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FINITE ELEMENT MODELLING OF LINEAR ROLLING CONTACT PROBLEMS

Luigi Romano1,* and Axel Målqvist2

Abstract. The present work is devoted to the finite element modelling of linear hyperbolic rolling
contact problems. The main equations encountered in rolling contact mechanics are reviewed in the first
part of the paper, with particular emphasis on applications from automotive and vehicle engineering.
In contrast to the common hyperbolic systems found in the literature, such equations include integral
and boundary terms, as well as time-varying transport velocities, that require special treatment. In this
context, existence and uniqueness properties are discussed within the theoretical framework offered by
the semigroup theory. The second part of the paper is then dedicated to recovering approximated solu-
tions to the considered problems, by combining discontinuous Galerkin finite element methods (DGMs)
with explicit Runge–Kutta (RK) schemes of the first and second order for time discretisation. Under
opportune assumptions on the smoothness of the sought solutions, and owing to certain generalised
Courant–Friedrichs–Lewy (CFL) conditions, quasi-optimal error bounds are derived for the complete
discrete schemes. The proposed algorithms are then tested on simple scalar equations in one space
dimension. Numerical experiments seem to suggest the theoretical error estimates to be sharp.

Mathematics Subject Classification. 35L02, 35L04, 35Q49, 65M06, 65M08, 65M12,
65M60, 74A55, 74H15, 74H20, 74H25.

Received September 21, 2023. Accepted June 26, 2024.

1. Introduction

Linear hyperbolic partial differential equations (PDEs) are ubiquitous in physics and engineering [1, 2]. Par-
ticularly, in the field of contact mechanics, hyperbolic PDEs appear in numerous applications concerning rolling
contact phenomena, where they typically describe the complex interactions occurring between wheel and rail
[3–6], tyre and road asphalt [7, 8], but also the dynamics of roll bearing elements, belt-pulley mechanisms, and
continuous automotive transmissions [9–11]. Especially in vehicle engineering, the most common formulations
adopt brush-like representations of the contacting rolling bodies [12,13], where dry friction is modelled according
to the famous Coulomb-Amontons theory [14–16]. Advanced descriptions based on modified friction theories,
such as the LuGre-brush model [17–25], are also able to accurately account for wet and lubricated friction and
have been successfully employed for control design. In one space dimension, a typical example of hyperbolic
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1542 L. ROMANO AND A. MÅLQVIST

PDEs encountered in rolling contact mechanics is as follows:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

+ 𝑎(𝑥, 𝑡)
𝜕𝑢(𝑥, 𝑡)
𝜕𝑥

= 𝐵(𝑡)𝑢(𝑥, 𝑡) + 𝐶(𝑡)𝑢(1, 𝑡) + 𝑓(𝑥, 𝑡), for (𝑥, 𝑡) ∈ (0, 1)× (0, 𝑇 ), (1a)

𝑢(0, 𝑡) = 0, for 𝑡 ∈ (0, 𝑇 ), (1b)
𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑥 ∈ (0, 1), (1c)

where 𝑢(𝑥, 𝑡) ∈ R𝑛 is the unknown solution, measuring a tangential deformation, 𝑎(𝑥, 𝑡) ∈ R denotes the
transport velocity, 𝑓(𝑥, 𝑡) ∈ R𝑛 is the external forcing term, and 𝐶(𝑡) and 𝐵(𝑡) are bounded operators.

Whilst numerous analytical steady-state models allowing for simple closed-form solutions may be encountered
in the dedicated literature, the accurate modelling of certain physical phenomena requires taking into account
unsteady effects. When it comes to simulating the behaviour of many engineering systems, this implies the need
to solve the underlying PDEs numerically, which has limited the deal of effort devoted to such investigations.
Restricting the attention to the field of railway dynamics, departing from the theory developed by Kalker [26,27],
the currently available numerical methods including commercial software like FASTSIM R○ and CONTACT R○

employ variational techniques to iteratively solve the transient problem until convergence is achieved [28–31].
Albeit being sufficiently accurate for the purpose they serve, such algorithms cannot be easily extended to cover
problems arising from other subfields of vehicle engineering and contact mechanics [32, 33], which may instead
be studied using finite element methods. In this context, the present paper is devoted to the numerical modelling
of linear rolling contact phenomena, by combining PDE-based formulations with discontinuous Galerkin finite
element methods (DGMs) for space approximation [34–37]. Since the ultimate ambition is to develop numerical
algorithms (or extensions thereof) enabling fast calculations with performance close to real-time requirements,
and easily implementable in virtual environments like MATLAB/Simulink R○, time discretisation is then achieved
using explicit schemes. More specifically, first and second-order Runge–Kutta (RK) algorithms, which represent
a sufficiently good compromise between accuracy and computational speed [38, 39], are mainly explored in the
present work. To the author’s best knowledge, the numerical methods developed in this paper also constitute a
novelty concerning the modelling of linear rolling contact phenomena described by brush-like formulations.

From the perspective of the pure mathematical analysis, the approach pursued in this paper is heavily inspired
by the research carried out in [38,39], where the authors have rigorously investigated the rate of convergence of
different finite element methods (FEMs) in conjunction with explicit RK schemes up to the third order, using
arguments based on energy estimates. However, the techniques developed in [38,39] are not directly applicable
to most of the initial-boundary-value problems (IBVPs) appearing in rolling contact mechanics and considered
in the following, since the PDEs describing rolling contact phenomena may contain integral and boundary
terms whose presence has not been accounted for in previous studies. Additionally, handling time-varying data
requires modifications of the analyses conducted in [38, 39], since the corresponding discrete equations for the
error dynamics cannot be cast in the same form as that considered in [38,39]. Therefore, the present work also
delivers some results concerning the mathematical analysis of DGMs combined with RK algorithms. In this
context, it should be also mentioned that the techniques presented in this paper may be extended to the study
of other interesting problems arising from different branches of physics and engineering. For example, typical
equations that may be covered by the results advocated in the present work include those treated in [40].

In particular, the remainder of the manuscript is organised as follows. In Section 2, the general structure for
the considered hyperbolic PDEs is outlined concerning the one-dimensional and multi-dimensional cases. Under
certain assumptions, the existence and uniqueness of such equations are established according to the semigroup
theory. Section 3 introduces the space semi-discretisation approach, which enables recovering approximated solu-
tions to the considered initial-boundary-value problems (IBVPs) within finite-dimensional polynomial spaces.
More specifically, this is accomplished by replacing the continuous operator appearing in the abstract formula-
tion with a discrete counterpart, whose salient properties are investigated in detail. Then, Section 4 introduces
the complete discrete schemes, which cover explicit RK algorithms of the first and second order (RK1 and RK2,
respectively). Owing to certain refined Courant–Friedrichs–Lewy (CFL) conditions, convergence results for the
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complete discrete schemes are asserted under the assumption of sufficiently smooth exact solutions. In particu-
lar, the analysis is fully detailed concerning the RK2 algorithms presented in the paper (some technical result
are more appropriately collected in Appendix A). In Section 5, numerical experiments concerning the error
convergence are conducted considering both smooth and less regular solutions. Finally, the main conclusions,
together with some directions for future research, are summarised in Section 6.

2. Linear problems in rolling contact mechanics

The present section reviews the main hyperbolic problems encountered in rolling contact mechanics, for which
existence and uniqueness may be established using a semigroup approach.

2.1. Preliminaries and notation

In this paper, the set of real numbers is indicated with R; R>0 and R≥0 denote the set of positive real numbers
and positive real numbers including zero, respectively. The sets of natural numbers excluding and including zero
are indicated with N and N0.

Generic Banach spaces are conventionally denoted by 𝑋 (respectively 𝑌 ), and equipped with norm ‖·‖𝑋

(respectively ‖·‖𝑌 ); the identity operator is denoted by 𝐼𝑋 (respectively 𝐼𝑌 ). Similarly, generic Hilbert spaces
are indicated with 𝑉 , and equipped with inner product ⟨·, ·⟩𝑉 and norm ‖·‖𝑉 . The corresponding identity
operator is 𝐼𝑉 (when no ambiguity arises, the subscript might be omitted for brevity). Specifically, given a
domain Ω ⊂ R𝑑, the Hilbert space 𝐿2(Ω; R𝑛) is endowed with inner product and induced norm

⟨𝑣, 𝑤⟩𝐿2(Ω;R𝑛) ,
∫︁

Ω

𝑣(𝑥) · 𝑤(𝑥) d𝑥 =
∫︁

Ω

𝑣T(𝑥)𝑤(𝑥) d𝑥, (2a)

‖𝑣(·)‖2𝐿2(Ω;R𝑛) , ⟨𝑣, 𝑣⟩𝐿2(Ω;R𝑛) =
∫︁

Ω

‖𝑣(𝑥)‖22 d𝑥, (2b)

where ‖·‖2 denotes the standard Euclidean norm in R𝑛, respectively. A function 𝑣(·) is said to belong to the
space 𝐿2(Ω; R𝑛), noted 𝑣 ∈ 𝐿2(Ω; R𝑛), if its 𝐿2-norm defined according to equation (2b) is finite. Similarly, the
Hilbert space 𝐻1(Ω; R𝑛) is naturally equipped with seminorm and norm

|𝑣(·)|2𝐻1(Ω;R𝑛) ,
𝑛∑︁

𝑖=1

‖∇𝑣𝑖(·)‖2𝐿2(Ω;R𝑑) , (3a)

‖𝑣(·)‖2𝐻1(Ω;R𝑛) , ‖𝑣(·)‖2𝐿2(Ω;R𝑛) + |𝑣(·)|2𝐻1(Ω;R𝑛) . (3b)

A function 𝑣(·) is said to belong to the space 𝐻1(Ω; R𝑛), noted 𝑣 ∈ 𝐻1(Ω; R𝑛), if its 𝐻1-norm as in equation (3b)
is finite.

The Banach space 𝐶0(Ω; R𝑛) is also endowed with norm

‖𝑣(·)‖∞ , max
Ω
‖𝑣(𝑥)‖2 . (4)

Concerning a function 𝑣(·, ·) defined on the space-time cylinder Ω× (0, 𝑇 ), it is often convenient to interpret
𝑣(·) as a function of the time variable with values in a Banach space 𝑋, spanned by functions of the space
variables, i.e.,

𝑣 : (0, 𝑇 ) ∋ 𝑡 ↦→ 𝑣(𝑡) ≡ 𝑣(·, 𝑡) ∈ 𝑋. (5)
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For any integer 𝑙 ∈ N0, the spaces 𝐶𝑙([0, 𝑇 ];𝑋) are also considered, spanned by functions that are 𝑙 times
continuously differentiable in the interval [0, 𝑇 ]. In particular, the space 𝐶0([0, 𝑇 ];𝑋) is a Banach space when
equipped with the norm

‖𝑣(·, ·)‖𝐶0([0,𝑇 ];𝑋) , max
𝑡∈[0,𝑇 ]

‖𝑣(·, 𝑡)‖𝑋 , (6)

and space 𝐶𝑙([0, 𝑇 ];𝑋) is a Banach space when equipped with the norm

‖𝑣(·, ·)‖𝐶𝑙([0,𝑇 ];𝑋) , max
0≤𝑚≤𝑙

⃦⃦⃦⃦
𝜕𝑚𝑣(·, ·)
𝜕𝑡𝑚

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝑋)

. (7)

In the following, given two Banach spaces 𝑋 and 𝑌 , respectively, L (𝑋;𝑌 ) denotes the space of (possibly
unbounded) linear operators from 𝑋 to 𝑌 , whereas B(𝑋;𝑌 ) the space of bounded linear operators from 𝑋 to
𝑌 , abbreviated B(𝑋) whenever 𝑌 = 𝑋. For 𝑙 ∈ N0, 𝐶𝑙([0, 𝑇 ]; L (𝑋;𝑌 )) and 𝐶𝑙([0, 𝑇 ]; B(𝑋;𝑌 )) denote the
spaces of (possibly unbounded) and bounded linear operators from 𝑋 to 𝑌 , respectively, whose coefficients are
𝑙 times continuously differentiable on [0, 𝑇 ]. The group of operators on a Banach space 𝑋 that are infinitesimal
generators of a 𝐶0-semigroup satisfying ‖𝑇 (𝑡)‖ ≤ e𝜔𝑡 is conventionally denoted by G (1, 𝜔) [41,42].

Finally, M𝑚×𝑛(R), Skew𝑛(R), and GL𝑛(R) denote the groups of matrices, skew symmetric matrices, and
invertible matrices, respectively, assuming values in R𝑚×𝑛 and R𝑛×𝑛; the identity matrix is denoted by 𝐼𝑛 ∈
GL𝑛(R). SO𝑛(R) denotes the group of unitary rotations in R𝑛.

With the above premises, existence and uniqueness properties for the hyperbolic equations encountered in
rolling contact mechanics may be studied within the framework provided by the semigroup theory, after restating
them in an abstract setting. In this paper, the focus is primarily on regular (i.e., strict) solutions, which enjoy
peculiar smoothness properties that are required for the error analysis performed in Section 4. In particular,
considering a generic domain Ω ⊂ R𝑑 with boundary Γ , 𝜕Ω, regular solutions are sought in the Hilbert space
𝐿2(Ω; R𝑛). Two separate classes of IBVPs are considered in what follows: equations in one space dimension,
and equations in several space dimensions.

2.2. Problems in one space dimension

In this paper, the considered IBVPs involving a single space dimension generalise those derived in, e.g., [32].
More specifically, by setting explicitly Ω = (0, 1), the following structure is assumed:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

+ 𝑎(𝑥, 𝑡)
𝜕𝑢(𝑥, 𝑡)
𝜕𝑥

= 𝐵(𝑡)𝑢(𝑥, 𝑡) + 𝐶(𝑡)𝑢(1, 𝑡) + 𝑓(𝑥, 𝑡), for (𝑥, 𝑡) ∈ (0, 1)× (0, 𝑇 ), (8a)

𝑢(0, 𝑡) = 0, for 𝑡 ∈ (0, 𝑇 ), (8b)
𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑥 ∈ (0, 1), (8c)

where 𝑢(𝑥, 𝑡) ∈ R𝑛 is the unknown solution, 𝑎(𝑥, 𝑡) ∈ R denotes the transport velocity, 𝑓(𝑥, 𝑡) ∈ R𝑛 is the
external forcing term, 𝐶 ∈ 𝐶1([0, 𝑇 ]; M𝑛×𝑛(R)) and 𝐵 ∈ 𝐶1([0, 𝑇 ]; B(𝐿2((0, 1); R𝑛))) is a bounded operator,
typically having the form

(𝐵𝑣)(𝑥, 𝑡) = 𝐵̃(𝑡)𝑣(𝑥) +
∫︁ 1

0

𝐾(𝑥, 𝑡)𝑣(𝑥) d𝑥, (9)

with 𝐵̃ ∈ 𝐶1([0, 𝑇 ]; M𝑛×𝑛(R)) and 𝐾 ∈ 𝐶1([0, 1]× [0, 𝑇 ]; M𝑛×𝑛(R)).
The following Assumption 2.1 is supposed to hold concerning the considered IBVP in one space dimension,

which facilitates the analysis.

Assumption 2.1. The transport velocity satisfies 𝑎 ∈ 𝐶1([0, 1]× [0, 𝑇 ]; [𝑎min, 𝑎max]), with 𝑎min > 0.
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Example 2.1 (Brush models on a time-varying domain). After opportunely performing a change of variables,
the brush models on a time-varying domain may be recast in the form of equation (8) with 𝑢(𝑥, 𝑡) ∈ R2,
𝐵(𝑡) = 0, and

𝑎(𝑥, 𝑡) ,
1

2𝛼(𝑡)
(1 + (1− 2𝑥)𝛼̇(𝑡)), (10a)

𝐶(𝑡) , (1− 𝛼̇(𝑡))(𝐼2 + 2𝛼(𝑡)𝑀)−1
𝑀, (10b)

𝑓(𝑥, 𝑡) , (𝐼2 + 𝛼(𝑡)𝑀)−1
𝜎(𝑡) + 𝛼(𝑡)

[︂
0

1− 2𝑥

]︂
𝜙(𝑡), (10c)

where 𝛼 ∈ 𝐶1([0, 𝑇 ]; [𝛼min, 𝛼max]) with 𝛼min > 0, 𝛼̇ ∈ 𝐶1([0, 𝑇 ]; [𝛼̇min, 𝛼̇max]), max{|𝛼̇min| , |𝛼̇max|} < 1, (𝜎, 𝜙) ∈
𝐶1([0, 𝑇 ]; R3), and 𝑀 ∈ GL2(R) is a positive definite, diagonal matrix [32]. Note that the assumptions on 𝛼(𝑡)
and 𝛼̇(𝑡) imply also that 𝐶 ∈ 𝐶1([0, 𝑇 ]; M2×2(R)).

The formulation presented in Example 2.1 has been recently introduced in [7] in the context of transient tyre
modelling, limited to the case of a fixed contact patch (𝛼̇(𝑡) = 0 for all 𝑡 ∈ [0, 𝑇 ]), and then further developed
in [16,32]. Concerning applications in railway dynamics, the same PDEs have been obtained for a time-varying
contact patch in [33], with 𝐶(𝑡) = 0 for all 𝑡 ∈ [0, 𝑇 ]. In both the automotive and railway fields, the variable
𝑢(𝑥, 𝑡) ∈ R2 collects the tangential deformations of the material particles travelling inside the contact patch,
relatively to the road or rail surface, respectively. The transport velocity 𝑎(𝑥, 𝑡) ∈ R, representing instead the
rolling speed of the tyre or railway wheel, is clearly the same for all the components of 𝑢(𝑥, 𝑡).

Example 2.2 (LuGre-brush models on a time-varying domain). After opportunely performing a change of
variables, the LuGre-brush models with a spatially constant pressure distribution on a time-varying domain
may be recast in the form of equation (8) with 𝑢(𝑥, 𝑡) ∈ R2, 𝑎(𝑥, 𝑡) and 𝑓(𝑥, 𝑡) reading as in equations (10a)
and (10c), respectively, and

𝐶(𝑡) , (1− 𝛼̇(𝑡))(𝐼2 + 2𝛼(𝑡)𝑀1𝑀2𝑝(𝑡))
−1
𝑀1𝑀2𝑝(𝑡), (11a)

𝐵̃(𝑡) , −𝛽(𝑡)𝑀1, (11b)

𝐾(𝑥, 𝑡) ≡ 𝐾(𝑡) , 2𝛼(𝑡)(1− 𝛼̇(𝑡))(𝐼2 + 2𝛼(𝑡)𝑀1𝑀2𝑝(𝑡))
−1
𝑀1𝑀2

(︂
𝛽(𝑡)𝑀1𝑝(𝑡)−

𝜕𝑝(𝑡)
𝜕𝑡

)︂
, (11c)

where 𝛼(𝑡) and 𝛼̇(𝑡) satisfy the same assumptions as previously, 𝛽 ∈ 𝐶1([0, 𝑇 ]; R≥0), 𝑝 ∈ 𝐶1([0, 𝑇 ]; [𝑝min, 𝑝max]),
with 𝑝min > 0, and 𝑀1, 𝑀2 ∈ GL2(R) are positive definite diagonal matrices [32].

Also in the context of tyre dynamics, and limited to the case 𝛼̇(𝑡) = 0 and 𝐶(𝑡) = 0 for all 𝑡 ∈ [0, 𝑇 ],
the LuGre-brush models were derived in [17–20] and studied extensively also in [21–23]. The first formulation
accounting for the presence of boundary terms has recently appeared in [32]. According to such a model,
𝑢(𝑥, 𝑡) ∈ R2 is interpreted either as a tangential deformation or as an internal frictional variable.

2.2.1. Well-posedness

The well-posedness of IBVPs of the same type as in equation (8) may be conveniently proved within the
theoretical framework offered by the semigroup theory. In particular, considering for a moment the case 𝐵(𝑡) = 0,
the IBVP (8) simplifies to

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

+ 𝑎(𝑥, 𝑡)
𝜕𝑢(𝑥, 𝑡)
𝜕𝑥

= 𝐶(𝑡)𝑢(1, 𝑡) + 𝑓(𝑥, 𝑡), for (𝑥, 𝑡) ∈ (0, 1)× (0, 𝑇 ), (12a)

𝑢(0, 𝑡) = 0, for 𝑡 ∈ (0, 𝑇 ), (12b)
𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑥 ∈ (0, 1), (12c)
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which may be recast in abstract formulation as follows:

d𝑢(𝑡)
d𝑡

= 𝐴(𝑡)𝑢(𝑡) + 𝑓(𝑡), for 𝑡 ∈ (0, 𝑇 ), (13a)

𝑢(0) = 𝑢0, (13b)

where, for each 𝑡 ∈ [0, 𝑇 ], the unbounded operator (𝐴(𝑡), 𝐷(𝐴(𝑡))), 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ↦→ 𝐿2((0, 1); R𝑛), is assumed
to be the infinitesimal generator of a 𝐶0-semigroup on the Hilbert space 𝐿2((0, 1); R𝑛). In fact, owing to Assump-
tion 2.1, the operator (𝐴(𝑡), 𝐷(𝐴(𝑡))) may be defined as1

(𝐴𝑣)(𝑥, 𝑡) , −𝑎(𝑥, 𝑡)
𝜕𝑣(𝑥)
𝜕𝑥

+ 𝐶(𝑡)𝑣(1), (14a)

𝐷(𝐴(𝑡)) ≡ 𝐷 ,
{︁
𝑣 ∈ 𝐻1((0, 1); R𝑛)

⃒⃒⃒
𝑣(0) = 0

}︁
. (14b)

Starting with the abstract formulation described by equations (13) and (14), the procedure to prove the well-
posedness of the IBVP (12) relies on showing closedness and quasi-dissipativity properties for the operator
(𝐴(𝑡), 𝐷). In this context, Assumption 2.1 ensures the invertibility of the operator (𝐴(𝑡), 𝐷), which is required
in the next Lemma 2.1.

Lemma 2.1 (Closedness). Under Assumption 2.1, the operator (𝐴(𝑡), 𝐷) as defined in equation (14) is closed.

Proof. To prove that (𝐴(𝑡), 𝐷) is closed, it suffices to show that, for all 𝑡 ∈ [0, 𝑇 ], there exists 𝜆 ∈ R>0

independent of 𝑡 such that 𝐴(𝑡)− 𝜆𝐼 is invertible, where, for brevity, 𝐼 = 𝐼𝐿2((0,1);R𝑛) (see, e.g., [43], Thm. 4.2-
C). By setting

((𝐴− 𝜆𝐼)𝑣)(𝑥, 𝑡) = −𝑎(𝑥, 𝑡)
𝜕𝑣(𝑥)
𝜕𝑥

− 𝜆𝑣(𝑥) + 𝐶(𝑡)𝑣(1) = 𝑤(𝑥), (15)

it may be deduced that

𝑣(𝑥) =
∫︁ 𝑥

0

𝐶(𝑡)
𝑎(𝑥′, 𝑡)

exp
(︂
−
∫︁ 𝑥

𝑥′

𝜆

𝑎(𝑥̃, 𝑡)
d𝑥̃
)︂

d𝑥′𝑣(1)−
∫︁ 𝑥

0

𝑤(𝑥′)
𝑎(𝑥′, 𝑡)

exp
(︂
−
∫︁ 𝑥

𝑥′

𝜆

𝑎(𝑥̃, 𝑡)
d𝑥̃
)︂

d𝑥′. (16)

Computing 𝑣(1) in turn yields

𝑣(𝑥) =
(︁

(𝐴− 𝜆𝐼)−1
𝑤
)︁

(𝑥, 𝑡) = −Ψ̃(𝑥, 𝑡)
∫︁ 1

0

𝑤(𝑥)
𝑎(𝑥, 𝑡)

exp
(︂
−
∫︁ 1

𝑥

𝜆

𝑎(𝑥′, 𝑡)
d𝑥′
)︂

d𝑥

−
∫︁ 𝑥

0

𝑤(𝑥′)
𝑎(𝑥′, 𝑡)

exp
(︂
−
∫︁ 𝑥

𝑥′

𝜆

𝑎(𝑥̃, 𝑡)
d𝑥̃
)︂

d𝑥′,
(17)

with

Ψ̃(𝑥, 𝑡) ,
∫︁ 𝑥

0

𝐶(𝑡)
𝑎(𝑥′, 𝑡)

exp
(︂
−
∫︁ 𝑥

𝑥′

𝜆

𝑎(𝑥̃, 𝑡)
d𝑥̃
)︂

d𝑥′Ψ−1(𝑡), (18)

where, for all 𝑡 ∈ [0, 𝑇 ] and 𝑎 ∈ 𝐶1([0, 1]× [0, 1]; [𝑎min, 𝑎max]) with 𝑎min > 0, the matrix

Ψ(𝑡) , 𝐼𝑛 −
∫︁ 1

0

𝐶(𝑡)
𝑎(𝑥, 𝑡)

exp
(︂
−
∫︁ 1

𝑥

𝜆

𝑎(𝑥′, 𝑡)
d𝑥′
)︂

d𝑥, (19)

is invertible for an appropriate choice of 𝜆 independent of 𝑡. In particular, since∫︁ 1

0

1
𝑎(𝑥, 𝑡)

exp
(︂
−
∫︁ 1

𝑥

𝜆

𝑎(𝑥′, 𝑡)
d𝑥′
)︂

d𝑥 ≤ 𝑎max

𝜆𝑎min
, 𝜆 ∈ R>0, (20)

1For what follows, the time variable is often interpreted as a parameter 𝑡 ∈ [0, 𝑇 ] [40]. In this context, it is crucial to observe
that, even though the operator 𝐴(𝑡) is time-dependent, its domain 𝐷(𝐴(𝑡)) = 𝐷(𝐴(0)) ≡ 𝐷 is not, owing to Assumption 2.1. For
this reason, the notation (𝐴(𝑡), 𝐷(𝐴(𝑡))) is sometimes abbreviated as (𝐴(𝑡), 𝐷).
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choosing

𝜆 >
𝑎max

𝑎min
sup

𝑡∈[0,𝑇 ]

‖𝐶(𝑡)‖ (21)

ensures Ψ(𝑡) in equation (19) to be invertible, i.e., Ψ ∈ 𝐶1([0, 𝑇 ]; GL𝑛(R)). Since, according to equation (21)
𝜆 ∈ R>0, can be selected such that (𝐴(𝑡)− 𝜆𝐼)−1 exists for all 𝑡 ∈ [0, 𝑇 ], (𝐴(𝑡)− 𝜆𝐼,𝐷) is closed, implying that
(𝐴(𝑡), 𝐷) is also closed. �

Proposition 2.1 (Adjoint operator). The adjoint operator (𝐴*(𝑡), 𝐷(𝐴*(𝑡))), 𝐴*(𝑡) : 𝐷(𝐴*(𝑡)) ↦→
𝐿2((0, 1); R𝑛) of the operator (𝐴(𝑡), 𝐷) defined in equation (14) is given by

(𝐴*𝑣)(𝑥, 𝑡) =
𝜕

𝜕𝑥
(𝑎(𝑥, 𝑡)𝑣(𝑥)), (22a)

𝐷(𝐴*(𝑡)) =

{︃
𝑣 ∈ 𝐻1((0, 1); R𝑛)

⃒⃒⃒⃒
⃒ 𝑣(1) =

𝐶T(𝑡)
𝑎(1, 𝑡)

∫︁ 1

0

𝑣(𝑥) d𝑥

}︃
. (22b)

Proof. Since there exists 𝜆 ∈ R>0 such that (𝐴(𝑡)− 𝜆𝐼,𝐷) admits a bounded inverse, it is sufficient to deduce
an expression for the adjoint (𝐴(𝑡)− 𝜆𝐼)−1* = (𝐴(𝑡)− 𝜆𝐼)*−1 of (𝐴(𝑡)− 𝜆𝐼)−1, and then exploit the fact that
(𝐴(𝑡)− 𝜆𝐼)* = 𝐴*(𝑡)− 𝜆𝐼 (see, e.g., [45], Lem. A.3.72). Starting with equation (17), an application of Fubini’s
theorem yields

(︁
(𝐴− 𝜆𝐼)−1*𝑣

)︁
(𝑥, 𝑡) =

(︁
(𝐴− 𝜆𝐼)*−1

𝑣
)︁

(𝑥, 𝑡) = − 1
𝑎(𝑥, 𝑡)

exp
(︂
−
∫︁ 1

𝑥

𝜆

𝑎(𝑥′, 𝑡)
d𝑥′
)︂∫︁ 1

0

Ψ̃T(𝑥, 𝑡)𝑣(𝑥) d𝑥

− 1
𝑎(𝑥, 𝑡)

∫︁ 1

𝑥

exp

(︃
−
∫︁ 𝑥′

𝑥

𝜆

𝑎(𝑥̃, 𝑡)
d𝑥̃

)︃
𝑣(𝑥′) d𝑥′.

(23)

Consider now the operator ((𝐴(𝑡) − 𝜆𝐼)*, 𝐷((𝐴(𝑡) − 𝜆𝐼)*)), (𝐴(𝑡) − 𝜆𝐼)* : 𝐷((𝐴(𝑡) − 𝜆𝐼)*) ↦→ 𝐿2((0, 1); R𝑛)
defined as

((𝐴− 𝜆𝐼)*𝑣)(𝑥, 𝑡) =
𝜕

𝜕𝑥
(𝑎(𝑥, 𝑡)𝑣(𝑥))− 𝜆𝑣(𝑥), (24a)

𝐷((𝐴(𝑡)− 𝜆𝐼)*) =

{︃
𝑣 ∈ 𝐻1((0, 1); R𝑛)

⃒⃒⃒⃒
⃒ 𝑣(1) =

𝐶T(𝑡)
𝑎(1, 𝑡)

∫︁ 1

0

𝑣(𝑥) d𝑥

}︃
. (24b)

It may be verified that (𝐴(𝑡) − 𝜆𝐼)*(𝐴(𝑡)− 𝜆𝐼)−1* = 𝐼𝐿2((0,1);R𝑛) and (𝐴(𝑡)− 𝜆𝐼)−1*(𝐴(𝑡) − 𝜆𝐼)* =
𝐼𝐷((𝐴(𝑡)−𝜆𝐼)*), which then yields equation (22). �

Lemma 2.2 (Quasi-dissipativity). The operator (𝐴(𝑡), 𝐷) defined according to equation (14), together with its
adjoint (𝐴*(𝑡), 𝐷(𝐴*(𝑡))), is quasi-dissipative with constant 𝜔 given by

𝜔 ,
1
2

(︃
sup

𝑡∈[0,𝑇 ]

⃦⃦⃦⃦
𝜕𝑎(·, 𝑡)
𝜕𝑥

⃦⃦⃦⃦
∞

+
sup𝑡∈[0,𝑇 ] ‖𝐶(𝑡)‖2

inf𝑡∈[0,𝑇 ] 𝑎(1, 𝑡)

)︃
· (25)
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Proof. Considering the operator (𝐴(𝑡), 𝐷), taking the inner product on 𝐿2((0, 1); R𝑛) and integrating by parts
yields

⟨𝐴(𝑡)𝑣, 𝑣⟩𝐿2((0,1);R𝑛) = −
∫︁ 1

0

𝑎(𝑥, 𝑡)
𝜕𝑣T(𝑥)
𝜕𝑥

𝑣(𝑥) d𝑥+ 𝑣T(1)𝐶T(𝑡)
∫︁ 1

0

𝑣(𝑥) d𝑥

= −1
2

∫︁ 1

0

𝑎(𝑥, 𝑡)
𝜕

𝜕𝑥
‖𝑣(𝑥)‖22 d𝑥+ 𝑣T(1)𝐶T(𝑡)

∫︁ 1

0

𝑣(𝑥) d𝑥

= −1
2
𝑎(1, 𝑡) ‖𝑣(1)‖22 +

1
2

∫︁ 1

0

𝜕𝑎(𝑥, 𝑡)
𝜕𝑥

‖𝑣(𝑥)‖22 d𝑥

+ 𝑣T(1)𝐶T(𝑡)
∫︁ 1

0

𝑣(𝑥) d𝑥, for 𝑣 ∈ 𝐷.

(26)

Applying Cauchy–Schwarz’ and then the generalised form of Young’s inequality for products to the last term
on the right-hand side of equation (26) gives

⟨𝐴(𝑡)𝑣, 𝑣⟩𝐿2((0,1);R𝑛) ≤ −
1
2

(︃
inf

𝑡∈[0,𝑇 ]
𝑎(1, 𝑡)− 1

𝜀
sup

𝑡∈[0,𝑇 ]

‖𝐶(𝑡)‖2
)︃
‖𝑣(1)‖22

+
1
2

(︃
sup

𝑡∈[0,𝑇 ]

⃦⃦⃦⃦
𝜕𝑎(·, 𝑡)
𝜕𝑥

⃦⃦⃦⃦
∞

+ 𝜀

)︃
‖𝑣(·)‖2𝐿2((0,1);R𝑛) , for 𝑣 ∈ 𝐷.

(27)

Therefore, selecting

𝜀 ,
sup𝑡∈[0,𝑇 ] ‖𝐶(𝑡)‖2

inf𝑡∈[0,𝑇 ] 𝑎(1, 𝑡)
(28)

leads to ⟨𝐴(𝑡)𝑣, 𝑣⟩𝐿2((0,1);R𝑛) ≤ 𝜔 ‖𝑣(·)‖2𝐿2((0,1);R𝑛) with 𝜔 defined as in equation (25).
Additionally, starting with equation (22), similar manipulations as previously give

⟨𝐴*(𝑡)𝑣, 𝑣⟩𝐿2((0,1);R𝑛) =
∫︁ 1

0

𝜕

𝜕𝑥

(︀
𝑎(𝑥, 𝑡)𝑣T(𝑥)

)︀
𝑣(𝑥) d𝑥

= 𝑎(1, 𝑡) ‖𝑣(1)‖22 − 𝑎(0, 𝑡) ‖𝑣(0)‖22 −
∫︁ 1

0

𝑎(𝑥, 𝑡)𝑣T(𝑥)
𝜕𝑣(𝑥)
𝜕𝑥

d𝑥

=
1
2
𝑎(1, 𝑡) ‖𝑣(1)‖22 −

1
2
𝑎(0, 𝑡) ‖𝑣(0)‖22

+
1
2

∫︁ 1

0

𝜕𝑎(𝑥, 𝑡)
𝜕𝑥

‖𝑣(𝑥)‖22 d𝑥, for 𝑣 ∈ 𝐷(𝐴*(𝑡)).

(29)

Using the BC in equation (22b) and then applying the Cauchy–Schwarz’ inequality yields

⟨𝐴*(𝑡)𝑣, 𝑣⟩𝐿2((0,1);R𝑛) ≤
1
2

(︃
sup

𝑡∈[0,𝑇 ]

⃦⃦⃦⃦
𝜕𝑎(·, 𝑡)
𝜕𝑥

⃦⃦⃦⃦
∞

+
sup𝑡∈[0,𝑇 ] ‖𝐶(𝑡)‖2

inf𝑡∈[0,𝑇 ] 𝑎(1, 𝑡)

)︃
× ‖𝑣(·)‖𝐿2((0,1);R𝑛) , for 𝑣 ∈ 𝐷(𝐴*(𝑡)). (30)

By combining equations (27) and (30), the result follows. �

The next theorem asserts the main well-posedness result for the IBVP (12).
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Theorem 2.1 (Existence and uniqueness). If Assumption 2.1 holds, for all 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿2((0, 1); R𝑛)) and
𝑢0 ∈ 𝐷, the IBVP (12) admits a unique strict solution 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2((0, 1); R𝑛)) ∩ 𝐶0([0, 𝑇 ];𝐷) given by

𝑢(𝑡) = 𝑈𝐴(𝑡, 0)𝑢0 +
∫︁ 𝑡

0

𝑈𝐴(𝑡, 𝑡′)𝑓(𝑡′) d𝑡′, (31)

where 𝑈𝐴(𝑡, 𝑡) denotes the evolution operator associated with the infinitesimal generator (𝐴(𝑡), 𝐷).

Proof. Since 𝐶1
0 ([0, 1]; R𝑛) ⊂ 𝐷(𝐴(𝑡)) ≡ 𝐷, the operator (𝐴(𝑡), 𝐷) as defined in equation (14) is dense, i.e.,

𝐷 = 𝐿2((0, 1); R𝑛). Moreover, it is closed and quasi-dissipative together with its adjoint (𝐴*(𝑡), 𝐷(𝐴*(𝑡)))
according to Lemmas 2.1 and 2.2. It follows from Lumer–Phillips’ theorem (see, e.g., [44], Cor. 2.2.3 or [45],
Cor. 2.3.3) that, for 𝑡 ∈ [0, 𝑇 ], 𝐴(𝑡) is the infinitesimal generator of a 𝐶0-semigroup. In particular, 𝐴(𝑡) ∈ G (1, 𝜔),
with 𝜔 as in equation (25). Therefore, the family {𝐴(𝑡)}𝑡∈[0,𝑇 ] is stable. Since 𝐷(𝐴(𝑡)) = 𝐷(𝐴(0)) ≡ 𝐷 is
independent of 𝑡 and, for every 𝑢0 ∈ 𝐷, 𝐴(𝑡)𝑢0 is continuously differentiable in 𝐿2((0, 1); R𝑛) by Assumption 2.1,
there exists unique strict solution 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2((0, 1); R𝑛)) ∩ 𝐶0([0, 𝑇 ];𝐷) reading as in equation (31) for
all 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿2((0, 1); R𝑛)) and 𝑢0 ∈ 𝐷 (see [46], Thm. 4.5.4 or [47], 7.6). �

Concerning the complete formulation with 𝐵(𝑡) ̸= 0, Corollary 2.1 finally asserts the well-posedness of the
IBVP (8).

Corollary 2.1 (Existence and uniqueness). If Assumptions 2.1 holds, the IBVP (8) admits a unique strict
solution 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2((0, 1); R𝑛)) ∩ 𝐶0([0, 𝑇 ];𝐷) for all 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿2((0, 1); R𝑛)) and 𝑢0 ∈ 𝐷.

Proof. Consider again the operator (𝐴(𝑡), 𝐷) as in equation (14) and define the operator (𝐴(𝑡), 𝐷(𝐴(𝑡))),
with (𝐴𝑣)(𝑥, 𝑡) = (𝐴𝑣)(𝑥, 𝑡) + (𝐵𝑣)(𝑥, 𝑡) and 𝐷(𝐴(𝑡)) = 𝐷(𝐴(𝑡)) = 𝐷(𝐴(0)) ≡ 𝐷 independent of 𝑡2. Since
𝐴(𝑡) ∈ G (1, 𝜔) and ‖𝐵(𝑡)‖ ≤ 𝐵max for all 𝑡 ∈ [0, 𝑇 ], it follows that 𝐴(𝑡) ∈ G (1, 𝜔 + 𝐵max), and con-
sequently the family {𝐴(𝑡)}𝑡∈[0,𝑇 ] is stable ([47], Thm. 7.4 or [48], 5.2.3). Moreover, for every 𝑢0 ∈ 𝐷,
𝐴(𝑡)𝑢0 is continuously differentiable in 𝐿2((0, 1); R𝑛), which ensures the existence of a unique strict solution
𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2((0, 1); R𝑛)) ∩ 𝐶0([0, 𝑇 ];𝐷) for all 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿2((0, 1); R𝑛)) and 𝑢0 ∈ 𝐷. �

Theorem 2.1 and Corollary 2.1 conclude the analysis of IBVPs in one space dimension.

2.3. System in several space dimensions

In the context of contact mechanics studies, transport equations in several space dimensions describe the
dynamics of rolling and slipping bodies, including tyres, railway wheels, and elastic spheres [14,15,24].

More specifically, concerning systems in several space dimensions, the following structure for the IBVP is
considered in this paper:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

+ (𝑎(𝑥, 𝑡) · ∇)𝑢(𝑥, 𝑡) = 𝐵(𝑡)𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), for (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ), (32a)

𝑢(𝑥, 𝑡) = 0, for (𝑥, 𝑡) ∈ Γ− × (0, 𝑇 ), (32b)
𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑥 ∈ Ω, (32c)

where 𝑢(𝑥, 𝑡) ∈ R𝑛, 𝑎(𝑥, 𝑡) ∈ R𝑑, 𝑑 ≥ 2, 𝑓(𝑥, 𝑡) ∈ R𝑛 is the external forcing term, 𝐵 ∈ 𝐶1([0, 𝑇 ]; M𝑛×𝑛(R)), the
open set Ω ⊂ R𝑑, represents the spatial domain and

Γ+ =
{︀
𝑥 ∈ Γ

⃒⃒
𝑎(𝑥, 𝑡) · 𝜈(𝑥) > 0

}︀
, (33a)

Γ0 =
{︀
𝑥 ∈ Γ

⃒⃒
𝑎(𝑥, 𝑡) · 𝜈(𝑥) = 0

}︀
, (33b)

2Here, 𝐷(𝐴(𝑡)) = 𝐷(𝐴(0)) ≡ 𝐷 is considered a Banach space equipped with the graph norm ‖𝑣(·)‖2𝐷 = ‖𝑣(·)‖2𝐿2((0,1);R𝑛) +

‖𝐴(0)𝑣(·)‖2
𝐿2((0,1);R𝑛)

.
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Γ− =
{︀
𝑥 ∈ Γ

⃒⃒
𝑎(𝑥, 𝑡) · 𝜈(𝑥) < 0

}︀
, (33c)

being 𝜈(𝑥) ∈ R𝑑 the outward unit normal to Γ. It should be observed that, unless the boundary Γ is sufficiently
smooth, the outward unit normal 𝜈(𝑥) may not be defined for some points belonging to Γ. In the following, the
set of such points is denoted by 𝜒 ⊂ Γ.

The PDE (32a) describes a vector-valued transport equation whose scalar components are coupled via the
matrix 𝐵 ∈ 𝐶1([0, 𝑇 ]; M𝑛×𝑛(R)). It is obvious that the matrix 𝐵(𝑡) is the infinitesimal generator of a 𝐶0-
semigroup3, with solution operator denoted by 𝑈𝐵(𝑡, 𝑡). Therefore, substituting 𝑢(𝑥, 𝑡) , 𝑈𝐵(𝑡, 0)𝑤(𝑥, 𝑡) into
equation (32a) yields

𝑈𝐵(𝑡, 0)
(︂
𝜕𝑤(𝑥, 𝑡)
𝜕𝑡

+ (𝑎(𝑥, 𝑡) · ∇)𝑤(𝑥, 𝑡)
)︂

= −
(︂
𝜕𝑈𝐵(𝑡, 0)

𝜕𝑡
−𝐵(𝑡)𝑈𝐵(𝑡, 0)

)︂
𝑤(𝑥, 𝑡) + 𝑓(𝑥, 𝑡),

for (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ).
(34)

Since 𝑈𝐵(0, 0) = 𝐼𝑛, the following matrix ODE is identically satisfied:

𝜕𝑈𝐵(𝑡, 0)
𝜕𝑡

= 𝐵(𝑡)𝑈𝐵(𝑡, 0), for 𝑡 ∈ [0, 𝑇 ]. (35)

Additionally, by observing that the solution operator is invertible, i.e., 𝐶1([0, 𝑇 ]; GL𝑛(R)) ∋ 𝑈−1
𝐵 (𝑡, 0) ≡

𝑈𝐵(0, 𝑡) exists for every 𝑡 ∈ [0, 𝑇 ], the original system described by equation (32) may be recast in the fol-
lowing equivalent form:

𝜕𝑤(𝑥, 𝑡)
𝜕𝑡

+ (𝑎(𝑥, 𝑡) · ∇)𝑤(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), for (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ), (36a)

𝑤(𝑥, 𝑡) = 0, for (𝑥, 𝑡) ∈ Γ− × (0, 𝑇 ), (36b)
𝑤(𝑥, 0) = 𝑤0(𝑥) = 𝑢0(𝑥), for 𝑥 ∈ Ω, (36c)

being 𝑔(𝑥, 𝑡) , 𝑈𝐵(0, 𝑡)𝑓(𝑥, 𝑡). The technique outlined above may be conveniently applied to the rolling contact
problems considered, e.g., in [14,15], which are or may be recast4 in the same form as that described by equation
(32).

Concerning the study of the IBVPs (32) and (36), a common problem is that, when the velocity field 𝑎(𝑥, 𝑡)
is time-dependent, the sets defined according to equation (33) may also vary over time, that is, Γ+ = Γ+(𝑡),
Γ0 = Γ0(𝑡) and Γ− = Γ−(𝑡). Moreover, the product 𝑎(𝑥, 𝑡) · 𝜈(𝑥) vanishes for all the points of the boundary
belonging to Γ− (characteristic condition). As opposed to the one-dimensional case, for general domains Ω ⊂ R𝑑,
there is no simple characterisation guaranteeing that the sets in equation (33) are time-independent, whilst
also ensuring that the noncharacteristic condition is never violated on the boundary (see, e.g., the discussions
reported in [50–52]). Therefore, mainly for the purpose of coherence, a simplified version of the IBVP (36), where
the vector field 𝑎(𝑥, 𝑡) = 𝑎(𝑥) is assumed to be time-independent, is considered in the following. Returning to
the standard notation for a matter of convenience, the corresponding IBVP is stated as

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

+ (𝑎(𝑥) · ∇)𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), for (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ), (37a)

𝑢(𝑥, 𝑡) = 0, for (𝑥, 𝑡) ∈ Γ− × (0, 𝑇 ), (37b)
𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑥 ∈ Ω. (37c)

A typical problem of the form (32) encountered in rolling contact mechanics is described in Example 2.3 below.

3This obviously remains true if 𝐵 ∈ 𝐶0([0, 𝑇 ];M𝑛×𝑛(R)).
4For example, IBVPs evolving on time-varying domains, such as those considered in [14, 15], may be restated according to

equation (32).
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Example 2.3. Hyperbolic systems in two space dimensions govern the equations of the brush and LuGre-brush
models on fixed domains. In particular, when accounting for large spin slips, both formulations are in the form
of equation (32), with 𝑢(𝑥, 𝑡) ∈ R2, Ω ⊂ R2, and

𝑎(𝑥, 𝑡) ≡ 𝑎(𝑥) =
[︂
−𝜀1 + 𝛾𝑥2

𝜀2 − 𝛾𝑥1

]︂
, (38a)

𝐵(𝑡) ≡ 𝐵 =
[︂
−𝜅1 −𝜓
𝜓 −𝜅2

]︂
, (38b)

𝑓(𝑥, 𝑡) ≡ 𝑓(𝑥) = 𝜎 +
[︂
−𝜙𝑥2

𝜙𝑥1

]︂
, (38c)

where 𝜅1 = 𝜅2 = 0 identically for the standard brush model and 𝜅1, 𝜅2 ≥ 0 for the LuGre-brush models. For
𝐵(𝑡) constant, or commuting with its integral in the time-varying case, the corresponding evolution operator
introduced in Section 2.3 reads evidently 𝑈𝐵(𝑡, 𝑡) = exp(

∫︀ 𝑡

𝑡
𝐵(𝑡′) d𝑡′). Concerning the standard brush models,

the matrix 𝐵(𝑡) does not only commute even in the time-varying case, but it is also skew-symmetric, i.e.,
𝐵(𝑡) ∈ Skew2(R), and therefore the evolution operator is unitary (𝜅1 = 𝜅2 = 0 implies more specifically
𝑈𝐵(𝑡, 𝑡) ∈ SO2(R)). The problem may, in principle, be solved analytically using the method of the characteristic
lines even when 𝐵 = 𝐵(𝑡) and 𝑓(𝑥) = 𝑓(𝑥, 𝑡) are time-varying. This may be accomplished either directly or by
converting the original IBVP (32) into the equivalent one (37). Analytical solutions are reported, for example,
in [14,15,24] concerning rectangular, circular, and elliptical domains.

The motivation for considering the simplified IBVP (37) resides in that the semigroup theory may be more
easily applied, since the sets defined in equation (33) do not depend on time.

2.3.1. Well-posedness

The well-posedness of the IBVP (37) follows from a classical result obtained by Bardos [49], which provides
the following abstract representation:

d𝑢(𝑡)
d𝑡

= 𝐴𝑢(𝑡) + 𝑓(𝑡), for 𝑡 ∈ (0, 𝑇 ), (39a)

𝑢(0) = 𝑢0, (39b)

where the unbounded operator (𝐴,𝐷(𝐴)), 𝐴 : 𝐷(𝐴) ↦→ 𝐿2(Ω; R𝑛), is defined as

(𝐴𝑣)(𝑥) , −(𝑎(𝑥) · ∇)𝑣(𝑥), (40a)

𝐷(𝐴) ≡ 𝐷 ,
{︁
𝑣 ∈ 𝐿2(Ω; R𝑛)

⃒⃒⃒
(𝑎 · ∇)𝑣 ∈ 𝐿2(Ω; R𝑛), and 𝑣|Γ− = 0

}︁
. (40b)

Theorem 2.2 asserts the well-posedness for the equivalent IBVP (37), and consequently also for the original
formulation (32).

Theorem 2.2 (Existence and uniqueness [49]). Assume that the field 𝐴 = 𝑎(𝑥) · ∇ can be extended to a field
𝐴 = 𝑎̄(𝑥) · ∇ defined on an open set Ω* ⊂ R𝑑 such that Ω ⊂ Ω*, with 𝑎̄ ∈ 𝐶1(Ω*; R𝑑) bounded on Ω* together
with its derivatives. Moreover, suppose that the boundary Γ of the domain Ω is piecewise 𝐶1. Then, the IBVP
(37) admits a unique strict solution 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2(Ω; R𝑛)) ∩ 𝐶0([0, 𝑇 ];𝐷) for all 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿2(Ω; R𝑛))
and 𝑢0 ∈ 𝐷.

Sketch of the proof. Since, owing to the Theorem’s assumptions, the trajectories of 𝐴 intersecting Γ0 ∪ 𝜒 have
zero measure, it can be shown that 𝐴 is the infinitesimal generator of a 𝐶0-semigroup (see [49]). In particular,
𝐴 ∈ G (1, 𝜔), with 𝜔 , 1

2 ‖∇ · 𝑎(·)‖∞. Therefore, for every 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿2(Ω; R𝑛)) and 𝑢0 ∈ 𝐷, the IBVP (37)
has a unique strict solution. �



1552 L. ROMANO AND A. MÅLQVIST

Before concluding the analysis, it is perhaps worth mentioning that the extension of Theorem 2.2 to more
general IBVPs, accounting for, e.g., integral terms, may be worked out again within the mathematical framework
provided by the perturbation theory of linear unbounded operators. A final consideration is formalised in
Remark 2.1 below.

Remark 2.1 (Discussion about less regular solutions). According to the abstract representation provided by
equation (39), the solution to the IBVP (37) is formally given by a similar expression to that in equation (31).
Concerning hyperbolic equations both in one and several space dimensions (Eqs. (8) and (37), respectively), it
is worth observing that equation (31) has meaning even if 𝑢0 ∈ 𝐿2(Ω; R𝑛) and 𝑓 ∈ 𝐿𝑝((0, 𝑇 );𝐿2(Ω; R𝑛)), 𝑝 ≥ 1.
In such a case, the function in equation (31) is said to be a mild solution. Regarding systems in several space
dimensions, the well-posedness asserted by Theorem 2.2 is limited to the case of a time-independent vector
field 𝑎(𝑥, 𝑡) = 𝑎(𝑥). However, in a very general setting, when, e.g., 𝐵 ∈ 𝐶0([0, 𝑇 ]; M𝑛×𝑛(R𝑛)), existence and
uniqueness for the IBVP (32) may be established as in [53], considering the equivalent system (36).

3. Space semi-discretisation: discontinuous Galerkin finite element methods
(DGMs)

The present section illustrates the main concepts and assumptions that are required to construct finite-
dimensional approximations of hyperbolic evolution equations within the (DGM) framework. The proposed
method relies on the spatial discretisation of the considered domain Ω, using a mesh and choosing an appropriate
local polynomial behaviour within each mesh element. More specifically, in the remainder of this Section, the
following hyperbolic IBVP is considered, which generalises those examined in Section 2:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

+ (𝑎(𝑥, 𝑡) · ∇)𝑢(𝑥, 𝑡) = 𝐵(𝑡)𝑢(𝑥, 𝑡) + 𝐶(𝑡)
∫︁

Γ

𝑢(𝑥, 𝑡) d𝑠+ 𝑓(𝑥, 𝑡), for (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ), (41a)

𝑢(𝑥, 𝑡) = 0, for (𝑥, 𝑡) ∈ Γ− × (0, 𝑇 ), (41b)
𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑥 ∈ Ω, (41c)

with the data 𝑎(𝑥, 𝑡) ∈ R𝑑, 𝑓(𝑥, 𝑡) ∈ R𝑛, 𝐵(𝑡) ∈ B(𝐿2(Ω; R𝑛)), and 𝐶(𝑡) ∈ M𝑛×𝑛(R) assumed to be sufficiently
regular for what follows. In particular, specifying the term 𝐵(𝑡) = 0 for simplicity5 and consistency of notation
with Section 2, and assuming Γ−(𝑡) = Γ− to be constant over time, the above hyperbolic IBVP may be recast
in abstract form by setting

(𝐴𝑣)(𝑥, 𝑡) , −(𝑎(𝑥, 𝑡) · ∇)𝑣(𝑥) + 𝐶(𝑡)
∫︁

Γ

𝑣(𝑥) d𝑠, (42a)

𝐷(𝐴(𝑡)) ,
{︁
𝑣 ∈ 𝐿2(Ω; R𝑛)

⃒⃒⃒
𝐴(𝑡)𝑣 ∈ 𝐿2(Ω; R𝑛), and 𝑣|Γ− = 0

}︁
, (42b)

where it shall be supposed that 𝐷(𝐴(𝑡)) = 𝐷(𝐴(0)). Such a condition is formalised according to the following
Assumption 3.1, and is complemented with additional requirements imposed on the domain Ω and on matrix
𝐶(𝑡) ∈ M𝑛×𝑛(R).

Assumption 3.1. The following conditions are supposed to hold:

(1) The domain 𝐷(𝐴(𝑡)) = 𝐷(𝐴(0)) ≡ 𝐷 is independent of the time.
(2) The domain Ω is bounded with compact boundary Γ.
(3) The matrix 𝐶(𝑡) ∈ M𝑛×𝑛(R) = 0 whenever the condition 𝑎(𝑥, 𝑡) · 𝜈(𝑥) = 0 is satisfied for some 𝑥 ∈ Γ.

5As in Section 2, when the operator 𝐵(𝑡) is explicitly considered, the problem becomes equivalent by replacing (𝐴(𝑡), 𝐷(𝐴(𝑡)))

with (𝐴(𝑡), 𝐷(𝐴(𝑡))), being (𝐴𝑣)(𝑥, 𝑡) , (𝐴𝑣)(𝑥, 𝑡) + (𝐵𝑣)(𝑥, 𝑡) and 𝐷(𝐴(𝑡)) = 𝐷(𝐴(𝑡)).
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Concerning the characterisation of the the domain 𝐷(𝐴(𝑡)) ≡ 𝐷, it is worth emphasising that all the IBVPs
analysed in Section 2 may be recast in the form (13) with (𝐴(𝑡), 𝐷(𝐴(𝑡))) according to equation (42). In
particular, with reference to the one-dimensional problems investigated in Section 2.2, it is clear that Assump-
tions 2.1 and 3.1 render the definition of the domain 𝐷(𝐴(𝑡)) ≡ 𝐷 in equation (14) equivalent to that in equation
(42).

Finally, the exact solution to the IBVP (13), with (𝐴(𝑡), 𝐷(𝐴(𝑡))) defined as in equation (42), is supposed to
satisfy at least 𝑢 ∈ 𝐶0([0, 𝑇 ];𝐻1(Ω; R𝑛)). In the following, the notation is always abbreviated as (𝐴(𝑡), 𝐷).

3.1. Space semi-discretisation of linear hyperbolic IBVPs

The continuous IBVP described by equation (13), with (𝐴(𝑡), 𝐷) defined as in equation (42), may be approx-
imated using functions 𝑢ℎ(𝑡) ∈ 𝑉ℎ, being 𝑉ℎ a finite-dimensional space to be opportunely selected, by replacing
the operator (𝐴(𝑡), 𝐷) with its discrete counterpart (𝐴ℎ(𝑡), 𝑉ℎ⋆), where 𝑉ℎ⋆ , 𝐻1(Ω; R𝑛) + 𝑉ℎ needs to be
defined accordingly.

In particular, the functional spaces 𝑉ℎ considered in this paper are supposed to coincide with the broken
polynomial spaces P𝑘

𝑑(𝒯ℎ; R𝑛), i.e., 𝑉ℎ , P𝑘
𝑑(𝒯ℎ; R𝑛), defined with polynomial degree 𝑘 ∈ N0 and with 𝒯ℎ being

a mesh of elements 𝑇 with faces 𝐹 , and belonging to an admissible mesh sequence 𝒯ℋ = {𝒯ℎ}ℎ∈ℋ with diameter
ℎ , max𝑇∈𝒯ℎ

ℎ𝑇 . In the following, the set of mesh faces ℱℎ = ℱ i
ℎ + ℱb

ℎ is also decomposed into the sets of
interfaces ℱ i

ℎ and boundary faces ℱb
ℎ . The unit normals to 𝜕𝑇 and 𝐹 , defined almost everywhere, are indicated

with 𝜈𝜕𝑇 (𝑥) and 𝜈𝐹 (𝑥). More specifically, considering two adjacent mesh elements 𝑇1, 𝑇2 ∈ 𝒯ℎ, 𝜈𝐹 (𝑥) is defined
as 𝜈𝜕𝑇1(𝑥), that is, the unit normal to 𝐹 at 𝑥 pointing from 𝑇1 to 𝑇2 if 𝐹 ∈ ℱ i

ℎ, with 𝐹 = 𝜕𝑇1 ∩ 𝜕𝑇2; on the
other hand, 𝜈𝐹 (𝑥) coincides with 𝜈(𝑥), the outward unit normal to Γ at 𝑥, if 𝐹 ∈ ℱb

ℎ .
For 𝑣(𝑥) ∈ R defined on Ω, and smooth enough to admit, on all 𝐹 ∈ ℱ i

ℎ, a possibly two-valued trace, the
average and jump are defined respectively as

{{𝑣(𝑥)}} , 1
2
(︀
𝑣(𝑥)|𝑇1

+ 𝑣(𝑥)|𝑇2

)︀
, (43a)

J𝑣(𝑥)K , 𝑣(𝑥)|𝑇1
− 𝑣(𝑥)|𝑇2

. (43b)

For vector-valued functions 𝑣(𝑥) ∈ R𝑛, averages and jumps are defined component-wise.
Finally, considering a real number 𝑦 ∈ R, its positive and negative parts 𝑦⊕, 𝑦⊖ ∈ R≥0 are also defined for

convenience as

𝑦⊕ ,
1
2

(|𝑦|+ 𝑦), (44a)

𝑦⊖ ,
1
2

(|𝑦| − 𝑦). (44b)

Moreover, to alleviate the notation, inequalities of the type 𝑎 ≤ 𝐶𝑏, where 𝐶 is a constant independent of ℎ
and the problem data, are often abbreviated as 𝑎 . 𝑏 in what follows.

The next Section 3.1.1 recollects some useful polynomial approximation properties that are needed for the
analyses conducted in Sections 3.2 and 4.3. Moreover, Sections 3.1.2 and 3.1.3 introduce some important assump-
tions and norms required for the characterisation of the discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆).

3.1.1. Polynomial approximation properties

Consider the 𝐿2-orthogonal projection 𝜋ℎ : 𝐿2(Ω; R𝑛) ↦→ P𝑘
𝑑(𝒯ℎ; R𝑛) onto the broken polynomial space

P𝑘
𝑑(𝒯ℎ; R𝑛). The following polynomial approximation properties, formalised in Lemmas 3.1 and 3.2, are

propaedeutic to the results advocated in Sections 3.2 and 4.3.

Lemma 3.1 (Optimality of 𝐿2-orthogonal projection). Let 𝒯ℋ be an admissible mesh sequence. Let 𝜋ℎ :
𝐿2(Ω; R𝑛) ↦→ P𝑘

𝑑(𝒯ℎ; R𝑛) be the 𝐿2-orthogonal projection onto P𝑘
𝑑(𝒯ℎ; R𝑛). Then, for all 𝑠 ∈ {0, . . . , 𝑘 + 1}

and all 𝑚 ∈ {0, . . . , 𝑠}, it holds that
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|𝑣(·)− 𝜋ℎ𝑣(·)|𝐻𝑚(𝑇 ;R𝑛) ≤ 𝐶 ′pℎ
𝑠−𝑚
𝑇 |𝑣(·)|𝐻𝑠(𝑇 ;R𝑛) , for 𝑣 ∈ 𝐻𝑠(𝑇 ; R𝑛), (45)

where 𝐶 ′p is independent of both 𝑇 and ℎ.

Proof. See Lemma 1.58 in [38]. �

Lemma 3.2 (Polynomial approximation on mesh faces). Under the same hypotheses of Lemma 3.1, assume
additionally that 𝑠 ≥ 1. Then, for all ℎ ∈ ℋ, all 𝑇 ∈ 𝒯ℎ, and all 𝐹 ∈ ℱ𝑇 , {𝐹 ∈ ℱℎ | 𝐹 ⊂ 𝜕𝑇}, the following
inequalities hold:

‖𝑣(·)− 𝜋ℎ𝑣(·)‖𝐿2(𝐹 ;R𝑛) ≤ 𝐶 ′′pℎ
𝑠−1/2
𝑇 |𝑣(·)|𝐻𝑠(𝑇 ;R𝑛) , for 𝑠 ≥ 1, (46a)

𝑛∑︁
𝑖=1

⃦⃦
∇ (𝑣𝑖(·)− 𝜋ℎ𝑣𝑖(·))

⃒⃒
𝑇
· 𝜈𝜕𝑇 (·)

⃦⃦
𝐿2(𝐹 )

≤ 𝐶 ′′′p ℎ
𝑠−3/2
𝑇 |𝑣(·)|𝐻𝑠(𝑇 ;R𝑛) , for 𝑠 ≥ 2, (46b)

where 𝐶 ′′p and 𝐶 ′′′p are independent of both 𝑇 and ℎ.

Proof. The result is a direct consequence of the continuous trace inequality. �

3.1.2. Assumptions on the mesh

As already mentioned, in this paper, by setting 𝑉ℎ , P𝑘
𝑑(𝒯ℎ; R𝑛), space semi-discretisation is achieved

using an upwind DGM, which is particularly suited to treat hyperbolic IBVPs. In particular, quasi-uniform
mesh sequences are considered for simplicity, which essentially means that, for all ℎ ∈ ℋ, max𝑇∈𝒯ℎ

ℎ𝑇 ≤
𝐶 min𝑇∈𝒯ℎ

ℎ𝑇 .
Moreover, the following reference quantities are introduced:

1
𝑡c
, max

{︃
sup

𝑡∈[0,𝑇 ]

‖∇ · 𝑎(·, 𝑡)‖∞ , 𝜀ℎ

}︃
, and 𝜂c , sup

𝑡∈[0,𝑇 ]

‖𝑎(·, 𝑡)‖∞ , (47a)

with 𝜀ℎ ∈ R≥0 satisfying

𝜀ℎ ,

{︃
2𝜓ℎ

sup𝑡∈[0,𝑇 ]‖𝐶(𝑡)‖2

inf(𝑥,𝑡)∈Γ×[0,𝑇 ]|𝑎(𝑥,𝑡)·𝜈(𝑥)| , if inf(𝑥,𝑡)∈Γ×[0,𝑇 ] |𝑎(𝑥, 𝑡) · 𝜈(𝑥)| ∈ R>0,

0, otherwise,
(48)

for some 𝜓ℎ > 1. From the definitions above, it may be realised that 𝜂c scales as a velocity, whereas 𝑡c scales
as the reciprocal of a time only if 𝜀ℎ = 0. The inconsistency is due to the fact that the term 𝜀ℎ arises from the
cross product between a boundary term and an integral over the physical domain. Moreover, whenever 1/𝑡c = 0,
𝑡c = ∞, which corresponds to the case of constant advection velocity, no reaction, and absence of boundary
terms (𝐶(𝑡) = 0 by assumption). Another time scale, defined more specifically as

𝑡⋆ , min{𝑇, 𝑡c}, (49)

is also introduced for what follows. It is essential to clarify that, in the subsequent analyses, expressions involving
1/𝑡c are conventionally evaluated at zero whenever 𝑡c = ∞. Moreover, according to equation (49), the following
Assumption 3.2 is supposed to hold.

Assumption 3.2 (Assumption on the meshsize). The meshsize ℎ is chosen such as to verify

ℎ ≤ 𝜂c𝑡⋆. (50)

Assumption 3.2 prevents the local Damkhler number from being too large, and allows the meshsize to resolve
the spatial variations of the transport velocity [38]. Moreover, such choice of ℎ implies that a particle advected
at speed 𝜂c crosses at least one mesh element over the finite time interval (0, 𝑇 ).
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3.1.3. Norms and seminorms

Inspired by [38], the following seminorms on 𝑉ℎ⋆ , 𝐻1(Ω; R𝑛) + 𝑉ℎ are introduced, which are needed for the
analysis conducted in Sections 3.2 and 3.3:

|𝑣(·)|2𝜂 ,
1
2

∫︁
Γ

|𝑎(𝑥, 𝑡) · 𝜈(𝑥)| ‖𝑣(𝑥)‖22 d𝑠+
1
2

∑︁
𝐹∈ℱ i

ℎ

∫︁
𝐹

|𝑎(𝑥, 𝑡) · 𝜈𝐹 (𝑥)| ‖J𝑣(𝑥)K‖22 d𝑠, (51a)

|𝑣(·)|2𝐶 ,
1
2
‖𝐶(𝑡)‖2 ‖𝑣(·)‖2𝐿2(Γ;R𝑛) , (51b)

|𝑣(·)|2𝜀ℎ
,

{︃
|𝑣(·)|2𝜂 −

1
𝜀ℎ
|𝑣(·)|2𝐶 , if 𝜀ℎ ∈ R>0,

|𝑣(·)|2𝜂 otherwise,
(51c)

|𝑣(·)|2𝜀ℎ
2
,

{︃
|𝑣(·)|2𝜀ℎ

− 1
𝜀ℎ
|𝑣(·)|2𝐶 , if 𝜀ℎ ∈ R>0,

|𝑣(·)|2𝜂 otherwise.
(51d)

It is worth clarifying, in particular, that the term 𝐶(𝑡) in equation (51b) represents the matrix of coefficients
appearing in the IBVP (41), and hence the quantities defined according to equations (51c) and (51d) are
actually seminorms, owing to an appropriate choice of the parameter 𝜀ℎ satisfying equation (48) with 𝜓ℎ > 1.
Accordingly, the following norms, similar to those considered in [38], are also defined on 𝑉ℎ⋆:

‖𝑣(·)‖2ℎ ,
1
𝑡c
‖𝑣(·)‖2𝐿2(Ω;R𝑛) + |𝑣(·)|2𝜂 , (52a)

‖𝑣(·)‖2ℎ⋆ , ‖𝑣(·)‖2ℎ +
∑︁

𝑇∈𝒯ℎ

𝜂c ‖𝑣(·)‖2𝐿2(𝜕𝑇 ;R𝑛) . (52b)

3.2. The discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆)

The first step in anchieving space semi-discretisation consists in replacing the operator (𝐴(𝑡), 𝐷) appearing
in equations (13) and (42) with its discrete counterpart. In this paper, based predominantly on [38], a discrete
operator with upwind regularisation is proposed. More specifically, the discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆), 𝐴ℎ(𝑡) :
𝑉ℎ⋆ ↦→ 𝑉ℎ, is introduced as

⟨𝐴ℎ(𝑡)𝑣, 𝑤ℎ⟩𝐿2(Ω;R𝑛) , −
∫︁

Ω

[︁
(𝑎(𝑥, 𝑡) · ∇ℎ)𝑣(𝑥)

]︁T
𝑤ℎ(𝑥) d𝑥+

∫︁
Γ

𝑣T(𝑥)𝐶T(𝑡) d𝑠
∫︁

Ω

𝑤ℎ(𝑥) d𝑥

−
∫︁

Γ

(𝑎(𝑥, 𝑡) · 𝜈(𝑥))⊖𝑣T(𝑥)𝑤ℎ(𝑥) d𝑠

+
∑︁

𝐹∈ℱ i
ℎ

∫︁
𝐹

𝑎(𝑥, 𝑡) · 𝜈𝐹 (𝑥)J𝑣(𝑥)KT{{𝑤ℎ(𝑥)}}d𝑠

− 1
2

∑︁
𝐹∈ℱ i

ℎ

∫︁
𝐹

|𝑎(𝑥, 𝑡) · 𝜈𝐹 (𝑥)| J𝑣(𝑥)KTJ𝑤ℎ(𝑥)K d𝑠, for (𝑣, 𝑤ℎ) ∈ 𝑉ℎ⋆ × 𝑉ℎ,

(53)

where the broken gradient ∇ℎ : 𝐻1(𝒯ℎ) ↦→ 𝐿2(Ω; R𝑑) is defined such that, for all 𝑇 ∈ 𝒯ℎ and 𝑣 ∈ 𝐻1(𝒯ℎ),
∇ℎ𝑣(𝑥)|𝑇 , ∇(𝑣(𝑥)|𝑇 ). In this context, it is also worth observing that the broken gradient coincides with the
distributional one in 𝐻1(Ω), and moreover, 𝑣 ∈ 𝐻1(Ω; R𝑛) implies that J𝑣(𝑥)K = 0 for all 𝐹 ∈ ℱ i

ℎ.
In this way, (𝐴ℎ(𝑡), 𝑉ℎ⋆) may be used to formulate the equivalent space semi-discrete problem of the IBVP

(13) as

d𝑢ℎ(𝑡)
d𝑡

= 𝐴ℎ(𝑡)𝑢ℎ(𝑡) + 𝑓ℎ(𝑡), for 𝑡 ∈ (0, 𝑇 ), (54a)
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𝑢ℎ(0) = 𝜋ℎ𝑢0, (54b)
𝑓ℎ(𝑡) = 𝜋ℎ𝑓(𝑡), for 𝑡 ∈ (0, 𝑇 ), (54c)

where 𝜋ℎ : 𝐿2(Ω; R𝑛) ↦→ 𝑉ℎ denotes once again the 𝐿2-projection onto 𝑉ℎ , P𝑘
𝑑(𝒯ℎ; R𝑛). By choosing a suitable

basis for the space 𝑉ℎ, the semi-discrete IBVP (54) may be transformed into a system of linear ODEs for the
time-varying components 𝑢ℎ(𝑡) on the selected basis [38].

Remark 3.1. In defining (𝐴ℎ(𝑡), 𝑉ℎ⋆) according to equation (53), it has been assumed that 𝐵(𝑡) = 0 for
simplicity. The extension to the case where 𝐵(𝑡) is not identically zero is trivial. It is also worth clarifying that
the following analyses are not affected by such a simplification, and the definition of the seminorms and norms
as in equations (51) and (52) can easily accommodate the more general case, by simply modifying the quantities
appearing in equation (47). On this matter, see also [38].

3.2.1. Characterisation of the discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆)

Some technical results are preliminary needed to establish the stability and convergence of the proposed
DGMs. In particular, the first result advocated here, formalised in Lemma 3.3, delivers a stronger version of the
consistency property considered in [38], which accounts for time-shifting, whereas quasi-dissipativity properties
for the operator (𝐴ℎ(𝑡), 𝑉ℎ⋆) are asserted by Lemma 3.4.

Lemma 3.3 (Time-shifted consistency). Under Assumption 3.1, the discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆) is time-
shifted consistent. That is, for any exact solution 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2(Ω; R𝑛))∩𝐶0([0, 𝑇 ];𝐻1(Ω; R𝑛)) to the IBVP
described by equations (13) and (42), and 𝑤ℎ ∈ 𝑉ℎ, it satisfies

⟨𝐴ℎ(𝑡)𝑢(𝑡′), 𝑤ℎ⟩𝐿2(Ω;R𝑛) = ⟨𝐴(𝑡)𝑢(𝑡′), 𝑤ℎ⟩𝐿2(Ω;R𝑛), for (𝑡, 𝑡′) ∈ [0, 𝑇 ]2, (55a)

⟨𝐴ℎ(𝑡)𝑢(𝑡′), 𝑤ℎ⟩𝐿2(Ω;R𝑛) = ⟨𝜋ℎ𝐴(𝑡)𝑢(𝑡′), 𝑤ℎ⟩𝐿2(Ω;R𝑛), for (𝑡, 𝑡′) ∈ [0, 𝑇 ]2. (55b)

Proof. Since it solves the IBVP described by equations (13) and (42), 𝑢 ∈ 𝐶0([0, 𝑇 ];𝐻1(Ω; R𝑛))∩𝐶0([0, 𝑇 ];𝐷)
by assumption. Moreover, since 𝐷(𝐴(𝑡)) = 𝐷(𝐴(0)) ≡ 𝐷 is constant over time, the third term on the right-hand
side of equation (53) vanishes for all (𝑡, 𝑡′) ∈ [0, 𝑇 ]2, whereas 𝑢 ∈ 𝐶0([0, 𝑇 ];𝐻1(Ω; R𝑛)) implies J𝑢(𝑥, 𝑡′)K = 0 for
all 𝐹 ∈ ℱ i

ℎ. Hence, equation (53) simplifies to

⟨𝐴ℎ(𝑡)𝑢(𝑡′), 𝑤ℎ⟩𝐿2(Ω;R𝑛) = −
∫︁

Ω

[(𝑎(𝑥, 𝑡) · ∇)𝑢(𝑥, 𝑡′)]T𝑤ℎ(𝑥) d𝑥+
∫︁

Γ

𝑢T(𝑥, 𝑡′)𝐶T(𝑡) d𝑠
∫︁

Ω

𝑤ℎ(𝑥) d𝑥

= ⟨𝐴(𝑡)𝑢(𝑡′), 𝑤ℎ⟩𝐿2(Ω;R𝑛),
(56)

therefore proving equation (55a). Moreover, recalling the definition of 𝜋ℎ : 𝐿2(Ω; R𝑛) ↦→ 𝑉ℎ provides

⟨𝜋ℎ𝐴(𝑡)𝑢(𝑡′), 𝑤ℎ⟩𝐿2(Ω;R𝑛) = ⟨𝐴(𝑡)𝑢(𝑡′), 𝑤ℎ⟩𝐿2(Ω;R𝑛), (57)

which, combined with the above equation (56), gives (55b). �

Lemma 3.3 generalises the classic notion of consistency ([38], Lem. 3.4).

Lemma 3.4 (Discrete quasi-dissipativity). For all 𝑣ℎ ∈ 𝑉ℎ, the operator (𝐴ℎ(𝑡), 𝑉ℎ⋆) is quasi-dissipative with
constant

𝜔ℎ ,
1
2

(︃
sup

𝑡∈[0,𝑇 ]

‖∇ · 𝑎(·, 𝑡)‖∞ + 𝜀ℎ

)︃
, (58)

where 𝜀ℎ may be chosen abitrarily to satisfy equation (48). In particular,

⟨𝐴ℎ(𝑡)𝑣ℎ, 𝑣ℎ⟩𝐿2(Ω;R𝑛) ≤ − |𝑣ℎ(·)|2𝜀ℎ
+ 𝜔ℎ ‖𝑣ℎ(·)‖2𝐿2(Ω;R𝑛) , for 𝑣ℎ ∈ 𝑉ℎ, (59)

with the seminorm |·|𝜀ℎ
defined on 𝑉ℎ⋆ according to equation (51c).
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Proof. The proof is almost identical to that of Lemma 3.4 in [38]. �

The last technical result concerns a bound on orthogonal subscales on the discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆),
according to Proposition 3.1 below.

Proposition 3.1 (Boundedness on orthogonal subscales). The discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆) satisfies⃒⃒⃒
⟨𝐴ℎ(𝑡)(𝑣 − 𝜋ℎ𝑣), 𝑤ℎ⟩𝐿2(Ω;R𝑛)

⃒⃒⃒
. ‖𝑣(·)− 𝜋ℎ𝑣(·)‖ℎ⋆ ‖𝑤ℎ(·)‖ℎ , for (𝑣, 𝑤ℎ) ∈ 𝐻1(Ω; R𝑛)× 𝑉ℎ, (60)

where the norms ‖·‖ℎ and ‖·‖ℎ⋆ are defined according to equations (52a) and (52b), respectively.

Proof. By observing that∫︁
Γ

(𝑣(𝑥)− 𝜋ℎ𝑣(𝑥))T𝐶T(𝑡) d𝑠
∫︁

Ω

𝑤ℎ(𝑥) d𝑥 ≤
√︂

sup
𝑡∈[0,𝑇 ]

‖𝐶(𝑡)‖2 ‖𝑣(·)− 𝜋ℎ𝑣(·)‖𝐿2(Γ;R𝑛) ‖𝑤ℎ(·)‖𝐿2(Ω;R𝑛)

=
√︂

inf
(𝑥,𝑡)∈Γ×[0,𝑇 ]

|𝑎(𝑥, 𝑡) · 𝜈(𝑥)| ‖𝑣(·)− 𝜋ℎ𝑣(·)‖𝐿2(Γ;R𝑛)

√︃
sup𝑡∈[0,𝑇 ] ‖𝐶(𝑡)‖2

inf(𝑥,𝑡)∈Γ×[0,𝑇 ] |𝑎(𝑥, 𝑡) · 𝜈(𝑥)|
‖𝑤ℎ(·)‖𝐿2(Ω;R𝑛)

. |𝑣(·)− 𝜋ℎ𝑣(·)|𝜂
√
𝜀ℎ ‖𝑤ℎ(·)‖𝐿2(Ω;R𝑛) . ‖𝑣(·)− 𝜋ℎ𝑣(·)‖ℎ⋆ ‖𝑤ℎ(·)‖ℎ ,

(61)

the result is a direct consequence of Lemma 2.30 in [38]. �

3.3. Stability and convergence of the space semi-discrete DGMs

Some elementary results may be derived concerning the stability and convergence of the space semi-discrete
DGMs. For completeness, these are reported below without proof.

Theorem 3.1 (Stability of the space semi-discrete problem). Consider the space semi-discrete problem (54)
and the discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆) defined according to equation (53). It holds

‖𝑢ℎ(·, 𝑡)‖𝐿2(Ω;R𝑛) ≤ e𝑡/𝑡⋆

(︂
‖𝑢ℎ(·, 0)‖𝐿2(Ω;R𝑛) +

∫︁ 𝑡

0

‖𝑓(·, 𝑡′)‖𝐿2(Ω;R𝑛) d𝑡′
)︂
, for 𝑡 ∈ [0, 𝑇 ]. (62)

Proof. By relying on standard arguments, the result may be deduced from an application of Grönwall-Bellman’s
inequality. �

Theorem 3.2 (Convergence of space semi-discrete DGMs). Consider the IBVP (13) and the space semi-discrete
problem (54) and assume that the exact solution satisfies 𝑢 ∈ 𝐶0([0, 𝑇 ];𝐻𝑘+1(Ω; R𝑛)). Then, the following
estimate holds:

‖𝑢(·, 𝑡)− 𝑢ℎ(·, 𝑡)‖𝐿2(Ω;R𝑛) +
(︂∫︁ 𝑡

0

|𝑢(·, 𝑡′)− 𝑢ℎ(·, 𝑡′)|2𝜀ℎ
2

d𝑡′
)︂1/2

. e𝐶sta𝑡/𝑡⋆𝜒ℎ𝑘+1/2, for 𝑡 ∈ [0, 𝑇 ], (63)

where

𝜒 ,
√︀
𝜂c𝑇 ‖𝑢(·)‖𝐶0([0,𝑇 ];𝐻𝑘+1(Ω;R𝑛)) , (64)

and the constant 𝐶sta is independent of ℎ and the data 𝑓(𝑥, 𝑡), 𝐶(𝑡), and 𝑎(𝑥, 𝑡).

Proof. Combining standard arguments with the polynomial approximation properties asserted by Lem-
mas 3.1 and 3.2, the result may be deduced from an application of Grönwall-Bellman’s inequality. �

The error estimate in equation (63) is quasi-optimal, since the order of convergence of the 𝐿2-norm of the
error is 𝑂(ℎ𝑘+1), whereas that of the boundary contributions is 𝑂(ℎ𝑘+1/2) (on this matter, see, e.g., [38]).
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4. Time discretisation and explicit RK schemes

Typically, the semi-discrete problem formulated according to equation (54) needs to be discretised also in
time in order to be solved numerically, leading to fully discrete DGMs. To this end, a fixed time step 𝛿𝑡 is
considered in this paper such that 𝑇 = 𝑁𝛿𝑡, with 𝑁 ∈ N. For 𝑛 ∈ {0, . . . , 𝑁}, the discrete time is defined as
𝑡𝑛 = 𝑛𝛿𝑡, and more generally the superscript is used to indicate functions evaluated at the discrete time 𝑡 = 𝑡𝑛.
For example, the solution to the IBVP evaluated at 𝑡 = 𝑡𝑛 is denoted by 𝑢(𝑡𝑛) = 𝑢𝑛, and similarly for the
forcing term 𝑓𝑛 = 𝑓(𝑡𝑛). In the same spirit, given a real number 𝜌 ∈ [0, 1], the solution evaluated at 𝑡𝑛 + 𝜌𝛿𝑡 is
indicated with 𝑢𝑛+𝜌 = 𝑢(𝑡𝑛 + 𝜌𝛿𝑡), and so on for other time-dependent quantities.

The mild assumption

𝛿𝑡 ≤ 𝑡⋆, (65)

with 𝑡⋆ as in equation (49), is also introduced the to facilitate the error analysis. In this context, a very common
way of approximating the problem described by equation (54) consists in resorting to an explicit RK algorithm.
A possible choice for formulating a general RK scheme of order 𝑠 for the semi-discrete problem (54) is

𝑘𝑖 = 𝐴ℎ(𝑡𝑛 + 𝑐𝑖𝛿𝑡)

⎛⎝𝑢𝑛
ℎ + 𝛿𝑡

𝑠∑︁
𝑗=1

𝑎𝑖𝑗𝑘𝑗

⎞⎠+ 𝑓ℎ(𝑡𝑛 + 𝑐𝑖𝛿𝑡), for 𝑖 ∈ {1, . . . , 𝑠}, (66a)

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ +
𝑠∑︁

𝑖=1

𝑏𝑖𝑘𝑖. (66b)

In equation (66), (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑠 are real numbers, (𝑏𝑖)1≤𝑖≤𝑠 are real numbers satisfying
∑︀𝑠

𝑖=1 𝑏𝑖 = 1, and (𝑐𝑖)1≤𝑖≤𝑠

are real numbers in [0, 1] such that 𝑐𝑖 =
∑︀𝑠

𝑗=1 𝑎𝑖𝑗 for all 𝑖 ∈ {1, . . . , 𝑠}. These quantities are conventionally
collected in the so-called Butcher’s tableau

𝑐1 𝑎11 . . . 𝑎1𝑠

...
...

. . .
...

𝑐𝑠 𝑎𝑠1 . . . 𝑎𝑠𝑠

𝑏1 . . . 𝑏𝑠

. (67)

In particular, RK schemes are explicit whenever 𝑎𝑗𝑖 = 0 for all 𝑖 ≥ 𝑗.
In the following, two examples of explicit RK schemes are discussed: the forward Euler algorithm (RK1),

detailed in the next Section 4.1, and the two-stage RK2 algorithms, presented in Section 4.2. More specifically,
concerning the RK1 method, the main result is only enounced, whereas the complete analysis is detailed for the
RK2 schemes. Appendix B collects instead some numerical results concerning the convergence rate of Heun’s
third-order scheme, an example of an RK3 method.

4.1. Forward Euler scheme

The simplest, and perhaps most intuitive approximation to the semi-discrete problem (54) takes the form

𝑢𝑛+1 − 𝑢𝑛

𝛿𝑡
= 𝐴𝑛

ℎ𝑢
𝑛 + 𝑓𝑛

ℎ , (68)

leading to the alternative representation

𝑢𝑛+1 = 𝑢𝑛 + 𝛿𝑡𝐴𝑛
ℎ𝑢

𝑛 + 𝛿𝑡𝑓𝑛
ℎ , (69a)

𝑢0
ℎ = 𝜋ℎ𝑢0, (69b)

which corresponds to an explicit RK1 scheme with Butcher’s tableau

0 0
1 . (70)
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The discrete equation (69) are already in a suitable form for the error analysis. The corresponding main con-
vergence result is asserted by Theorem 4.1 below.

Theorem 4.1 (Convergence for the forward Euler scheme). Assume that 𝑢 ∈ 𝐶2([0, 𝑇 ];𝐿2(Ω; R𝑛)) ∩
𝐶0([0, 𝑇 ];𝐻1(Ω; R𝑛)) and set 𝑉ℎ , P0

𝑑(𝒯ℎ; R𝑛). Moreover, assume that the CFL condition

𝛿𝑡 ≤ 𝜚
ℎ

𝜂c
(71)

is satisfied with a suitable threshold 𝜚 ∈ R>0 independent of ℎ, 𝛿𝑡, and the data 𝑓(𝑥, 𝑡), 𝐶(𝑡) and 𝑎(𝑥, 𝑡). Then,
the following estimate holds:

⃦⃦
𝑢𝑁 (·)− 𝑢𝑁

ℎ (·)
⃦⃦

𝐿2(Ω;R𝑛)
+

⎛⎝𝑁−1∑︁
𝑛=0

𝛿𝑡 |𝑢𝑛(·)− 𝑢𝑛
ℎ(·)|2𝜀ℎ

2

⎞⎠1/2

. e𝐶⋆𝑇/𝑡⋆

(︁
𝜒1𝛿𝑡+ 𝜒2

√
ℎ
)︁
, (72)

where

𝜒1 ,
√︀
𝑡⋆𝑇

⃦⃦⃦⃦
𝜕2𝑢(·, ·)
𝜕𝑡2

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐿2(Ω;R𝑛))

, (73a)

𝜒2 ,
√︀
𝜂c𝑇

⃦⃦⃦⃦
𝜕2𝑢(·, ·)
𝜕𝑡2

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐻1(Ω;R𝑛))

, (73b)

the seminorm |·| 𝜀ℎ
2

is defined according to equation (51d), and the constant 𝐶⋆ is independent of ℎ, 𝛿𝑡, and the
data 𝑓(𝑥, 𝑡), 𝐶(𝑡), and 𝑎(𝑥, 𝑡).

Proof. The proof builds upon similar steps of those required to prove Theorem 3.7 in [38], and is omitted for
the sake of brevity. �

Remark 4.1. It is worth clarifying that the specific choice of the polynomial space 𝑉ℎ , P0
𝑑(𝒯ℎ; R𝑛) in Theo-

rem 4.1 is motivated by the fact that higher polynomial degrees require enforcing the 2-CFL condition (77) in
order to provide optimal convergence. Since the forward Euler approximation is less than first-order accurate
in space, such a requirement is too stringent, and is instead explored in the context of RK2 schemes. A more
elaborated discussion concerning this aspect is reported in [38].

4.2. Explicit RK2 schemes

Concerning the semi-discrete problem (54), in the most general form, RK2 schems admit a general represen-
tation as in equation (66) according to

𝑘1 = 𝐴𝑛
ℎ𝑢

𝑛
ℎ + 𝑓𝑛

ℎ , (74a)

𝑘2 = 𝐴𝑛+𝜆
ℎ (𝑢𝑛

ℎ + 𝜆𝛿𝑡𝑘1) + 𝑓𝑛+𝜆
ℎ , (74b)

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ +
(︂

1− 1
2𝜆

)︂
𝑘1 +

1
𝜆
𝑘2, (74c)

with Butcher’s tableau reading
0 0 0
𝜆 𝜆 0

1− 1
2𝜆

1
𝜆

, (75)

where 𝜆 ∈ [1/2, 1]. In particular, the Butcher’s tableau in equation (75) corresponds to the explicit midpoint
method for 𝜆 = 1/2, to Heun’s second-order method for 𝜆 = 1, and to Ralston’s method for 𝜆 = 2/3.
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Following the approach outlined by Shu and Osher [54], the representation of equation (74) may be converted
into the following one by introducing intermediate steps on the solution:

𝑤𝑛
ℎ = 𝑢𝑛

ℎ + 𝛿𝑡𝐴𝑛
ℎ𝑢

𝑛
ℎ + 𝛿𝑡𝑓𝑛

ℎ , (76a)

𝑢𝑛+1
ℎ =

𝑢𝑛
ℎ

2𝜆
+
(︂

1− 1
2𝜆

)︂
𝑤𝑛

ℎ +
𝛿𝑡

2
𝐴𝑛+𝜆

ℎ

[︂(︂
1
𝜆
− 1
)︂
𝑢𝑛

ℎ + 𝑤𝑛
ℎ

]︂
+
𝛿𝑡

2𝜆
𝑓𝑛+𝜆

ℎ , (76b)

𝑢0
ℎ = 𝜋ℎ𝑢0, (76c)

which is more convenient to proceed with the error analysis performed in Section 4.2. It is also worth observing
that, whenever the operators (𝐴(𝑡), 𝐷) and (𝐴ℎ(𝑡), 𝑉ℎ⋆) are time-independent, yielding thus 𝐴𝑛

ℎ = 𝐴𝑛+𝜆
ℎ = 𝐴ℎ

in equations (76), all the above-mentioned methods admit a representation in the form (76) with 𝜆 = 1 (see,
e.g., [38]).

The corresponding main convergence result is asserted by Theorem 4.2 below.

Theorem 4.2 (Convergence for the explicit RK2 schemes). Assume that 𝑢 ∈ 𝐶3([0, 𝑇 ];𝐿2(Ω; R𝑛)) ∩
𝐶𝑠([0, 𝑇 ];𝐻𝑘+1−𝑠(Ω; R𝑛)) for 𝑠 ∈ {0, 1}, 𝑓 ∈ 𝐶2([0, 𝑇 ];𝐿2(Ω; R𝑛)), 𝐴 ∈ 𝐶2([0, 𝑇 ]; L (𝐻1(Ω; R𝑛);𝐿2(Ω; R𝑛))),
and set 𝑉ℎ , P𝑘

𝑑(𝒯ℎ; R𝑛) for 𝑘 ≥ 1. Moreover, assume that the 2-CFL condition

𝛿𝑡 ≤ 𝜚′
1
𝑡⋆

(︂
ℎ

𝜂c

)︂2

, (77)

is satisfied with a suitable threshold 𝜚′ ∈ R>0 independent of ℎ, 𝛿𝑡, and the data 𝑓(𝑥, 𝑡), 𝐶(𝑡) and 𝑎(𝑥, 𝑡). Then,
the following estimate holds:

⃦⃦
𝑢𝑁 (·)− 𝑢𝑁

ℎ (·)
⃦⃦

𝐿2(Ω;R𝑛)
+

(︃
𝑁−1∑︁
𝑛=0

2𝜆− 1
𝜆

𝛿𝑡 |𝑢𝑛(·)− 𝑢𝑛
ℎ(·)|2𝜀ℎ

2
+ 𝜆𝛿𝑡

⃒⃒⃒⃒
1− 𝜆

𝜆
(𝑢𝑛(·)− 𝑢𝑛

ℎ(·)) + 𝑤𝑛(·)− 𝑤𝑛
ℎ(·)

⃒⃒⃒⃒2
𝜀ℎ
2

)︃1/2

. e𝐶⋆𝑇/𝑡⋆

(︁
𝜒1𝛿𝑡

2 + 𝜒2𝛿𝑡
3 + 𝜒3ℎ

𝑘+1/2
)︁
, (78)

where

𝜒1 ,
√︀
𝑡⋆𝑇𝐶𝑓𝑢, (79a)

𝜒2 ,
√︀
𝑡⋆𝑇𝐶𝑢, (79b)

𝜒3 ,
√︀
𝜂c𝑇

1∑︁
𝑠=0

𝜂−𝑠
c

⃦⃦⃦⃦
𝜕𝑠𝑢(·, ·)
𝜕𝑡𝑠

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐻𝑘+1−𝑠(Ω;R𝑛))

, (79c)

the seminorm |·| 𝜀ℎ
2

is defined according to equation (51d), the constant 𝐶⋆ is independent of ℎ, 𝛿𝑡, and the data
𝑓(𝑥, 𝑡), 𝐶(𝑡), and 𝑎(𝑥, 𝑡), and 𝐶𝑓𝑢 and 𝐶𝑢 are given by

𝐶𝑓𝑢 ,

⃦⃦⃦⃦
𝜕3𝑢(·, ·)
𝜕𝑡3

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐿2(Ω;R𝑛))

+ 𝜂2 ‖𝑢(·, ·)‖𝐶0([0,𝑇 ];𝐻1(Ω;R𝑛))

+ 𝜂1

⃦⃦⃦⃦
𝜕𝑢(·, ·)
𝜕𝑡

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐻1(Ω;R𝑛))

+
⃦⃦⃦⃦
𝜕2𝑓(·, 𝑡)
𝜕𝑡2

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐿2(Ω;R𝑛))

,

(80a)

𝐶𝑢 , 𝜂2

⃦⃦⃦⃦
𝜕𝑢(·, ·)
𝜕𝑡

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐻1(Ω;R𝑛))

, (80b)

with

𝜂1 , max

{︃
sup

𝑡∈[0,𝑇 ]

⃦⃦⃦⃦
𝜕𝑎(·, 𝑡)
𝜕𝑡

⃦⃦⃦⃦
∞
, sup
𝑡∈[0,𝑇 ]

⃦⃦⃦⃦
d𝐶(𝑡)

d𝑡

⃦⃦⃦⃦}︃
, (81a)
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𝜂2 , max

{︃
sup

𝑡∈[0,𝑇 ]

⃦⃦⃦⃦
𝜕2𝑎(·, 𝑡)
𝜕𝑡2

⃦⃦⃦⃦
∞
, sup
𝑡∈[0,𝑇 ]

⃦⃦⃦⃦
d2𝐶(𝑡)

d𝑡2

⃦⃦⃦⃦}︃
. (81b)

Proof. Building upon the results asserted in Lemmas 4.1–4.4, the proof is similar to that of Theorem 4.1, with
the difference that the norm ‖·‖ℎ⋆ should be replaced by ‖·‖⋆⋆, and the term ‖𝜁𝑛

𝜋 (·)‖⋆⋆ need to be accounted
for, in addition to ‖𝜉𝑛

𝜋 (·)‖⋆⋆. The reader is redirected to [38] for further details. �

Remark 4.2. The main difference between Theorem 4.2 and the corresponding result established in [38]
(Thm. 3.10) resides in the fact that the operators (𝐴(𝑡), 𝐷) and (𝐴ℎ(𝑡), 𝑉ℎ⋆) are time-varying. As a result,
except for Heun’s second-order method (corresponding to 𝜆 = 1), the discrete equation (76) cannot be recast
in the same form as that studied in [38], and necessitate a dedicated analysis. An interesting conclusion is that,
owing to the presence of time-varying operator (𝐴(𝑡), 𝐷) and (𝐴ℎ(𝑡), 𝑉ℎ⋆), optimal estimates may be achieved
with the aid of the same techniques outlined in [38] owing to the more stringent 2-CFL condition (77), whereas
only a 4/3-CFL condition, namely,

𝛿𝑡 ≤ 𝜚𝑡
−1/3
⋆

(︂
ℎ

𝜂c

)︂4/3

, (82)

for some 𝜚 ∈ R>0, is required in [38]. In this context, it is also worth observing that the 4/3-CFL condition (82)
is implied by the 2-CFL one (77).

The next Section 4.3 delivers the proofs for Lemmas 4.1–4.4.

4.3. Error analysis for explicit RK2 schemes

The error analysis for the forward RK2 schemes follows a similar iter to that outlined in [38]. In particular,
the first step consists in deducing of a discrete time equation governing the evolution of the approximation error.

4.3.1. Error equation

The present Section is devoted to deriving the error equation. In particular, by defining the quantities 𝜉𝑛
ℎ and

𝜉𝑛
𝜋 as

𝜉𝑛
ℎ , 𝑢

𝑛
ℎ − 𝜋ℎ𝑢

𝑛, (83a)

𝜉𝑛
𝜋 , 𝑢

𝑛 − 𝜋ℎ𝑢
𝑛, (83b)

and introducing

𝜁𝑛
ℎ , 𝑤

𝑛
ℎ − 𝜋ℎ𝑤

𝑛, (84a)

𝜁𝑛
𝜋 , 𝑤

𝑛 − 𝜋ℎ𝑤
𝑛, (84b)

the errors may be decomposed as

𝑢𝑛 − 𝑢𝑛
ℎ = 𝜉𝑛

𝜋 − 𝜉𝑛
ℎ , (85a)

𝑤𝑛 − 𝑤𝑛
ℎ = 𝜁𝑛

𝜋 − 𝜁𝑛
ℎ , (85b)

with

𝑤 , 𝑢+ 𝛿𝑡
d𝑢
d𝑡
· (86)

Starting with equations (83), (84), and (86), it is possible to derive the error equations as in the following
Lemma 4.1, which implicitly presumes multiplying by functions 𝑤ℎ ∈ 𝑉ℎ and taking the inner product on
𝐿2(Ω; R𝑛).
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Lemma 4.1. Assume that 𝑢 ∈ 𝐶3([0, 𝑇 ];𝐿2(Ω; R𝑛)) ∩ 𝐶1([0, 𝑇 ];𝐻1(Ω; R𝑛)), 𝑓 ∈ 𝐶2([0, 𝑇 ];𝐿2(Ω; R𝑛)), and
𝐴 ∈ 𝐶2([0, 𝑇 ]; L (𝐻1(Ω; R𝑛);𝐿2(Ω; R𝑛))). Then, the error equation satisfies

𝜁𝑛
ℎ = 𝜉𝑛

ℎ + 𝛿𝑡𝐴𝑛
ℎ𝜉

𝑛
ℎ − 𝛿𝑡𝛼𝑛

ℎ, (87a)

𝜉𝑛+1
ℎ =

𝜉𝑛
ℎ

2𝜆
+
(︂

1− 1
2𝜆

)︂
𝜁𝑛
ℎ +

𝛿𝑡

2
𝐴𝑛+𝜆

ℎ

[︂(︂
1
𝜆
− 1
)︂
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

]︂
− 𝛿𝑡

2
𝛽𝑛

ℎ , (87b)

where

𝛼𝑛
ℎ , 𝐴

𝑛
ℎ𝜉

𝑛
𝜋 , (88a)

𝛽𝑛
ℎ , 𝐴

𝑛+𝜆
ℎ

[︂(︂
1
𝜆
− 1
)︂
𝜉𝑛
𝜋 + 𝜁𝑛

𝜋

]︂
− 𝛿𝑡(𝜋ℎΛ𝑛𝑢𝑛 + 𝜋ℎ𝐹

𝑛)− 𝜆𝛿𝑡2𝜋ℎ

(︂
d𝐴𝑛

d𝑡
+ Λ𝑛

)︂
d𝑢𝑛

d𝑡
+ 𝜋ℎ𝜃

𝑛, (88b)

with

𝜃𝑛 ,
1
𝛿𝑡

∫︁ 𝑡𝑛+1

𝑡𝑛

(︀
𝑡𝑛+1 − 𝑡

)︀2 d3𝑢(𝑡)
d𝑡3

d𝑡, (89a)

Λ𝑛 ,
1
𝜆𝛿𝑡

∫︁ 𝑡𝑛+𝜆

𝑡𝑛

(︀
𝑡𝑛+𝜆 − 𝑡

)︀ d2𝐴(𝑡)
d𝑡2

d𝑡, (89b)

𝐹𝑛 ,
1
𝜆𝛿𝑡

∫︁ 𝑡𝑛+𝜆

𝑡𝑛

(︀
𝑡𝑛+𝜆 − 𝑡

)︀ d2𝑓(𝑡)
d𝑡2

d𝑡. (89c)

Proof. From Lemma 3.3, consistency at discrete time 𝑡𝑛 yields

𝜋ℎ𝑤
𝑛 = 𝜋ℎ𝑢

𝑛 + 𝛿𝑡𝜋ℎ
d𝑢𝑛

d𝑡
= 𝜋ℎ𝑢

𝑛 + 𝛿𝑡𝐴𝑛
ℎ𝑢

𝑛 + 𝛿𝑡𝑓𝑛
ℎ . (90)

Subtracting the above equations (90) from (76a) and defining 𝛼𝑛
ℎ according to (88a) provides (87a). Moreover,

a second-order Taylor expansion with integral remainder gives

𝑢𝑛+1 = 𝑢𝑛 + 𝛿𝑡
d𝑢𝑛

d𝑡
+
𝛿𝑡2

2
d2𝑢

d𝑡2
+
𝛿𝑡

2
𝜃𝑛 = 𝑤𝑛 +

𝛿𝑡

2
𝐴𝑛(𝑤𝑛 − 𝑢𝑛) +

𝛿𝑡2

2
d𝐴𝑛

d𝑡
𝑢𝑛 +

𝛿𝑡2

2
d𝑓𝑛

d𝑡
+
𝛿𝑡

2
𝜃𝑛, (91)

with 𝜃𝑛 reading as in equation (89a). Analogously, a first-order Taylor expansion with integral remainder of
𝐴𝑛+𝜆 gives

𝐴𝑛+𝜆 = 𝐴𝑛 + 𝜆𝛿𝑡
d𝐴𝑛

d𝑡
+ 𝜆𝛿𝑡Λ𝑛, (92)

with Λ𝑛 defined according to equation (89b). Substituting the latter expression into equation (91) and performing
a similar first-order expansion for 𝑓𝑛+𝜆 provides, after some manipulations,

𝑢𝑛+1 =
𝑢𝑛

2𝜆
+
(︂

1− 1
2𝜆

)︂
𝑤𝑛 +

𝛿𝑡

2
𝐴𝑛+𝜆

[︂(︂
1
𝜆
− 1
)︂
𝑢𝑛 + 𝑤𝑛

]︂
+
𝛿𝑡

2
𝛿𝑛, (93)

with

𝛿𝑛 , −𝛿𝑡(Λ𝑛𝑢𝑛 + 𝐹𝑛) +
(︀
𝐴𝑛+𝜆 −𝐴𝑛

)︀
(𝑢𝑛 − 𝑤𝑛) +

𝑓𝑛+𝜆

𝜆
+ 𝜃𝑛

= −𝛿𝑡(Λ𝑛𝑢𝑛 + 𝐹𝑛)− 𝜆𝛿𝑡2
(︂

d𝐴𝑛

d𝑡
+ Λ𝑛

)︂
d𝑢𝑛

d𝑡
+
𝑓𝑛+𝜆

𝜆
+ 𝜃𝑛,

(94)

where 𝐹𝑛 reads as in equation (89c).
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Projecting equation (93) onto 𝑉ℎ and invoking the time-shifted consistency property proved in Lemma 3.3
for both 𝐴𝑛+𝜆

ℎ 𝑢 and 𝐴𝑛+𝜆
ℎ 𝑤 therefore yields

𝜋ℎ𝑢
𝑛+1 =

𝜋ℎ𝑢
𝑛

2𝜆
+
(︂

1− 1
2𝜆

)︂
𝜋ℎ𝑤

𝑛 +
𝛿𝑡

2
𝐴𝑛+𝜆

ℎ

[︂(︂
1
𝜆
− 1
)︂
𝑢𝑛 + 𝑤𝑛

]︂
+
𝛿𝑡

2
𝜋ℎ𝛿

𝑛, (95)

in which

𝜋ℎ𝛿
𝑛 , −𝛿𝑡(𝜋ℎΛ𝑛𝑢𝑛 + 𝜋ℎ𝐹

𝑛)− 𝜆𝛿𝑡2𝜋ℎ

(︂
d𝐴𝑛

d𝑡
+ Λ𝑛

)︂
d𝑢𝑛

d𝑡
+
𝑓𝑛+𝜆

ℎ

𝜆
+ 𝜋ℎ𝜃

𝑛. (96)

Subtracting equation (95) from (76b) and defining 𝛽𝑛
ℎ as in (88b) gives the desired result. �

4.3.2. Energy estimate

The next step involves obtaining an energy estimate for the term 𝜉𝑛+1
ℎ appearing in equation (87b). The

result is formalised in Lemma 4.2 below.

Lemma 4.2 (Energy estimate). The error equation (87) satisfy the following energy estimate:⃦⃦
𝜉𝑛+1
ℎ (·)

⃦⃦2

𝐿2(Ω;R𝑛)
+

2𝜆− 1
𝜆

𝛿𝑡 |𝜉𝑛
ℎ (·)|2𝜀ℎ

+ 𝜆𝛿𝑡

⃒⃒⃒⃒
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃒⃒⃒⃒2
𝜀ℎ

≤ (1− 𝜆)
⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜉𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)
+ 𝜆

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜁𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)

+
(︂

1 +
2𝜆− 1
𝜆

𝛿𝑡𝜔ℎ

)︂
‖𝜉𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) + 𝜆𝛿𝑡𝜔ℎ

⃦⃦⃦⃦
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃦⃦⃦⃦2

𝐿2(Ω;R𝑛)

− 2𝜆− 1
𝜆

𝛿𝑡⟨𝛼𝑛
ℎ, 𝜉

𝑛
ℎ ⟩𝐿2(Ω;R𝑛) − 𝜆𝛿𝑡

⟨
𝛽𝑛

ℎ ,
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

,

(97)

where the constant 𝜔ℎ is given as in equation (58).

Proof. See Appendix A.1. �

4.3.3. Preliminary stability bounds

The next result, formalised in Lemma 4.3, delivers some preliminary stability bounds that are necessary to
ensure stability and convergence of the considered RK2 schemes.

For what follows, the additional norm is introduced on 𝑉ℎ⋆:

‖𝑣(·)‖2⋆⋆ , ‖𝑣(·)‖2ℎ⋆ + 𝜂cℎ

𝑛∑︁
𝑖=1

‖∇ℎ𝑣𝑖(·)‖2𝐿2(Ω;R𝑛) . (98)

Furthermore, to allow for ease of notation, the following energy-like quantity, collecting the contributions of the
space and time approximation errors, is defined:

E 𝑛
ℎ , ‖𝜉𝑛

𝜋 (·)‖⋆⋆ + ‖𝜁𝑛
𝜋 (·)‖⋆⋆ +

√
𝑡⋆
(︀
𝐶𝑓𝑢𝛿𝑡

2 + 𝐶𝑢𝛿𝑡
3
)︀

+
1√
𝑡⋆
‖𝜉𝑛

ℎ (·)‖𝐿2(Ω;R𝑛) . (99)

where 𝐶𝑓𝑢 and 𝐶𝑢 read as in equation (80).

Lemma 4.3 (Preliminary stability bounds). Assume that 𝑢 ∈ 𝐶3([0, 𝑇 ];𝐿2(Ω; R𝑛)) ∩ 𝐶1([0, 𝑇 ];𝐻1(Ω; R𝑛)),
𝑓 ∈ 𝐶2([0, 𝑇 ];𝐿2(Ω; R𝑛)), and 𝐴 ∈ 𝐶2([0, 𝑇 ]; L (𝐻1(Ω; R𝑛);𝐿2(Ω; R𝑛))). Then, if the CFL condition in equation
(71) holds, there exists 𝐶⋆ independent of ℎ, 𝛿𝑡, and the data 𝑓(𝑥, 𝑡), 𝐶(𝑡), and 𝑎(𝑥, 𝑡) such that⃦⃦

𝜉𝑛+1
ℎ (·)

⃦⃦2

𝐿2(Ω;R𝑛)
+

2𝜆− 1
2𝜆

𝛿𝑡 |𝜉𝑛
ℎ (·)|2𝜀ℎ

2
+
𝜆

2
𝛿𝑡

⃒⃒⃒⃒
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃒⃒⃒⃒2

𝜀ℎ
2

. ‖𝜉𝑛
ℎ (·)‖2𝐿2(Ω;R𝑛) + (1− 𝜆)

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜉𝑛

ℎ (·)
⃦⃦

𝐿2(Ω;R𝑛)
+ 𝜆

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜁𝑛

ℎ (·)
⃦⃦

𝐿2(Ω;R𝑛)
+ 𝐶⋆𝛿𝑡(E 𝑛

ℎ )2.

(100)
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Proof. See Appendix A.2. �

4.3.4. Stability

Stability for the RK2 schemes is finally proved by inferring opportune bounds on the anti-dissipative terms
appearing on the right-hand side of energy estimate in equation (97). To this end, the 2-CFL condition (77) is
invoked. Lemma 4.4 asserts the result.

Lemma 4.4 (Stability of RK2 schemes). Assume that 𝑢 ∈ 𝐶3([0, 𝑇 ];𝐿2(Ω; R𝑛)) ∩ 𝐶1([0, 𝑇 ];𝐻1(Ω; R𝑛)), 𝑓 ∈
𝐶2([0, 𝑇 ];𝐿2(Ω; R𝑛)), and 𝐴 ∈ 𝐶2([0, 𝑇 ]; L (𝐻1(Ω; R𝑛);𝐿2(Ω; R𝑛))). Then, if the 2-CFL condition in equation
(77) holds for some 𝜚′ ∈ R>0, there exists 𝐶⋆ independent of ℎ, 𝛿𝑡, and the data 𝑓(𝑥, 𝑡), 𝐶(𝑡), and 𝑎(𝑥, 𝑡) such
that⃦⃦

𝜉𝑛+1
ℎ (·)

⃦⃦2

𝐿2(Ω;R𝑛)
+

2𝜆− 1
2𝜆

𝛿𝑡 |𝜉𝑛
ℎ (·)|2𝜀ℎ

2
+
𝜆

2
𝛿𝑡

⃒⃒⃒⃒
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃒⃒⃒⃒2

𝜀ℎ
2

≤ ‖𝜉𝑛
ℎ (·)‖2𝐿2(Ω;R𝑛) + 𝐶⋆𝛿𝑡(E 𝑛

ℎ )2, (101)

where the seminorm |·| 𝜀ℎ
2

reads as in equation (51d).

Proof. From the error equation (87b), it is possible to deduce that

𝜉𝑛+1
ℎ − 𝜁𝑛

ℎ =
𝛿𝑡

2
𝐴𝑛+𝜆

ℎ

(︂
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

)︂
− 𝛿𝑡

2𝜆
𝐴𝑛

ℎ𝜉
𝑛
ℎ +

𝛿𝑡

2𝜆
𝛼𝑛

ℎ −
𝛿𝑡

2
𝛽𝑛

ℎ . (102)

Substituting the expression for 𝜁𝑛
ℎ (𝑥) from equation (87a) also yields

𝜉𝑛+1
ℎ − 𝜁𝑛

ℎ =
𝛿𝑡2

2
𝐴𝑛+𝜆

ℎ 𝐴𝑛
ℎ𝜉

𝑛
ℎ +

𝛿𝑡

2𝜆
(︀
𝐴𝑛+𝜆

ℎ −𝐴𝑛
ℎ

)︀
𝜉𝑛
ℎ +

𝛿𝑡

2𝜆
(︀
𝛼𝑛

ℎ − 𝜆𝛿𝑡𝐴𝑛+𝜆
ℎ 𝛼𝑛

ℎ − 𝜆𝛽𝑛
ℎ

)︀
. (103)

Recalling that 𝛿𝑡 ≤ 𝑡⋆, the last quantity appearing on the right-hand side may be bounded with the aid of the
estimates in equations (A.11), (A.12), and (A.17) as

|T3| ,
𝛿𝑡

2𝜆

⃦⃦
𝛼𝑛

ℎ(·)− 𝜆𝛿𝑡𝐴𝑛+𝜆
ℎ 𝛼𝑛

ℎ(·)− 𝜆𝛽𝑛
ℎ (·)

⃦⃦
𝐿2(Ω;R𝑛)

≤ 𝛿𝑡

2𝜆
‖𝛼𝑛

ℎ(·)‖𝐿2(Ω;R𝑛) +
𝛿𝑡2

2

⃦⃦
𝐴𝑛+𝜆

ℎ 𝛼𝑛
ℎ(·)

⃦⃦
𝐿2(Ω;R𝑛)

+
𝛿𝑡

2
‖𝛽𝑛

ℎ (·)‖𝐿2(Ω;R𝑛)

. 𝛿𝑡 ‖𝛼𝑛
ℎ(·)‖𝐿2(Ω;R𝑛) + 𝛿𝑡 ‖𝛽𝑛

ℎ (·)‖𝐿2(Ω;R𝑛) .
√
𝛿𝑡E 𝑛

ℎ .

(104)

Concerning the second term, combining the bound in equation (A.11) with the 2-CFL condition (77), it may
be immediately deduced that

|T2| ,
𝛿𝑡

2𝜆

⃦⃦(︀
𝐴𝑛+𝜆

ℎ −𝐴𝑛
ℎ

)︀
𝜉𝑛
ℎ (·)

⃦⃦
𝐿2(Ω;R𝑛)

≤ 𝛿𝑡

2𝜆

⃦⃦
𝐴𝑛+𝜆

ℎ 𝜉𝑛
ℎ (·)

⃦⃦
𝐿2(Ω;R𝑛)

+
𝛿𝑡

2𝜆
‖𝐴𝑛

ℎ𝜉
𝑛
ℎ (·)‖𝐿2(Ω;R𝑛)

. 𝛿𝑡
𝜂c
ℎ
‖𝜉𝑛

ℎ (·)‖𝐿2(Ω;R𝑛) .
√
𝛿𝑡E 𝑛

ℎ .
(105)

Finally, the first quantity may be bounded by applying two times the estimate (77) and invoking the 4/3-CFL
condition (82) (which is implied by the 2-CFL condition in Eq. (77)). This yields

|T1| ,
𝛿𝑡2

2

⃦⃦
𝐴𝑛+𝜆

ℎ 𝐴𝑛
ℎ𝜉

𝑛
ℎ (·)

⃦⃦
𝐿2(Ω;R𝑛)

. 𝛿𝑡2
(︁𝜂c
ℎ

)︁2

‖𝜉𝑛
ℎ (·)‖𝐿2(Ω;R𝑛) .

√
𝛿𝑡E 𝑛

ℎ . (106)

Therefore, combining equations (104), (105), and (106) provides⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜁𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)
. |T1|2 + |T2|2 + |T3|2 . 𝛿𝑡(E 𝑛

ℎ )2. (107)
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Similarly, also from the error equation (87b), it may be inferred that

𝜉𝑛+1
ℎ − 𝜉𝑛

ℎ =
(︂

1− 1
2𝜆

)︂
𝛿𝑡𝐴𝑛

ℎ𝜉
𝑛
ℎ +

𝛿𝑡

2𝜆
(︀
𝐴𝑛+𝜆

ℎ −𝐴𝑛
ℎ

)︀
𝜉𝑛
ℎ −

𝛿𝑡

2

[︂(︂
1− 1

2𝜆

)︂
𝛼𝑛

ℎ + 𝛿𝑡𝐴𝑛+𝜆
ℎ 𝛼𝑛

ℎ + 𝛽𝑛
ℎ

]︂
. (108)

Therefore, following a similar rationale as in the derivation of equation (107), it may be concluded that⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜉𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)
. 𝛿𝑡(E 𝑛

ℎ )2. (109)

Adding equations (107) and (109) together yields the result. �

Remark 4.3. It is worth observing that, in the proof of Lemma 4.4 above, concerning the derivation of equation
(107), the 2-CFL condition (77) was invoked only to provide an upper bound on the term T2. If the operators
(𝐴(𝑡), 𝐷) and (𝐴ℎ(𝑡), 𝑉ℎ⋆) do not depend upon the time variable, the quantity T2 vanishes. Moreover, all the
RK2 schemes analysed in the paper reduce to the form considered in [38], which may be obtained directly from
equation (76) be specifying 𝜆 = 1. Accordingly, the contribution relating to

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜉𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)
disappears

from the energy estimate deduced as in equation (97). In this case, the less stringent 4/3-CFL condition (82)
might be invoked.

5. Numerical experiments

For the sake of simplicity, the numerical experiments presented in the following are limited to problems in
one space dimension that include boundary and trace terms, as those analysed in Section 2.2. Results about
IBVPs in several space dimensions may instead be found in [39].

5.1. Analysis for smooth solutions

The hyperbolic problems typically encountered in rolling contact mechanics do not enjoy sufficient regularity
to satisfy the conditions required by Theorem 4.2. Therefore, to verify numerically the theoretical bound derived
according to Theorem 4.2, simplified IBVPs are first considered. The effect of boundary terms and time-varying
operators are investigated separately in Sections 5.1.1 and 5.1.2, respectively.

5.1.1. Effect of boundary terms

In order to investigate numerically the rate of convergence for the total error predicted by Theorem 4.2, it may
first be beneficial to consider equation (8) in the scalar case, i.e., 𝑢(𝑥, 𝑡) ∈ R, with constant data 𝑎(𝑥, 𝑡) = 𝑎 = 1,
𝐵(𝑡) = 𝐵 = 0, 𝐶(𝑡) = 𝐶 = 1/2, and 𝑓(𝑥, 𝑡) = 𝑓 = 0. With this choice for the transport velocity 𝑎(𝑥, 𝑡), the
matrix 𝐶(𝑡), and the forcing term 𝑓(𝑥, 𝑡), Assumption 2.1 holds for all 𝑡 ∈ [0, 𝑇 ] and consequently the problem
admits a unique strict solution, as asserted by Theorem 2.1. In fact, since the transport velocity is constant, the
corresponding IBVP problem admits a closed-form solution, consisting of an integral expression combined with a
delay-differential equation (DDE) for the boundary term 𝑢(1, 𝑡) [32]. In particular, sufficiently smooth solutions
as those required by Theorem 4.2 may be derived owing to opportune assumptions made on the regularity of
the IC, which may be prescribed as

𝑢0(𝑥) = 𝑥3 +
3
2
𝑥2 +

5
2
𝑥, for 𝑥 ∈ [0, 1], (110)

to satisfy the compatibility condition up to the second order both in time and space.
The total error, calculated using the expression appearing on the left-hand side of equation (78) by specifying

𝜓ℎ = 3/2, is reported in Table 1 for decreasing values of the meshsize ℎ and polynomial degrees 𝑘 = 1 and
2, considering explicit RK2 schemes with 𝜆 = 1 (corresponding to Heun’s second-order method) owing to the
refined 4/3-CFL condition (82) with 𝜚 = 0.2. In fact, it is worth emphasising that, when the problem data are
constant, the operators (𝐴(𝑡), 𝐷) and (𝐴ℎ(𝑡), 𝑉ℎ⋆) are also time-independent, and, according to Remark 4.3, the
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Table 1. Error convergence for polynomial degrees 𝑘 = 1 and 2 predicted using Heun’s second-
order method (𝜆 = 1) for the IBVP described by equations (8) and (110).

Meshsize ℎ Total error (𝑘 = 1) Total error (𝑘 = 2)

0.025 0.0015 5.59 · 10−6

0.017 8.59 · 10−4 2.00 · 10−6

0.0125 5.63 · 10−4 9.73 · 10−7

0.01 3.92 · 10−4 5.56 · 10−7

4/3-CFL condition (82) may be more conveniently invoked in place of the 2-CFL one to derive quasi-optimal
error convergence for the complete discrete RK2 schemes. Therefore, according to Theorem 4.2, under the
refined 4/3-CFL condition (82), the RK2 scheme with polynomial degree 𝑘 = 1 produces an error convegence in
the order of 𝑂(ℎ8/3 + ℎ3/2), whereas the polynomial degree 𝑘 = 2 yields 𝑂(ℎ8/3 + ℎ5/2) accuracy. In both case,
the time error, relating to the contribution ℎ8/3, is dominated by that produced by the space discretisation,
proportional to either ℎ3/2 or ℎ5/2. The values reported in Table 1 and the trends illustrated in Figure 1 seem
to confirm the bound derived according to Theorem 4.2 to be sharp.

The maximum simulation times, corresponding to a meshsize of ℎ = 0.01 with 100 elements simulated in
MATLAB/Simulink R○ on a personal computer, amounted to 1.94 and 4.48 s for 𝑘 = 1 and 𝑘 = 2, respectively.

5.1.2. Effect of time-varying operators

To investigate numerically the effect connected with the presence of a time-varying operator, equation (8)
are again considered in the scalar case, i.e., 𝑢(𝑥, 𝑡) ∈ R, with 𝐵(𝑡) = 𝐵 = 0, 𝐶(𝑡) = 𝐶 = 0, 𝑓(𝑥, 𝑡) = 𝑓 = 0, and
transport velocity and IC assigned as

𝑎(𝑥, 𝑡) = 𝑎(𝑡) = 1 + 𝑡, for 𝑡 ∈ [0, 𝑇 ], (111a)
𝑢0(𝑥) = 𝑥3, for 𝑥 ∈ [0, 1]. (111b)

The above expressions for the transport velocity and IC ensure the existence and uniqueness of sufficiently
smooth solutions satisfying the assumptions of Theorem 4.2.

The total error, calculated as in the right-hand side of equation (78), is reported in Table 2 for decreasing
values of the meshsize ℎ and polynomial degrees 𝑘 = 1 and 2, using Heun’s method for time discretisation (RK2
schemes with 𝜆 = 1), with timestep 𝛿𝑡 obeying the 2-CFL condition of equation (77) with 𝜚′ = 5 and 10 for
𝑘 = 1 and 2, respectively. Figure 2 seems to numerically corroborate that the bound derived in Theorem 4.2
is sharp. In particular, it is evident that, especially concerning the RK scheme with polynomial degree 𝑘 = 2,
the refined 4/3-CFL condition (82) is not sufficient to ensure the optimal rate of convergence predicted by
Theorem 4.2.

The maximum simulation times, corresponding to a meshsize of ℎ = 0.0125 with 80 elements, amounted to
1.57 and 3.15 s for 𝑘 = 1 and 𝑘 = 2, respectively.

5.2. Application to linear hyperbolic rolling contact problems

As an application from rolling contact mechanics, the problem described in Example 2.1 is considered.
Restricting the attention to the scalar case, i.e., 𝑢(𝑥, 𝑡) ∈ R, typical expressions for the time-dependent transport
velocity 𝑎(𝑥, 𝑡), matrix 𝐶(𝑡) and forcing term 𝑓(𝑥, 𝑡) read according to equation (10), with 𝜙(𝑡) = 0 and

𝛼(𝑡) = 𝛼0 + 𝛼I sin(𝜔𝑡), (112a)
𝜎(𝑡) = 𝜎0 + 𝜎I sin(𝜔𝑡), (112b)
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Figure 1. Convergence of the total error for different polynomial degrees 𝑘 = 1 and 2 for the
IBVP described by equations (8) and (110). (a) Convergence of the total error predicted accord-
ing to Theorem 4.2 (polynomial degree 𝑘 = 1). (b) Convergence of the total error predicted
according to Theorem 4.2 (polynomial degree 𝑘 = 2).
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Table 2. Error convergence for polynomial degrees 𝑘 = 1 and 2 predicted using Heun’s second-
order method (𝜆 = 1) for the IBVP described by equations (8) and (111).

Meshsize ℎ Total error (𝑘 = 1, 4/3-CFL) Total error (𝑘 = 1, 2-CFL)

0.05 1.12 · 10−2 8.41 · 10−3

0.025 4.04 · 10−3 2.81 · 10−3

0.0125 1.60 · 10−3 8.54 · 10−4

Meshsize ℎ Total error (𝑘 = 2, 4/3-CFL) Total error (𝑘 = 2, 2-CFL)

0.05 1.10 · 10−2 7.82 · 10−3

0.025 4.03 · 10−3 1.61 · 10−3

0.0125 1.60 · 10−3 2.99 · 10−4

where both signals are characterised by the same frequency 𝜔. Similar expressions for the transport velocity
and rigid slip as those in equation (112) are typically connected with oscillating normal and tangential forces
[55–57].

Figure 3 illustrates the numerical solution obtained using first and second-order polynomial functions (𝑘 = 1
and 2, respectively) in conjunction with Heun’s second-order method in time. In both cases, the plotted solutions
refer to a mesh with 10 elements, with 𝜚′ = 0.2 in equation (77). It may be observed that the trend predicted
by the DGM with 𝑘 = 2 is much smoother than that yielded by the lower-order polynomial degree. The total
simulation time amounted to 14.92 and 25.46 s for 𝑘 = 1 and 2. In this case, the heavier computational cost
should be ascribed to the more stringent 2-CFL condition in equation (77) than the 4/3-one invoked previously
concerning the problem with constant transport velocity.

For the IBVP described by equations (8) and (10), the error convergence is illustrated in Figure 4 for the
usual polynomial degrees 𝑘 = 1 and 2, respectively. As observed previously, the low regularity of the exact
solution does not fulfil the criteria required by Theorem 4.2, and hence the rate of convergence is not optimal.
In fact, the accuracy is approximately in the order of 𝑂(ℎ1/2). Concerning the problem under investigation,
the simulation time was also prohibitive, amounting at more than 420 s for the smallest meshsize ℎ = 0.033 in
combination with the 2-CFL condition of equation (77).

6. Conclusions

The present paper addressed the problem of recovering numerical solutions to linear hyperbolic IBVPs encoun-
tered in rolling contact mechanics. Given the peculiar structure of the hyperbolic PDEs under investigation,
which included integral and boundary terms in the one-dimensional case, the first part of the work was dedicated
to establishing the well-posedness of the corresponding IBVPs. Existence and uniqueness were proved for the
continuous problem within the mathematical framework provided by the semigroup theory. This allowed, in
most cases, to derive strict solutions enjoying sufficient regularity properties to satisfy the assumptions required
for the subsequent numerical analyses. With respect to problems involving several space dimensions, a classic
result by Bardos [49] was conveniently recalled which applies to the governing equations of spinning and rolling
bodies.

The second part of the paper was then devoted to the development of numerical schemes to approximate the
exact solutions of the rolling contact problems described in Section 2. In particular, this was accomplished by
combining discontinuous Galerkin finite element methods (DGMs) with explicit Runge–Kutta (RK) algorithms
of first and second-order. Whilst the semi-discrete problem and the discrete operator were introduced and
analysed in Section 3, the complete discrete formulation was fully developed in Section 4, where the two main
results were also asserted regarding the convergence of the proposed schemes. More specifically, departing from
the analyses initiated in [38,39], analogous convergence results were established in the case of time-independent
continuous and discrete operators (𝐴(𝑡), 𝐷) and (𝐴ℎ(𝑡), 𝑉ℎ⋆) when accounting for the presence of integral and
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Figure 2. Convergence of the total error for different polynomial degrees 𝑘 = 1 and 2 for the
IBVP described by equations (8) and (111). (a) Convergence of the total error predicted accord-
ing to Theorem 4.2 (polynomial degree 𝑘 = 1). (b) Convergence of the total error predicted
according to Theorem 4.2 (polynomial degree 𝑘 = 2).
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Figure 3. DGM approximations to the rolling contact problem described by equations (8)
and (10), with time varying-data according to equation (112). Solid line: RK2 with polynomial
degree 𝑘 = 1 and 10 mesh elements; dashed line: RK2 with polynomial degree 𝑘 = 2 and 10
mesh elements. Model parameters: 𝛼0 = 0.075, 𝛼I = 0.1 · 𝛼0, 𝑀 = 4.44, 𝜎0 = 0.7, 𝜎I = 0.1 · 𝜎0,
𝜙 = 0, 𝜔 = 100. Total simulation time 𝑇 = 2(𝛼0 + 𝛼I).

Figure 4. Convergence of the total error for different polynomial degrees 𝑘 = 1 and 2 for the
rolling contact problem described by equations (8) and (10), with time varying-data according
to equation (112).

boundary terms. In particular, under the assumption of sufficiently smooth exact solutions and owing to a refined
4/3-CFL condition, accuracy in the order of 𝑂(ℎ4/3+ℎ1/2) and 𝑂(ℎ8/3+ℎ𝑘+1/2) was asserted respectively for the
finite-volume approximation in combination with RK1 algorithms, and for the DGMs in conjunction with RK2
schemes. The more involved case of time-dependent operators (𝐴(𝑡), 𝐷) and (𝐴ℎ(𝑡), 𝑉ℎ⋆) yielded similar results
in terms of convergence rate, but required instead a stricter 2-CFL condition to hold. Numerical experiments,
corroborating the theoretical analyses conducted in Section 4, were reported in Section 5 regarding some one-
dimensional problems accounting for the presence of boundary and integral terms.
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Future research efforts may be directed to the analysis of higher-order RK schemes, which are already available
in virtual environments like MATLAB/Simulink R○, and possibly able to overcome the drawbacks connected
with too stringent CFL conditions, as also preliminarily suggested by the numerical experiments reported in
Appendix B.

Appendix A. Technical proofs

Some technical proofs concerning the numerical schemes are collected here.

A.1. Proof of Lemma 4.2

The proof of Lemma 4.2 is given below.

Proof of Lemma 4.2. Taking the inner product of equation (87a) with (2𝜆− 1)/𝜆𝜉𝑛
ℎ (𝑥) on 𝐿2(Ω; R𝑛) provides

⟨𝜉𝑛
ℎ , 𝜁

𝑛
ℎ ⟩𝐿2(Ω;R𝑛) = ‖𝜉𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) + 𝛿𝑡⟨𝐴𝑛
ℎ𝜉

𝑛
ℎ , 𝜉

𝑛
ℎ ⟩𝐿2(Ω;R𝑛) − 𝛿𝑡⟨𝛼𝑛

ℎ, 𝜉
𝑛
ℎ ⟩𝐿2(Ω;R𝑛). (A.1)

Similarly, taking the inner product of equation (87b) with 2(1− 𝜆)𝜉𝑘
ℎ(𝑥) + 2𝜆𝜁𝑘

ℎ(𝑥) on 𝐿2(Ω; R𝑛) yields

2(1− 𝜆)
⟨︀
𝜉𝑛+1
ℎ , 𝜉𝑛

ℎ

⟩︀
𝐿2(Ω;R𝑛)

+ 2𝜆
⟨︀
𝜉𝑛+1
ℎ , 𝜁𝑛

ℎ

⟩︀
𝐿2(Ω;R𝑛)

=
1− 𝜆

𝜆
‖𝜉𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) + (2𝜆− 1) ‖𝜁𝑛
ℎ (·)‖2𝐿2(Ω;R𝑛)

+
4𝜆− 2𝜆2 − 1

𝜆
⟨𝜉𝑛

ℎ , 𝜁
𝑛
ℎ ⟩𝐿2(Ω;R𝑛) + 𝜆𝛿𝑡

⟨
𝐴𝑛+𝜆

ℎ

(︂
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

)︂
,

1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

− 𝜆𝛿𝑡

⟨
𝛽𝑛

ℎ ,
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

.

(A.2)

Observing that

2
⟨︀
𝜉𝑛+1
ℎ , 𝜉𝑛

ℎ

⟩︀
𝐿2(Ω;R𝑛)

=
⃦⃦
𝜉𝑛+1
ℎ (·)

⃦⃦2

𝐿2(Ω;R𝑛)
+ ‖𝜉𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) −
⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜉𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)
, (A.3a)

2
⟨︀
𝜉𝑛+1
ℎ , 𝜁𝑛

ℎ

⟩︀
𝐿2(Ω;R𝑛)

=
⃦⃦
𝜉𝑛+1
ℎ (·)

⃦⃦2

𝐿2(Ω;R𝑛)
+ ‖𝜁𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) −
⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜁𝑘

ℎ(·)
⃦⃦2

𝐿2(Ω;R𝑛)
, (A.3b)

gives⃦⃦
𝜉𝑛+1
ℎ (·)

⃦⃦2

𝐿2(Ω;R𝑛)
= (1− 𝜆)

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜉𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)
+ 𝜆

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜁𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)

+
(1− 𝜆)2

𝜆
‖𝜉𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) + (𝜆− 1) ‖𝜁𝑛
ℎ (·)‖2𝐿2(Ω;R𝑛) +

4𝜆− 2𝜆2 − 1
𝜆

⟨𝜉𝑛
ℎ , 𝜁

𝑛
ℎ ⟩𝐿2(Ω;R𝑛)

+ 𝜆𝛿𝑡

⟨
𝐴𝑛+𝜆

ℎ

(︂
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

)︂
,

1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

− 𝜆𝛿𝑡

⟨
𝛽𝑛

ℎ ,
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

.

(A.4)

Hence, multiplying equation (A.1) by (2𝜆−1)/𝜆 and adding the resulting expression to the above (A.4) provides⃦⃦
𝜉𝑛+1
ℎ (·)

⃦⃦2

𝐿2(Ω;R𝑛)
= (1− 𝜆)

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜉𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)
+ 𝜆

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜁𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)

+ 𝜆 ‖𝜉𝑛
ℎ (·)‖2𝐿2(Ω;R𝑛) + (𝜆− 1) ‖𝜁𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) + 2(1− 𝜆)⟨𝜉𝑛
ℎ , 𝜁

𝑛
ℎ ⟩𝐿2(Ω;R𝑛)

+
2𝜆− 1
𝜆

𝛿𝑡⟨𝐴𝑛
ℎ𝜉

𝑛
ℎ , 𝜉

𝑛
ℎ ⟩𝐿2(Ω;R𝑛) −

2𝜆− 1
𝜆

𝛿𝑡⟨𝛼𝑛
ℎ, 𝜉

𝑛
ℎ ⟩𝐿2(Ω;R𝑛)

+ 𝜆𝛿𝑡

⟨
𝐴𝑛+𝜆

ℎ

(︂
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

)︂
,

1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

− 𝜆𝛿𝑡

⟨
𝛽𝑛

ℎ ,
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

.

(A.5)
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Resorting to Young’s inequality for products to bound the term ⟨𝜉𝑛
ℎ , 𝜁

𝑛
ℎ ⟩𝐿2(Ω;R𝑛) yields then⃦⃦

𝜉𝑛+1
ℎ (·)

⃦⃦2

𝐿2(Ω;R𝑛)
= (1− 𝜆)

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜉𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)
+ 𝜆

⃦⃦
𝜉𝑛+1
ℎ (·)− 𝜁𝑛

ℎ (·)
⃦⃦2

𝐿2(Ω;R𝑛)

+ ‖𝜉𝑛
ℎ (·)‖2𝐿2(Ω;R𝑛) +

2𝜆− 1
𝜆

𝛿𝑡⟨𝐴𝑛
ℎ𝜉

𝑛
ℎ , 𝜉

𝑛
ℎ ⟩𝐿2(Ω;R𝑛) −

2𝜆− 1
𝜆

𝛿𝑡⟨𝛼𝑛
ℎ, 𝜉

𝑛
ℎ ⟩𝐿2(Ω;R𝑛)

+ 𝜆𝛿𝑡

⟨
𝐴𝑛+𝜆

ℎ

(︂
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

)︂
,

1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

− 𝜆𝛿𝑡

⟨
𝛽𝑛

ℎ ,
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

.

(A.6)

Finally, recalling the quasi-disspativity property (59) of the discrete operator (𝐴ℎ(𝑡), 𝑉ℎ⋆) proved in Lemma 3.4
leads to the desired result. �

A.2. Proof of Lemma 4.3

The proof of Lemma 4.3 is given below.

Proof of Lemma 4.3. The proof involves four different steps. First, it is shown that

‖𝐴ℎ(𝑡)𝑣(·)‖𝐿2(Ω;R𝑛) .

√︂
𝜂c
ℎ
‖𝑣(·)‖⋆⋆ , for 𝑣 ∈ 𝑉ℎ⋆. (A.7)

To this end, from the definition of the norm ‖·‖⋆⋆ according to equation (98) and Assumption 3.2, it may be
deduced that

⟨𝐴ℎ(𝑡)𝑣, 𝑤ℎ⟩𝐿2(Ω;R𝑛) .

(︂
1
𝑡c
‖𝑣(·)‖𝐿2(Ω;R𝑛) + 𝜂c ‖∇ℎ𝑣(·)‖𝐿2(Ω;R𝑛) +

√
𝜀ℎ |𝑣(·)|𝜂

)︂
‖𝑤ℎ(·)‖𝐿2(Ω;R𝑛)

+ |𝑣(·)|𝜂 |𝑤ℎ(·)|𝜂 + |𝑣(·)|𝜂

⎛⎝ ∑︁
𝐹∈ℱ𝑖

ℎ

∫︁
𝐹

|𝑎(𝑥, 𝑡) · 𝜈𝐹 (𝑥)| {{𝑤ℎ(𝑥)}}d𝑥

⎞⎠1/2

.

(︂
1
𝑡c
‖𝑣(·)‖𝐿2(Ω;R𝑛) + 𝜂c ‖∇ℎ𝑣(·)‖𝐿2(Ω;R𝑛) +

√︂
𝜂c
ℎ
|𝑣(·)|𝜂

)︂
‖𝑤ℎ(·)‖𝐿2(Ω;R𝑛)

.

√︂
𝜂c
ℎ
‖𝑣(·)‖⋆⋆ ‖𝑤ℎ(·)‖𝐿2(Ω;R𝑛) , for (𝑣, 𝑤ℎ) ∈ 𝑉ℎ⋆ × 𝑉ℎ.

(A.8)

Since

‖𝐴ℎ(𝑡)𝑣(·)‖𝐿2(Ω;R𝑛) = sup
𝑤ℎ∈𝑉ℎ∖{0}

⟨𝐴ℎ(𝑡)𝑣, 𝑤ℎ⟩𝐿2(Ω;R𝑛)

‖𝑤ℎ(·)‖𝐿2(Ω;R𝑛)

, (A.9)

equation (A.8) provides (A.7). Moreover, applying the inverse and trace inequalities ([38], Lems. 1.44 and 1.46),
yields

‖𝑣ℎ(·)‖⋆⋆ .

√︂
𝜂c
ℎ
‖𝑣ℎ(·)‖𝐿2(Ω;R𝑛) , for 𝑣 ∈ 𝑉ℎ, (A.10)

which, combined with equation (A.7), leads to

‖𝐴ℎ(𝑡)𝑣ℎ(·)‖𝐿2(Ω;R𝑛) .
𝜂c
ℎ
‖𝑣ℎ(·)‖𝐿2(Ω;R𝑛) , for 𝑣 ∈ 𝑉ℎ. (A.11)
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The next step consists in deriving upper bounds for the terms 𝛼𝑛
ℎ(𝑥) and 𝛽𝑛

ℎ (𝑥). Concerning the first quantity,
the bound in equation (A.7) and the usual CFL condition (71) imply

√
𝛿𝑡 ‖𝛼𝑛

ℎ(·)‖𝐿2(Ω;R𝑛) . ‖𝜉
𝑛
𝜋 (·)‖⋆⋆ ≤ E 𝑛

ℎ . (A.12)

Moving to the analysis of the term 𝛽𝑛
ℎ (𝑥), using the triangle inequality gives

‖𝛽𝑛
ℎ (·)‖𝐿2(Ω;R𝑛) ≤

(︂
1
𝜆
− 1
)︂ ⃦⃦

𝐴𝑛+𝜆
ℎ 𝜉𝑛

𝜋 (·)
⃦⃦

𝐿2(Ω;R𝑛)
+
⃦⃦
𝐴𝑛+𝜆

ℎ 𝜁𝑛
𝜋 (·)

⃦⃦
𝐿2(Ω;R𝑛)

+ 𝛿𝑡 ‖𝜋ℎΛ𝑛𝑢𝑛(·)‖𝐿2(Ω;R𝑛) + 𝛿𝑡 ‖𝜋ℎ𝐹
𝑛(·)‖𝐿2(Ω;R𝑛)

+ 𝜆𝛿𝑡2
⃦⃦⃦⃦
𝜋ℎ

𝜕𝐴𝑛

𝜕𝑡

𝜕𝑢𝑛

𝜕𝑡
(·)
⃦⃦⃦⃦

𝐿2(Ω;R𝑛)

+ 𝜆𝛿𝑡2
⃦⃦⃦⃦

Λ𝑛 𝜕𝑢
𝑛

𝜕𝑡
(·)
⃦⃦⃦⃦

𝐿2(Ω;R𝑛)

+ ‖𝜋ℎ𝜃
𝑛(·)‖𝐿2(Ω;R𝑛) .

(A.13)

The first two terms appearing in equation (A.13) may be bounded as
√
𝛿𝑡
⃦⃦
𝐴𝑛+𝜆

ℎ 𝜉𝑛
𝜋 (·)

⃦⃦
𝐿2(Ω;R𝑛)

. ‖𝜉𝑛
𝜋 (·)‖⋆⋆ , (A.14a)

√
𝛿𝑡
⃦⃦
𝐴𝑛+𝜆

ℎ 𝜁𝑛
𝜋 (·)

⃦⃦
𝐿2(Ω;R𝑛)

. ‖𝜁𝑛
𝜋 (·)‖⋆⋆ . (A.14b)

Moreover, it may be easily inferred that

‖𝜋ℎ𝐹
𝑛(·)‖𝐿2(Ω;R𝑛) ≤ ‖𝐹

𝑛(·)‖𝐿2(Ω;R𝑛) . 𝜆𝛿𝑡

⃦⃦⃦⃦
𝜕2𝑓(·, 𝑡)
𝜕𝑡2

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐿2(Ω;R𝑛))

, (A.15a)

‖𝜋ℎ𝜃
𝑛(·)‖𝐿2(Ω;R𝑛) ≤ ‖𝜃

𝑛(·)‖𝐿2(Ω;R𝑛) . 𝛿𝑡
2

⃦⃦⃦⃦
𝜕3𝑢(·, 𝑡)
𝜕𝑡3

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐿2(Ω;R𝑛))

. (A.15b)

Finally, the third, second last and third last terms may instead be bounded as

‖Λ𝑛𝑢𝑛(·)‖𝐿2(Ω;R𝑛) . 𝜆𝛿𝑡𝜂2 ‖𝑢(·, ·)‖𝐶0([0,𝑇 ];𝐻1(Ω;R𝑛)) , (A.16a)⃦⃦⃦⃦
Λ𝑛 𝜕𝑢

𝑛

𝜕𝑡
(·)
⃦⃦⃦⃦

𝐿2(Ω;R𝑛)

. 𝜆𝛿𝑡𝜂2

⃦⃦⃦⃦
𝜕𝑢(·, ·)
𝜕𝑡

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐻1(Ω;R𝑛))

, (A.16b)⃦⃦⃦⃦
𝜋ℎ

𝜕𝐴𝑛

𝜕𝑡

𝜕𝑢𝑛

𝜕𝑡
(·)
⃦⃦⃦⃦

𝐿2(Ω;R𝑛)

. 𝜂1

⃦⃦⃦⃦
𝜕𝑢(·, ·)
𝜕𝑡

⃦⃦⃦⃦
𝐶0([0,𝑇 ];𝐻1(Ω;R𝑛))

. (A.16c)

Combining all the above estimates and recalling that 𝑡 ≤ 𝑡⋆ therefore yields
√
𝛿𝑡 ‖𝛽𝑛

ℎ (·)‖𝐿2(Ω;R𝑛) . ‖𝜉
𝑛
𝜋 (·)‖⋆⋆ + ‖𝜁𝑛

𝜋 (·)‖⋆⋆ +
√
𝑡
(︀
𝐶𝑓𝑢𝛿𝑡

2 + 𝐶𝑢𝛿𝑡
3
)︀
≤ E 𝑛

ℎ , (A.17)

with the constants 𝐶𝑓𝑢 and 𝐶𝑢 defined according to equation (80). Next, it is necessary to bound the term
𝜁𝑛
ℎ (𝑥). Starting with the error equation (87a), and resorting to the triangle inequality, the bounds (A.11) and

(A.12) and the usual CFL condition (71) provides

‖𝜁𝑛
ℎ (·)‖𝐿2(Ω;R𝑛) ≤ ‖𝜉

𝑛
ℎ (·)‖𝐿2(Ω;R𝑛) + 𝛿𝑡 ‖𝐴𝑛

ℎ𝜁
𝑛
ℎ (·)‖𝐿2(Ω;R𝑛) + 𝛿𝑡 ‖𝛼𝑛

ℎ(·)‖𝐿2(Ω;R𝑛)

≤ ‖𝜉𝑛
ℎ (·)‖𝐿2(Ω;R𝑛) + 𝛿𝑡

𝜂c
ℎ
‖𝜉𝑛

ℎ (·)‖𝐿2(Ω;R𝑛) +
√
𝛿𝑡 ‖𝜉𝑛

𝜋 (·)‖⋆⋆

. ‖𝜉𝑛
ℎ (·)‖𝐿2(Ω;R𝑛) +

√
𝛿𝑡 ‖𝜉𝑛

𝜋 (·)‖⋆⋆ .

(A.18)

Since 𝛿𝑡 ≤ 𝑡⋆ ≤ 𝑡c, the above expression gives finally

𝛿𝑡

𝑡c
‖𝜁𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) ≤
𝛿𝑡

𝑡c
‖𝜉𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) + 𝛿𝑡 ‖𝜉𝑛
𝜋 (·)‖2⋆⋆ . (A.19)
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Lastly, bounds on the quantities 𝛿𝑡⟨𝛼𝑛
ℎ, 𝜉

𝑛
ℎ ⟩ and 𝛿𝑡⟨𝛽𝑛

ℎ , (1− 𝜆)/𝜆𝜉𝑛
ℎ + 𝜁𝑛

ℎ ⟩ should be deduced. Using the bound-
edness on orthogonal subscales (60) stated in Proposition 3.1, it is first possible to infer that

𝛿𝑡⟨𝛼𝑛
ℎ, 𝜉

𝑛
ℎ ⟩ , 𝛿𝑡⟨𝐴𝑛

ℎ𝜉
𝑛
𝜋 , 𝜉

𝑛
ℎ ⟩ . 𝛿𝑡 ‖𝜉𝑛

𝜋 (·)‖⋆⋆ ‖𝜉
𝑛
ℎ (·)‖ℎ . 𝛿𝑡 ‖𝜉

𝑛
𝜋 (·)‖⋆⋆

(︂
|𝜉𝑛

ℎ (·)|𝜂 +
1√
𝑡c
‖𝜉𝑛

ℎ (·)‖𝐿2(Ω;R𝑛)

)︂
. (A.20)

Hence, an application of Young’s inequality for product yields

𝛿𝑡⟨𝛼𝑛
ℎ, 𝜉

𝑛
ℎ ⟩ −

𝛿𝑡

2
|𝜉𝑛

ℎ (·)|2𝜂 . 𝛿𝑡 ‖𝜉
𝑛
𝜋 (·)‖2⋆⋆ +

𝛿𝑡

𝑡c
‖𝜉𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) ≤ 𝛿𝑡(E 𝑛
ℎ )2. (A.21)

Similarly, resorting again to equation (60), the bound previously deduced according to (A.17), and Cauchy–
Schwarz’ inequality provides

𝛿𝑡

⟨
𝛽𝑛

ℎ ,
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

. 𝛿𝑡

⃦⃦⃦⃦
1− 𝜆

𝜆
𝜉𝑛
𝜋 (·) + 𝜁𝑛

𝜋 (·)
⃦⃦⃦⃦

⋆⋆

⃦⃦⃦⃦
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃦⃦⃦⃦

ℎ

+ 𝛿𝑡
(︀
𝐶𝑓𝑢𝛿𝑡

2 + 𝐶𝑢𝛿𝑡
3
)︀ ⃦⃦⃦⃦1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃦⃦⃦⃦

𝐿2(Ω;R𝑛)

. 𝛿𝑡

(︂
1− 𝜆

𝜆
‖𝜉𝑛

𝜋 (·)‖⋆⋆ + ‖𝜁𝑛
𝜋 (·)‖⋆⋆

)︂
×

(︃⃒⃒⃒⃒
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃒⃒⃒⃒
𝜂

+
1√
𝑡c

⃦⃦⃦⃦
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃦⃦⃦⃦

𝐿2(Ω;R𝑛)

)︃

+ 𝛿𝑡
(︀
𝐶𝑓𝑢𝛿𝑡

2 + 𝐶𝑢𝛿𝑡
3
)︀ ⃦⃦⃦⃦1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃦⃦⃦⃦

𝐿2(Ω;R𝑛)

.

(A.22)

Using again Young’s inequality for product therefore gives

𝛿𝑡

⟨
𝛽𝑛

ℎ ,
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

− 𝛿𝑡

2

⃒⃒⃒⃒
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃒⃒⃒⃒2
𝜂

. 𝛿𝑡
(︁
‖𝜉𝑛

𝜋 (·)‖2⋆⋆ + ‖𝜁𝑛
𝜋 (·)‖2⋆⋆

)︁
+
𝛿𝑡

𝑡c

(︁
‖𝜉𝑛

ℎ (·)‖2𝐿2(Ω;R𝑛) + ‖𝜁𝑛
ℎ (·)‖2𝐿2(Ω;R𝑛)

)︁
+ 𝛿𝑡

(︀
𝐶𝑓𝑢𝛿𝑡

2 + 𝐶𝑢𝛿𝑡
3
)︀(︁
‖𝜉𝑛

ℎ (·)‖𝐿2(Ω;R𝑛) + ‖𝜁𝑛
ℎ (·)‖𝐿2(Ω;R𝑛)

)︁
.

(A.23)

Invoking the estimate (A.18) to bound the terms involving ‖𝜁𝑛
ℎ (·)‖𝐿2(Ω;R𝑛), it may be finally deduced that

𝛿𝑡

⟨
𝛽𝑛

ℎ ,
1− 𝜆

𝜆
𝜉𝑛
ℎ + 𝜁𝑛

ℎ

⟩
𝐿2(Ω;R𝑛)

− 𝛿𝑡

2

⃒⃒⃒⃒
1− 𝜆

𝜆
𝜉𝑛
ℎ (·) + 𝜁𝑛

ℎ (·)
⃒⃒⃒⃒2
𝜂

. 𝛿𝑡(E 𝑛
ℎ )2. (A.24)

Recalling that 𝜔ℎ ≤ 1/𝑡c ≤ 1/𝑡⋆, collecting the above bounds and inserting them into equation (97) leads to
the desired result. �

Appendix B. Some numerical results concerning RK3 schemes

RK3 schemes enjoy stronger stability properties than their lower-order counterparts. Moreover, quasi-optimal
convergence rates may be deduced owing to less stringent CFL conditions. For example, in [38], limited to the
case of IBVPs with constant coefficients, it is found that the classic CFL condition is sufficient to derive
quasi-optimal error estimates. To investigate the potential of RK3 schemes when it comes to time-varying
problems, numerical experiments have been performed concerning Heun’s third-order algorithm considering
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Table B.1. Convergence of the total error for different polynomial degrees 𝑘 = 1 and 2 and
Heun’s third-order scheme, concerning the IBVP considered in Section 5.1.2.

Meshsize ℎ Total error (𝑘 = 1, 1-CFL) Total error (𝑘 = 2, 1-CFL)

0.05 1.70 · 10−3 1.32 · 10−3

0.025 8.51 · 10−4 6.55 · 10−3

0.0125 3.92 · 10−4 3.21 · 10−4

Meshsize ℎ Total error (𝑘 = 1, 4/3-CFL) Total error (𝑘 = 2, 4/3-CFL)

0.05 9.93 · 10−3 9.93 · 10−3

0.025 3.93 · 10−3 3.91 · 10−3

0.0125 2.31 · 10−3 1.50 · 10−4

Meshsize ℎ Total error (𝑘 = 1, 2-CFL) Total error (𝑘 = 2, 2-CFL)

0.05 1.61 · 10−3 9.47 · 10−4

0.025 5.65 · 10−4 1.53 · 10−4

0.0125 2.24 · 10−4 2.84 · 10−5

the IBVP described in Section 5.1.2, but with the original IC (111b) replaced with 𝑢0(𝑥) = 𝑥4 to ensure
𝐶4([0, 𝑇 ];𝐿2(Ω; R𝑛)) ∩ 𝐶1([0, 𝑇 ];𝐻1(Ω; R𝑛)) regularity for the exact solution (see [38], Thm. 3.13). The total
error, calculated according to equation (3.29) in [38], is reported in Table B.1 and illustrated in Figure B.1 for
the three different CFL conditions and corresponding values of the parameter 𝜚 = 0.05, 0.5, and 1, respectively.
It appears that, for 𝑘 = 1, the classic CFL condition is not sufficient to ensure quasi-optimal convergence rates,
whereas the higher-order ones follow a similar trend to 𝑂(ℎ3/2) (this might perhaps be ascribed to the peculiar
combination of the RK3 scheme with the low polynomial degree 𝑘 = 1). On the other hand, for 𝑘 = 2, the
2-CFL condition seems to be the only one ensuring a quasi-optimal convergence rate. In any case, the results
point out at the possibility of overcoming some of the limitations encountered in the present work by adopting
higher-order RK algorithms for time discretization.



1576 L. ROMANO AND A. MÅLQVIST

Figure B.1. Convergence of the total error for different polynomial degrees 𝑘 = 1 and 2 and
Heun’s third-order scheme, concerning the IBVP considered in Section 5.1.2. (a) Convergence
of the total error for Heun’s third-order scheme (polynomial degree 𝑘 = 1). (b) Convergence of
the total error for Heun’s third-order scheme (polynomial degree 𝑘 = 2).
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