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Abstract: Smart contracts are programs stored on a blockchain ledger, thus being immutable af-
ter deployment, which makes assessment of their correctness before deployment vital. Extended
finite state machines (EFSM) offer a structured framework for modeling complex systems,
thus providing a systematic approach to scrutinize smart contract functionalities. This paper
describes a methodology to automatically convert from the abstract syntax tree of a smart
contract to an EFSM model. A smart contract implementing a casino is the specific use case,
and verification of the EFSM model reveals it to be blocking. This blocking represents that a
malicious player can lock the funds of the casino so that they can never be retrieved.
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1. INTRODUCTION

In the previous decade, smart contracts have emerged as
an integral part of the blockchain ecosystem. Eliminating
the need for intermediaries, smart contracts can enforce
agreements among mutually distrusting parties. As smart
contracts become increasingly capable of handling more
complex interactions and transactions, the potential for
errors and vulnerabilities increases. Even if the underlying
blockchain protocols cannot feasibly be compromised, a
smart contract can itself allow behavior, unintended by the
programmer, that may be exploited to the disadvantage of
some of the users. Since smart contracts, once deployed on
the blockchain, are immutable, assessing their correctness
beforehand is crucial.

Formal methods is one technique that allows for rigorous
analysis and can guarantee correctness. Formal methods
are a set of mathematical techniques used in specification,
design and verification of software and hardware systems.
Model checking (Baier and Katoen, 2008), one of several
formal methods, allows for verifying correctness of a finite
state system by evaluating the state space of a transition
system against given specifications. One significant advan-
tage of modelling smart contract behaviour as extended
finite state machines (EFSMs) (Skoldstam et al., 2007) is
that it allows to use model checking techniques to verify its
correctness. Smart contracts can be modelled as EFSMs by
abstracting their high-level behaviour, ignoring intermedi-
ate execution details. However, manually modelling smart
contract behavior as EFSMs can be labour intensive and
prone to error and bias.

Related work towards modelling smart contracts and their
verification is presented by Fekih et al. (2022), that de-

⋆ This work was partially supported by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

scribe modelling smart contracts as EFSMs and verify-
ing them using the nuXmv (Cavada et al., 2014) model
checker. However, in the abovementioned work, EFSM
models of smart contracts are generated manually. Godoy
et al. (2022) present an approach to assist in validation
of smart contracts using predicate abstraction, focusing
on generating models by abstracting smart contract be-
haviour at function call level.

Early works by Bhargavan et al. (2016) present a study
analysing functional correctness and runtime safety of
smart contracts by translating them to F* programs.
Modelling of smart contract as PROMELA models and
verifying them using SPIN (Holzmann, 1997) is presented
in Bai et al. (2018). Works of Suvorov and Ulyantsev
(2019) and Mavridou and Laszka (2018) explore strategies
aimed at synthesis of secure smart contracts from EFSMs
that fulfill requirement specifications. Another approach
presented by Madl et al. (2019) investigate using interface
automata for verification purposes.

The recent work of Mohajerani et al. (2022) shows how
state based smart contracts can be manually modelled
as EFSMs, following which supervisory control theory
(SCT) (Ramadge and Wonham, 1989) can be applied for
verification of non-blocking behaviour.

This paper presents a set of principles for modelling
smart contracts as EFSMs automatically from the source
code. These principles are attributed towards modelling
variables, modifiers, functions and generic framework be-
haviour. As a running example, the simple Casino smart
contract treated also by Mohajerani et al. (2022) is used.
Just as in Mohajerani et al. (2022), formal verification of
the generated EFSM model reveals it to be blocking.

The paper is structured as follows: Section 2 provides a
brief background on the smart contract implementation
language Solidity, EFSMs and Supremica. Section 3
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describes the Casino contract, and Section 4 examplifies
the automatic conversion from the source code to EFSMs.
Section 5 briefly presents the non-blocking verification of
the EFSM model, while Section 6 concludes the paper.

2. BACKGROUND

2.1 Smart Contracts: Ethereum and Solidity

The first, and still major, blockchain framework support-
ing smart contracts is Ethereum (Wood, 2023), with its
built-in cryptocurrency Ether. In Ethereum not only the
users, but also the contracts can receive, own, and send
Ether. Sending Ether to a contract, and calling the con-
tract, is the same thing in this framework. Sending funds
to a contract without passing control to the receiver is not
possible. Ethereum miners look for transaction requests on
the network. A transaction request contains the address of
a contract to be called, the call data, and the amount of
Ether to be sent. Miners are paid for their efforts with
units of (Ether prised) gas, to be paid by the address that
requested the transaction.

A transaction may not necessarily be executed successfully.
It can be reverted for various reasons: running out of gas,
sending of unbacked funds, failing runtime assertions, or a
simple revert statement in the code. If the miner attempts
to execute a top-level (i.e., externally triggered) transac-
tion, a reverting action anywhere inside the transaction
execution will undo the entire transaction, all the way up
the call stack. All the effects so far are also undone (except
for the paid gas), as if the original call never happened. For
instance, consider a case where a user calls some smart
contract C, which during execution of the request sends
Ether to another contract D. Recall that sending funds
from C to D means that control is passed, for the moment,
from C to D, and C can only resume once D returns. If
D aborts before returning, the entire original request from
the user gets undone.

The most popular programming language for Ethereum
smart contracts is Solidity 1, which follows largely an
object-oriented paradigm. Each external user and each
contract instance has a unique address. Each address owns
Ether (possibly 0), can receive Ether, and send Ether
to other addresses. For instance, a.transfer(v) transfers
the amount of v Wei (= 10−18 Ether) from the caller
to a. Built-in data types include unsigned integer (uint),
enums, and structs. The current caller, and the amount of
Wei sent with the call, are always available via msg.sender

and msg.value, respectively. Only payable functions accept
payments. require(b) checks the boolean expression b, and
aborts if b is false. Fields marked public are read-public,
not write-public. Solidity offers also some cryptographic
primitives, for instance the function keccak256 computing
a crypto-hash of its argument.

Solidity further features programmable modifiers. For in-
stance, the Casino contract in Fig 1 uses the modifiers
byOperator, inState(s), and noActiveBet. These modifiers ex-
pand to require statements that abort the transaction if
not fulfilled. The above modifiers expand to, respectively:

1 https://docs.soliditylang.org/en/latest/

• require (msg.sender == operator);
• require (state == s);
• require (state != State.BET_PLACED);

2.2 Extended Finite State Machines

EFSMs extend finite-state machines with variables, and
guard and action expressions associated with transitions.
A guard is a predicate for the transition, which when
true allows the transition to occur. The action, if specified
for a transition, then updates the variables of the action.
An EFSM is defined by the tuple E = ⟨Σ, S, S◦,→ , Sω⟩
where:

• Σ is the finite set of labels representing events.
• S is a finite set of locations, with S◦ ⊆ S representing

the set of initial locations.
• → represents the transition relation. A transition

s
σ:g:a−−−→ s′ associated with event σ, where s, s′ ∈ S,

means that the system can transit from location s to
s′ if the guard g evaluates to true, and then the action
a is performed.

• Sω ∈ S is the set of marked locations.

EFSMs are illustrated as directed graphs with nodes
representing locations and arrows representing transitions.
Events, guards and actions associated with a transition are
represented by labels and expressions on the transition. In
guards, the post-transition value of a variable is denoted
by a prime, while the pre-transition value is un-primed.
For instance, in Fig 2, where {S0, S1, S2} is the set
of locations, the transition S1 to S2 is guarded by the
expression (guess’ == HEAD | guess’ == TAILS), and
the action function (bet = value) is executed if the
transition occurs. Thus, after the transition, the value of
guess is either HEADS or TAILS, and the variable bet is
assigned the value of the variable value.

Interaction between EFSMs is modelled by synchronous
composition (Hoare, 1985) of shared events, that is, events
that appear in the alphabets of more than one composed
EFSMs. A shared event is enabled in the composition, only
if it is enabled by all EFSMs containing that event in their
alphabet. For example, the event placeBet1 of Fig 2 is
synchronized with the EFSM modeling the require clause
of Fig 5, so that the transition from S0 to S1 in Fig 2
cannot occur unless sender is different from the operator.

2.3 Supremica

Supremica (Akesson et al., 2006) is a tool for synthesis,
simulation, and verification of discrete event systems.
Efficient algorithms for assessing and guaranteeing well-
known SCT properties such as controllability and non-
blocking are implemented in Supremica. In this paper,
the compositional abstraction-based non-blocking (Malik
et al., 2023) verification algorithm is used. Non-blocking
is a progress property that, when fulfilled, guarantees
that some significant marked state(s) of the system can
always be reached. In the context of this paper, this aims
to guarantee the ability of the Casino smart contract to
always reach its initial state.

To verify non-blocking, conflict check (Akesson et al.,
2006) of Supremica is used. If the verification determines

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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that the system is blocking, a counter-example is provided,
a trace that leads to a blocking situation. This counter-
example may be replayed in Supremica’s simulator to
reveal the core of the problem.

3. RUNNING EXAMPLE

The Solidity code of the Casino contract (originally pro-
posed by Gordon Pace) is shown in Fig 1 2 . The implemen-
tation features three explicit states: IDLE, GAME_AVAILABLE,
and BET_PLACED, see line 3, defined by the enum type State.

Based on the modifier inState(s), in the IDLE location the
operator may create a game by invoking the createGame

function (line 9). To ensure a fair betting, the Casino must
place its bet at the time of game creation. Thus, when
calling createGame, hashedNumber is assigned a value (line 11)
to later decide the game outcome. After creating a new
game, the state changes to GAME_AVAILABLE (line 12) where
a game is now available. In this state, the player can call
placeBet to place a bet, up to the size of the pot, on HEADS
or TAILS (lines 16-21). This then changes the state of the
contract to BET_PLACED (line 23).

Next, the operator may by decideBet submit the original
secret number to resolve the bet (line 25). If the secret
number is even the coin toss is HEADS, else it is TAILS
(line 29). If the player wins, the original bet is set to
zero and only the bet amount is deducted from the pot
representing the sum lost by the casino (lines 39–40).
Then, double the bet is transferred from the contract to
the player (line 41). If the operator wins, the bet is added
to the pot and then set to zero (lines 44–45).

The operator may add money to the pot at any state,
addToPot (line 47). Also, the operator may remove money
from the pot, removeFromPot (line 51), but only if the player
has not placed a bet, that is, if the casino is not in the state
BET_PLACED. This is ensured by the modifier noActiveBet.

4. CONVERSION TO EFSM

The automated conversion traverses the source code’s
abstract syntax tree (AST), which is obtained in JSON
format from the official Solidity compiler solc by the
command solc --ast-compact-json. The AST consists
of nodes of designated types corresponding to specific
Solidity constructs, such as FunctionDefinition, Function-
Call , VariableDeclaration etc. Each such node can itself
contain nodes in a hierarchy. The conversion recursively
mines the AST for data relevant for generating the EFSMs.
For each node type, specific code is executed and the
conversion is kept as “local” as possible, meaning no global
overview of parts of the code is necessary; only in the case
of the Conditional on line 29 is it necessary to pass data
from a higher hierarchy level to a lower.

The automatically converted EFSM model differs signif-
icantly from the manually crafted model presented by
Mohajerani et al. (2022). The main difference being that
the State variable is in the manual model represented by
a specific EFSM, which embeds the control of the other
functions, thus making the modifiers redundant. In the
2 Slightly simplified, for a detailed presentation see https://

verifythis.github.io/02casino/

1 contract Casino {
2
3 enum State {IDLE , GAME AVAILABLE,

BET PLACED}
4 State private s t a t e ;
5 address public operator , p laye r ;
6 bytes32 public hashedNumber ;
7 struct Wager {uint bet ; Coin guess ;}
8
9 function createGame (bytes32 hashNum) public

10 byOperator , i nS ta t e ( State . IDLE) {
11 hashedNumber = hashNum ;
12 s t a t e = State .GAMEAVAILABLE; }
13
14 function placeBet ( Coin gue s s ) public payable
15 inS ta t e ( State .GAMEAVAILABLE) {
16 require (msg . sender != operator ) ;
17 require (msg . value > 0 && msg . value <= pot ) ;
18 p laye r = msg . sender ;
19 wager = Wager ({
20 bet : msg . value ,
21 guess : gue s s
22 }) ;
23 s t a t e = State .BET PLACED; }
24
25 function dec ideBet (uint secretNumber ) public
26 byOperator , i nS ta t e ( State .BET PLACED) {
27 require ( hashedNumber ==
28 keccak256 ( secretNumber ) ) ;
29 Coin s e c r e t = ( secretNumber % 2 == 0) ?

Coin .HEADS : Coin .TAILS ;
30 i f ( s e c r e t == wager . guess ) {
31 playerWins ( ) ;
32 } else {
33 operatorWins ( ) ;
34 }
35 s t a t e = State . IDLE ; }
36
37 function playerWins ( ) private {
38 tmp = wager . bet ;
39 wager . bet = 0 ;
40 pot = pot − tmp ;
41 p laye r . transfer (tmp∗2) ; }
42
43 function operatorWins ( ) private {
44 pot = pot + wager . bet ;
45 wager . bet = 0 ; }
46
47 function addToPot ( ) public payable
48 byOperator {
49 pot = pot + msg . value ; }
50
51 function removeFromPot (uint amount ) public
52 byOperator , noActiveBet {
53 pot = pot − amount ;
54 operator . transfer ( amount ) ; }
55 }

Fig. 1. Solidity code for Casino (some details are omitted).

automatically converted model, State is represented by an
EFSM variable state, much like in the Solidity code, and
the modifiers are thus explicitly modeled.

4.1 Modeling variables

Supremica allows bounded, discrete variables, so Solidity
variables are directly converted to Supremica variables.
The constructor (not shown in Fig 1) assigns initial val-
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that the system is blocking, a counter-example is provided,
a trace that leads to a blocking situation. This counter-
example may be replayed in Supremica’s simulator to
reveal the core of the problem.

3. RUNNING EXAMPLE

The Solidity code of the Casino contract (originally pro-
posed by Gordon Pace) is shown in Fig 1 2 . The implemen-
tation features three explicit states: IDLE, GAME_AVAILABLE,
and BET_PLACED, see line 3, defined by the enum type State.

Based on the modifier inState(s), in the IDLE location the
operator may create a game by invoking the createGame

function (line 9). To ensure a fair betting, the Casino must
place its bet at the time of game creation. Thus, when
calling createGame, hashedNumber is assigned a value (line 11)
to later decide the game outcome. After creating a new
game, the state changes to GAME_AVAILABLE (line 12) where
a game is now available. In this state, the player can call
placeBet to place a bet, up to the size of the pot, on HEADS
or TAILS (lines 16-21). This then changes the state of the
contract to BET_PLACED (line 23).

Next, the operator may by decideBet submit the original
secret number to resolve the bet (line 25). If the secret
number is even the coin toss is HEADS, else it is TAILS
(line 29). If the player wins, the original bet is set to
zero and only the bet amount is deducted from the pot
representing the sum lost by the casino (lines 39–40).
Then, double the bet is transferred from the contract to
the player (line 41). If the operator wins, the bet is added
to the pot and then set to zero (lines 44–45).

The operator may add money to the pot at any state,
addToPot (line 47). Also, the operator may remove money
from the pot, removeFromPot (line 51), but only if the player
has not placed a bet, that is, if the casino is not in the state
BET_PLACED. This is ensured by the modifier noActiveBet.

4. CONVERSION TO EFSM

The automated conversion traverses the source code’s
abstract syntax tree (AST), which is obtained in JSON
format from the official Solidity compiler solc by the
command solc --ast-compact-json. The AST consists
of nodes of designated types corresponding to specific
Solidity constructs, such as FunctionDefinition, Function-
Call , VariableDeclaration etc. Each such node can itself
contain nodes in a hierarchy. The conversion recursively
mines the AST for data relevant for generating the EFSMs.
For each node type, specific code is executed and the
conversion is kept as “local” as possible, meaning no global
overview of parts of the code is necessary; only in the case
of the Conditional on line 29 is it necessary to pass data
from a higher hierarchy level to a lower.

The automatically converted EFSM model differs signif-
icantly from the manually crafted model presented by
Mohajerani et al. (2022). The main difference being that
the State variable is in the manual model represented by
a specific EFSM, which embeds the control of the other
functions, thus making the modifiers redundant. In the
2 Slightly simplified, for a detailed presentation see https://

verifythis.github.io/02casino/

1 contract Casino {
2
3 enum State {IDLE , GAME AVAILABLE,

BET PLACED}
4 State private s t a t e ;
5 address public operator , p laye r ;
6 bytes32 public hashedNumber ;
7 struct Wager {uint bet ; Coin guess ;}
8
9 function createGame (bytes32 hashNum) public

10 byOperator , i nS ta t e ( State . IDLE) {
11 hashedNumber = hashNum ;
12 s t a t e = State .GAMEAVAILABLE; }
13
14 function placeBet ( Coin gue s s ) public payable
15 inS ta t e ( State .GAMEAVAILABLE) {
16 require (msg . sender != operator ) ;
17 require (msg . value > 0 && msg . value <= pot ) ;
18 p laye r = msg . sender ;
19 wager = Wager ({
20 bet : msg . value ,
21 guess : gue s s
22 }) ;
23 s t a t e = State .BET PLACED; }
24
25 function dec ideBet (uint secretNumber ) public
26 byOperator , i nS ta t e ( State .BET PLACED) {
27 require ( hashedNumber ==
28 keccak256 ( secretNumber ) ) ;
29 Coin s e c r e t = ( secretNumber % 2 == 0) ?

Coin .HEADS : Coin .TAILS ;
30 i f ( s e c r e t == wager . guess ) {
31 playerWins ( ) ;
32 } else {
33 operatorWins ( ) ;
34 }
35 s t a t e = State . IDLE ; }
36
37 function playerWins ( ) private {
38 tmp = wager . bet ;
39 wager . bet = 0 ;
40 pot = pot − tmp ;
41 p laye r . transfer (tmp∗2) ; }
42
43 function operatorWins ( ) private {
44 pot = pot + wager . bet ;
45 wager . bet = 0 ; }
46
47 function addToPot ( ) public payable
48 byOperator {
49 pot = pot + msg . value ; }
50
51 function removeFromPot (uint amount ) public
52 byOperator , noActiveBet {
53 pot = pot − amount ;
54 operator . transfer ( amount ) ; }
55 }

Fig. 1. Solidity code for Casino (some details are omitted).

automatically converted model, State is represented by an
EFSM variable state, much like in the Solidity code, and
the modifiers are thus explicitly modeled.

4.1 Modeling variables

Supremica allows bounded, discrete variables, so Solidity
variables are directly converted to Supremica variables.
The constructor (not shown in Fig 1) assigns initial val-

S1S0

S2

player = sender

bet = value

guess’ == HEADS | guess’ == TAILS
state = BET_PLACED

placebet1

placeBetX

placeBet2

Fig. 2. EFSM model of the placeBet function.

ues to some variables, and these are initialized accord-
ingly in Supremica. Most variables have unknown ini-
tial values, though, which is in Supremica modeled by
non-deterministic initial value assignments over the entire
range of the variable domain.

Some care has to be taken, though, when converting the
unbounded Solidity types to bounded Supremica vari-
ables. Particularly, the pot variable cannot be modeled
since if pot is modeled as an (upper) bounded variable,
then a trivial blocking trace calls addToPot enough times
for pot to reach its upper bound, plus once more, and
then the system deadlocks. The pot variable is automat-
ically ignored by adding it to an ignore list, so the con-
verter does not generate any pot variable in the EFSM
model, nor any transitions for statements involving pot

(lines 17, 40, 44, 49, 53).

4.2 Modeling Functions

Each function of Fig 1 is modeled as a separate EFSM,
typically interacting with other EFSMs through shared
events. Generally, an EFSM modeling a function has one
transition for each statement, which roughly corresponds
to each line of the code in Fig 1. From its initial location,
the EFSM has a transition labeled by the initial event,
which is constructed from the function name, appended
with the number 1. The EFSM also has a final event that
labels a transition back to its initial location; this label is
constructed by appending the function name with X. This
naming scheme guarantees that it is known beforehand
which events denote the call and return, respectively, of a
function, so that these events can be used even before a
function has been modeled.

The EFSM model of the placeBet function is shown in
Fig 2; this models lines 14–23 of Fig 1. The initial event
placeBet1 labels the transition from the initial location
S0, and the assignment of player on line 18 is added as
an action. The handling of the modifiers and the require

clauses, lines 15–17 are described in Section 4.3, below.

Inside the placeBet function there is an assignment to the
wager variable (lines 19–21), which is of type struct Wager

(line 7). Since there are no structs in Supremica, the
struct constructor call of wager has to be “flattened”. This
is automatically done, and results in two distinct variables
guess and bet.

The placeBet function is called with a parameter _guess

of type Coin, which is an enum (not shown in Fig 1, but
see line 29) with two values, HEADS and TAILS. The
converter collects this type information, and since the
actual value of _guess is unknown for the placeBet call, a
non-deterministic assignment is made to the variable guess,
see the guard on the transition labeled placeBet2 of Fig 2.

S4

S1

S5

S0

S2

!(secret == guess)

state = IDLE

secret == guess

(secretNumber % 2 == 0 & secret’ == HEADS) | (!(secretNumber % 2 == 0) & secret’ == TAILS)

decideBetX

decideBet2

decideBet2

operatorWins1

decideBet1

playerWins1

operatorWinsX

playerWinsX

Fig. 3. EFSM model of the decideBet function.
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bet = tmp

tmp = bet

bet = 0

plTransferX

plReject
playerWinsX

playerWins1

playerWins2

plTransfer1

Fig. 4. EFSM model of the playerWins function.

When a function is called from within another function,
this is modeled by a selfloop labeled by the called func-
tion’s initial event, and with the called function’s final
event labeling a transition from the selflooped location.
This is illustrated in Fig 3, where the operatorWins and
playerWins functions are called in the locations labeled S4
and S5, respectively. This corresponds to lines 33 and 31,
respectively. When the EFSM of Fig 3 is in, say, S5,
it cannot transit to S2 until the playerWinsX event is
enabled, which requires the EFSM that models playerWins

(Fig 4) to first transit on its initial event, playerWins1 and
then go through its other transitions until both EFSMs
synchronously transit on the playerWinsX event. In this
way, placeBet initiates the execution of playerWins, and
then waits for playerWins to return.

Note that though lines 19–22, and 28 are in the AST
designated as FunctionCall , these are treated separately
and do not result in selfloops. The initialization of the wager

struct variable, is described above. The external hashing
function keccak256 (line 28) is not modelled at all, as its
internal workings are not known. This is handled by adding
keccak256 to the abovementioned ignore list, so that the
call keccak256(secretNumber) is automatically converted into
simply secretNumber.

4.3 Modifiers and require statements

Modifiers and require statements are modeled as single-
location EFSMs, with selflooped transitions with the
Boolean expression as guard and labeled by the ini-
tial events of the functions that the modifiers and/or
require clauses relate to. For instance, the byOperator mod-
ifier relates to the createGame, addToPot, removeFromPot, and
decideBet functions, and so the selflooped transition is
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S0
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Fig. 5. EFSM models of (left) the byOperator modifier, and
(right) the require clause on line 16.
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Fig. 6. EFSM model of the assignment of sender.

labeled by their initial events, see Fig 5, left. Similarly, the
require clause of line 16 of Fig 1 appears only in placeBet,
and so has only the event placeBet1, see Fig 5, right.

A unique naming scheme is essential to guarantee that
modifiers and, especially, require statements are not acci-
dentally named the same. The current implementation of
the conversion uses a hashing function to create a unique
(with high probability) name for the EFSMs based on the
logical expression of their guards.

4.4 Modeling framework behavior

The above discussion and models deal with what can be
converted directly from the Solidity source code of Fig 1.
However, this is not enough to have a useful model, as
this code executes within the Ethereum framework, which
adds some behavior of its own that is necessary to capture.
Specifically, this concerns the assignment to addresses of
the msg.sender variable, and the behavior of transfer. As
this behavior is not possible to extract from the code, these
models are manually predefined, but in a generic way.

Assign Sender Within the Solidity framework, contracts
interact with each other by calling public functions. With
each such call follows a data packet msg, which includes
among other things a reference (address), msg.sender, to
the contract that called the function. The assignment to
msg.sender of the reference to the caller is handled by the
framework, outside of the Solidity code. In the Casino
case there are two participants, player and operator, and
the behavior of the public functions depends on which of
the participants that called it, so the EFSM model must
include a model for the assignment of msg.sender. This is
done by the EFSM of Fig 6.

The selfloop in the S0 location, labeled by the assignSev
event, non-deterministically assigns the variable sender
the “address” x0001 (player) or x0002 (operator). Since
not much can happen with the Casino until the operator
has created the game, see lines 9–12, the initial value of

pl1pl0

eternalReject = 1

eternalReject == 0

plTransfer1

plTransferX

plReject

Fig. 7. EFSM model of the transfer to the player.

sender is set to the address of the operator. This might be
changed by the non-deterministic assignment in the self-
loop, but since createGame cannot be called by the player,
only traces that start with the sender being the operator
are of interest for the non-blocking verification.

Out from S0 is also a transition to location S1, labeled with
the initial event of each public function. From S1 is then
a transition back to S0 labeled with the final events of the
public functions. In this way, sender is assigned an address
in location S0, representing either player or operator, and
this address remains constant while any public function
executes, as the EFSM is in its S1 location.

Modeling transfer When a transfer occurs, the receiver
can choose to either accept the transferred funds, or reject
it. The EFSM of Fig 7, models this by having an initial
event plTransfer1 from the initial location pl0 to pl1,
which represents the transfer to the receiver, and two
transitions back from pl1 to pl0, where plTransferX
represents an accepted transfer, while plReject represents
a rejected transfer.

Rejection of transfer is modeled in the playerWins EFSM,
see Fig 4, as a transition from the location where transfer is
called, S2, directly back to the initial location, S0, bypass-
ing the playerWinsX transition. Also, on that bypassing
transition, the value of the bet variable is reset to what it
was at the call of playerWins. This models that rejecting a
transfer reverts any changes made by the call to playerWins.

Since the issue investigated in this paper concerns a mali-
cious player that once rejecting a transfer will always reject
any re-transfer, the plTransferX transition is guarded
by eternalReject == 0, while the transition representing
the rejected transfer sets the eternalReject variable to 1.
Whether this malicious player (the operator does not reject
any transfer) can block the Casino so that the funds can
never be retrieved, is what verification is to find out.

5. NON-BLOCKING VERIFICATION

The automatically converted model consists of 16 EFSMs
and 16 variables 3 . Many of the EFSMs have only a sin-
gle location, the biggest one, decideBet, has 5 locations.
Most of the variables are 0–1 variables, the state variable
has the largest domain of three symbolic values, IDLE,
GAME_AVAILABLE, and BET_PLACED, just as its Solidity counter-
part. When the EFSM model is “flattened” into ordinary
finite-state machines (FSMs), which are then composed
into a single FSM, this model has 127 states, 36 events,
and 251 transitions.

3 The model together with the code for the automatic conversion
are available from https://github.com/martinfabian/Casino
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labeled by their initial events, see Fig 5, left. Similarly, the
require clause of line 16 of Fig 1 appears only in placeBet,
and so has only the event placeBet1, see Fig 5, right.

A unique naming scheme is essential to guarantee that
modifiers and, especially, require statements are not acci-
dentally named the same. The current implementation of
the conversion uses a hashing function to create a unique
(with high probability) name for the EFSMs based on the
logical expression of their guards.

4.4 Modeling framework behavior

The above discussion and models deal with what can be
converted directly from the Solidity source code of Fig 1.
However, this is not enough to have a useful model, as
this code executes within the Ethereum framework, which
adds some behavior of its own that is necessary to capture.
Specifically, this concerns the assignment to addresses of
the msg.sender variable, and the behavior of transfer. As
this behavior is not possible to extract from the code, these
models are manually predefined, but in a generic way.

Assign Sender Within the Solidity framework, contracts
interact with each other by calling public functions. With
each such call follows a data packet msg, which includes
among other things a reference (address), msg.sender, to
the contract that called the function. The assignment to
msg.sender of the reference to the caller is handled by the
framework, outside of the Solidity code. In the Casino
case there are two participants, player and operator, and
the behavior of the public functions depends on which of
the participants that called it, so the EFSM model must
include a model for the assignment of msg.sender. This is
done by the EFSM of Fig 6.

The selfloop in the S0 location, labeled by the assignSev
event, non-deterministically assigns the variable sender
the “address” x0001 (player) or x0002 (operator). Since
not much can happen with the Casino until the operator
has created the game, see lines 9–12, the initial value of
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sender is set to the address of the operator. This might be
changed by the non-deterministic assignment in the self-
loop, but since createGame cannot be called by the player,
only traces that start with the sender being the operator
are of interest for the non-blocking verification.

Out from S0 is also a transition to location S1, labeled with
the initial event of each public function. From S1 is then
a transition back to S0 labeled with the final events of the
public functions. In this way, sender is assigned an address
in location S0, representing either player or operator, and
this address remains constant while any public function
executes, as the EFSM is in its S1 location.

Modeling transfer When a transfer occurs, the receiver
can choose to either accept the transferred funds, or reject
it. The EFSM of Fig 7, models this by having an initial
event plTransfer1 from the initial location pl0 to pl1,
which represents the transfer to the receiver, and two
transitions back from pl1 to pl0, where plTransferX
represents an accepted transfer, while plReject represents
a rejected transfer.

Rejection of transfer is modeled in the playerWins EFSM,
see Fig 4, as a transition from the location where transfer is
called, S2, directly back to the initial location, S0, bypass-
ing the playerWinsX transition. Also, on that bypassing
transition, the value of the bet variable is reset to what it
was at the call of playerWins. This models that rejecting a
transfer reverts any changes made by the call to playerWins.

Since the issue investigated in this paper concerns a mali-
cious player that once rejecting a transfer will always reject
any re-transfer, the plTransferX transition is guarded
by eternalReject == 0, while the transition representing
the rejected transfer sets the eternalReject variable to 1.
Whether this malicious player (the operator does not reject
any transfer) can block the Casino so that the funds can
never be retrieved, is what verification is to find out.

5. NON-BLOCKING VERIFICATION

The automatically converted model consists of 16 EFSMs
and 16 variables 3 . Many of the EFSMs have only a sin-
gle location, the biggest one, decideBet, has 5 locations.
Most of the variables are 0–1 variables, the state variable
has the largest domain of three symbolic values, IDLE,
GAME_AVAILABLE, and BET_PLACED, just as its Solidity counter-
part. When the EFSM model is “flattened” into ordinary
finite-state machines (FSMs), which are then composed
into a single FSM, this model has 127 states, 36 events,
and 251 transitions.

3 The model together with the code for the automatic conversion
are available from https://github.com/martinfabian/Casino

Running Supremica’s conflict check on the automatically
converted EFSM model generates a counter-example that
shows the system to be blocking. This counter-example
is not identical to the counter-example found for the
manually crafted model (Mohajerani et al., 2022); it is
longer, for instance, at 24 events long instead of 10, but
it blocks in a similar way. When the player wins but
decides to reject the transfer of the winnings, and from
then on continues indefinitely to do so, the system ends
up in a cyclic trace from which no marked state can be
reached. Inspection of the code, Fig 1, maps the blocking to
line 41. If player.transfer(wager.bet*2) fails, line 35 (state
= State.IDLE) will not be executed. Though decideBet can be
called again, when a malicious player refuses the transfer

on each call, the contract will not progress to reach its IDLE

state. Thus, the funds of the Casino can never be retrieved,
meaning that the liquidity of the contract is compromised.

Mohajerani et al. (2022) show how the Casino code can
be corrected to avoid this vulnerability, and prove that
the corrected model is indeed non-blocking. The corrected
code was also automatically converted to EFSMs by the
conversion described in this paper, and this converted
model was also shown to be non-blocking.

6. CONCLUSION

This paper investigates automatic conversion from Solidity
code to a model of interacting EFSMs, where the different
Solidity function calls and statements are modeled as
transitions of the EFSMs. Non-blocking verification of the
EFSM system shows that failure in transferring money
to the player may result in the Casino contract to block
as it will not be able to go back to its IDLE state. As
a consequence, the investments made by the operator
(through addToPot) are locked into the Casino forever. This
type of blocking 4 has actually occurred on real contracts,
with huge financial damage.

Since this work only concerns non-blocking, the control-
lability of events is irrelevant, but as the player versus
the operator is a two-player game, modeling the player’s
actions as uncontrollable and the operator’s actions as
controllable (or the other way around) might be useful to
reveal other aspects of the Casino code in particular, and
of smart contracts in general. Work on this is ongoing.
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