2
n3p′

〉
cσ2†

n2p′−q′cσ
n4k+q−q′ ,

(92)
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where we omit terms involving the product of two ex-
pectations values as they commute with cρ ′†

j′k′+q(t ′)cρ

jk′ (t ′),
and thus do not contribute to the equation of motion for
χ ii′σσ ′

jα jβ (k, q, t − t ′). Notice that the expectation values in
Eqs. (91) and (92) can be expressed in terms of equilibrium
occupation numbers and Kronecker deltas, as in Eq. (84).

The first and second lines in Eqs. (91) and (92) con-
tribute to the time derivative of cσ ′†

i′k cσ
ik+q by renormalizing

the energies εσ
ik+q and εσ ′

i′k, and will therefore not be con-
sidered further. The third and fourth lines in Eqs. (91)
and (92) contribute to the time derivative in Eq. (85)
as follows:

i
d

dt

(
cσ ′†

i′k cσ
ik+q

) = (
ε σ

ik+q − ε σ ′
i′k

)
cσ ′†

i′k cσ
ik+q +

[
f0

(
ε σ ′

i′k

) − f0
(
ε σ

ik+q

)]
V

∑
p′

∑
n2n3

∑
σ2σ3

{
U (q)J i′iσ ′σ

n0
(k, k + q)J n3n2σ3σ2

n0
(p′, p′ − q)

− U (p′ − k − q) δσ ′σ2δσσ3

∑
G1G2

u∗
n2 p′−q+G1

u∗
i k+q+G2

un3 p′+G2 ui′ k+G1

}
cσ2†

n2p′−qcσ3
n3p′, (93)

where the first term arises from the commutators in Eq. (88), while the second (third) term originates from the third (fourth) line
in Eqs. (91) and (92). Within the Hubbard approximation introduced in [56], we simplify the third line in Eq. (93) by neglecting
the terms with G1 �= 0 and G2 �= 0 (i.e., corresponding to Umklapp processes), and noticing that the largest contribution to the
sum over p′ arises from momenta with |p′ − k| � kF , where kF is the material’s Fermi momentum. We account for this latter
point by replacing U (p′ − k − q) with 4πα/(q2 + k2

F ) in the above expression. Introducing then the following function, which
is called the local-field factor,

G(q) ≡ 1

2

q2

q2 + k2
F

, (94)

we can finally combine Eqs. (93) and (82) with the definition in Eq. (80) to write down the following equation of motion

i
d

dt
χ ii′σσ ′

jα jβ (k, q, t − t ′) = (
εσ

ik+q − εσ ′
i′k

)
χ ii′σσ ′

jα jβ (k, q, t − t ′) + f0
(
εσ

ik+q

) − f0
(
εσ ′

i′k

)
V

{
δ(t − t ′)J ii′σσ ′

α (k + q, k)J i′iσ ′σ
β (k, k + q)

− U (q)[1 − G(q)]J ii′σσ ′
α (k + q, k)J i′iσ ′σ

n0
(k, k + q) χn0 jβ (q, t − t ′)

}
, (95)

where in the term proportional to the G(q) function, we used

χ ii′σσ ′
n0 jβ (k, q, t − t ′) = δσσ ′

1

2

∑
ρρ ′

χ
ii′ρρ ′
n0 jβ

(k, q, t − t ′), (96)

and only accounted for the spin-diagonal contribution propor-
tional to δσσ ′ .

C. Solution in frequency space

By rewriting χ jα jβ (k, q, t − t ′) in terms of its Fourier trans-
form χ jα jβ (k, q, ω), Eq. (95) becomes an algebraic equation,
which can be solved exactly after summing left- and right-
hand sides over reciprocal space vectors k, spin indices σ and
σ ′ as well as band indices i and i′. Introducing

� jα jβ (q, ω) = 1

V

∑
k

∑
ii′

∑
σσ ′

f0
(
εσ

ik+q

) − f0
(
εσ ′

i′k

)
ω − εσ

ik+q + εσ ′
i′k + iδ

× J ii′σσ ′
α (k + q, k)J i′iσ ′σ

β (k, k + q), (97)

we find

χ jα jβ (q, ω) = � jα jβ (q, ω)

−� jαn0 (q, ω)U (q)[1 − G(q)]χn0 jβ (q, ω). (98)

Before solving Eq. (98) to obtain an explicit expression for
χ jα jβ (q, ω), let us notice that for jα = n0, Eq. (98) implies

χn0 jβ (q, ω) = �n0 jβ (q, ω)

1 + U (q)[1 − G(q)]�n0n0 (q, ω)
, (99)

which for jβ = n0 gives the density-density response function

χn0n0 (q, ω) = �n0n0 (q, ω)

1 + U (q)[1 − G(q)]�n0n0 (q, ω)

= �n0n0 (q, ω)

εr (q, ω)
, (100)

where in the second line we identified the dielectric function
with [57]

εr (q, ω) = 1 + U (q)[1 − G(q)]�n0n0 (q, ω). (101)

Notice that the plus sign in front of U (q) arises from our
definition of generalized susceptibility in Eq. (46). Inserting
now Eq. (99) into Eq. (98), we obtain our final expression for
the generalized susceptibility χ jα jβ (q, ω), namely,

χ jα jβ (q, ω) = � jα jβ (q, ω)

− � jαn0 (q, ω)U (q)[1 − G(q)]�n0 jβ (q, ω)

1 + U (q)[1 − G(q)]�n0n0 (q, ω)
,

(102)

which is one of the main results of our paper. Let us interpret
this result by first focusing on the case G = 0, where the
generalized susceptibility χ jα jβ (q, ω) can be written as

χ jα jβ (q, ω) = � jα jβ (q, ω) − � jαn0 (q, ω)U (q)�n0 jβ (q, ω)

1 + U (q)�n0n0 (q, ω)
.

(103)
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For G = 0, Eq. (101) gives the dielectric function in the
random phase approximation (RPA), Eq. (100) reproduces
the RPA result for the density-density response function,
while Eq. (103) with jα = jM,α and jβ = jM,β , α, β = 1, 2, 3
[i.e., the spatial components of the paramagnetic current, see
Eq. (32)], gives the known RPA result for the current-current
response function in electrodynamics. We thus conclude that,
for G = 0, our formalism based on linear response theory, the
equation of motion method, and the mean field approximation
in Eqs. (91) and (92) provides us with generalized susceptibil-
ities in the RPA limit.

Our RPA results capture potentially important effects re-
lated with screening and collective excitations in detector
materials. This is simple to illustrate by focusing on the
generalized susceptibilities χn0 jβ (q, ω), with G = 0. After ra-
tionalizing the denominator in Eq. (99), we find

χn0 jβ = �n0 jβ (1 + U (q)�n0n0 )∗

[1 + U (q)Re�n0n0 ]2 + [U (q)Im�n0n0 ]2
, (104)

where we omitted the dependence on momentum and energy
of �n0 jβ and of the real and imaginary parts of �n0n0 to
simplify the notation. As one can see from Eq. (104), for
frequencies ω and momenta q such that U (q)Re�n0n0 � −1
and U (q)Im�n0n0 � 1, the susceptibility χn0 jβ is enhanced by
collective excitations. For |U (q)�n0n0 | � 1, it is suppressed
by screening effects. We will refer to these phenomena as
“in-medium” effects.

Going beyond the RPA approximation, let us now focus
on the case G �= 0. In order to understand the implications of
G �= 0, let us use Eq. (B9) to introduce the density,

nind(r, t ) =
∑

α

∫ t

−∞
dt ′

∫
dr′ χn0 jα (r − r′, t − t ′)Sss′

α (r′, t ′),

(105)

where nind ≡ 〈�n0〉 is the change in electron density in the
given material induced by the external DM perturbation of
strength Sss′

α . In analogy with the electrostatic case [58], we
can now introduce a fictitious “electron density” next (r, t ),
which represents the source of the external DM perturbation,
and which is defined as follows:

next (q, ω) ≡
∑

β

�n0β (q, ω)Sss′
β (q, ω)

1

U (q)�n0n0 (q, ω)
.

(106)

Using Eq. (106), we find that Eq. (98) implies the following
relation between the induced and external electron densities,

nind(q, ω) = [next (q, ω) − (1 − G(q))nind(q, ω)]

× U (q)�n0n0 (q, ω). (107)

Recalling now that the density-density response function is
defined as the ratio of the electron density induced by the
external perturbation, nind, and the total electron density in the
material, neff [58], we can rewrite Eq. (107) as

nind(q, ω) = U (q)�n0n0 (q, ω)neff (q, ω), (108)

where

neff (q, ω) ≡ next (q, ω) − (1 − G(q))nind(q, ω). (109)

We conclude that, for G �= 0, the number of electrons actually
contributing to the screening of next in Eq. (108), is reduced
by a factor of 1 − G(q), e.g., 1/2 in the large |q| limit.
This reduction can be understood by realising that for small
distances (i.e., large |q|) the spin-resolved electron density-
density correlation function [59] drops to zero for electron
pairs of the same spin because of the Pauli exclusion prin-
ciple, as can been shown analytically within the Hartree-Fock
approximation [60]. Consequently, in the large |q| limit only
half of the electrons can contribute to the screening of the
external electron density given in Eq. (106).

By neglecting both Hubbard and RPA corrections, we find
that the generalized susceptibility χ jα jβ further simplifies to

χ jα jβ (q, ω) = � jα jβ (q, ω). (110)

This equation neglects in-medium effects and reproduces our
previous results obtained by using single-particle atomic wave
functions [6] and Bloch states expanded in a plane-wave basis
[18], as we will see in Secs. V A and VI B.

Notice that a change in the underlying electron wave func-
tions would primarily affect the J ii′σσ ′

α coefficients in the
second quantization form of the electron densities and cur-
rents. Since we have expressed the solution to the equation of
motion for the relevant generalized susceptibilities in terms
the J ii′σσ ′

α coefficients, the results presented in our paper are
fairly material independent, as long as we restrict ourselves to
non-spin-polarized materials.

D. Diagrammatic interpretation

The solution in Eq. (102) admits an insightful di-
agrammatic representation that is valid for |U (q)(1 −
G(q))�n0n0 (q, ω)| < 1. To illustrate this point, we first rewrite
the susceptibility χ jα jβ (q, ω) as a geometric series,

χ jα jβ (q, ω) = � jα jβ (q, ω) + � jαn0 (q, ω)U (q)[G(q) − 1]�n0 jβ

× (q, ω)
∞∑

�=0

[U (q)(G(q) − 1)�n0n0 (q, ω)]�.

(111)

Recalling then that the susceptibility χ jα jβ is by definition
a retarded Green’s function, and that it thus describes the
propagation of an electron-hole pair in a medium, we can
represent the first term in Eq. (111) as follows:

This irreducible diagram describes the creation of an electron-
hole pair in an interaction associated with the density or
current jα followed by its annihilation induced by jβ .

The geometric series in the second and third line of
Eq. (111) describes in-medium effects that are not captured
by � jα jβ . The term with � = 1 can be represented by
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where the Coulomb repulsion and exchange factor
U (q)[G(q) − 1] has been represented diagrammatically
by a wiggled line. Here and in what follows, we denote the
vertices associated with the density n0 by a black dot.

By including the remaining terms with � > 1, we finally
obtain the desired diagrammatic representation for χ jα jβ ,
namely

Our diagrammatic representation for χ jα jβ clearly illustrates
that the interaction between a propagating electron-hole pair
and the surrounding medium is governed by the Coulomb
repulsion and exchange factor U (q)[G(q) − 1], as well as by
the density-density response function �n0n0 , but it does not
depend on the details of the underlying DM interaction, which
are encoded in jα and jβ .

V. SCREENED VS UNSCREENED SUSCEPTIBILITIES

In this section, we focus on the numerical implementation
of Eq. (102). In particular, we are interested in the relative size
of screened and unscreened contributions to χ jα jβ .

A. Unscreened susceptibilities: � jα jβ

Let us start our study by showing that the first term in
Eq. (102) can be related to the “response functions” we com-
puted in [18] by using single-particle Bloch states expanded
in a plane-wave basis. To this end, let us introduce the scalar
and vector electron wave function overlap integrals,

fi→ f (q) =
∫

dr ψ∗
f (r)eiq·rψi(r),

fi→ f (q) = − i

me

∫
dr ψ∗

f (r)eiq·r∇rψi(r), (112)

where

ψi(r) = 1√
V

∑
G

ei(k+G)·r ui k+Gησ ,

ψ f (r) = 1√
V

∑
G′

ei(k′+G′ )·r ui′ k′+G′ησ ′
. (113)

Notice the minus sign in the equation for fi→ f (q), this was
missing in [6,18,46], where the response function W2 [defined
below Eq. (121)] has the wrong sign. Furthermore, let us

introduce the following compact notation:

| f |2 = 1

2

∑
i, f

e−βEi

Z
fi→ f f ∗

i→ f (2π )δ(E f − Ei − ω),

fl f ∗
m = 1

2

∑
i, f

e−βEi

Z
fi→ f · e(l ) f∗

i→ f · e(m)

× (2π )δ(E f − Ei − ω),

f f ∗
l = 1

2

∑
i, f

e−βEi

Z
fi→ f f∗

i→ f · e(l ) (2π )δ(E f − Ei − ω),

(114)

where el and em are unit vectors in the lth and mth direction
of a cartesian coordinate system, while the sums read as∑

i, f

=
∑

ii′kk′σσ ′
. (115)

Notice that, e.g.,

fi→ f f ∗
i→ f = |〈 f |eiq·r|i〉|2k′−k−q+�G=0. (116)

Here, �G is the unique reciprocal lattice vector such that
for a given q, k − k′ is in the first Brillouin zone. With this
notation, we take the δ → 0+ limit in Eq. (97) and find

Im(�n†
0n0

) = �| f |2,

Im(�n†
AnA

) = �

[
q2

4m2
e

| f 2| + f · f∗ + qi

me
Re( f f ∗

i )

]
, (117)

where

� = 1

V
(1 − e−βω ). (118)

By using the notation

�� jα jβ ≡ (
� jα jβ − �A

jα jβ

)|δ→0+ , (119)

and combining Eq. (97) with the spectral representation for
the anticipated susceptibilities, Eq. (C10), we also find

Im�� j†
5l j5m

= 2�| f |2 δlm,

Im�� j†
Ml jMm

= 2�

[
Im(i f ∗

l fm) + Im

(
iqm

2me
f f ∗

l + iql

2me
f ∗ fm

)
+ ql qm

4m2
e

| f 2|
]
,

Re�� j†
Ml jMm

= 2� Re

[
i f ∗

l fm +
(

iqm

2me
f f ∗

l + iql

2me
f ∗ fm

)]
,

Im�� j†
El jEm

= 2�(δlmδss′ − δls′δsm)

[
qsqs′

4m2
e

| f 2| + Im(i f ∗
s fs′ )

+ Im

(
iqs′

2me
f f ∗

s + iqs

2me
f ∗ fs′

)]
. (120)

Finally, for the “off-diagonal” susceptibilities that contribute
to the rate of DM-induced electronic transitions, we find

Im�� j†
Ml n0

= �

[
ql

me
| f 2| + 2Re( f f ∗

l )

]
,

Re�� j†
Ml n0

= −2�Im( f f ∗
l ),
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Im��n†
A j5l

= Im�� j†
Ml n0

,

Re��n†
A j5l

= Re�� j†
Ml n0

,

Im�� j†
5l jEm

= −2�εilmIm( f f ∗
i ),

Re�� j†
5l jEm

= �

[
qi

me
εilm| f |2 + 2εilmRe( f f ∗

i )

]
,

Im�� j†
El nA

= −2�

[
i(f × f∗)l + εlmn

qn

me
Im( f f ∗

m)

]
. (121)

All other susceptibilities vanish. Equations (117), (120), and
(121) allow us to derive explicit relations between the trace,
longitudinal and transverse parts of our generalized suscep-
tibilities and the crystal response functions of [18], here
denoted by Wi ≡ Wi(q, ω), with i = 1, . . . , 5. Specifically,

Im(�n†
0n0

) = π2�̃

ω
W1,

Im(�n†
AnA

) = π2�̃

ω

[
q2

4m2
e

W1 + W3 + Re(W2)

]
, (122)

where �̃ = Ncell�. Furthermore,

qlqm

m2
e

Im�� j†
Ml jMm

= 2π2�̃

ω

[
q4

4m4
e

W1 + W4 + q2

m2
e

Re(W2)

]
,

δlmIm�� j†
Ml jMm

= 2π2�̃

ω

[
q2

4m2
e

W1 + W3 + Re(W2)

]
,

εlmi
qi

me
Re�� j†

Ml jMm
= −2π2�̃

ω
W5,

ql qm

m2
e

Im�� j†
El jEm

= 2π2�̃

ω

[
q2

m2
e

W3 − W4

]
,

δlmIm�� j†
El jEm

= 2π2�̃

ω

[
q2

2m2
e

W1 + 2W3 + Re(W2)

]
,

(123)

and finally,

ql

me
Im�� j†

Ml n0
= π2�̃

ω

[
q2

m2
e

W1 + 2Re(W2)

]
,

ql

me
Re�� j†

Ml n0
= −2π2�̃

ω
Im(W2),

q j

me
ε jlmIm�� j†

5l jEm
= −4π2�̃

ω
Im(W2),

q j

me
ε jlmRe�� j†

5l jEm
= π2�̃

ω

[
2q2

m2
e

W1 + 4Re(W2)

]
,

ql

me
Im�� j†

El nA
= −2

π2�̃

ω
W5. (124)

In the numerical results presented in Sec. VI A, we use
Eqs. (122)–(124) and the crystal response functions Wi, i =
1, . . . , 5, we previously computed for silicon and germanium
in [18] to evaluate the first term in Eq. (102), �αβ . In [18],
the numerical evaluation of the Wi functions was implemented
in QEDARK-EFT [61], an extension of the QEDARK code [10],
which interfaces with the plane-wave self-consistent field

(PWscf) DFT code QUANTUM ESPRESSO [62]. We refer to [18]
for further details.

As a last point, we emphasize that starting from atomic
wave functions, rather than the Bloch wave functions in
Eq. (113), analogous relations could be established between
the generalized susceptibilities identified in this paper and the
atomic response functions we introduced in [6].

B. Screened susceptibilities

Let us now focus on the numerical evaluation of the in-
medium corrections to the susceptibilities χ jα jβ , restricting
ourselves to the case of non-spin-polarized materials. Spin-
polarized materials will be studied elsewhere in a separate
study.

In-medium corrections to the generalized susceptibilities
χ jα jβ are encoded in the second term in Eq. (102). The lat-
ter depends on the “off-diagonal” susceptibilities � jαn0 and
�n0 jβ , which, for non-spin-polarized materials, are different
from zero only when jα and jβ coincide with jM or n0. In
all other cases, � jαn0 and �n0 jβ are proportional to the trace
of a Pauli matrix, and therefore vanish. Consequently, for
non-spin-polarized materials, in-medium corrections are only
relevant to the susceptibilities χn0n0 , χ jMl jMm and χ jMl n0 [63]. As
far as the density-density response function χn0n0 is concerned
Eq. (102) implies

Imχn0n0 = 1

U (1 − G)

Imεr

|εr |2

= 1

U (1 − G)

[
Imεr + 1 − |εr |2

|εr |2 Imεr

]
, (125)

in agreement with previous studies on the dielectric function
[20,21]. Notice, however, that here we account for the ex-
change correction G, which was neglected in previous studies.
In the second line of Eq. (125), we separated the screened
contribution to Imχn0n0 from the unscreened one.

In order to simplify the evaluation of in-medium cor-
rections to χ jMm jMl and χ jMl n0 , we assume that there are
no screening corrections to the transverse response. This
approximation is exact in isotropic materials, and a good
approximation in high-symmetry bulk crystals such as silicon
and germanium [18]. This allows us to write

� jMl n0 (q, ω) = � jMmn0 (q, ω)q̂mq̂l , (126)

where q̂l = ql/q and repeated spatial indices are summed
over. Next, we use the electron number continuity equation,

ω n̂0(q, ω) = q · ĵM (q, ω) (127)

to obtain

� jMl n0 (q, ω) = ω

q
�n0n0 (q, ω) q̂l ,

�n0 jMl (q, ω) = ω

q
�n0n0 (q, ω) q̂l . (128)

Finally, by using Eq. (128) for � jMl n0 and �n0 jMl , we find

χ jMl jMm = � jMl jMm − ω2

q2
q̂l q̂m U (1 − G)�2

n0n0

ε∗
r

|εr |2 . (129)

Notice that for Im〈F ∗
jMl

FjMm〉 = 0 , only the imaginary part
of Eq. (129) contributes to the transition rate. This applies
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FIG. 1. Modulus squared of the dielectric function |εr |2 as a function of the momentum transfer |q| and of the deposited energy ω for Si
(left panel) and Ge (right panel). For the generalized susceptibilities that receive in-medium corrections (χn0n0 , χ jMm jMl , and �χ jMl n0 in the case
of non-spin-polarized materials), |εr |2 determines the size and nature of such corrections. For example, |εr |2 > 1 corresponds to a suppression
of the material response to an external DM perturbation associated with screening, whereas |εr |2 < 1 implies an amplification of the material
response due to collective excitations. In both panels, we superimpose a green grid over the points that fulfill vmin > vmax, and which are
thus not kinematically accessible for a DM particle mass of 10 MeV. Collective excitations correspond to energies and momenta in the black
regions, and are thus kinematically inaccessible.

to the case of magnetic dipole, electric dipole and anapole
DM, as well as in simplified DM models with a single scalar
or vector mediator. Consequently, in most of the numerical
implementations we only need

Im(χ jMl jMm ) = Im(� jMl jMm ) + ω2

q2
q̂l q̂m

1 − |εr |2
U (1 − G)

Im(εr )

|εr |2 ,

(130)

where we used Eq. (101) to rewrite the density-density cor-
relation function �n0n0 as (εr − 1)/[U (1 − G)]. Interestingly,
the in-medium corrections to Im(χ jMl jMm ) can be expressed
entirely in terms of the dielectric function εr . Furthermore,
these corrections are longitudinal, i.e., proportional to q̂l q̂m,
which is a direct consequence of Eq. (126). In contrast, the
unscreened susceptibility in the first term of Eq. (130) has
both a longitudinal and a transverse component, as one can see
by acting with q̂mq̂l and (δlm − q̂l q̂m) on Im(� jMl jMm ) using
Eq. (120). Focusing on the longitudinal component of the
unscreened susceptibility Im(� jMl jMm ), we find

Im(� jMl jMm ) = ω2

q2
Im�n0n0 q̂l q̂m, (131)

which cancels exactly the term proportional to |εr |2 in
Eq. (130). In order to obtain Eq. (131), we used fi→ f · q =
fi→ f ω − fi→ f q2/(2me), which follows from the continuity
equation.

Performing an analogous calculation, for �χ jMl n0 , namely,

�χ jMl n0 ≡ (
χ jMl n0 − χA

jMl n0

)
, (132)

we obtain

ql

me
Im�χ jMl n0 = ql

me
Im�� jMl n0 + 2ω

me

1 − |εr |2
U (1 − G)

Im(εr )

|εr |2 ,

(133)

where in-medium corrections are also expressed in terms of
εr . When we also apply Eq. (126) to the first term in Eq. (133),
the latter reduces to

ql

me
Im�χ jMl n0 = 2ω

me

1

U (1 − G)

Im(εr )

|εr |2 . (134)

For the numerical evaluation of the dielectric function, here
we use tabulated results provided with the DARKELF code [54],
that were obtained using the time-dependent DFT capability
of the GPAW [64] code. The values used here were obtained
using the TB09 exchange-correlation functional [65], with
a scissors correction applied to match the zero-kelvin band
gaps to the experimental values, and with the Ge 3d electrons
frozen in the core.

Equations (125), (130), and (133) allow us to compare
the screened and unscreened contributions to the suscepti-
bilities Im(χn0n0 ), Im(�χ jMl n0 ), and Im(χ jMl jMm ). In the case
of Im(χn0n0 ), in-medium corrections are expected to be im-
portant, because |1 − |εr |2|/|εr |2 ∼ O(1). This is shown in
Fig. 1, where we report |εr |2 as a function of the momentum
transfer, |q|, and of the deposited energy, ω, for Si (left panel)
and Ge (right panel) crystals. Here, the dielectric function is
defined as in Eq. (101), and should not be confused with the
direct outcome of GPAW, εGPAW

r [64], which is Eq. (101) with
G = 0. In Fig. 1, we have accounted for the G �= 0 corrections
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to the relation between εr and the density-density response
function χn0n0 , or, equivalently, between εr and εGPAW

r .
For the same reason, namely |1 − |εr |2|/|εr |2 ∼ O(1), in-

medium corrections to Im(�χ jMmn0 ) are also expected to be
significant, as one can see explicitly from Eqs. (133) and
(134).

In contrast to Im(χn0n0 ) and Im(�χ jMl n0 ), the generalized
susceptibility Im(χ jMl jMm ) has both longitudinal and transverse
components. In the isotropic limit, in-medium corrections
only affect the longitudinal component of this current-current
response function, leaving the transverse component un-
changed, as one can see from Eq. (130). This latter point will
have an important impact on electron transition rate calcula-
tions, as we will see next.

VI. APPLICATION TO DARK MATTER
DIRECT DETECTION

An important result we have derived from Eq. (102)
is that only the three generalized susceptibilities Im(χn0n0 ),
Im(χ jMl jMm ) and Im(�χ jMl n0 ) receive in-medium corrections
for non-spin-polarized detector materials, i.e., materials where
spin-up and spin-down electrons have the same wave func-
tions for a given band index and reciprocal space vector.
Focusing on DM models that generate these susceptibilities,
we now apply the formalism developed in the previous sec-
tions to calculate the expected rates of DM-induced electronic
transitions and the associated sensitivity of future experiments
based on Ge and Si crystals. We refer to Appendix A for an
explicit relation between densities and currents, the associated
susceptibilities, and the EFT operators in Table I.

A. Electronic transition rates and exclusion limits

In this analysis, we focus on models where the DM particle
is characterized by either an anapole or an electric dipole
moment. This allows us to place the emphasis on the impact
of in-medium effects, as well as of a nonzero local field factor
G on the calculated electron transition rates. In the case of
DM candidates with an anapole moment, we are interested
in external DM perturbations described by the potential in
Eq. (42) with [6],

cs
8 = 8ememχ

g

�2
,

cs
9 = −8ememχ

g

�2
, (135)

and all other coupling constants set to zero. In the case of DM
candidates with an electric dipole moment, we assume

c�
11 =16emχ m2

e

q2
ref

g

�
, (136)

with no other coupling constants different from zero. The
dimensionless constant g and the mass scale � are in general
different in Eqs. (135) and (136), although here we denote
them with the same symbol for simplicity. By analogy with
previous studies of anapole DM in the context of DM-nucleon
scattering [66], we express cs

8 and cs
9 in terms of a reference

DM-electron scattering cross section defined by

σe ≡ 2α
g2μ2

�4
. (137)

Similarly, in the case of electric dipole DM, e.g., Ref. [67], we
introduce the reference DM-electron scattering cross section,

σe ≡ 4α
g2

�2
. (138)

In terms of generalized susceptibilities, the electric dipole DM
model involves the density-density response function only,
Im(χn0n0 ), whereas the anapole DM model is associated with
the generalized susceptibilities Im(χn0n0 ), Im(χ jMl jMm ), and
Im(�χ jMl n0 ). As shown in Sec. V B, for materials described
by Eq. (126) in-medium corrections to Im(χn0n0 ), Im(χ jMl jMm ),
and Im(�χ jMl n0 ) depend on the ratio Im(εr )/[|εr |2(1 − G)],
known as the loss function. We have also seen that in-medium
effects vanish in the |εr |2 → 1 limit, which motivates a study
of how |εr |2 varies with q and ω.

Figure 1 shows |εr |2 (not to be confused with |εGPAW
r |2),

as a function of the momentum transfer, |q|, and of the de-
posited energy ω for Si (left panel) and Ge (right panel)
crystals. As anticipated in Sec. IV C, |εr |2 > 1 corresponds to
a suppression of the generalized susceptibilities that receive
in-medium corrections (χn0n0 , χ jMl jMm and �χ jMl n0 in the case
of non-spin-polarized materials) that is due to the screening of
next in Eq. (108). Similarly, |εr |2 < 1 implies an amplification
of the material response due to collective excitations. From
Fig. 1, we thus expect collective excitations to be important in
a region around |q| ∼ 0 keV and ω ∼ 20 eV. This region cor-
responds to quasi-particle states with energies and momenta at
which the real and imaginary parts of the dielectric function
vanish. Since the momenta of these states are infinitesimal,
they can only be excited by DM particles with De Broglie
wavelengths that are much larger than the typical inter-atomic
separation, which explains why they are referred to as collec-
tive excitations. Unfortunately, this region in the (|q|, ω) plane
is not kinematically accessible in the nonrelativistic scatter-
ing of DM particles in conventional semiconductor crystals.
However, in semiconductors with narrow band gaps driven by
spin-orbit coupling, collective effects are expected to be much
more important, as shown in Refs. [23,68]. The exploration of
this class of materials would require relaxing our assumption
of spin degeneracy of bands, which we leave for future study.
To visualise this point, in both panels of Fig. 1, we super-
impose a green grid over the points that fulfill the inequality
vmin > vmax for mχ = 10 MeV, where vmin = ω/q + q/(2mχ )
and vmax = ve + vesc. The same conclusion applies to different
values of the DM particle mass.

Let us now focus on the Si loss function directly. Figure 2
shows Im(εr )/[|εr |2(1 − G)] as a function of the deposited
energy ω for two representative values of the momentum
transfer, namely |q| = 5 keV (left panel) and |q| = 7 keV
(right panel). The dashed green lines in the two panels of
Fig. 2 represent experimental data from [51], extracted from
Fig. 1 of [54]. In the same panels, the dotted blue lines
correspond to theoretical predictions based on Eq. (101) with
G = 0 and the density-density response function χn0n0 com-
puted in [54] with the GPAW code [64] in the RPA limit.
Consequently, the dotted blue lines in the figure account for
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FIG. 2. Silicon loss function Im(−1/εr )/(1 − G) vs deposited energy ω for |q| = 5 keV (left panel) and |q| = 7 keV (right panel). In both
panels, the dashed green lines represent experimental data from [51], while the dotted blue lines correspond to theoretical predictions based
on Eq. (101) with G = 0 and using the density-density response function χn0n0 computed in [54] with the GPAW code [64] in the RPA limit.
With these settings, the dotted blue lines account for exchange and correlation in the calculation of χn0n0 , but not in the relation between
χn0n0 and εr . The solid orange lines correspond to our theoretical predictions based on Eq. (101) with G �= 0. They thus account for exchange
and correlation both in the calculation of χn0n0 and in the relation between χn0n0 and εr . While G �= 0 implies a relatively small correction to
Im(−1/εGPAW

r ), it improves the agreement between theory and observations by increasing the loss function at small ω, while decreasing the
latter for intermediate values of ω.

exchange in the calculation of χn0n0 , but not in the relation
between χn0n0 and εr . In contrast, the solid-orange lines in
the two panels of Fig. 2 correspond to our theoretical predic-
tions based on Eq. (101) with G �= 0. They thus account for
exchange both in the calculation of χn0n0 and in the relation
between χn0n0 and εr . While G �= 0 implies a relatively small
correction to the Si loss function, it improves the agreement
between theory and experiment by increasing the loss function
at small ω, while decreasing it for larger ω values. We find
a qualitatively similar behavior for the Ge loss function (not
shown).

Focusing on Ge and Si crystals, let us now calculate the
differential rate of DM-induced electronic transitions per unit
detector mass, dR/dω, within our generalized susceptibility
formalism. Figure 3 shows the differential rate dR/dω as
a function of ω for the case of electric dipole DM and a
reference DM-electron scattering cross section of 10−42 cm2.
The left panels refer to a DM particle mass of 10 MeV,
while the right panels correspond to mχ = 100 MeV. While
the top panels show the rate dR/dω for a given DM-electron
scattering cross section in different targets with and without
in-medium effects, the bottom panels in the figure report
the corresponding rate ratios to facilitate the comparison of
distinct calculations. Specifically, the solid lines in the top
panels account for in-medium effects in Si (orange) and Ge
(blue) crystals, while the dashed lines assume |εr |2 = 1. At the
same time, the bottom panels in Fig. 3 report the unscreened
to screened rate ratio as a function of ω for the crystals and
mass in the corresponding top panel. As one can see from
Fig. 3, in-medium corrections to Im(χn0n0 ) suppress the rate
of DM-induced electronic transitions in crystals by a factor

of 2 or 3 for ω below about 5 eV, while they are negligible
for ω larger than 15 eV. The amplitude of the in-medium
corrections for dipole DM is comparable with what was found
in [54] focusing on models where DM couples to the density
n0 via the exchange of a heavy or light mediator, which,
within our notation, would correspond to M = cs

1〈O1〉 and
M = c�

1(qref/q)2〈O1〉, respectively.
Let us now focus on the impact of in-medium effects and

electron exchange on the expected sensitivity of Ge and Si
detectors. Figure 4 shows the expected 90% confidence level
(C.L.) exclusion limits on the reference cross section σe as
a function of the DM mass mχ for electric dipole DM. We
assume a kg-year exposure in hypothetical background-free
detectors made of either Si (orange lines) or Ge (blue lines)
crystals. The solid lines in the top panels correspond to predic-
tions obtained accounting for in-medium as well as exchange
effects (G �= 0), whereas the dashed lines neglect either the
former (left panel) or the latter (right panel). The bottom
panels in Fig. 4 report the ratios between dashed and solid
lines of the same color in the corresponding top panels. From
Fig. 4, we conclude that neglecting screening effects in the
calculation of the expected 90% C.L. exclusion limits for
electric dipole DM leads to an order one error on σe, whereas
neglecting the exchange factor G in the relation between the
dielectric function εr and χn0n0 induces a 10% error on σe.

In contrast, in-medium corrections are found to be negli-
gible in the case of anapole DM, where the rate of electron
transitions receives large contributions from the transverse
components of Im(χ jMl jMm ), which are unscreened in nearly
isotropic materials, and from Imχ j†

5l j5m
, which is unscreened in

non-spin-polarized detectors. For this reason, we do not report

033230-16



LINEAR RESPONSE THEORY FOR LIGHT DARK … PHYSICAL REVIEW RESEARCH 6, 033230 (2024)

FIG. 3. Differential rate of electronic transition per unit detector mass as a function of the deposited energy ω in Si (orange) or Ge (blue)
crystals for a reference DM-electron scattering cross section of 10−42 cm2. We assume that the DM particle is characterized by an electric
dipole and has a mass of either 10 MeV (left panels) or 100 MeV (right panels). Solid lines correspond to screened interactions, i.e., |εr |2 �= 1,
whereas dashed lines neglect in-medium effects, i.e., |εr |2 = 1. The bottom panels report the unscreened to screened rate ratio as function of
ω for the germanium and silicon curves in the corresponding top panel.

FIG. 4. Projected 90% C.L. exclusion limits on the reference cross section σe as a function of the DM particle mass mχ for electric dipole
DM. We assume a kg-year exposure in hypothetical background-free detectors made of either Si (orange lines) or Ge (blue lines) crystals.
Solid lines correspond to predictions obtained accounting for in-medium as well as exchange and correlation effects (G �= 0), whereas dashed
lines neglect either the former (left panels) or the latter (right panels). The bottom panels report the ratios between dashed and solid lines of
the same color (i.e., same target) in the corresponding top panels.
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here the corresponding differential rate per unit detector mass
and expected sensitivity studies.

Since the unscreened transverse components of
Im(χ jMl jMm ) generically tend to “wash out” in-medium effects
in electron transition rate calculations, and the generalized
susceptibility Im(�χ jMl n0 ) always appears together with
Im(χ jMl jMm ), we arrive at the important conclusion that DM
has to couple to the electron density n0 alone for in-medium
effects to be important in the DM-electron scattering in
non-spin-polarized and nearly isotropic materials.

B. Comparison with previous results

We now compare our expression for the rate of DM-
induced electronic transitions in materials, Eq. (41), with the
results found in [18] for electronic transitions in semiconduc-
tor crystals assuming Bloch wave functions of the type

ψi(re) = φi(r1) ησ ,

ψ f (re) = φ f (r1) ησ ′
, (139)

for the initial and final state electrons, respectively. The ησ

and ησ ′
spinors are defined in the text above Eq. (67), whereas

the φi(r1) and φ f (r1) spatial wave functions are given in
Eq. (113). When the electron spin wave function factorises
as in Eq. (139) and as assumed in [18], the matrix elements in
Eq. (38) can be evaluated as in the following example:

|〈 f |e−iq·reσe|i〉|2 =
∑
σσ ′

ησ ′†σeη
σ · ησ†σeη

σ ′ 〈 f ||e−iq·re ||i〉|2

= Tr(σe · σe) 〈 f ||e−iq·re ||i〉|2 (140)

where

〈 f |σe,l e
−iq·re |i〉 ≡ ησ ′†σe,lη

σ 〈 f ||e−iq·re ||i〉, (141)

while σe,l is the l-th Pauli matrix and σe a spatial vector. By
inserting Eqs. (139) and (112) and the explicit expressions for
the electron densities and currents, Eq. (32), into our differen-
tial rate formula, Eq. (40), we finally obtain

d
 = dq
(2π )3

∫
dω

(
1

8m2
em2

χV

)
δ(ω + �Eχ )

× [A| f |2 + B(lm) Im(i f ∗
l fm) + B[lm] Re(i f ∗

l fm)

+ Cl Re( f f ∗
l ) + C̃l Im( f f ∗

l )], (142)

where

A = 〈F ∗
0 F0〉 + q2

4m2
e

〈F ∗
A FA〉 + 〈F∗

5 · F5〉

+ 1

4m2
e

[〈|q · FM |2〉 + (q2δlm − qlqm)〈F ∗
ElFEm〉]

+ ql

me
Re〈F ∗

Ml F0〉 + ql

me
Re〈F ∗

A F5l〉 + qi

me
εilmIm〈F ∗

5l FEm〉,
(143)

while

B(lm) = 〈F ∗
A FA〉δlm + Re〈F ∗

Ml FMm〉
+ (δi jδlm − δimδ jl )〈F ∗

EiFE j〉,
B[lm] = 2εilm〈F ∗

EiFA〉 + Im〈F ∗
Ml FMm〉, (144)

and

Cl = ql

me
〈F ∗

A FA〉 + qm

me
Re〈F ∗

Ml FMm〉

+ qm

me
(δi jδlm − δimδ jl )〈F ∗

EiFE j〉

+ 2Re〈F ∗
Ml F0〉 + 2Re〈F ∗

A F5l〉 + 2εli jIm〈F ∗
5iFE j〉,

C̃l = −2Im〈F ∗
Ml F0〉 − 2Im〈F ∗

A F5l〉 − 2εli jRe〈F ∗
5iFE j〉. (145)

In all equations, a sum over repeated three-dimensional in-
dices is understood. Obtaining Eq. (142), we use the identities

Tr(σe,i ) = 0,

Tr(σe,iσe, j ) = 2δi j . (146)

Equation (146) implies that many of the correlation functions
that could in principle contribute to the differential rate d


are actually zero. In particular, all correlation functions linear
in σe vanish. This is in general not true when spin up and
spin down electrons have different wave functions, in contrast
with Eq. (139), or many-body wave functions are used in the
evaluation of the correlation functions Kj†

β jα
.

By inserting the explicit expressions for the quadratic
“strength functions” given in Appendix A into Eq. (145), we
find that the total rate R resulting from Eqs. (41), (142), and
(145) coincides with that given in [18], with the exception of
the coefficient in front of the c14c15W5 term, which we find
here to be −1/8, but which is erroneously reported to be −1/2
in [18].

The formalism developed here could be extended to be
applicable to phonon and magnon excitations. This extension
would proceed along the lines of Trickle et al. , Ref. [69].
Specifically, one would first quantize the ion displacement
field in the effective potential in our Eq. (33). Then one would
take the matrix elements between the vacuum and single- or
multi-phonon states of the extended potential, before finally
using it in Fermi’s golden rule. This procedure would establish
an explicit mapping between the operators and generalized
susceptibilities introduced in our paper and the response func-
tions for phonons and magnons computed in Ref. [69]. We
leave this interesting calculation for future study, as it goes
beyond the scope of the present study.

VII. SUMMARY AND OUTLOOK

Within the nonrelativistic effective theory of DM-electron
interactions, we identified the densities and currents a spin-
1/2 DM particle can couple to in a material, and found their
corresponding electromagnetic analogues in a 1/c expansion
of the Dirac Hamiltonian. Specifically, we found that DM
can in general perturb a solid state system by coupling to
the electron density, the paramagnetic current, the spin cur-
rent, the scalar product of spin and paramagnetic current, as
well as the Rashba spin-orbit current in the material. In the
(1/c) expansion of the Dirac Hamiltonian, the first, second,
and third couplings arise at order (1/c)0, while the last two
couplings originate at order (1/c)2. We then wrote down the
explicit expression for the time dependent effective potential
that describes the scattering of DM particles by the electrons
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bound to a solid-state system, V ss′
eff (t ) in Eq. (42), in terms of

the five densities and currents listed above.
We interpreted the effective potential V ss′

eff (t ) as an external
perturbation in linear response theory, and identified the gen-
eralized susceptibilities that describe the response of a generic
solid-state system to the perturbation V ss′

eff (t ) by extending
the Kubo formula to the case of DM-electron scattering in
materials. We then combined the extended Kubo formula,
Eq. (45), with Fermi’s golden rule to express the rate of DM-
induced electronic transitions in a solid-state system in terms
of the generalized susceptibilities associated with the external
perturbation V ss′

eff (t ).
This expression for the electronic transition rate allowed

us to factorise in a neat manner the material physics contri-
bution, encoded in a set of generalized susceptibilities, from
the particle physics input. Interestingly, this factorization en-
ables the use of existing experimental data on the generalized
susceptibilities associated with V ss′

eff (t ) to calibrate theoretical
predictions for the rate of DM-induced electronic transitions
in a given detector.

In order to evaluate our transition rate formula, i.e.,
Eq. (60), we applied the equation of motion method. This
approach allowed us to express the set of generalized suscepti-
bilities we identified in this paper as the mean-field solution to
a time-evolution equation, for which we also provided a useful
diagrammatic interpretation. This solution, see Eq. (102), is
one of the main results of our paper.

An important conclusion we drew from Eq. (102) is that
only three generalized susceptibilities receive corrections
that are associated with screening or collective excitations
in the case of non-spin-polarized materials, i.e., materials
where spin up and spin down electrons have the same wave
functions for a given band index and reciprocal space vector.
These generalized susceptibilities are Im(χn†

0n0
), Im(χ j†

Ml jMm
),

and Im(�χ j†
Ml n0

), where n0 is the electron density and jMl ,
l = 1, 2, 3 is the paramagnetic current. We also found that
the in-medium corrections to Im(χn†

0n0
), Im(�χ j†

Ml n0
), and

Im(χ j†
Ml jMm

) can be expressed in terms of the electron loss
function in the case of isotropic materials. Another conclusion
we drew from Eq. (102), is that it captures exchange effects
that would be missed in the random phase approximation
(RPA).

Finally, we applied the formalism developed in this
paper to calculate the expected electronic transition rate and
sensitivity of hypothetical DM direct detection using Ge
and Si crystals as detector materials. This calculation was
performed by the combined use of the computer programmes
QEDARK-EFT [61], QEDARK [10], and DARKELF [54] as
explained in Sec. VI A. Emphasis was placed on quantifying
the importance of in-medium corrections as well as exchange
effects. For example, we found that neglecting screening
effects in the calculation of the expected 90% C.L. exclusion
limits for DM candidates with an electric dipole [modelled via
the potential V ss′

eff (t )] leads to an O(1) error in the reference
DM-electron scattering cross section σe, whereas neglecting
electron exchange in the relation between dielectric function
εr , and density-density response function χn†

0n0
, induces a

10% error in σe.
In contrast, in-medium corrections were found to be negli-

gible in the case of anapole DM, because the rate of electron

transitions in detector materials receives in this case large
contributions from the transverse components of the current-
current response functions Im(χ j†

Ml jMm
) and from Imχ j†

5l j5m
.

The former is unscreened in nearly isotropic materials, while
the latter is unscreened in non-spin-polarized detectors.

More generally, we arrived at the important conclusion
that, if screening of the transverse responses is neglected,
then in-medium effects are significant in the DM scattering
from non-spin-polarized materials only when the DM cou-
ples to the electron density n0 alone. This is due to the fact
that the unscreened transverse components of Im(χ j†

Ml jMm
)

generically tend to “wash out” in-medium effects in electron
transition-rate calculations, and that Im(�χ j†

Ml n0
) always ap-

pears together with Im(χ j†
Ml jMm

).
Summarizing, the linear response theory for light DM di-

rect detection we developed in this paper paves the way for
the study of in-medium effects in the presence of general
DM-electron interactions. It provides a framework for using
existing or future experimental measurements of the general-
ized susceptibilities χ jα jβ to calibrate theoretical predictions
of the rate of DM-induced electronic transitions in detec-
tor materials. Finally, it can be straightforwardly extended
to the case of spin-polarized detectors, as well as to highly
inhomogeneous or anisotropic materials. We leave these in-
vestigations for future study.
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APPENDIX A: QUADRATIC STRENGTH FUNCTIONS

In this Appendix, we list explicit expressions for the func-
tions F ss′

0 , F ss′
A , Fss′

5 , Fss′
M , and Fss′

E . They are given by

F ss′
0 = ξ s′†

χ

[
c1 + i

(
q

me
× v⊥

χ

)
· Sχc5 + v⊥

χ · Sχ c8

+ i
q

me
· Sχc11

]
ξ s,

F ss′
A = −1

2
ξ s′†
χ

[
c7 + i

q
me

· Sχ c14

]
ξ s
χ ,

Fss′
5 = 1

2
ξ s′†
χ

[
i

q
me

× v⊥
χ c3 + Sχc4 + q

me

q
me

· Sχc6

+ v⊥
χ c7 + i

q
me

× Sχc9 + i
q

me
c10 + v⊥

χ × Sχc12

+ iv⊥
χ

q
me

· Sχ c14 + q
me

× v⊥
χ

q
me

· Sχ c15

]
ξ s
χ ,
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Fss′
M = ξ s′†

χ

[
i

q
me

× Sχc5 − Sχc8

]
ξ s
χ ,

Fss′
E = 1

2
ξ s′†
χ

[
q

me
c3 + iSχc12 − i

q
me

q
me

· Sχc15

]
ξ s
χ , (A1)

where

v⊥
χ =

(
p + p′

2mχ

)
= v − q

2mχ

, (A2)

v = p/mχ , q = p − p′ is the momentum transferred to the
electron, and, finally, we shortened the notation by defining,

ci ≡
(

cs
i + c�

i

q2
ref

|q|2
)

. (A3)

Furthermore, we list the quadratic strength functions used
in Sec. III to calculate the rate of DM-induced electronic
transitions in materials. They can be written as follows:

〈F ∗
0 F0〉 = c2

1 + 1

4

∣∣∣∣ q
me

× v⊥
χ

∣∣∣∣2

c2
5 + v⊥2

χ

4
c2

8 + q2

4m2
e

c2
11, (A4)

〈F ∗
A FA〉 = 1

4

(
c2

7 + q2

4m2
e

c2
14

)
, (A5)

〈F∗
5 · F5〉 = 1

4

(∣∣∣∣ q
me

× v⊥
χ

∣∣∣∣2

c2
3 + 3

4
c2

4 + q4

4m4
e

c2
6

+ v⊥2
χ c2

7 + q2

2m2
e

c2
9 + q2

m2
e

c2
10 + v⊥2

χ

2
c2

12

+ q2

4m2
e

v⊥2
χ c2

14 +
∣∣∣∣ q
me

× v⊥
χ

∣∣∣∣2 q2

4m2
e

c2
15

+ q2

2m2
e

c4c6 +
∣∣∣∣ q
me

× v⊥
χ

∣∣∣∣2

c2
14c2

15

)
, (A6)

〈F ∗
Ml FMm〉 = 1

4m2
e

(
q2δlm − ql qm

)
c2

5 + 1

4
c2

8δlm

− i

2
εlmi

qi

me
c5c8, (A7)

〈F ∗
El FEm〉 = 1

4

(
qlqm

m2
e

c2
3 + 1

4
δlmc2

12 + q2

4m2
e

qlqm

m2
e

c2
15

− ql qm

2m2
e

c12c15

)
. (A8)

In addition, we made use of the following off-diagonal terms:

〈F ∗
ElFA〉 = 1

4

(
− ql

me
c3c7 − ql

4me
c12c14 + ql

4me

q2

m2
e

c14c15

)
,

(A9)

〈F ∗
Ml F0〉 = −1

4
(v⊥

χ )l c
2
8 − i

2

∣∣∣∣ q
me

× v⊥
χ

∣∣∣∣
l

c5c8 − i

4

ql

me
c8c11,

(A10)

〈F ∗
A F5l〉 = −1

4
(v⊥

χ )l c
2
7 − q2

16m2
e

(v⊥
χ )l c

2
14

− i

4

(
q

me
× v⊥

χ

)
l

c3c7 − i

4

ql

me
c7c10

+ i

16

ql

me
c4c14 + i

16

q2

m2
e

ql

me
c6c14

+ i

16

q2

m2
e

(
q

me
× v⊥

χ

)
l

c14c15, (A11)

and, finally,

εilm〈F ∗
5l FEm〉 = 1

4

[
i

m2
e

(qiqm − q2δmi )(v
⊥
χ )mc2

3 − i

2
(v⊥

χ )ic
2
12

+ i

4m2
e

(q · v⊥
χ qi − q2(v⊥

χ )i )
q2

m2
e

c2
15

+ εilm(v⊥
χ )l

qm

me
c3c7 − qi

2me
c9c12

− 5i

4m2
e

(
q · v⊥

χ qi − q2(v⊥
χ )i

)
c12c15

+ εilm(v⊥
χ )l

qm

me
c12c14

− q2

4m2
e

εilm(v⊥
χ )l

qm

me
c14c15

]
. (A12)

APPENDIX B: KUBO FORMULA FOR DARK
MATTER-ELECTRON SCATTERING

We are interested in DM-induced perturbations to detector
materials that can be described by the effective potential

V ss′
eff (t ) ≡ −

∫
dr B(r)Sss′

(r, t ) (B1)

where B(r) is an operator acting on the wave functions of
the electrons in the material and Sss′

(r, t ) is the strength of
the perturbation. Sss′

(r, t ) depends on the initial and final DM
particle spin configurations, s and s′. Each term in the effective
potential actually used in this paper, Eq. (30), has the form
assumed here in Eq. (B1) for illustrative purposes. Under
such perturbations, the density matrix ρ of the given detector
material evolves according to

dρ(t )

dt
= i

[
ρ(t ), H0 + V ss′

eff (t )
]

(B2)

where H0 is the Hamiltonian of the system in the absence
of external perturbations. By imposing ρ(t → −∞) = ρ0,
where ρ0 is the density matrix when V ss′

eff = 0, and using

d

dt

[
eiH0tρ(t ) e−iH0t

] = ieiH0t
[
ρ(t ),V ss′

eff (t )
]
e−iH0t , (B3)

Equation (B2) can conveniently be rewritten in an integral
form,

ρ(t ) = ρ0 + i
∫ t

−∞
dt ′e−iH0(t−t ′ )[ρ(t ′),V ss′

eff (t ′)
]
eiH0(t−t ′ ).

(B4)

At first order in V ss′
eff , Eq. (B4) admits the following solution:

ρ(t ) = ρ0 + i
∫ t

−∞
dt ′e−iH0(t−t ′ )[ρ0,V ss′

eff (t ′)
]
eiH0(t−t ′ ). (B5)
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We can now use Eq. (B5) to calculate the expectation value of
any observable A(r, t = 0) ≡ A(r). This is given by

〈A〉 = Tr{Aρ}
= Tr{Aρ0} + 〈�A〉 (B6)

where 〈�A〉 is the induced perturbation in the observable A,
namely

〈�A(r, t )〉 = iTr

{∫ t

−∞
dt ′ A(r, t − t ′)

[
ρ0,V ss′

eff (t ′)
]}

= − i
∫ t

−∞
dt ′ Tr

{
ρ0

[
A(r, t − t ′),V ss′

eff (t ′)
]}

= i
∫ t

−∞
dt ′

∫
dr′ 〈[A(r, t − t ′), B(r′)]〉Sss′

(r′, t ′)

= i
∫ t

−∞
dt ′

∫
dr′ 〈[A(r, t ), B(r′, t ′)]〉Sss′

(r′, t ′),

(B7)

where A(r, t ) = exp(iH0t )A(r) exp(−iH0t ), and similarly for
B(r′, t ′). Introducing now the generalized susceptibility

χAB(r − r′, t − t ′) = iθ (t − t ′)〈[A(r, t ), B(r′, t ′)]〉 (B8)

we obtain the Kubo formula for DM-electron scattering,
namely

〈�A(r, t )〉 =
∫ t

−∞
dt ′

∫
dr′ χAB(r − r′, t − t ′)Sss′

(r′, t ′),

(B9)

which describes the response to the DM-induced perturbation
V ss′

eff of a given observable A in a detector material.

APPENDIX C: SPECTRAL REPRESENTATION
OF GENERALIZED SUSCEPTIBILITIES

In this Appendix, we derive the spectral representations
for the correlation function Kjα jβ and the generalized sus-
ceptibility χ jα jβ that we use in Sec. III. We treat the case
of translationally invariant systems, in which both Kjα jβ and
χ jα jβ depend on the relative distance (r − r′) between the
spatial points at which the densities or current densities jα
and jβ are evaluated, and not on r and r′ separately. Con-
sequently, the Fourier transform with respect to (r − r′) of
the correlation function Kjα jβ (r − r′, t − t ′) can be written
as follows:

Kjα jβ (q, t − t ′) =
∫

d(r − r′)e−iq·(r−r′ )〈 jα (r, t ) jβ (r′, t ′)〉

= 1

V
〈 jα (q, t ) jβ (−q, t ′)〉. (C1)

Furthermore, the Fourier transform of Kjα jβ (q, t − t ′) with
respect to t − t ′ can be expressed in terms of a com-
plete set of energy eigenstates, denoted here by |ψn〉. One

finds,

Kjα jβ (q, ω) =
∫ +∞

−∞
d(t − t ′)eiω(t−t ′ )Kjα jβ (q, t − t ′)

= 1

V

∫ +∞

−∞
d(t − t ′)eiω(t−t ′ )

∑
n,m

e−βEn

Z

× 〈ψn| jα (q, t )|ψm〉〈ψm| jβ (−q, t ′)|ψn〉. (C2)

Translating now the operators jα and jβ to time t = 0,
we find

Kjα jβ (q, ω) = 1

V

∑
n,m

∫ +∞

−∞
d(t − t ′)eiω(t−t ′ ) e−βEn

Z
ei(En−Em )(t−t ′ )

× 〈ψn| jα (q)|ψm〉〈ψm| jβ (−q)|ψn〉, (C3)

with jα (q) = jα (t = 0, q) and jβ (q) = jβ (t ′ = 0, q). Per-
forming the integral over (t − t ′) explicitly, we finally obtain

Kjα jβ (q, ω) = 2π

V

∑
n,m

e−βEn

Z
δ(En − Em + ω)

× 〈ψn| jα (q)|ψm〉〈ψm| jβ (−q)|ψn〉, (C4)

which is the spectral representation for the correlation func-
tion Kjα jβ used in Sec. III. Similarly, the double Fourier
transform of the generalized susceptibility χ jα jβ , namely

χ jα jβ (q, ω) =
∫ +∞

−∞
d(t − t ′)eiω(t−t ′ )χ jα jβ (q, t − t ′) (C5)

can be written as

χ jα jβ (q, ω) = i

V

∫ +∞

−∞
d(t − t ′)θ (t − t ′)eiω(t−t ′ )

×
∑
n,m

e−βEn

Z
ei(En−Em )(t−t ′ )

× 〈ψn| jα (q)|ψm〉〈ψm| jβ (−q)|ψn〉
× (

1 − e−β(Em−En )
)
. (C6)

Using now the integral representation for the step function,

θ (t − t ′) = − 1

2π i

∫ +∞

−∞
dω

e−iω(t−t ′ )

ω + iδ
, (C7)

we find

χ jα jβ (q, ω) = − 1

V

∑
n,m

e−βEn

Z
〈ψn| jα (q)|ψm〉

× 〈ψm| jβ (−q)|ψn〉
(
1 − e−β(Em−En )

)
ω + En − Em + iδ

, (C8)

which is the spectral representation for χ jα jβ we use in Sec. III.
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The spectral representation for χA
jα jβ can be derived using

θ (t ′ − t ) = 1

2π i

∫ +∞

−∞
dω

eiω(t ′−t )

ω − iδ
. (C9)

One finds

χA
jα jβ (q, ω) = − 1

V

∑
n,m

e−βEn

Z
〈ψn| jα (q)|ψm〉

× 〈ψm| jβ (−q)|ψn〉
(
1 − e−β(Em−En )

)
ω + En − Em − iδ

. (C10)

Before concluding, we notice that

χ∗
j†
β j†

α
(q, ω) = − 1

V

∑
n,m

e−βEn

Z
〈ψn| j†

β (q)|ψm〉∗

× 〈ψm| j†
α (−q)|ψn〉∗

(
1 − e−β(Em−En )

)
ω + En − Em − iδ

.

(C11)

Since 〈ψn| j†
β (q)|ψm〉∗ = 〈ψm| jβ (−q)|ψn〉, we finally obtain

χ∗
j†
β j†

α
(q, ω) = χA

jα jβ (q, ω). (C12)
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