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A B S T R A C T

Progression-free survival (PFS) is an important clinical metric in oncology and is typically illustrated and 
evaluated using a survival function. The survival function is often estimated post-hoc using the Kaplan-Meier 
estimator but more sophisticated techniques, such as population modeling using the nonlinear mixed-effects 
framework, also exist and are used for predictions. However, depending on the choice of population model 
PFS will follow different distributions both quantitatively and qualitatively. Hence the choice of model will also 
affect the predictions of the survival curves.

In this paper, we analyze the distribution of PFS for a frequently used tumor growth inhibition model with and 
without drug-resistance and highlight the translational implications of this. Moreover, we explore and compare 
how the PFS distribution for combination therapy differs under the hypotheses of additive and independent-drug 
action.

Furthermore, we calibrate the model to preclinical data and use a previously calibrated clinical model to show 
that our analytical conclusions are applicable to real-world setting. Finally, we demonstrate that independent- 
drug action can effectively describe the tumor dynamics of patient-derived xenografts (PDXs) given certain 
drug combinations.

1. Introduction

Combination therapies are a fundamental part of modern anti-cancer 
treatments and two often cited reasons for their effectiveness are the 
ability to mitigate drug resistance and the potential to induce synergistic 
effects (Mokhtari et al., 2017; Fitzgerald et al., 2006; Vakil and Trappe, 
2019). However, it has been shown that synergy is not a requirement for 
a successful combination therapy (Palmer and Sorger; 2017). The in-
dependent drug action model, which assumes that the expected response 
of a patient given a combination therapy is the best response to the in-
dividual drugs, together with sufficient inter-patient variability is often 
able to account for the therapeutic benefits of combination therapy 
(Plana et al., 2022; Pomeroy et al., 2022).

Drug development is a long and complex process that begins on the 
molecular level and hopefully ends successfully after several clinical 
trials (Mohs and Greig, 2017). Along the development process, there are 
many pitfalls, including particularly challenging translational steps from 

one phase to the next, e.g., from in vitro to in vivo or from preclinical to 
clinical (Mak et al., 2014; Seyhan, 2019). Only about 15 % of drugs that 
enter clinical trials gain regulatory approval (Arrowsmith and Miller, 
2013). This highlights the need to better understand the disease condi-
tion as well as the translational challenges faced throughout the drug 
development process.

Patient-derived xenografts (PDXs) play an important role in the early 
evaluation of new anti-cancer drugs (Koga and Ochiai, 2019). Tumor 
growth inhibition (TGI), is a metric estimated by comparing the tumor 
size of untreated and treated PDXs at a specific time point and is used to 
rank test compounds and decide which should be selected for continued 
development (Wu, 2010). However, attempts have also been made to 
facilitate translation into the clinic by estimating or predicting clinically 
relevant metrics such as overall response rate (the proportion of patients 
achieving a partial or complete response to the treatment) and 
progression-free survival (PFS) directly from PDXs (Gao et al., 2015; 
Wong et al., 2012; Baaz et al., 2022). The response evaluation criteria for 
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solid tumors (RECIST) is a framework for how to report and compare 
clinical studies in oncology and PFS is the time until tumor progression 
(or death), defined in RECIST (Gutman et al., 2013; Eisenhauer et al., 
2009). PFS is a clinical efficacy metric on its own but also serves as a 
surrogate for overall survival - the gold standard for comparing treat-
ments in oncology (Zhuang et al., 2009). To adequately translate PFS 
across species, differences in disease conditions between mice and 
humans, and the structures of preclinical and clinical trials, must be 
accounted for.

Mathematical modeling is an important part of modern drug dis-
covery (Slater et al., 2017). Models are developed to capture tumor size 
dynamics, which in turn can be used to predict response rates and PFS 
(Claret et al., 2009). Using simulations, complex models can be evalu-
ated and used to inform decision-making. However, with increased 
model complexity comes the problem of understanding the qualitative 
nature of the model, which can have essential biological and trans-
lational implications. This can potentially be solved by analytically 
investigating a simpler version of the model to gain qualitative knowl-
edge and then extending it to the more complex model through com-
puter simulations.

With this paper, we have three aims. First, to investigate how the PFS 
time is distributed for a commonly used preclinical and a clinical model, 
respectively. From this, we aim to show that there are quantitative as 
well as qualitative differences that have to be taken into consideration 
when performing translational predictions. To illustrate these results, 
we calibrate the models to preclinical PDX data and compare the derived 
distribution of PFS with that of a previously developed clinical model 
(Baaz et al., 2023). The second aim is to analyze PFS under two alter-
native combination therapy hypotheses: additive efficacy and 
independent-drug action. Lastly, building on research that suggests that 
the superiority of many combination therapies over their monotherapy 
counterparts can be attributed to the independent drug action hypoth-
esis (Palmer and Sorger, 2017; Plana et al., 2022; Pomeroy et al., 2022), 
we investigate if the same hypothesis can be used in dynamical system 
modeling.

2. Methods

We first present the tumor dynamics model that we later both 
analyze analytically and calibrate to experimental data. The data we use 
is then detailed in the next subsection. Next, the necessary knowledge 
regarding PFS for the analysis is presented and the final subsection is 
focused on the computational methods used for the parameter 
estimation.

2.1. Model structure

2.1.1. Tumor dynamics
We consider a mathematical model describing the dynamics of tumor 

size (TS) following combination therapy with two anti-cancer agents, 
given in Eq (1). 

dTS(t)
dt

=
(
kg − G(k1(t), k2(t), p)

)
TS(t),TS(0) = TS0,

ki(t) = αiCi(t)e− γt
i , i = 1, 2.

(1) 

In Eq. (1), kg denotes the tumor growth rate, which is assumed to be 
exponential in the absence of treatment, and TS0 denotes the initial 
tumor size. The function ki corresponds to cell killing induced by anti- 
cancer agent i, with concentration Ci, drug potency parameter αi, and 
resistance γi, according to the Claret model (Claret et al., 2009). The 
function G is introduced to describe the net cell killing during combi-
nation treatment with the two drugs and is given by, 

G(x, y, p) := (xp + yp)
1
p 

for all real x, y > 0 and p > 0. In this way, the parameter p regulates the 
nature of the interaction between the two drugs, with p = 1 corre-
sponding to additivity, p < 1 synergy, and p > 1 antagonism. Addi-
tionally, independent drug action is also covered using this formula, 
since, 

(xp + yp)
1
p→max(x, y), as p→ + ∞.

Note that for p ≥ 1, this is the standard p-norm. Mohamed et al. 
presented a similar approach for modeling combination therapy efficacy 
(Mohamed et al., 2016).

To make the subsequent analysis tractable, we shall frequently 
approximate the drug concentration Ci(t) with the average concentra-
tion, Ci. The analysis can also be performed using complete pharmaco-
kinetic (PK) models, but this is more suitable for a simulation-based 
analysis since the resulting analytical expressions are dependent on the 
particular choice of PK model and quickly become intractable.

The left part of Fig. 1 shows the average concentrations resulting in 
G = 1 at t = 0 for different values of p.

2.1.2. Population variability
An important aspect that must be considered when using this type of 

model to describe population data is how to quantify the variability in 
the data. A popular method for this is the nonlinear mixed effects 
(NLME) framework, where a set of model parameters are assumed to 
follow a distribution in the population (Leander et al., 2021). The 
lognormal distribution is one of the most used distributions in popula-
tion modeling and X ∼ LN(μ, σ) if log(X) ∼ N(μ, σ), where μ and σ are 
the mean and standard deviation of the normal distribution, respec-
tively. Here and throughout the paper log refers to the natural loga-
rithm. For more information regarding the lognormal distribution, see 
the supplementary information.

The right part of Fig. 1 illustrates the required average concentration 
of the two drugs for the median individual of a large population to have 
G = 1 at t = 0 for different values of p. Here we have assumed inde-
pendent and lognormally distributed normalized kill rates, i.e., ai ∼

LN(0, 1), i = 1,2, and the median plots are obtained through Monte 
Carlo simulations.

The curve (p = 10) in the left part of Fig. 1 gives the impression that 
increasing the average concentration of drug 1 gives no benefit, under 
independent-drug action, up until a certain point. Although this is true 
when considering a single individual, it is, as seen in the right part of the 
figure, not the case on a population level.

2.1.3. Progression-free survival
According to the RECIST (version 1.1) guidelines, tumor lesions are 

classified as either target or non-target lesions (Eisenhauer et al., 2009). 
Target lesions are quantitatively measured during the trial, whereas 
non-target lesions are only monitored qualitatively.

PFS is determined by either target progression (TP) or non-target 
progression (e.g., appearance of additional lesions). However, in this 
analysis, we will assume that PFS is determined by TP solely. TP occurs if 
the tumor size, TS, in terms of SLD for human patients, has increased by 
20 % and 5 mm compared to the nadir TS. We only consider the per-
centage condition. How much the tumor has grown or shrunk (in %) at 
time t from the nadir is calculated according to, 

100
TS(t) − TSnadir

TSnadir
,

and the time for PFS (target progression), T, is found by solving, 

20 = 100
TS(T) − TSnadir

TSnadir
. (2) 

PFS is often described using a survival function, S(t), defined as the 
probability that the PFS event occurs after time t, i.e., S(t) = Pr(T > t) =
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1 − FT(t). Here FT(t) is the cumulative distribution function (CDF) of T. 
The probability density function (PDF) of T is denoted by fT.

We derive the CDF of the PFS time for patients given both mono-
therapy and combination therapy. In the combination therapy case, we 
consider additive (p = 1), synergistic/antagonistic (p ∕= 1) combination 
therapies as well as independent drug action (p→ + ∞) with and without 
correlation. Both the case of negligible (γ1 = γ2 = 0), and non-negligible 
resistance are considered and in the latter case, we consider the 
assumption of equal (γ1 = γ2), and different rates (γ1 ∕= γ2), of acquired 
drug resistance.

In a previous paper (Baaz et al., 2023), we calibrated a joint model, 
for predicting PFS for clinical studies, with data coming from the PRIME 
study (Douillard et al., 2013). The study evaluated FOLFOX4 against 
FOLFOX4 + Panitumumab for metastatic colorectal cancer (mCRC) 
patients. The joint model consists of a TGI model and a time-to-event 
model. The TGI model was specified by, Eq. (1) as an additive combi-
nation therapy (p= 1) with equal rate of acquired resistance (γ1 =

γ2 ∕= 0), and was used to quantify when patients had a PFS event due to 
target progression. In this paper, we make simulations with this model 
by generating sets of individual parameters, which can be thought of as 
sets of virtual patients. These patients are given the combination therapy 
and their estimated PFS times show how PFS is distributed under a 
clinically relevant model. The data from the PRIME study was not 
further analyzed in this paper.

2.2. Modeling of preclinical data

Gao et al. have published a dataset of PDX trials, where the PDXs 
were created from many different patients, with several replicates for 
each patient, and used to test the efficacy of a large number of drugs 
(Gao et al., 2015). We use Eq. (1), to model a selected subset of these 
data, see Table 1. Since these data do not show clear signs of resistance 
formation, which other researchers have also concluded (Douillard 
et al., 2013), we simplify the model for preclinical data by setting γi = 0. 
The length (few significantly longer outliers) of some individual time 
series caused the model to be poorly estimated for some drug combi-
nations. Therefore, we decided to truncate the data at 8 weeks. Time 
series corresponding to one of these combinations, encorafenib and 
LEE011, are shown in Fig. 2.

Mice given Everolimus, BYL719, and BKM120 as monotherapies 
were not given the drugs with the same dose as in the combination arms, 
and in these cases, we assumed dose-proportional PK. As a justification 
for this, Everolimus has been shown to approximately exhibit linear PK 
(AUC) in mice (Center for Drug Evaluation and Research, 2009). Similar 
evidence has been seen in rats for the two other drugs (Center for Drug 
Evaluation and Research, 2018; Novartis, 2016).

The replicates in the preclinical data allow us to evaluate the inde-
pendent drug action hypothesis in dynamical system modeling. We do 

this by estimating p along with all other model parameters in the esti-
mation procedure. How well a combination therapy can be described by 
independent drug action is a function of both the individual efficacy 
parameters along with p. Therefore, we define, 

E :=
G(a1, a2, p)
max(a1, a2)

,

as a measure of how well independent drug action describes the com-
bination. A value of E close to one would indicate that independent drug 
action describes the combination well.

2.3. Computational methods

When calibrating models to preclinical data, we quantify variability 
between patients by letting a1, a2, and kg in Eq. (1) be lognormally 
distributed. There is also variability between PDXs created from the 
same patient’s tumor, i.e., inter-occasional variability (IOV) 
(Laporte-Simitsidis et al., 2000). However, the experimental setup (few 
individual replicates) made this variability hard to quantify and we 
therefore only estimate this for TS0, and fix the standard deviation of kg 

to 0.1, which approximately describes the variability in growth rates 
within cell lines (Wong et al., 2012; Cardilin et al., 2017). IOV was also 
assumed to be lognormally distributed.

All model parameters were estimated simultaneously, using the 
Monolix software (Monolix, 2021), for all treatment groups within each 
drug combination, but each combination was modeled separately. Both 
a proportional and additive error term was used to describe the 

Fig. 1. (Left) Average concentrations resulting in G = 1 at t = 0 for different values of p. (Right) Average concentrations resulting in G = 1 at t = 0 for the median 
individual for different values of p.

Table 1 
Dosing schedule for modeled drug combinations. GC: Gastric Cancer, BC: Breast 
Cancer, CRC: Colorectal Cancer, CM: Cutaneous Melanoma, PDAC: Pancreatic 
Ductal Adenocarcinoma, qd: Once a day, q2d: Every second day, qw: once a 
week, bid: twice a day.

Drug Combination Cancer 
Type

N∗ Drug 1 / Drug 2 / Combo (mg/ 
kg)

LEE011 + Everolimus GC 55 180 qd / 20 qd / 180 qd + 10 qd
LJM716 + Trastatuzumab BC 39 25 q2d / 15 qw / 25 q2d + 15 

qw
BYL719 + LEE011 BC 39 50 qd / 250 qd / 25 qd + 250 qd
BYL719 + LJM716 BC 39 50 qd / 25 q2d / 30 qd + 25 q2d
BYL719 + Binimetinib CRC 44 50 qd / 10 bid / 25 qd + 10 bid
LEE011 + Encorafenib CM 33 250 qd / 20 qd / 250 qd + 20 qd
LEE011 + Binimetinib CM 29 250 qd / 10 bid / 250 qd + 10 

bid
Binimetinib + BKM120 PDAC 37 3.5 bid / 35 qd / 3.5 bid + 30 qd
Binimetinib +

Figitumumab
PDAC 28 3.5 bid / 20 qw / 3.5 bid + 20 

qw

*Average sample size of all treatment arms.
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observation error. The models were primarily validated based on the 
precision of estimated parameters, individual fits, empirical Bayes esti-
mates (EBEs), and observation versus model prediction plots. Mathe-
matica version 13.1 (Monolix, 2022) was used to create all plots shown 
in the paper.

3. Results

The results section is split into two parts. The analytical results are 
presented in the first and the modeling results in the second.

3.1. Analysis of the distribution of PFS

Recall that T denotes the PFS time and that it is greater than zero. To 
find its distribution, we start by integrating the differential equation in 
Eq. (1), and then inserting the result into Eq. (2), which yields, 

20 = 100
e
∫ T

0
g(τ)dτ

− e
∫ tnadir

0
g(τ)dτ

e
∫ tnadir

0
g(τ)dτ

,

g(t) = kg − G(k1(t), k2(t), p).

(3) 

Next, we have to solve for T and then evaluate the resulting random 

variable. However, an explicit expression for the CDF, FT(t), of this 
random variable only exists in certain cases. The models we consider 
contain log-normally distributed parameters, specifically, in the 
analytical part we assume that αi ∼ LN

(
μai

,σai

)
. Therefore, we can only 

allow certain mathematical operations between the parameters in the 
model, specifically, we consider addition and the max function. More-
over, exact analytical expressions are not obtained for all models we 
consider even with this restriction, and we therefore have to resort to 
some approximations. Finally, we let αiCi = ai ∼ LN

(
μai

, σai

)
, where 

μai
= μαi

+ log(Ci) and with CDFs denoted by Fai (t).
We first solve Eq. (3) under the simplification that the resistance is 

negligible and only a single drug is given. Next, we perform the same 
analysis but for both an additive combination therapy and under the 
assumption of independent drug action. Both steps are then repeated for 
the full model including non-negligible resistance. The CDF of the PFS 
time for each of these separate scenarios is shown in Table 2. Detailed 
derivations of the CDFs for all models we consider can be found in the 
supplementary information.

Fig. 2. Illustration of the preclinical data for one of the model combinations: Encorafenib and LEE011.

Table 2 
A summary of the CDF of T for all different model assumptions analyzed.

Treatment arm Resistance Correlation Interaction FT(t)

Mono No - -
Fai

(

kg −
log(1.2)

t

)

Combo No No Additive
Fa3

(

kg −
log(1.2)

t

)

Combo No No Independent drug action
Fa1

(

kg −
log (1.2)

t

)

Fa2

(

kg −
log (1.2)

t

)

Combo No Yes Independent drug action
FA

(

kg −
log (1.2)

t

)

Mono Yes - - wi FLi (t) + (1 − wi)FNi (t)
Combo Yes (γ1 = γ2) No Additive w3 FLN3 (t) + (1 − w3)FN3 (t)
Combo Yes (γ1 ∕= γ2) No Additive Non-analytical
Combo Yes (γ1 = γ2) No Independent drug action w1 w2 FL1 (t)FL2 (t) + w1(1 − w2)FN2 (t)

+ (1 − w1)w2FN1 (t) + (1 − w1)(1 − w2)FN1 (t)FN2 (t)
Combo Yes (γ1 = γ2) Yes Independent drug action ws1 FML(t) + ws2 FCN2 (t) + ws3 FCN1 (t) + ws4 FMN(t)
Combo Yes (γ1 ∕= γ2) Yes Independent drug action Non-analytical
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3.2. Negligible resistance

3.2.1. Monotherapy
If we consider the monotherapy case with no resistance, i.e., γi = 0 

and g(t) = kg − ai, then the CDF of T can be written as, 

FT(t) = Fai

(

kg −
log(1.2)

t

)

.

Hence, the PFS time does not follow a named distribution but can be 
expressed with the help of the lognormal CDF. A histogram and the 
survival curve from model simulations are shown in Fig. 3.

3.2.2. Additive combination therapy
The combined efficacy of an uncorrelated additive two drug com-

bination therapy (p = 1) can be approximated as a lognormally 
distributed random variable using the Fenton-Wilkinsson approximation 
(see supplementary information) (Cobb et al., 2012). Hence, the PFS for 
patients given such a combination therapy will approximately follow the 
same type of distribution as in the monotherapy case, but with different 
parameters. Consequently, the CDF is given by, 

FT(t) ≈ Fa3

(

kg −
log(1.2)

t

)

,

where a3∼ LN(μa3
, σa3 ) is the approximated sum of a1 and a2 with μa3 

and σa3 given by, 

μa3
= log

⎛

⎜
⎝

∑2

i=1
eμi+

σ2
i
2

⎞

⎟
⎠ −

σ2
3

2
, (4) 

σa3 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

log

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑2
i=1e2 μi+σ2

i

(
eσ2

i − 1
)

⎛

⎜
⎝
∑2

i=1eμi+
σ2

i
2

⎞

⎟
⎠

2 + 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

√
√
√
√
√
√
√
√
√
√
√
√
√
√

(5) 

3.2.3. Independent drug action combination therapy
In the case of independent drug action (p = ∞), the CDF of T is given 

by, 

FT(t) = FA

(

kg −
log(1.2)

t

)

,

respectively. Here A = max(a1, a2) and FA(t) is the CDF of this random 

variable.
Uncorrelation implies independence for lognormally distributed 

random variables. Hence, if the potency parameters are uncorrelated the 
CDF is reduced to, 

FT(t) = F a1

(

kg −
log(1.2)

t

)

F a2

(

kg −
log(1.2)

t

)

,

3.3. Non-Negligible resistance

3.3.1. Monotherapy
We now consider the case with resistance and again start with the 

monotherapy case. The CDF of T can, under certain conditions, be 
approximated by, 

FT(t) = wiP
(
T< t

⃒
⃒ai < kg

)
+ (1 − wi)P

(
T< t

⃒
⃒ai > kg

)

≈ wiFLi (t) + (1 − wi )FNi (t),

where wi = P
(
ai ≤ kg

)
. This is a mixture of a truncated shifted 

lognormal distribution (FLi ) with parameters μ = μai
− log

(
γi kg

)
, σ =

σai , and shift parameter, θ =
log(1.2)

kg
, and a truncated normal distribution 

(FNi ) with parameters μ =
log(1.2)

kg
+

μa i
γi
+
(1− log(kg))

γi 
and σ =

σai
γi

. Both are 

truncated at t =
log(1.2)

kg
+ 1

γi
. For more information regarding shifted 

lognormal distributions, see supplementary information. The PDF of the 
mixture distribution together with a histogram of simulated PFS times is 
shown in Fig. 4.

3.3.2. Additive combination therapy
An analytical expression for the CDF of T is not available for the case 

of an additive combination therapy when γ1 ∕= γ2. Figure S2 shows two 
comparisons between the histograms of simulated PFS times under the 
assumption that γ1 = γ2 and two choices of γ1 ∕= γ2.

However, if we assume γ1 = γ2, we can use the same argument as in 
the additive no-resistance case, and hence, the CDF can be approximated 
as 

FT(t) ≈ w3 FLN3 (t) + (1 − w3)FN3 (t),
w3 = P

(
a3 ≤ kg

)
.

where a3∼ LN(μa3
, σa3 ) is the approximated sum of a1 and a2 with μa3 

and σa3 given by Eqs. (4) and (5). Figure S3 shows that this approach 
approximates the full model well for the used parameters.

3.3.3. Independent drug action combination therapy
For independent drug action (p = ∞), we start by assuming that γ1 =

γ2 = γ. Later on, we also consider γ1 ∕= γ2. If a1 and a2 are uncorrelated 

Fig. 3. (Left) Simulated histogram of progression-free survival times and corresponding survival curve (right). The parameters used were, kg = 0.02 days− 1, μai 
= −

4, and σai = 1.
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the CDF of T can be approximated as, 

FT(t) ≈ w1w2FL1 (t)FL2 (t) + w1(1 − w2)FL1 (t)FN2 (t)

+ (1 − w1)w2FN1 (t)FL2 (t) + (1 − w1)(1 − w2)FN1 (t)FN2 (t).

For the correlated case, we have, 

FT(t) ≈ ws1 FML(t) + ws2 FCN2 (t) + ws3 FCN1 (t) + ws4 FMN(t),

where FML is a truncated log-multinormal distribution, FCN1 and FCN2 are 
truncated conditional multivariate normal distributions, and FMN is a 
truncated multivariate normal distribution. Furthermore, the weights of 
the mixture are, 

ws1 = P
(
kg ≥ a1, kg ≥ a2

)
,

ws2 = P
(
kg ≥ a1, kg < a2

)
,

ws3 = P
(
kg < a1, kg ≥ a2

)
,

ws4 = P
(
kg < a1, kg < a2

)
.

If we assume that γ1 ∕= γ2 we will end up with a similar expression for 
the CDF, however, most of the individual mixture components will be 
mixture distributions themselves, with non-analytical expressions. 
Figure S4 shows two comparisons between the histograms of simulated 
PFS times under the assumption that γ1 = γ2 and two choices of γ1 ∕= γ2.

3.4. Simulation-based analysis

3.4.1. Preclinical modeling
Estimated parameters and E values of each drug combination are 

shown in Table 3. Here, a1 and a2 refer to the drug kill rate parameter of 
the first and second, drug, respectively, in the combination. The esti-
mated growth rate parameters varied between 0.04 and 0.07 1/days. 
From this, a tumor doubling time of between 10 and 17 days was esti-
mated. The exponent p was estimated to be between 0.8 and 180.

Fig. 5 shows tumor volume model predictions against observed data 
for all individuals for all treatment arms. Kaplan-Meier VPCs are shown 
in Fig. 6 for one combination of each type of interaction (LJM716 +
Trastuzumab: Independent drug action, LEE011 + encorafenib: addi-
tive/slightly antagonistic, and BYL719 + LEE011: Synergism).

3.4.2. Clinical PFS simulations
To compare the analytical results with a real-world scenario, we 

made simulations using the clinical PFS model. The results from these 
simulations are shown in Fig. 7. The left of the figure shows a histogram 
of all individuals together, whereas in the right part the population is 
split into non-responders (tnadir= 0) and responders (tnadir ∕= 0).

4. Discussion

Studies that explore model-based translation of preclinical results to 
the clinic often focus on quantitative differences (Yates and Fairman, 

Fig. 4. Histogram of simulated PFS for an exponentially decaying monotherapy and theoretical PDF of lognormal (green) and normal (blue) mixture. The parameters 
used were, γi = 0.4 days− 1, kg = 0.02 days− 1, μai

= − 4, σai = 1, and TS0 = 100 mm.

Table 3 
Estimated values for the efficacy parameter ai of each drug along with the estimated p for each combination and the resulting E. GC: Gastric Cancer, BC: Breast Cancer, 
CRC: Colorectal Cancer, CM: Cutaneous Melanoma, PDAC: Pancreatic ductal adenocarcinoma. RSE: Relative Standard Error.

Drug Combination Cancer 
type

TS0 (RSE %) kg (RSE %) a1 (RSE %) a2 (RSE %) p (RSE %) E Interaction

LEE011 þ Everolimus GC 250 (2) 0.04 (7) 0.015 (16) 0.023 (9) 1.6 (2) 1.3 Antagonistic
LJM716 þ Trastuzumab BC 230 (3) 0.05 (8) 0.01 (32) 0.003 (49) 141 (0.2) 1 Independent 

drug action
BYL719 þ LEE011 BC 240 (2) 0.05 (9) 0.022 (19) 0.024 (11) 0.8 (2) 2.3 Synergistic
BYL719 + LJM716 BC 220 (2) 0.05 (8) 0.027 (14) 0.01(34) 2.6 (6) 1 Independent 

drug action
BYL719 + Binimetinib CRC 220 (2) 0.04 (8) 0.015 (14) 0.025(11) 0.8 (1) 1.89 Synergistic
LEE011 þ Encorafenib CM 220 (2) 0.07 (9) 0.05 (10) 0.012 (25) 1.1 (0.3) 1.9 Additive*
LEE011 þ Binimetinib CM 210 (2) 0.07 (8) 0.04 (13) 0.04 (10) 1.1 (0.3) 1.9 Additive*
Binimetinib þ BKM120 PDAC 260 (2) 0.04 (9) 0.02 (11) 0.02 (13) 1 (0.2) 2 Additive
Binimetinib þ Figitumumab PDAC 270 (2) 0.04 (7) 0.02 (20) 0.001 (84) 180 (0.03) 1 Independent 

drug action

* Additive/slightly antagonistic.
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2022). For example, the correlation between reduction in tumor size 
(tumor growth inhibition in %) and the overall response rate has been 
investigated for several different drugs (Wong et al., 2012). Building 
upon this, we have also in a previous study estimated how different 
preclinical model parameters should be scaled for the model predictions 
to line up with clinical data (Baaz et al., 2022). However, in this paper, 
we also show that there are important qualitative differences stemming 
from the choice of preclinical and clinical models.

The Claret model includes the feature of exponentially decaying drug 
effects due to acquired resistance (Claret et al., 2009; Yu et al., 2020). 
However, for preclinical data, the resistance term has in many cases 
been shown to be superfluous (Zwep et al., 2021). It has been shown that 
the probability of developing drug resistance increases with the drug 
dose, and, thus, an important reason for this discrepancy can simply be 
that the preclinical doses are too low in comparison with the clinical 
doses (Martin et al., 2018; Tomasetti, 2012). Another factor could be the 
difference in length between clinical and preclinical trials.

We show in this paper that because of the removal of the resistance 
term in the preclinical model, the distribution of PFS changes compared 
to the clinical model. For example, in the case of monotherapies, the 
preclinical (model without resistance) PFS time follows an unnamed 
distribution, whose CDF can be expressed using a lognormal distribu-
tion, whereas in the clinical case, (model with resistance), it follows a 
mixture of a lognormal and normal distribution under certain condi-
tions. When these conditions are not fulfilled the clinical CDF still differs 
from the preclinical but is intractable.

Moreover, when considering combination therapies, assuming equal 
resistance rate parameters allows for a fairly straightforward extension 
of the monotherapy cases. Without this assumption, the distributions 
become more complicated and lack analytical CDFs. However, for the 
parameters we used, our simulations show that these distributions are 
relatively similar to the equal resistance cases.

To arrive at these analytical results, we have had to make several 

assumptions. Our approach has been to make reasonable assumptions to 
arrive at well-known distributions and then generalize the results using 
simulations to show that the qualitative nature of the results still holds. 
For example, Fig. 7 shows the distribution of PFS from a previously 
calibrated clinical model where four parameters were assumed to follow 
a lognormal distribution. In the left part of the figure, we can see that the 
histogram of simulations of T resembles a lognormal distribution but for 
the fact that there are two peaks. This hints at an underlying mixture 
distribution, which can be seen to be the case in the right part of the 
figure where histograms from the same simulation are shown but with 
responders and non-responders separated. Hence, we can conclude that 
the qualitative differences that our theoretical results show for the 
simplified model also hold for more complex models. Moreover, since 
the survival function of PFS is simply the proportion of patients that 
have been classified as Progressive Diseases at different time points, the 
same conclusions can be drawn if the analysis, mutatis mutandis, is 
performed for the overall response rate instead. Thus, this could be an 
important factor to take into consideration when making model-based 
translational predictions of both PFS and overall response rates. We 
also want to reiterate that this analysis is performed for PFS stemming 
from target progression. In a real clinical setting, PFS is also set by non- 
target progression e.g., if new lesions appear (Eisenhauer et al., 2009; Yu 
et al., 2020). Moreover, censoring due to random dropout is not 
considered either. Incorporating both types of events should decrease 
the PFS time for the population. A potential next step could be to extend 
the analysis to encompass these two types of events as well.

The reason for the mixture distribution comes from the fact that the 
definition of target progression uses the nadir SLD as a reference point 
and whether the nadir occurs at the start of the trial or later, will affect 
the equations. Thus, for the Claret model with any distribution on any 
parameter, any treatment schedule, and with any biologically reason-
able parameter values, the PFS time will follow a mixture distribution. 
Analytical expressions for the individual components of the mixture are 

Fig. 5. Longitudinal tumor volume model prediction plotted against observed data for each drug combination.
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in many cases impossible to find but, as we have shown, can be 
simulated.

From this analysis, we have shown that there exist differences in 
predictions of PFS, but what this implies is not entirely clear. For 
example, how much of the discrepancies between predictions based on 
preclinical modeling, and clinical results, that these qualitative differ-
ences can explain is something that needs to be further studied. One idea 
for further study could be to calibrate a model using preclinical data and 

then translate the model using e.g., allometric scaling or replacement of 
animal parameters with human parameters. The translated model could 
then be used to make clinical predictions and a comparison could be 
performed between predictions with these qualitative differences 
accounted for and not accounted for.

Figs. 5 and 6 show that the preclinical TGI model is able to capture 
the observed time series and PFS of the PDXs fairly well. Minor dis-
crepancies can be observed for the monotherapies at the end of the PFS 

Fig. 6. Kaplan-Meier VPCs for PFS. The black line is the PFS estimated from the data, grey is the median PFS prediction from the model and the blue area is a 95 % 
confidence interval.

Fig. 7. (Left) Histogram of simulated PFS based on target progression using a previous model that was calibrated with clinical data (Baaz et al., 2023). (Right) 
Histograms of simulated PFS using the same model but with individuals being separated based on if tnadir = 0 (yellow) or tnadir ∕= 0 (blue).
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predictions, but this is most likely due to not taking dropout into 
consideration and we note that the observations are still more or less 
covered by the confidence intervals. The only two parameter estimates 
with somewhat high RSE were the potency parameters for figitumumab 
and trastuzumab and the reason for this is most likely their poor efficacy. 
It has previously been shown that many PFS curves for PDXs given 
different combination therapies were consistent with independent drug 
action (Palmer and Sorger, 2017). Since they also only considered target 
progression in the cited paper, the same should be true if the analysis is 
performed using dynamical systems modeling and model-based PFS 
predictions. We found that four of the nine combinations were consis-
tent with independent-drug action and five surpassed it. These same five 
combinations were also found to outperform independent drug action in 
the previous study. Thus, our findings align well with what previously 
has been observed.

5. Conclusions

By deriving the probability distribution of PFS for both a widely used 
clinical model and a preclinical model we have shown discernible 
quantitative differences in the PFS predictions stemming from these two 
models. This was done for both monotherapies and combination thera-
pies under different assumptions of combination therapy efficacy. The 
results naturally apply to other metrics based on the RECIST criteria 
such as response rates. These differences should be carefully considered 
when performing inter-species translation.

Furthermore, we modeled experimental preclinical data and used a 
previously calibrated clinical model to show that the above-mentioned 
conclusions also hold when applying our findings to real-world patient 
populations. Additionally, we demonstrated that independent-drug ac-
tion can effectively describe the tumor dynamics of PDXs given certain 
drug combinations.
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