
An IDE Plugin for Clone Management

Downloaded from: https://research.chalmers.se, 2024-11-14 11:15 UTC

Citation for the original published paper (version of record):
Shihabi, A., Sollmann, J., Martinson, J. et al (2024). An IDE Plugin for Clone Management. ACM
International Conference Proceeding Series: 42-45. http://dx.doi.org/10.1145/3646548.3678298

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

An IDE Plugin for Clone Management
Ahmad Al Shihabi

Ruhr-University Bochum
Germany, Bochum

Jan Sollmann
Ruhr-University Bochum

Germany, Bochum

Johan Martinson
Ruhr-University Bochum

Germany, Bochum

Wardah Mahmood
Chalmers | University of Gothenburg

Sweden, Gothenburg

Thorsten Berger
Ruhr-University Bochum and

Chalmers | University of Gothenburg
Germany, Bochum

ABSTRACT
Development and maintenance in variant-rich systems often in-
volves the replication of specific software code, known as software
cloning. This process allows for code reuse but presents challenges
in managing independently evolving variants. This paper discusses
the necessity of effective clone management tools to maintain code
quality and efficiency. We present an extension1 to the HAnS IDE
plugin. This extension enhances the plugin by supporting basic
clone management, and by facilitating the tracking and synchro-
nization of cloned assets and features through a well-designed,
lightweight trace database. The plugin is evaluated through unit
and integration testing, as well as user experiments, demonstrat-
ing its effectiveness in addressing the challenges associated with
software cloning. The evaluation results indicate that 80% of par-
ticipants rated the trace database as intuitive, and 100% rated the
notification system as both intuitive and user-friendly.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software maintenance tools.

KEYWORDS
feature-oriented software evolution, embedded feature annotations,
tool support, feature asset management, Software Evolution, IDE
ACM Reference Format:
Ahmad Al Shihabi, Jan Sollmann, Johan Martinson, Wardah Mahmood,
and Thorsten Berger. 2024. An IDE Plugin for Clone Management. In 28th
ACM International Systems and Software Product Line Conference (SPLC ’24),
September 02–06, 2024, Dommeldange, Luxembourg. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3646548.3678298

1 INTRODUCTION
In the context of developing variant-rich systems, companies typi-
cally choose between two strategies: software configuration with
an integrated platform or the clone&own approach.
1Demo video: https://youtu.be/cCG_-NBlVgo

This work is licensed under a Creative Commons Attribution International
4.0 License.

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0593-9/24/09
https://doi.org/10.1145/3646548.3678298

Clone&Own involves replicating code segments, configurations,
or entire components, enabling code reuse in different contexts. It
provides an immediate, cost-effective solution but faces the risk
of bug propagation as well as scalability challenges. It leads to
independently evolving variants that are difficult to manage and
synchronize. Developers often lose track of which variant was
cloned from which, increasing maintenance costs due to the need
for consistently applying changes across all clones [14, 17]. This
process typically involves clone detection techniques to identify
and manually apply changes to all related variants.

Alternatively, software configuration involves building a config-
urable platform from scratch. A configurable platform is a compre-
hensive system or framework that supports the development and de-
ployment of software applications. It offers a set of predefined func-
tionalities and components that can be customized and extended
to meet specific needs. While this approach provides ultimate flex-
ibility and scalability, it is time-consuming, expensive, and requires
substantial domain-specific expertise [9]. Given the rapid pace of
technological advancement, this method is not always feasible.

This is where clone management tools come into play, provid-
ing a good middle ground. Clone management involves tracing
cloned assets and features to maintain synchronization and manage
changes across variants. By leveraging traceability, clone manage-
ment tools help identify relationships between clones, ensuring
that changes such as bug fixes are consistently applied across all
variants, thereby reducing maintenance costs and minimizing the
risk of bug propagation [5, 7, 12, 14, 19].

Clone management requires a representation of clone tracing
and concrete developer support that is closely integrated with main-
stream development tooling. This integration is essential to provide
developers with the necessary context and tools to efficiently man-
age and synchronize cloned assets. By embedding clone manage-
ment functionalities within familiar development environments,
we can streamline the process, reduce overhead, and enhance the
overall effectiveness of clone management [7, 11, 12, 19].

This paper presents a lightweight clonemanagement tool, demon-
strates its effectiveness through empirical validation, and discusses
its impact on software development processes. In that regard, we
present an extension of the Helping Annotate Software (HAnS)
IDE plugin [10], which supports the recording of feature locations
[6, 16] in source code. Our extension enhances HAnS by incorporat-
ing clone management capabilities, utilizing a well designed trace
database that is lightweight and comprehensible, as confirmed by
our evaluation. This database facilitates easier tracking and syn-
chronization of cloned assets to their features. This aligns with our

42

https://orcid.org/0009-0007-3973-4641
https://orcid.org/0000-0002-4097-4374
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3646548.3678298
https://youtu.be/cCG_-NBlVgo
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3646548.3678298
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3646548.3678298&domain=pdf&date_stamp=2024-09-02

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg Ahmad Al Shihabi, Jan Sollmann, Johan Martinson, Wardah Mahmood, and Thorsten Berger

file structure feature model

1 Playing_Area

1 Direction.java
2 Controls, Move

1

2

1
2
3

folder mapping
file mapping
fragment mapping

Snake
 .feature-model
 src/
 graphics/
 .feature-to-folder
 logic/
 .feature-to-file
 DataOfSquare.java
 Direction.java
 KeyboardListener.java
 SquareToLightUp.java
 ThreadsController.java //&line [Food]

17 private Tuple foodPosition
479 //&begin [Food]
480 foodPosition = new Tuple(
 Window.getWindowHeight...
530 //&end [Food]

3

Snake
 Controls
 GameState
 DataTypes
 Snake
 Move
 Collision
 Position
 Tail
 Playing_Area
 Tile
 Food
 Spawn
 Blank
 Snake
 Update

Fig. 1: Illustration of feature models and feature locations in
a sample file structure [10, 13, 18].

vision for robust feature tracking in clone management, ensuring
consistent and efficient management across software variants.

2 BACKGROUND & CHALLENGES
Effective feature tracking enhances code comprehensibility and
clone management in software development. Embedding feature
tracking in code helps developers identify and manage features in
clones, ensuring better understanding and maintenance. To further
illustrate how HAnS supports feature tracking, it records feature
locations in source code as shown in Fig. 1. It can be used to create
mappings of folders, files and code fragments to features defined in
a feature model using a lightweight embedded feature annotations
system. Files and folders are mapped with textual files while code
fragments are in-lined as comments within code. The annotations
can be used to browse features and their usages in the assets, as
well as to facilitate refactoring [10].

Specifically, our plugin aims to overcome the following chal-
lenges associated with proposing a lightweight, scalable and practi-
cable tool for real-world software projects:
Challenge 1: Granularity of the clone traces. One of the prin-
cipal concerns is the identification of the elements that should be
traced by the clone management tool in order to ensure its suit-
ability for real-world practical applications. It is essential that only
relevant and significant data is shown in traces to make our traces
purposeful and clear for users. Furthermore, for a feature-oriented
tool, it is necessary to trace the features implemented in assets.
Challenge 2: Synchronization of traces. In a real-world envi-
ronment, the synchronization of assets should ensure that changes
made to the original assets are immediately reflected in the clones.
This necessitates tooling that is both lightweight and efficient in
terms of monitoring for changes occurring in assets.
Challenge 3: Integration with mainstream developer tools.
Ensuring the usability of the clone management tool is critical to
its adoption in real-world projects. A key aspect of usability is the
inclusion of clone records that allows users to review the clone
history within the current application. This feature provides users
with vital data about the existing clones in their project, which will
enable them to better manage and understand their code base.

In addition, the tool maintains the consistency of the feature
model, even when dealing with clones that contain features that are
not currently mapped to the existing feature model. It is essential
for accurate feature tracking and management to ensure that all
implemented and named features are present in the feature model.
Another key option is the ability to synchronize assets. This feature
is particularly valuable as it ensures that users do not miss anymain-
tenance changes and keeps their assets consistent and up to date.

Fig. 2: Clone management system. Traces are stored in the
trace database on any clone action and used by the notifi-
cation system to create banners in the clone files given the
source file changed

(1) src/pojo/Tuple.java;src/graphics/TupleClone.java;
20240602192648;#Gretel

(2) Snake/src/pojo;src/pojo;20240602195455;#Gretel
Snake::GameState;SnakeTest::GameState

(3) Snake::Size;SnakeTest::UNASSIGNED::Size

Fig. 3: Traces generated by the plugin illustrating the struc-
ture of the trace database. Each clone action is recorded with
timestamps and feature annotations if existent.

3 THE PLUGIN
Implementation. The Clone Management Plugin uses a robust
3-layer architecture for effective cloned asset tracking and manage-
ment. The User Interaction Layer detects copy, paste, and file open
actions within the IDE through a CopyPastePreProcessor, using
before()/after() methods to capture source and resulting clone paths
for accurate tracking. The Middleware Layer enables communica-
tion between tool components and identifies features assigned to
folders or files. The Clone Management and Notification Layer em-
ploys PSI language injection to locate feature implementations and
displays banners to notify users of relevant changes. This design
ensures the plugin is efficient and user-friendly.

To illustrate the functionality of the Clone Management Plugin,
consider a scenario where a company is developing a system with
features that must be extracted from an existing system. The assets
representing the implementation of these features are cloned. By
cloning these assets, the clone management tool creates a text file
called “.trace-db” in the project root of the current system. This
file acts as a database for all clone traces, recording and managing
each instance of a clone action independently. Additionally, the
necessary featuremodel maintenance is organized. The tool informs
developers of the cloned file assets that exist in the project and the
source changes that need to be checked. This process is illustrated in
Fig. 2, which shows how the tool tracks and manages clone actions.

3.1 Trace Database
To address the stated challenges we need some sort of database so
that users can view the clone actions within the current application.
To achieve this, the tool is accompanied by a textual trace database
which is inspired by a traceability mechanism (asset referencing

43

IDE Plugin for Clone Management SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg

Fig. 4: Feature model with unassigned feature “Size”

Fig. 5: Editor panel as clone notification and action selection

scheme) from the Virtual Platform [8, 9], which stores the relative
paths of several clones of asset types. The traces comprise the
source asset path, target asset path and the version number, which
indicates the point in time at which the clone was created as well
as the Git username of the individual responsible for the clone
(see. Fig. 3 Item 1). While relative paths are stored, absolute paths
are mapped to them using a persistent Hash Map. This ensure
readability and portability as well as platform in-dependency. In
the case of clones that originate from external instances, the trace
starts with the instance name. Each asset clone is identified through
the use of feature annotations, which are mapped to it by the HAnS
tool. These annotations consist of the source instance name, target
instance name, and feature name, all separated by colons (see. Fig. 3
Item 2). Any features that cannot be mapped to the target feature
model are indicated by an UNASSIGNED prefix before the actual
feature name (see. Fig. 3 Item 3). This indicates that the feature in
question could be found under the lazy-initialized UNASSIGNED
feature in the current feature model as shown in Fig. 4.

3.2 Cloning of Code Assets
Accurate tracking of cloning actions is crucial. Regardless of whether
the clone action involves a file, folder or a textual clone (i.e., a
method, class, or block of code representing features within or
outside a method), the tool records this data in a trace database,
providing significant information about the clones. The tool pro-
vides the relevant asset paths, beginning with the project name
and ending with the asset name as it is represented in the abstract
syntax tree (AST). The second item in the list Item 2, presents an
example of a folder clone. The tool listens to these clone actions due
to the implementation of lightweight services, which then perform
the appropriate techniques dependent on the asset type.

The trace is stored in the trace database at the time the asset is
pasted into the project. The variant number, which indicates the
time of the clone, is expressed in a format that includes the year,
month, day, hour, minutes, and seconds.

3.3 Synchronization of Cloned Code Assets
Notifications, as shown in Fig. 5, represent a fundamental compo-
nent of the clone management system in HAnS. For each file that
is cloned and traced in our trace database, a panel is displayed at
the top of the file, informing the user that the file has been cloned.
Clicking on the ”Show Source File“ option will redirect the user to
the original file from which the clone was created. The user also
has the option to hide this notification by clicking on the ”Hide“

Fig. 6: Merge window for displaying differences and editing

button. Uponmodification of a source file, a cloned file will receive a
notification of the changes. This notification banner can be viewed
again at the top of the editor, informing the user that the source file
has been modified. The user has two options to choose from: one
for merging the changes that occurred in the source file, and the
other for hiding the banner. Clicking on the ”Merge“ button will
open a merge window in the editor, which displays the differences
between the two files. As with any merge window in the JetBrains
platform, the user can select which code changes to replicate in the
currently cloned file, as shown in Fig. 6. These modifications will
be found directly in the cloned file when it is opened again.

4 EVALUATION
To evaluate the clone management tooling, we performed unit and
integration tests2 for assessing the technical performance, and con-
ducted a user study to determine the practical usability of the tool.
User Experience. User experience feedback was gathered through
an experiment, conducted with a doctoral supervisor at a software
company and four student developers. Three of whom had a bach-
elor’s degree and one of whom was an undergraduate. Most of
the users were familiar with the HAnS plugin. Users experimented
with the tool and created several code clones. They started by
cloning folders and files within the same project and into other
open projects. During cloning, they were prompted to check the
trace database and verify the results. They then performed several
editor clones, such as cloning methods with features mapped by
block annotation and by line annotation (see Fig. 1). The partici-
pants were instructed to clone assets from disparate projects that
were mapped to features that did not exist in the target feature
model. This was done to facilitate experimentation with the track-
ing of unmapped features. Some of the cloned source files were
then modified to test the notification and merging process. This
entailed switching to the source files by triggering the notification
button and merging the changes into the cloned files by using the
editor notification option again.

After performing these tasks, the users were asked to judge the
clone management features regarding their usability and intuitive-
ness. As observable in Fig. 7, the majority of participants found the
design of the trace database intuitive, and even 100% of participants
found the notification system intuitive. Just one respondents would
not use the tool on a daily basis. They were particularly impressed
by the various editor notifications provided with different actions
in a real-time environment. One main improvement suggestion was
to extend the trace for a second-level clone and beyond, i.e. clones
cloned from other clones should have the paths up to the source
asset in their trace. This would ensure that some clones can still be
found even if the series of clones is interrupted somewhere in the
trace e.g. by deleting the first clone, we can still find the source asset.

2GitHub: https://github.com/isselab/HAnS/tree/feature/vpIntegration-cloning

44

https://github.com/isselab/HAnS/tree/feature/vpIntegration-cloning

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg Ahmad Al Shihabi, Jan Sollmann, Johan Martinson, Wardah Mahmood, and Thorsten Berger

Fig. 7: Evaluation results of user feedback

In conclusion, the evaluation indicates that the IDE plugin for
clone management is a robust and user-friendly tool that effectively
aids in the management of code clones.
Future Work. Future work will address user feedback on keeping
traces of cloned clones. While renaming and changes within clones
are already managed by the file system and version control, adding
consistency checks could enhance reliability. Additional function-
alities like change filtering and a UI sidebar could improve user
experience. Although the trace database is lightweight and scales
well, using index structures or hashing could boost performance
in large projects. The current solution, which involves the addition
of developers’ Git names to each trace, should be replaced by an
automatic synchronization strategy to avoid merging conflicts.

5 RELATEDWORK
Clone management in software engineering has been studied before
[15]. An exploratory study on cloning in industrial software product
lines [2] has shown that cloning is still seen as a beneficial and
natural reuse approach by the majority of surveyed practitioners.

Ji et al. [4] show that manually tracking and updating traceability
information for cloning and synchronization of software variants
is costly and error-prone. Barbosa et al. [1] found that maintaining
cloned software parts takes on average 136% more time. Heisig et al.
[3] introduced a traceability metamodel to establish uniform trace-
ability workflows in a variability-aware, model-based environment.

Pfofe et al. [14] and Kehrer et al. [5] described VariantSync, a
tool to automate synchronization of software variants, reducing the
gap between clone&own and product lines. Schmorleiz et al. [17]
described managing the similarity of cloned-and-owned variants
over time using annotations and automatic change propagation.
Montalvillo’s studies [11, 12] proposed enhancements to version
control systems to support synchronization paths for software prod-
uct lines and introduced peering bars for better awareness of feature
upgrades. Lillack et al. [7] developed a tool to aid in integrating
cloned variants into a configurable platform using domain-specific
integration intentions and visualizations. Zibran et al. [19] provided
a roadmap for clone management, highlighting the importance of
tools for detecting, managing, and refactoring clones.

Mahmood et al. [8, 9] introduced the virtual platform, an ap-
proach to support the incremental development of variant-rich
systems. It also relies on clone traces and features. Our tool is
inpsired by concepts described by the virtual platform. While the
latter offers a clone-management framework, it does not provide
a user interface beyond a command-line interface and suggestions

for tool integration. Our plugin integrates with mainstream IDEs,
implementing virtual platform concepts.

Unlike previous tools that focus on either clone&own or virtual
platforms, our plugin bridges these two approaches through a light-
weight IDE plugin, reducing the cost for developers and improving
overall efficiency in clone management.

6 CONCLUSION
We outlined the need for a clone management system and empha-
sized its importance in maintaining code quality and efficiency in
software development. We demonstrated the effectiveness of our
plugin rigor testing and user experiments. Our tool is lightweight,
and the trace database can improve the development and mainte-
nance and practices in clone&own development. Future work aims
to refine and extend the current validation to confirm these antici-
pated benefits, as well as extend tool functionalities as discussed.

REFERENCES
[1] Jefferson Barbosa, Rossana Andrade, João Filho, C. I. M. Bezerra, Isaac Barreto, and

Rafael Capilla. 2018. Cloning in Customization Classes: A Case of a Worldwide
Software Product Line. In SBCARS.

[2] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In CSMR.

[3] Philipp Heisig, Jan-Philipp Steghöfer, Christopher Brink, and Sabine Sachweh.
2019. A generic traceability metamodel for enabling unified end-to-end trace-
ability in software product lines. In SAC.

[4] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining feature traceability with embedded annotations. In SPLC.

[5] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian Bittner.
2021. Bridging the gap between clone-and-own and software product lines. In
ICSE, NIER.

[6] Jacob Krüger, Thorsten Berger, and Thomas Leich. 2018. Features and How to Find
Them: A Survey of Manual Feature Location. Taylor & Francis Group, LLC/CRC
Press.

[7] Max Lillack, Stefan Stanciulescu,WilhelmHedman, Thorsten Berger, and Andrzej
Wąsowski. 2019. Intention-Based Integration of Software Variants. In ICSE.

[8] Wardah Mahmood, Gül Calikli, Daniel Strüber, Ralf Lämmel, Mukelabai Muke-
labai, and Thorsten Berger. 2024. Virtual Platform: Effective and Seamless Variabil-
ity Management for Software Systems. IEEE Transactions in Software Engineering
(TSE) (2024).

[9] Wardah Mahmood, Daniel Strueber, Thorsten Berger, Ralf Lämmel, and Muke-
labai Mukelabai. 2021. Seamless variability management with the virtual platform.
In ICSE.

[10] Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger,
Alexandre Bergel, and Truong Ho-Quang. 2021. HAnS: IDE-Based Editing Sup-
port for Embedded Feature Annotations. In SPLC, Tools and Demonstrations.

[11] Leticia Montalvillo and Oscar Díaz. 2015. Tuning GitHub for SPL development:
branching models & repository operations for product engineers. In SPLC.

[12] Leticia Montalvillo, Oscar Díaz, and Thomas Fogdal. 2018. Reducing coordination
overhead in SPLs: peering in on peers. In SPLC.

[13] Mukelabai Mukelabai, Kevin Hermann, Thorsten Berger, and Jan-Philipp
Steghöfer. 2023. FeatRacer: Locating Features Through Assisted Traceability.
IEEE Transactions on Software Engineering 49, 12, 5060–5083.

[14] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing software variants with variantsync. In SPLC, Tools and
Demonstrations.

[15] Chanchal K. Roy, Minhaz F. Zibran, and Rainer Koschke. 2014. The vision of
software clone management: Past, present, and future (Keynote paper). In CSMR-
WCRE.

[16] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.
Springer, Berlin, Heidelberg, Germany, 29–58. https://doi.org/10.1007/978-3-
642-36654-3_2

[17] Thomas Schmorleiz and Ralf Lämmel. 2016. Similarity management of ’cloned
and owned’ variants. In SAC.

[18] Tobias Schwarz, Wardah Mahmood, and Thorsten Berger. 2020. A Common
Notation and Tool Support for Embedded Feature Annotations. In SPLC, Demon-
strations and Tools.

[19] Minhaz F Zibran and Chanchal K Roy. 2012. The road to software clone manage-
ment: A survey. Dept. Comput. Sci., Univ. of Saskatchewan, Saskatoon, SK, Tech.
Rep 3 (2012).

45

https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1007/978-3-642-36654-3_2

	Abstract
	1 Introduction
	2 Background & Challenges
	3 The plugin
	3.1 Trace Database
	3.2 Cloning of Code Assets
	3.3 Synchronization of Cloned Code Assets

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

