
Welcome to the Parti(tioning) (Functional Pearl): Using Rewrite Rules and
Specialisation to Partition Haskell Programs

Downloaded from: https://research.chalmers.se, 2024-10-01 13:25 UTC

Citation for the original published paper (version of record):
Krook, R., Hammersberg, S. (2024). Welcome to the Parti(tioning) (Functional Pearl): Using Rewrite
Rules and Specialisation to
Partition Haskell Programs. Haskell 2024 - Proceedings of the 17th ACM SIGPLAN International
Symposium on Haskell, Co-located with: ICFP 2024: 27-40.
http://dx.doi.org/10.1145/3677999.3678276

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Welcome to the Parti(tioning) (Functional Pearl)
Using Rewrite Rules and Specialisation to Partition Haskell Programs

Robert Krook
Chalmers University of Technology - Gothenburg

University

Sweden

krookr@chalmers.se

Samuel Hammersberg
Gothenburg University

Sweden

samuel.hammersberg@gmail.com

Abstract

Writing distributed applications is hard, as the programmer

needs to describe the communication protocol between the

di�erent endpoints. If this is not done correctly, we can in-

troduce bugs such as deadlocks and data races. Tierless and

choreographic programming models aim to make this easier

by describing the interactions of every endpoint in a single

compilation unit. When such a program is compiled, ideally,

a single endpoint is projected and the code for the other

endpoints is removed. This leads to smaller binaries with

fewer dependencies, and is called program partitioning.

In this pearl, we show how we can use rewrite rules and

specialisation to get GHC to partition our Haskell programs

(almost) for free, if they are written using the Haste App or

HasChor framework.

As an example of why partitioning is useful, we show

how an example application can be more easily built and

deployed after being partitioned.

CCS Concepts: • Security and privacy→ Software security

engineering; • Software and its engineering → Source

code generation; Application speci�c development en-

vironments; Client-server architectures; Organizing

principles for web applications.

Keywords: Haskell, Program Partitioning, Choreographic

Programming, Tierless Programming, Specialisation, Rewrite

Rules

ACM Reference Format:

Robert Krook and Samuel Hammersberg. 2024. Welcome to the

Parti(tioning) (Functional Pearl): Using Rewrite Rules and Special-

isation to Partition Haskell Programs. In Proceedings of the 17th

ACM SIGPLAN International Haskell Symposium (Haskell ’24), Sep-

tember 6–7, 2024, Milan, Italy. ACM, New York, NY, USA, 14 pages.

h�ps://doi.org/10.1145/3677999.3678276

Haskell ’24, September 6–7, 2024, Milan, Italy

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1102-2/24/09

h�ps://doi.org/10.1145/3677999.3678276

1 Introduction

Traditional distributed applications are implemented by writ-

ing several, separate programs (endpoints) that together im-

plement a communication protocol using transmission prim-

itives such as send and receive. Correctly matching send

and receives is tricky to get right, and potential bugs may ren-

der an application unable to perform its function. Common

problems are e.g. deadlocks and race conditions.

To ease the development of such code, primarily communi-

cations code, we may use speci�c programming models that

are intended to make writing such apps easier. Popular exam-

ples of such programming models are tierless programming

or choreographic programming.

Both tierless and choreographic programming models al-

low a developer to write the code for multiple endpoints in a

single compilation unit. The advantages of this are many, but

the foremost one is that the compiler has more information

at hand during compilation, allowing it to e.g. type check

communication protocols.

In both programming models, code can be tagged with a

location, indicating which endpoint should execute a speci�c

computation. The low-level communication primitives send

and receive are replaced with high-level operations such as

communicate. During execution, it is knownwhich endpoint

should be projected, and e.g. a call to communicate will be

replaced with a call to send, receive, or no-op.

While being able to describe multiple endpoints in a single

compilation unit already gives us some guarantees from our

code, such as the already mentioned freedom from deadlocks

and race conditions, actually partitioning the code may help

us even further. By program partitioning, we refer to the act

of compiling a program several times, every time indicating

which speci�c endpoint should be projected, and removing

all code intended for other endpoints. A couple of bene�ts

of this are

• When executing code inside a Trusted Execution Envi-

ronment (TEE), it is important to minimize the amount

of code that has to go into the TEE, as you have to trust

this code. The amount of code that goes into the TEE

is called the Trusted Computing Base (TCB). Typically,

the code inside the TEE assumes the role of a server,

with the client executing outside of the TEE. By using a

tierless or choreographic programming model to write

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

27

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3619-2975
https://orcid.org/0009-0007-2006-5345
https://doi.org/10.1145/3677999.3678276
https://doi.org/10.1145/3677999.3678276
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677999.3678276&domain=pdf&date_stamp=2024-08-28

Haskell ’24, September 6–7, 2024, Milan, Italy Robert Krook and Samuel Hammersberg

your application, you eliminate certain classes of bugs.

However, without actually partitioning the program,

there will be a lot of code going into the TEE that is

not necessary. By partitioning the program such that

only the necessary parts remain inside the TEE, we

can reduce the TCB.

• If our program is proprietary and we do not wish to

leak information about its function, partitioning may

aid us. If an adversary gains access to the executable of

a single endpoint, without partitioning, decompilation

might yield a signi�cant amount of information. In

contrast, if the program was partitioned, decompila-

tion would only yield information about that particular

endpoint, as well as its communication protocol with

other endpoints. The application in its entirety might

still be relatively safe.

• If one endpoint is intended to run on a particular plat-

form, partitioning may make building and deployment

easier. Without partitioning, all the code for all end-

points has to go into the binary. Some dependencies

may be absent from certain platforms, making deploy-

ment harder. If we partition a program, we will only

retain those dependencies that we require for an end-

point, and deployment will be easier.

• The size of executables could decrease if we partition

programs. By eliminating code that we know we will

not need, we will save space on resource-constrained

platforms. In the case of the Glasgow Haskell Compiler

(GHC), where executables are already very large, par-

titioning might have very little e�ect on the overall

executable size. If we partition a program and compile

it with MicroHaskell1, however, partitioning would

have a larger impact on the size of executables. While

this is not something we have experimented with, we

discuss it in section 10.

Writing a compiler pass that correctly and thoroughly

analyses a program to �gure out how to partition it is not

impossible, as shown by e.g. GoTEE[2] and �4[5], but not

trivial. The compiler pass becomes large and complicated,

and errors can be hard to detect. In the case of GoTEE, modi-

�cations to the source language were required to facilitate

the desired features.

In this pearl, we look at two methods partitioning Haskell

programs. Both methods we show are type-driven, light-

weight, and automatic, and require very little help from the

developer. We use the optimisation phase of GHC to the max

to get what we want, and one of our key insights is that we

can use a combination of rewrite rules and specialisation to

partition Haskell programs even in cases where the compiler

does not have enough information to make the right choice2.

1https://github.com/augustss/MicroHs
2The code is available here: https://github.com/Rewbert/HasChor

2 Simple Partitioning à la Haste App

As a �rst example of program partitioning in Haskell, we

will look at the technique used by Haste App[1] to write

both the server and client endpoints of web applications.

HasTEE[6] later adopted this technique to write the trusted

and untrusted endpoints of applications running inside TEEs.

Haste App is used to specify the actions of a single server

and a single client. The computations are organised around

three monads, called App, Client, and Server. The App

monad is used for staging, whereas the Client and Server

monads describe the actions of the client and server, respec-

tively.

To show how to use these monads in action, we will im-

plement a classical example, the bookseller protocol. The

application will describe the actions of a client who wishes

to purchase a book from a store (the server). The server main-

tains a state of stock and prices, which we model as regular

Haskell data types

1 type Price = Int

2 type Day = Int

3 type Store = Map String (Price , Day)

The server will keep a value of the Store in a mutable refer-

ence, to re�ect stock changes. To enable the client to query

the server for information about its stock, we de�ne the

following functions

1 storeLookup :: Server (Ref Store)

2 −> String −> Server (Price , Day)

3 storeLookup secBooks book = do

4 booksRef <− secBooks

5 books <− readRef booksRef

6 return . fromJust $ Map.lookup book books

7

8 getPrice :: Server (Ref Store) −> String −> Server Price

9 getPrice books book = do

10 (price ,_) <− storeLookup books book

11 return price

12

13 getDay :: Server (Ref Store) −> String −> Server Day

14 getDay books book = do

15 (_ , deliveryDate) <− storeLookup books book

16 return deliveryDate

With these functions in place, how can the client communi-

cate with the server? Below follows the rest of the bookseller

program

1 −− li�NewRef :: a −> App (Server (Ref a))

2

3 bookseller :: App Done

4 bookseller = do

5 remoteRef <− li�NewRef defaultStock

6 remoteGetPrice <− inServer (getPrice remoteRef)

7 remoteGetDay <− inServer (getDay remoteRef)

8

28

Welcome to the Parti(tioning) (Functional Pearl) Haskell ’24, September 6–7, 2024, Milan, Italy

9 runClient $ do

10 li�IO $ putStrLn "Title of the book to buy"

11 userInput <− li�IO getLine

12 price <− gateway (remoteGetPrice <@> userInput)

13

14 if price < clientBudget then do

15 day <− gateway (remoteGetDay <@> userInput)

16 li�IO $ putStrLn $ "Delivery date: " <> show day

17 else do

18 li�IO $ putStrLn "Price is out of the budget!"

Lines 5,6, and 7 happen in the App monad, where staging

is performed. We �rst use liftNewRef to create the muta-

ble reference on the server, modeling the current stock. We

then indicate that the client will want to invoke getPrice

and getDay, by applying inServer to them. The result of

inServer is a handle from which the client can invoke the

corresponding function on the server. The client fully ap-

plies the handle by using the <@>-operator, after which the

gateway function performs the remote function invocation.

Even though the return type of the remote functions is in the

Server monad, gateway brings the value into the Client

monad. We emphasize that the client can only invoke remote

functions by �rst acquiring a remote handle from inServer.

So, now that we’ve seen how we can write a program

using Haste App, how is it compiled and executed? The trick

is that there exist two distinct implementations of the Haste

App API. One implements the client functionality, and the

other the server functionality, and only one such module

is included during compilation. We thus compile the same

program twice – once for the client and once for the server.

As a concrete example of what these two implementations

look like, let us look closer at the inServer function.

During execution, the client will drive the computation,

whereas the server enters a state where it is ready to receive

synchronous requests from the client. This is made possible

by both client and server executing the App code. When

the client calls inServer, it generates an identi�er that will

be used to identify the remote function. The argument to

inServer is actually discarded

1 inServer :: Remotable a => a −> App (Remote a)

2 inServer _ = App $ do

3 (next_id , remotes) <− get

4 put (next_id + 1 , remotes)

5 return $ Remote next_id []

When this remote handle is applied to an argument with

<@>, the second �eld (a list) is populated with the arguments.

gateway will take such a remote handle, serialise it, and

transmit it to the server.

How does the server know what to do with such a closure-

like value? Well, the implementation of inServer for the

server generates the same identi�er and then associates it to

the given function in a map.

1 inServer :: Remotable a => a −> App (Remote a)

2 inServer f = App $ do

3 (next_id , remotes) <− get

4 put (next_id + 1 , (next_id , \bs −>

5 let Server n = mkSecure f bs in n) : remotes)

6 return RemoteDummy

When an identi�er and list of arguments arrive, the server

will consult itsmap and fetch the associated function, apply it,

and then return the result. Since the server will not apply any

remote closures to parameters, a dummy remote is returned

instead.

1 onEvent :: [(Int , Method)]

2 −> ByteString '

3 −> Socket

4 −> IO ()

5 onEvent mapping incoming socket = do

6 −− (Int , [ByteString])

7 let (identifier , args) = decode incoming

8 Just f = lookup identifier mapping

9 result <− encode <$> f args

10 −− the () type cannot be sent over wire

11 let res = handleVoidTy result

12 sendLazy socket (B.append (msgSize res) res)

13 where

14 msgSize r = encode $ B.length r

15 −− the () type has msg length 0

16 handleVoidTy r = if (B.length r == 0)

17 then encode ' \ 0'

18 else r

When the server component is compiled, the client monad

is replaced with a dummy monad, and vice versa.

1 −− when compiling the server endpoint

2 data Client a = Dummy

3 newtype Server a = Server (IO a)

4

5 −− when compiling the client endpoint

6 newtype Client a = Client (IO a)

7 data Server a = Dummy

This, together with the fact that inServer on the client side

discards its argument, lets GHC optimise away the code

intended for the other endpoint. If we look at the compilation

for the server endpoint, every function returning a Client

a computation will end up as _ -> _ -> ... _ ->

Dummy before machine code is generated, giving GHC a lot

of opportunities to remove dead code.

3 Haste App and Rewrite Rules

Haste App manages to partition Haskell programs by compil-

ing a program twice, replacing the semantics of the API with

each compilation. To actually throw away code and partition

the program we rely on GHCs optimisations. While it in

practice seems that GHC can be trusted to optimise away

29

Haskell ’24, September 6–7, 2024, Milan, Italy Robert Krook and Samuel Hammersberg

the unwanted code, it is a bit shaky. The inner workings of

the GHC optimiser can change at any time! We would like

to take matters into our own hands (almost) to get stronger

guarantees that partitioning actually happens.

One of GHCs optimisation phases is applying rewrite rules.

The optimiser applies rewrite rules until no more rules can

be applied, and if we can use rewrite rules to partition our

program, we might be less at the mercy of GHC than before.

Rewrite Rules. Rewrite rules, as implemented in GHC, is

a mechanism for library developers to add domain-speci�c

optimisations to their code, often to do short-cut fusion (elim-

inate intermediate data structures). The canonical example

is that of map fusion. Consider the code below

1 map f (map g xs)

We �rst map the function g over the input list xs, and then

we map the function f over it. Not only do we traverse the

list twice, but we also produce an intermediate list after the

�rst traversal. We can convince ourselves that by composing

f and g, we can write the semantically equivalent

1 map (f . g) xs

This version does only one pass over the input list, and

the intermediate result is gone. While it is simple for us to

understand that these two terms are equivalent, it is di�cult

for a compiler to automatically �gure that out. Using rewrite

rules, we can tell the compiler that this is an equivalence,

and have it apply the optimisation for us!

In GHC, we specify the corresponding rule as

1 {−# RULES "map/map" forall f g xs .

2 map f (map g xs) = map (f . g) xs #−}

We are saying that for any functions f and g, and any input

list xs, if you see the term denoted by the left-hand side, you

should rewrite it to the right-hand side. GHC checks that the

rewrite rule does not change the type of a term, but does

nothing to verify that the rule encodes an equivalence. It

trusts you to write correct rules. GHC promises to apply the

rule whenever the opportunity presents itself.

Now, one thing to remember is that GHC can only apply

the rule if it can recognise the call to map. If we are unlucky,

another optimisation will have made it impossible for us to

apply the rule. If the code for map is inlined at the call site,

our rewrite rule will not be able to �re. In the case of map this

is no concern since GHC will not inline recursive functions

(if it did, it would never stop!), but, as we will see, in the

context of Haste App we do have to remember this. We can

explicitly tell GHC to not inline a function by a NOINLINE

pragma.

1 {−# NOINLINE map #−}

Another mechanism that can be used to control if and when

terms are inlined or rewritten is phase control. While it is out

of scope for this pearl, we mention it here for the curious

reader to look up for themselves.

An important detail of rewrite rules is that there can be no

ambiguity of which rule to apply. If more than one rule can

be applied to a term, GHC is free to choose either of them.

This means that we need to be very careful when we de�ne

our rules so that only one rule is applicable at a single time.

Consider the function below

1 f :: Int −> Bool

2 f 0 = True

3 f _ = False

We may be tempted to write the two rules

1 {−# RULES

2 "f/0" f 0 = True

3 "f/_" forall x . f x = False

4 #−}

and expect the �rst rule to be applied when we see f 0.

However, the second rule also matches, and GHC is free to

pick either. If our term has very few variants we can emit

rules for all cases, but this very quickly becomes infeasible.

Haste App using Rewrite Rules. Now, knowing how

GHC applies rewrite rules, we can modify our two di�erent

Haste App implementations to instead happen via rewrite

rules. Circling back to the example of inServer, the corre-

sponding rules become

1 {−# NOINLINE inServer #−}

2 {−# RULES "HASTEERULES inServer/Server" forall f .

3 inServer f = App $ do

4 (next_id , remotes) <− get

5 put (next_id + 1 , (next_id , \bs −>

6 let Server n = mkSecure f bs in n) : remotes)

7 return RemoteDummy #−}

8 inServer :: Remotable a => a −> App (Remote a)

9 inServer _ = error "inServer error"

for the server, and

1 {−# NOINLINE inServer #−}

2 {−# RULES "HASTEERULES inServer/Client" forall f .

3 inServer f = App $ do

4 (next_id , remotes) <− get

5 put (next_id + 1 , remotes)

6 return $ Remote next_id [] #−}

7 inServer :: Remotable a => a −> App (Remote a)

8 inServer _ = error "inServer error"

for the client. We make the corresponding change for every

function in the Haste App API, after which GHC will still

be able to partition the program for us. When we compile

the client component, in the case of inServer, the rewrite

rules will have eliminated any call to functions in the Server

monad, and dead-code elimination can eliminate those func-

tions. This elimination happens because the rewrite rules

have f appear on the left-hand side, but not on the right-hand

side!

30

Welcome to the Parti(tioning) (Functional Pearl) Haskell ’24, September 6–7, 2024, Milan, Italy

GHC Core Plugin for Veri�cation. How can we be sure

that partitioning actually happened? The compiler’s repre-

sentation of a program before machine code is emitted is

called core. We have written a Core Plugin which runs after

all optimisations have been applied. It traverses the �nal

core and reports an error if it encounters any calls to the

API functions of Haste App. If any call remains, the program

was not completely partitioned. If partitioning happens as it

should, our plugin will report

1 ∗ ∗ ∗ Partitioning verification pass running on Main

2 ∗ ∗ ∗ Verification for module Main: done

whereas if we remove a rewrite rule and run it again, it will

report an error

1 ∗ ∗ ∗ Partitioning verification pass running on Main

2 <no location info> : error :

3 Found indications of partitioning not occurring when

4 inspecting module: Main

5

6 The problematic symbol that was encountered: inServer

Scalability of Haste App. Haste App gives us a nice,

simple framework for describing the interactions of a client

and a server. What if we want to describe the interactions

of a server and two clients? Then we would have to add

yet another monad, with a third set of semantics. This does

not scale very well. We could instead use a more general

framework, such as HasChor[8].

4 HasChor

HasChor is a framework for describing choreographic pro-

grams. Choreographic and tierless programming are very

similar, but there are some subtle di�erences. Primarily, in

a choreographic framework there are no tiers, and every

endpoint is considered an equal.

Rather than identifying an endpoint by a particular monad,

the HasChor API de�nes endpoints via proxy values whose

type parameters are string literals.

1 client :: Proxy "client"

2 client = Proxy

3 server :: Proxy "server"

4 server = Proxy

The rest of the API is fairly short, but very expressive

1 data a @ (l :: LocTy) −− values tagged with a location

2 type Choreo m a −− choreographic monad

3

4 −− computations tagged with a location

5 locally :: KnownSymbol l

6 => Proxy l −− location performing a computation

7 −> ((forall a . a @ l −> a) −> m a)

8 −> Choreo m (a @ l) −− result located at l

9

10 −− send a value from one location to another

11 (~>) :: (Show a, Read a, KnownSymbol l, KnownSymbol l')

12 => (Proxy l , a @ l) −− value tagged with a location

13 −> Proxy l ' −− the receiving location

14 −> Choreo m (a @ l ')

15

16 −− synchronised branching on a value

17 cond :: (Show a, Read a, KnownSymbol l)

18 => (Proxy l , a @ l)

19 −> (a −> Choreo m b)

20 −> Choreo m b

How do we ensure that only the client endpoint unwraps

and accesses the value inside of a tagged value? Everything

happens in the context of a Choreomonad. The API function

locally denotes computations that are local to a speci�c

endpoint, and the Choreo monad supplies an unwrap func-

tion as a parameter that can be used to unwrap tagged values.

The type system ensures that only computations local to a

speci�c endpoint may unwrap values existing on that end-

point, by ensuring that the polymorphic location variable

l is the same in the �rst and second argument. The code

below, for instance, indicates that the client is reading a line

from standard input. The result of the entire call to locally

has type Choreo IO (String @ "client").

1 client ` locally ` _ −> getLine

The located string can be transmitted to the server endpoint

by using the ∼> function.

1 do strAtClient <− client ` locally ` _ −> getLine

2 strAtServer <− (client , strAtClient) ~> server

3 server ` locally ` \uw −> putStrLn $ uw strAtServer

Here we can also see on line 3 that, after the message has

been transmitted to the server on line 2, the server unwraps

it (inside locally) and prints it. If the server tried to do this

with strAtClient, instead, a type error would have been

thrown.

The last API function of HasChor is cond. To motivate the

need for cond, consider the code below

1 case x of

2 0 −> (client , someval) ~> server

3 1 −> do (client , someval) ~> server

4 (client , someval') ~> server

5 _ −> ...

If both endpoints do not agree on what the value of the

variable x is, theymight pick di�erent branches. The di�erent

branches have di�erent numbers of calls to ∼>, so a deadlock

would occur if di�erent branches were taken.

If we instead say that we want the endpoints to branch on

one value, located at a speci�c endpoint, we are describing

what cond does. Consider the code below

1 cond (client , xAtClient) $ \x −> case x of

2 0 −> (client , someval) ~> server

3 1 −> do (client , someval) ~> server

31

Haskell ’24, September 6–7, 2024, Milan, Italy Robert Krook and Samuel Hammersberg

4 (client , someval') ~> server

5 _ −> ...

cond will broadcast the scrutinee to all other endpoints,

where they will use the received value to pick the correct

branch. The bookseller example implemented in HasChor

can be found in appendix A.

HasChor is not Partitioned. In contrast to Haste App,

HasChor programs are not actually partitioned. To under-

stand what we mean by this, let us look at how a HasChor

program is executed. We omit certain details that are not

important and look at the Choreo monad.

1 type LocTm = String

2

3 data ChoreoSig m a where

4 Local :: (KnownSymbol l)

5 => Proxy l

6 −> (Unwrap l −> m a)

7 −> ChoreoSig m (a @ l)

8

9 Comm :: (Show a, Read a

10 , KnownSymbol l, KnownSymbol l')

11 => Proxy l

12 −> a @ l

13 −> Proxy l '

14 −> ChoreoSig m (a @ l ')

15

16 Cond :: (Show a, Read a, KnownSymbol l)

17 => Proxy l

18 −> a @ l

19 −> (a −> Choreo m b)

20 −> ChoreoSig m b

21

22 type Choreo m = Freer (ChoreoSig m)

HasChor is implemented using freer monads[4]. While the

full details of freer monads are out of scope for this pearl,

we emphasise that freer monads separate the interface of

an e�ectful monad and the implementation. The code above

speci�es the interface, and we note that the constructors and

their types precisely match those of the HasChor API. In fact,

the HasChor API is implemented by constructing values of

the ChoreoSig data type and wrapping them in the Freer

monad.

1 locally l m = toFreer (Local l m)

2 (~>) (l , a) l ' = toFreer (Comm l a l ')

3 cond (l , a) c = toFreer (Cond l a c)

To project a single endpoint, we need to move from a high-

level API, like the HasCHor API, to a more low-level API

that has the primitives send and receive. For this, we have

the Network monad

1 data NetworkSig m a where

2 Run :: m a −> NetworkSig m a

3 Send :: Show a => a −> LocTm −> NetworkSig m ()

4 Recv :: Read a => LocTm −> NetworkSig m a

5 BCast :: Show a => a −> NetworkSig m ()

6

7 type Network m = Freer (NetworkSig m)

Note that there are no more KnownSymbol constraints here.

A NetworkSig computation no longer has any location am-

biguities to resolve. The function that takes a Choreo compu-

tation, as well as the location that should be projected, and

returns a Network computation, is called Endpoint Projection.

The implementation is shown below, with some bits omitted

for brevity. We ask the reader to focus on the cases in the

handler function

1 toLocTm :: KnownSymbol l => Proxy l −> LocTm

2 toLocTm Proxy = ...

3

4 epp :: Choreo m a −> LocTm −> Network m a

5 epp c l ' = interpFreer handler c

6 where

7 handler :: ChoreoSig m a −> Network m a

8 handler (Local l m)

9 | toLocTm l == l ' = wrap <$> run (m unwrap)

10 | otherwise = return Empty

11 handler (Comm s a r)

12 | toLocTm s == l ' = do send (unwrap a) (toLocTm r)

13 return Empty

14 | toLocTm r == l ' = wrap <$> recv (toLocTm s)

15 | otherwise = return Empty

16 handler (Cond l a c)

17 | toLocTm l == l ' = do broadcast (unwrap a)

18 epp (c (unwrap a)) l '

19 | otherwise = do x <− recv (toLocTm l)

20 epp (c x) l '

Here is where the magic happens. When a choreographic

operation is executed (by handler), the given LocTm is com-

pared to the endpoints involved in the operation, and a deci-

sion is made on whether to do something or not.

A call to locally indicates that a computation only hap-

pens on a speci�c endpoint. On line 9 we can see that the

given LocTm is compared to the location that is supposed to

perform the operation. If they are the same, the computation

is performed, and otherwise nothing is done. Similarly, when

∼> (Comm) is handled, we compare the given LocTm against

both the sending and receiving location, to �gure out if Comm

should become a Send, Recv, or a no-op (Empty). When cond

is handled, we either broadcast or receive the value before

we apply the continuation to it, based on where the value is

located.

A key property of the epp function is that all these choices

are made at runtime. It is not known at compile time which

endpoint will be projected, meaning that all the code for all

the endpoints has to be embedded in the compiled binary.

32

Welcome to the Parti(tioning) (Functional Pearl) Haskell ’24, September 6–7, 2024, Milan, Italy

Figure 1. A representation of how HasChor programs are

compiled, and of what we would instead like to happen. The

diagrams use a dotted line to show what is done during com-

pilation. The compiled binary contains code for all endpoints,

and then endpoint projection happens at runtime, where we

can project any one of them. What we would like, instead, is

to be able to make endpoint projection happen at compile

time, yielding an executable that contains code for just one

endpoint.

Figure 1 illustrates what the problem is, and what we would

like to do instead.

5 HasChor and Rewrite Rules

Well, we saw that in the case of Haste App, we could achieve

true partitioning via rewrite rules! Can we apply the same

trick to partition HasChor programs? There are two things

that we need to do to achieve this.

• We need to �x the endpoint we wish to project at

compile time, rather than delaying that decision to

runtime

• We need to �gure out what the rewrite rules should

say

HasChor uses the Freermonad to build up the ChoreoSig

structure, from which we can project a single endpoint in

the Freer monad, but with the e�ects described in the

NetworkSig structure. What we want our rules to do is to

achieve a kind of short-cut fusion[3] where we eliminate this

intermediate ChoreoSig structure, and instead construct the

projected NetworkSig structure directly. We rede�ne the

Choreo monad to be de�ned as

1 type Choreo m = Freer (NetworkSig m)

Let us consider the bookseller protocol, with two endpoints.

We are going to require two sets of rewrite rules – one spec-

ifying the behavior of the seller, and one specifying the be-

havior of the buyer. Let’s consider the semantics of the API

functions if we assume that we compile the buyer endpoint.

We use the shorthand Proxy "buyer" and Proxy "seller"

to mean Proxy :: Proxy "buyer" and Proxy :: Proxy

"seller".

1 locally (Proxy "buyer") f == wrap <$> run (f unwrap)

2 locally (Proxy "seller") f == return Empty

3

4 (Proxy "buyer", v) ~> r == do send (unwrap v) (toLocTm r)

5 return Empty

6 (s , v) ~> (Proxy "buyer") == wrap <$> recv (toLocTm s)

7

8 cond (Proxy "buyer", v) c == do broadcast (unwrap v)

9 c (unwrap v)

10 cond (Proxy "seller", v) c ==

11 do x <− recv (toLocTm (Proxy "seller"))

12 c x

We will encode precisely these equations as rewrite rules.

Only the rules for locally will be shown here for brevity,

while the full set of rules can be found in appendix B.

1 {−# NOINLINE locally #−}

2 {−# RULES

3 "CHOREORULES locallybuyer"

4 forall (f :: (forall a . a @ "buyer" −> a) −> m a)

5 (buyer :: Proxy "buyer") .

6 buyer ` locally ` f = wrap <$> run (f unwrap)

7

8 "CHOREORULES locallyseller"

9 forall (f :: (forall a . a @ "seller" −> a) −> m a)

10 (seller :: Proxy "seller") .

11 seller ` locally ` f = return Empty

12 #−}

The �rst rule says that if a call to locally is seen where

the location is known to be Proxy "buyer", it should be

rewritten to retain the computation. The second rule says

that if the location is known to be Proxy "seller", it should

be written to not retain the computation.

When we compile the program, GHC applies the rules

until no more rules can be applied. Again, here we rely on

our trusted core plugin to verify that partitioning occurred

as we expected it to. It seeks occurrences of the symbols

locally, ∼>, and cond.

Now that we have compiled the buyer endpoint, we need

to rewrite our rules to encode the seller semantics, and then

recompile our program. What a drag!

Template Haskell. Luckily for us, we can use Template

Haskell [7] (TH) to lessen our burden. With TH we can gen-

erate code at compile time. Not only that, but we can also

generate compiler pragmas, such as rewrite rules!

We have written TH code that generates all of this boiler-

plate code for us. A programmer only needs to specify the

names of the endpoints, and their location (IP address and

port number)

1 $(compileFor 0 [("buyer", ("localhost", 4224))

2 , ("seller", ("localhost", 2424))]

33

Haskell ’24, September 6–7, 2024, Milan, Italy Robert Krook and Samuel Hammersberg

This will generate �rst the proxies

1 buyer :: Proxy "buyer"

2 buyer = Proxy

3 seller :: Proxy "seller"

4 seller = Proxy

and then all the rewrite rules that are required to partition

the program. The rules will be generated based on the �rst pa-

rameter to compileFor, which is an index indicating which

of the endpoints in the list should be projected by the rules.

To compile and run the bookseller example it is enough

to compile the program twice, only changing the 0 to a 1

between the compilations.

6 Location Polymorphic Functions

Great, it seems as if we can also partition HasChor programs

using rewrite rules! However, so far we have only tested

our method on one example. Let us write another one, using

more features from the type system, such as polymorphism.

1 node :: Proxy "node"

2 node = Proxy

3

4 server :: Proxy "server"

5 server = Proxy

6

7 addNumber :: KnownSymbol l => Proxy l −> Int @ l

8 −> IORef Int @ "server"

9 −> Choreo IO (() @ "server")

10 addNumber l vAtl ref = do

11 vAtServer <− (l , vAtl) ~> server

12 server ` locally ` \uw −>

13 modifyIORef (uw ref) (\a −> a + uw vAtServer)

14

15 choreography :: Choreo IO (() @ "server")

16 choreography = do

17 n1v <− node ` locally ` _ −> return 50

18 s1v <− server ` locally ` _ −> return 100

19 sref <− server ` locally ` _ −> newIORef 0

20 addNumber node n1v sref

21 addNumber server s1v sref

22 server ` locally ` \uw −> do

23 v <− readIORef (uw sref)

24 putStrLn $ show v

This program has two endpoints – node and server. The

function addNumber takes a number at any location, and

sends it to the server before it is added to the contents of a

mutable reference. The function is location polymorphic, as it

does not explicitly name which endpoint the supplied num-

ber resides at. The endpoint is identi�ed via a KnownSymbol

constraint, rather than via an explicit proxy type.

In the choreography, both node and server invoke this

function, contributing an integer to the �nal content of the

mutable reference.

When we compile this program we are at the mercy of

GHC. Partitioning might work, but it might also not. The

problem is that no rule can be applied. The rules require

certain type information to be available to apply a rule.

Consider the rules for ∼> when we compile the node end-

point

1 {−# RULES

2 "CHOREORULES sendfromnode"

3 forall v

4 r

5 (node :: Proxy "node") .

6 (node, v) ~> r

7 = do (send (unwrap v) (toLocTm r))

8 return Empty

9

10 "CHOREORULES sendtonode"

11 forall s

12 v

13 (node :: Proxy "node") .

14 (s , v) ~> node = wrap <$> recv (toLocTm s)

15 #−}

For calls to ∼> to be rewritten, the compiler must be able to

see that the sender or receiver is node. Looking at the call to

∼> in addNumber, the type of the sending location is actually

KnownSymbol l => Proxy l, which we have no rule for!

Should we rewrite ∼> to a send or a receive? If nothing

more is done, partitioning will fail. Our plugin veri�es that

partitioning indeed did not happen as we hoped it would

1 ∗∗∗ Partitioning verification pass running on Main

2 <no location info> : error :

3 Found indications of partitioning not occurring when

4 inspecting module: Main

5

6 The problematic symbol that was encountered: ~>

However, if GHC chooses to inline the body of addNumber,

it will in many cases be able to infer more type information

and apply the appropriate rule.

We can make GHC very eager to inline functions by

marking them as inlineable with a pragma, {-# INLINE

addNumber #-}. However, GHC may still choose to not in-

line a function, so this is not a general solution. Furthermore,

some functions will never be inlined. Consider the de�nition

of map below

1 map :: (a −> b) −> [a] −> [b]

2 map _ [] = []

3 map f (x : xs) = f x : map f xs

if we start inlining map, we will never stop! It is a recursive

function, and recursive functions are never inlineable. What

can we do now? Are we beyond saving? We need a way of

introducing the missing information, enabling more rules to

�re. Luckily for us, we can introduce the missing information

with specialisation.

34

Welcome to the Parti(tioning) (Functional Pearl) Haskell ’24, September 6–7, 2024, Milan, Italy

Specialisation in GHC. Specialisation in GHC is a fea-

ture that lets a programmer tell GHC that it should create

specialised versions of certain functions, to reduce indirec-

tions. Consider the code below

1 numOp :: Num a => a −> a −> a

2 numOp x y = x + y ∗ x

3

4 main :: IO ()

5 main = do

6 print $ numOp (5 :: Int) 10

7 print $ numOp (5.0 :: Double) 10.0

The function is overloaded as it works for any type that

is a member of the Num type class. We invoke it twice at

di�erent types, Int and Double. This kind of polymorphism

is implemented by passing in a dictionary at runtime, from

which the overloaded operations (+) and (*) can be fetched.

In pseudo-Haskell

1 data Num a = Num

2 { add :: a −> a −> a

3 , mul :: a −> a −> a

4 }

5

6 numInt :: Num Int

7 numInt = Num primIntAdd primIntMul

8

9 numDouble :: Num Double

10 numDouble = Num primDoubleAdd primDoubleMul

11

12 numOp :: Num a −> a −> a −> a

13 numOp dict x y = add dict x (mul dict y x)

14

15 main :: IO ()

16 main = do

17 print $ numOp numInt (5 :: Int) 10

18 print $ numOp numDouble (5.0 :: Double) 10.0

While this is a convenient way of implementing overloading,

there is a price to pay at runtime. We have to pass in an extra

parameter, and the type-speci�c functions must be fetched

from the dictionary before they can be applied.

If we know that we have a lot of invocations of numOp

at the type Int, we can tell GHC to specialise numOp at that

type. We do this by writing

1 {−# SPECIALISE numOp :: Int −> Int −> Int #−}

after which GHC will do two things. First, it will create a

copy of numOp that is specialised to the type Int, and the

indirections are removed

1 numOpInt :: Int −> Int −> Int

2 numOpInt x y = primIntAdd x (primIntMul y x)

Second, a rewrite rule is emitted that rewrites calls to numOp

to numOpInt, if the argument type is Int.

1 {−# RULES "numOp/Int" numOp = numOpInt −}

The cost of specialisation is that we duplicate code, so the

compiled binaries might be larger.

Generalised specialisation. A recent feature of GHC is

a generalisation of the existing specialisation mechanism3.

What specialisation is really doing is �xing one of the type

parameters of a function. The new specialisation allows a pro-

grammer to �x arbitrary expressions. How does this work?

Consider the code below

1 process :: Bool −> Input −> IO Output

2 process debug input = do

3 res <− computeSomething input

4 −− imagine there are many debug calls like these

5 if debug then putStrLn res else return ()

6 computeSomethingElse res

Imagine that we have a function that processes some input.

The function receives a boolean argument deciding whether

debug information should be printed as the input is pro-

cessed. If we know that many call sites where process is

applied to the literal boolean True. We can say

1 {−# SPECIALISE forall input . process True input #−}

Which, again, will do two things. Firstly, a copy of process

is created where the parameter debug is moved into the right-

hand side, and �xed to the value True. We can illustrate this

by let-binding the parameter

1 processTrue :: Input −> IO Output

2 processTrue input =

3 let debug = True in do

4 res <− computeSomething input

5 −− imagine there are many debug calls like these

6 if debug then putStrLn res else return ()

7 computeSomethingElse res

Secondly, a rewrite rule is emitted to rewrite call sites where

the �rst parameter is True to instead call the specialised

version.

1 {−# RULES "process/True" forall input .

2 process True input = processTrue input #−}

Let us consider what happens to a recursive function when

we specialise it to concrete terms

1 data Event

2

3 renderVerbose :: Event −> String

4 renderConcise :: Event −> String

5

6 render :: Bool −> MVar Event −> IO ()

7 render b mv = do

8 v <− takeMVar mv

3This feature is implemented but not yet merged into the main branch of

GHC. The accepted proposal can be found here: https://github.com/ghc-

proposals/ghc-proposals/blob/master/proposals/0493-specialise-

expressions.rst

35

Haskell ’24, September 6–7, 2024, Milan, Italy Robert Krook and Samuel Hammersberg

9 if b

10 then putStrLn $ renderVerbose v

11 else putStrLn $ renderConcise v

12 render b mv

render will wait until an event is written to an MVar. An

MVar is a mutable reference that can either be empty or

hold a value. If a thread tries to read from an empty MVar,

it is blocked until another thread writes a value to it. Once

the thread wakes up an event is ready to be rendered. It

is rendered either in great or little detail, after which we

recurse. If we would specialise render to True, the body of

the generated function is

1 renderTrue :: MVar Event −> IO ()

2 renderTrue mv =

3 let b = True in do

4 v <− takeMVar mv

5 if b

6 then putStrLn $ renderVerbose v

7 else putStrLn $ renderConcise v

8 render b mv

The function is no longer recursive! However, as the opti-

miser tackles the right-hand side of renderTrue, the gener-

ated rewrite rule is going to be applied to the call to render,

and the new function will be

1 renderTrue :: MVar Event −> IO ()

2 renderTrue mv =

3 let b = True in do

4 v <− takeMVar mv

5 if b

6 then putStrLn $ renderVerbose v

7 else putStrLn $ renderConcise v

8 renderTrue mv

renderTrue is now once again a recursive function, like

its ancestor render. After some further optimisation, the

boolean is folded into the test and the test is removed alto-

gether, yielding

1 renderTrue :: MVar Event −> IO ()

2 renderTrue mv = do

3 v <− takeMVar mv

4 putStrLn $ renderVerbose v

5 renderTrue mv

This new generalised specialisation feature, together with

the optimisations that GHC does, is something of a poor

man’s partial evaluation.

The older version of specialisation is used to �x types,

whereas the new version is used to �x terms. Now, let us

see how we can use specialisation to partition HasChor pro-

grams!

7 HasChor and Rewrite Rules +
Specialisation

We remind ourselves of the code in section 6. We had no

rewrite rule to apply when inspecting the call to ∼> in

addNumber, as not enough type information was available.

However, we see that we apply addNumber to node and

server. Our key insight is that we can use specialisation to

introduce the missing information, enabling more rewrite

rules to be applied. The following text only illustrates the

e�ects of specialising the node endpoint, but we must dupli-

cate these specialisation pragmas for all possible endpoints

the function is invoked at. While this is a bit tedious, we can

generate the pragmas using Template Haskell.

If we use the older version of specialisation, we can spe-

cialise addNumber to the types we know we need it at.

1 {−# SPECIALISE addNumber :: Proxy "node" −> Int @ "node"

2 −> IORef Int @ "server"

3 −> Chore IO (() @ "server") #−}

This will generate the specialised function

1 addNumberNode :: Proxy "node" −> Int @ "node"

2 −> IORef Int @ "server"

3 −> Choreo IO (() @ "server")

4 addNumberNode l vAtl ref = do

5 vAtServer <− (l , vAtl) ~> server

6 server ` locally ` \uw −>

7 modifyIORef (uw ref) (\a −> a + uw vAtServer)

where there are no longer any type ambiguities. Additionally,

we can also choose to specialise the program using the new,

generalised specialisation. We achieve the same e�ect by

specialising addNumber to the term node that is generated

by our rewrite rules. This term has the necessary type infor-

mation for our rules to be applied. The specialised function

would be

1 −− notice that `node` is not bound by the forall , and

2 −− refers to the node that is in scope already

3 {−# SPECIALISE forall v sref . addNumber node v sref #−}

4

5 addNumberNode :: Int @ "node"

6 −> IORef Int @ "server"

7 −> Choreo IO (() @ "server")

8 addNumberNode vAtl ref =

9 let l = node in do

10 vAtServer <− (l , vAtl) ~> server

11 server ` locally ` \uw −>

12 modifyIORef (uw ref) (\a −> a + uw vAtServer)

In this version the type of l is known to be Proxy "node",

enabling our rewrite rules to �re. It might be slightly more

e�cient as well, as we have to pass in one argument less.

In both cases, a specialised function and a rewrite rule is

emitted, which will replace our call to addNumber with a call

to addNumberNode instead.

36

Welcome to the Parti(tioning) (Functional Pearl) Haskell ’24, September 6–7, 2024, Milan, Italy

Figure 2. The 3-factor authentication setup. The authentica-

tor and client are endpoints in a HasChor program, whereas

the remote server is a completely disjoint program written

in C. The remote server can present an authentication to-

ken to the client in di�erent ways – by sending an SMS, by

sending an email, interacting with a hardware key, or as in

this case, printing to the terminal. The border surrounding

the authenticator and client is intended to emphasise that

these two endpoints are written together in a choreographic

Haskell program. They can still execute on di�erent physical

machines. The code for bluetooth.c can be found in the

appendix, as well as the complete C code for the remote

server.

It might be a bit bothersome to write all these specialisa-

tion pragmas, but they can be generated using TH, enumer-

ating all combinations of endpoints that a function might be

applied at4.

Specialisation, together with the rewrite rules described

in section 5, lets us partition HasChor programs, and our

plugin veri�es that partitioning happened as it should.

8 Example - Third-Party Authentication

As an example of a scenario where partitioning makes build-

ing and deploying an application easier, we will implement a

choreographic program that uses Bluetooth. The application

as a whole implements a 3-factor authentication service, as

depicted in �gure 2.

The application is intended to authenticate a user against a

remote server. The result of the interaction is an access token,

4The authors have written the code that does everything up until the last

stage, actually emitting the pragmas. At the time of writing this pearl, TH

does not yet support outputting the new syntax of specialisation pragmas.

granting access to some resource that is not shown here.

The client invokes the authenticator, which will establish a

bluetooth connection to a remote server. When a connection

is established the remote server will present the user with a

secret token somehow, e.g. via email or SMS. In this case, the

token is printed to a terminal. The client sends the token to

the authenticator, which relays it to the remote server. The

remote server checks that the token is the same, after which

it returns an access token.

The authenticator is going to need to make some foreign

calls to C code5 to establish a Bluetooth connection to the

remote server. We will also declare the proxies that denote

two endpoints – the authenticator and a client.

1 foreign import ccall "allocate_socket_"

2 allocateSocket :: IO Int

3 foreign import ccall "connect_"

4 connect :: Int −> IO ()

5 foreign import ccall "authenticate_"

6 authenticate :: Int −> Word32 −> IO Word64

7 foreign import ccall "close_"

8 close :: Int −> IO ()

9

10 authenticator :: Proxy "authenticator"

11 authenticator = Proxy

12

13 client :: Proxy "client"

14 client = Proxy

The choreography may include many endpoints which all

might want to receive an access token, so we will make the

authentication function location polymorphic

1 getAccessToken :: KnownSymbol l

2 => Proxy l −> Choreo IO (Maybe Word64 @ l)

The authenticator will begin by allocating a socket and con-

necting to it. The connect FFI call knows the Bluetooth

address of the remote server and tries to establish a connec-

tion.

1 getAccessToken p = do

2 authSocket <− authenticator ` locally ` _ −> do

3 socket <− allocateSocket

4 −− upon connection, the remote server is going to

5 −− present the user with a secret .

6 connect socket

7 return socket

After successfully connecting to the remote server, the client

will be presented with a token somehow. The client will enter

this token, after which it will be sent to the authenticator

1 secret <− p ` locally ` _ −> do

2 putStr "enter the secret>"

5The C code that the Haskell code calls use dlopen to access the

BlueZ Bluetooth stack, in order to avoid declaring this dependency

in the Cabal �le. The code for this example can be found here:

https://github.com/Rewbert/HasChor/tree/rwr/examples/pearlexample

37

Haskell ’24, September 6–7, 2024, Milan, Italy Robert Krook and Samuel Hammersberg

3 hFlush stdout

4 getLine

5

6 authSecret <− (p, secret) ~> authenticator

The authenticator will call the authenticate FFI call with

the token, after which the server will reply with either a

zero, indicating the token was wrong, or with a 64-bit value,

representing the access token. The authenticator will close

the socket, severing the connection to the remote server.

Finally, the token is sent back to the client, who can now use

it to access some guarded resource

1 authRes <− authenticator ` locally ` \uw −> do

2 r <− authenticate

3 (uw authSocket)

4 (read (uw authSecret) :: Word32)

5 close (uw authSocket)

6 if r == 0

7 then return Nothing

8 else return (Just r)

9

10 (authenticator , authRes) ~> p

Finally, we need to specialise the whole function to the end-

points we will invoke it at

1 {−# SPECIALISE getAccessToken client #−}

2 −− potentially more

Now, the C code that is called via FFI functions depends

on the BlueZ Bluetooth stack for the Linux kernel. If the

platform for which we are compiling the application does

not have access to the bluetooth.c �le that we’ve written,

or the BlueZ library, compilation is going to fail in the linking

stage. With standard HasChor, where no partitioning occurs,

we always need to have these resources at hand when we

are compiling the program. This is because we do not know

until runtime if we will need it or not (when we choose

which endpoint to project). The code in bluetooth.c uses

the dlopen function from the C standard library to use the

BlueZ Bluetooth stack at runtime.

With partitioning, however, there is a di�erent story. We

point out that all interactions with the FFI functions hap-

pen on the authenticator endpoint. When we compile the

authenticator, we need to provide the bluetooth.c source.

In contrast, when we compile the client endpoint, after par-

titioning there are no calls to the FFI functions left. We do not

need to provide bluetooth.c when we compile our code,

because it is not needed. The client machine does not need to

unnecessarily install the Bluetooth libraries! Not only does

this make building simpler, but we also don’t need to rely on

thousands of lines of code in vain.

This, of course, goes beyond eliminating simple C �les.

If a package is used only at a single endpoint, all usages

of the package occur in calls to locally. Once these are

partitioned away, GHC will choose to not link in the code for

that package during compilation. This has the potential to

severely reduce the trusted computing base of an endpoint.

9 When does it Not Work

Firstly, when we want to partition a program to make sure

that certain code is not linked in, we need to be very care-

ful with what we export. If a module lacks an export list,

everything in that module is going to be exported. In our

Bluetooth example, we export only main, and that means

that we are not exporting the FFI functions. If we did not

have this explicit export list, all the FFI functions would be

exported as well, and the code would be required during

linking.

It might at �rst glance seem a bit arbitrary which form of

specialisation we use to expose more type information for

HasChor, and this is for the most part true. When we experi-

mented with the examples that are shipped with HasChor,

we did �nd a di�erence, however. Consider the following

type

1 sort ::

2 KnownSymbol a => Proxy a −>

3 KnownSymbol b => Proxy b −>

4 KnownSymbol c => Proxy c −>

5 ([Int] @ a) −>

6 Choreo IO ([Int] @ a)

It is a bit non-idiomatic to not collect all constraints in the

beginning of the type, but legal nonetheless. If we naively

try to specialise this as such

1 {−# SPECIALISE sort :: Proxy "primary"

2 −> Proxy "worker1"

3 −> Proxy "worker2"

4 −> ([Int] @ "primary")

5 −> Choreo IO ([Int] @ "primary") #−}

we get a type error, whereas if we naively specialise it to the

concrete terms, everything goes well

1 {−# SPECIALISE forall . sort primary worker1 worker2 #−}

We can of course also just refactor the original type to specify

all the constraints in the beginning. This might be the most

ideal, as it is more idiomatic.

Finally, GHCs separate compilationmay complicate things.

If a function and its specialisations are de�ned in one module,

but used in another, all variants of the function must be

exported. Dead code elimination will in this case not be able

to remove the original function, and it will remain even after

linking. Care must be taken with when and where some

functions are de�ned.

10 Conclusions & Future Work

In conclusion, perhaps unsurprisingly so, we can use rewrite

rules to partition Haskell programs. Traditional short-cut

fusion aims to eliminate intermediate data structures, and

38

Welcome to the Parti(tioning) (Functional Pearl) Haskell ’24, September 6–7, 2024, Milan, Italy

that is precisely what we are trying to do in the case of

HasChor. We eliminate the intermediate ChoreoSig struc-

ture that represents the whole program and use rewrite rules

to immediately project a NetworkSig structure, modeling

just one endpoint, and our plugin helps us verify that parti-

tioning occurred.

We have shown by example that in some situations, par-

titioning a program can remove dependencies, yielding a

program that is easier to build and deploy.

One e�ect of partitioning programs is that we are remov-

ing code, yielding smaller binaries. The binaries produced

by GHC are already very large, so this e�ect is sometimes

hardly noticeable. However, the new MicroHaskell compiler

has a runtime small enough that it can execute Haskell code

on microcontrollers. In this setting, we must make our bina-

ries as small as possible, as memory can be a scarce resource.

Today, MicroHaskell does not have enough functionality to

partition programs the way that we describe it in this pearl,

but the authors are discussing possible ways of making it

happen with the MicroHaskell developers.

Acknowledgments

The authors would like to thank Simon Peyton Jones for

taking the time to discuss some details of GHC with us.

Further thanks go to Koen Claessen and John Hughes for

helpful discussions and feedback.

A HasChor Bookseller

Below follow the implementation of the bookseller protocol

using HasChor, as taken from the HasChor repository of

examples6

1 buyer :: Proxy "buyer"

2 buyer = Proxy

3

4 seller :: Proxy "seller"

5 seller = Proxy

6

7 budget :: Int

8 budget = 100

9

10 priceOf :: String −> Int

11 priceOf "Types and Programming Languages" = 80

12 priceOf "Homotopy Type Theory" = 120

13

14 deliveryDateOf :: String −> Day

15 deliveryDateOf "Types and Programming Languages" =

16 fromGregorian 2022 12 19

17 deliveryDateOf "Homotopy Type Theory" =

18 fromGregorian 2023 01 01

19

20 bookseller :: Choreo IO (Maybe Day @ "buyer")

6https://github.com/gshen42/HasChor/blob/main/examples/bookseller-1-

simple/Main.hs

21 bookseller = do

22 title <− buyer ` locally ` _ −> do

23 putStrLn "Enter the title of the book to buy"

24 getLine

25 title ' <− (buyer, title) ~> seller

26

27 price <− seller ` locally ` \un −>

28 return $ priceOf (un title ')

29 price ' <− (seller , price) ~> buyer

30

31 decision <− buyer ` locally ` \un −>

32 return $ (un price ') < budget

33

34 cond (buyer, decision) \case

35 True −> do

36 deliveryDate <− seller ` locally ` \un −>

37 return $ deliveryDateOf (un title ')

38 deliveryDate ' <− (seller , deliveryDate) ~> buyer

39

40 buyer ` locally ` \un −> do

41 putStrLn $ "The book will be delivered on "

42 ++ show (un deliveryDate ')

43 return $ Just (un deliveryDate ')

44

45 False −> do

46 buyer ` locally ` _ −> do

47 putStrLn "Too expensive"

48 return Nothing

B Bookseller Rewrite Rules

Below follows the rewrite rules that implement the semantics

for the buyer endpoint in the bookseller choreography.

1 {−# NOINLINE locally #−}

2 {−# NOINLINE (~>) #−}

3 {−# NOINLINE cond #−}

4 {−# RULES

5 "CHOREORULES locallybuyer"

6 forall (f :: (forall a . At a "buyer" −> a) −> m a)

7 (buyer ::Proxy "buyer") .

8 buyer ` locally ` f = wrap <$> run (f unwrap)

9

10 "CHOREORULES locallyseller"

11 forall (f :: (forall a . At a "seller" −> a) −> m a)

12 (seller :: Proxy "seller") .

13 seller ` locally ` f = return Empty

14

15 "CHOREORULES sendfrombuyer"

16 forall v

17 r

18 (buyer ::Proxy "buyer") .

19 (buyer, v) ~> r

20 = do (send (unwrap v) (toLocTm r))

21 return Empty

39

Haskell ’24, September 6–7, 2024, Milan, Italy Robert Krook and Samuel Hammersberg

22

23 "CHOREORULES sendtobuyer"

24 forall s

25 v

26 (buyer ::Proxy "buyer") .

27 (s , v) ~> buyer = wrap <$> recv (toLocTm s)

28

29 "CHOREORULES condbuyer"

30 forall v

31 c

32 (buyer ::Proxy "buyer") .

33 (buyer, v) `cond` c = do broadcast (unwrap v)

34 c (unwrap v)

35

36 "CHOREORULES condseller"

37 forall v

38 c

39 (seller :: Proxy "seller") .

40 (seller , v) `cond` c =

41 do x <− recv (toLocTm seller)

42 c x

43 #−}

References
[1] Anton Ekblad and Koen Claessen. 2014. A seamless, client-centric

programming model for type safe web applications. In Proceedings of

the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden,

September 4-5, 2014, Wouter Swierstra (Ed.). ACM, New York, NY, USA,

79–89. h�ps://doi.org/10.1145/2633357.2633367

[2] Adrien Ghosn, James R. Larus, and Edouard Bugnion. 2019. Secured

Routines: Language-based Construction of Trusted Execution Environ-

ments. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019,

Renton, WA, USA, July 10-12, 2019, Dahlia Malkhi and Dan Tsafrir (Eds.).

USENIX Association, 571–586. h�ps://www.usenix.org/conference/

atc19/presentation/ghosn

[3] Andrew John Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A

Short Cut to Deforestation. In Proceedings of the conference on Functional

programming languages and computer architecture, FPCA 1993, Copen-

hagen, Denmark, June 9-11, 1993, John Williams (Ed.). ACM, 223–232.

h�ps://doi.org/10.1145/165180.165214

[4] Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible

e�ects. In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,

Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, Ben Lippmeier

(Ed.). ACM, 94–105. h�ps://doi.org/10.1145/2804302.2804319

[5] Aditya Oak, Amir M. Ahmadian, Musard Balliu, and Guido Salvaneschi.

2021. Language Support for Secure Software Development with En-

claves. In 34th IEEE Computer Security Foundations Symposium, CSF

2021, Dubrovnik, Croatia, June 21-25, 2021. IEEE, 1–16. h�ps://doi.org/

10.1109/CSF51468.2021.00037

[6] Abhiroop Sarkar, Robert Krook, Alejandro Russo, and Koen Claessen.

2023. HasTEE: Programming Trusted Execution Environments with

Haskell. In Proceedings of the 16th ACM SIGPLAN International Haskell

Symposium, Haskell 2023, Seattle, WA, USA, September 8-9, 2023, Trevor L.

McDonell and Niki Vazou (Eds.). ACM, New York, NY, USA, 72–88.

h�ps://doi.org/10.1145/3609026.3609731

[7] Tim Sheard and Simon Peyton Jones. 2002. Template meta-

programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN

Workshop on Haskell, Haskell 2002, Pittsburgh, Pennsylvania, USA, Oc-

tober 3, 2002, Manuel M. T. Chakravarty (Ed.). ACM, 1–16. h�ps:
//doi.org/10.1145/581690.581691

[8] Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional

Choreographic Programming for All (Functional Pearl). Proc. ACM

Program. Lang. 7, ICFP (2023), 541–565. h�ps://doi.org/10.1145/3607849

Received 2024-06-03; accepted 2024-07-05

40

https://doi.org/10.1145/2633357.2633367
https://www.usenix.org/conference/atc19/presentation/ghosn
https://www.usenix.org/conference/atc19/presentation/ghosn
https://doi.org/10.1145/165180.165214
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1109/CSF51468.2021.00037
https://doi.org/10.1109/CSF51468.2021.00037
https://doi.org/10.1145/3609026.3609731
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/3607849

	Abstract
	1 Introduction
	2 Simple Partitioning à la Haste App
	3 Haste App and Rewrite Rules
	4 HasChor
	5 HasChor and Rewrite Rules
	6 Location Polymorphic Functions
	7 HasChor and Rewrite Rules + Specialisation
	8 Example - Third-Party Authentication
	9 When does it Not Work
	10 Conclusions & Future Work
	Acknowledgments
	A HasChor Bookseller
	B Bookseller Rewrite Rules
	References

