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of Harish-Chandra modules we develop a theory of weight 
shifts for Taylor coefficients of vector-valued spectral families. 
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We provide a comprehensive computer implementation of this 
theory, which allows us to provide explicit examples.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

0. Introduction

Harmonic weak Maaß forms have proved to be immensely useful in number theory and 
related areas such as arithmetic geometry, combinatorics, and mathematical physics. Nu-
merous applications were showcased by Bringmann–Folsom–Ono–Rolen [6], often rooted 
in generating series that are “completed” to produce harmonic weak Maaß forms. Special 
highlights are the confirmation of the Andrews–Dragonette Conjecture [8], incoherent 
Eisenstein series in the Kudla Program [28], and Mathieu Moonshine [21,24] associated 
with K3–surfaces. As work by Duke, İmamoğlu, and Tóth [20] shows polyharmonic weak 
Maaß forms play an evenly important role in number theory. Moreover, these forms ap-
pear in string theory, especially via the theory of modular graph functions [27], and in 
the correspond mathematical theory of iterated period integrals on the moduli space of 
marked genus-1 curves [9,10].

The study of harmonic weak Maaß forms from a representation theoretic perspective 
was initiated by Bringmann and Kudla [7]. They provided a classification of the Harish-
Chandra modules generated by the pullback to SL2(R) of harmonic weak Maaß forms 
of integral weight.

In the present work we study polyharmonic (weak) Maaß forms, i.e. forms that vanish 
under a power of the Laplace operator, transform like modular forms, and have at most 
exponential growth at the cusps. Here, the weight k Laplace operator is defined as

Δk = −Rk−2Lk, where Rk = 2i∂τ + ky−1, Lk = −2iy2∂τ .

We call a polyharmonic Maaß form f of weight k satisfying Δd+1
k f = 0 and Δd

kf �= 0
polyharmonic of exact depth d (compare Definition 3.1). A classical example of such a 
form, which appears already in the Kronecker limit formula, is the function

−1
6 log

(
y12∣∣η(τ)

∣∣48),
where η(τ) = exp(πiτ/12) 

∏∞
n=1(1 − exp(2πinτ)).

0.1. The classification

Our first main result is the classification of Harish-Chandra modules corresponding 
to polyharmonic Maaß forms of integral weight. As a special case we recover the classi-
fication for harmonic Maaß forms obtained by Bringmann and Kudla. Harish-Chandra 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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modules associated with polyharmonic Maaß forms are formally described in Section 3.2. 
Informally, they capture all SL2(R)-covariant differential equations satisfied by a given 
form.

Classification A. In Sections 3.4 and 3.5 we give a classification comprising 10 cases 
of Harish-Chandra modules associated with weight-k polyharmonic weak Maaß forms of 
exact depth d: Cases Ia–d for k < 1, Cases IIa–b for k = 1, and Cases IIIa–d for k > 1. 
The classification is given in terms of the vanishing and non-vanishing of the following 
functions:

k < 1 k = 1 k > 1

LkΔd
k f

?= 0, R1−k
k Δd

k f
?= 0 LkΔd

k f
?= 0 LkΔd−1

k f
?= 0, LkΔd

k f
?= 0, Lk

kΔd
k f

?= 0.

Remark. (1) The three vanishing conditions that appear for k > 1 imply one another 
from left to right, so that they yield 4 as opposed to 8 cases.

(2) The classification of harmonic weak Maaß forms, i.e. the case d = 0, encompasses 
only 9 cases. Each of them generalizes in a suitable way, but there is an additional 
Case IIId if k > 1, which occurs only in positive depth d.

Example B. In our classification, the previously mentioned form −1
6 log(y12|η(τ)|48) falls 

into Case Ia. Bringmann–Kudla highlighted s-derivatives of Eisenstein series as a fur-
ther class of interesting functions that are not covered by their classification. These are 
polyharmonic Maaß forms of type Id if k < 0, of type Ia if k = 0, of type IIIb if k = 2, 
and of type IIIa if k > 2. The case k = 1 gives rise to incoherent Eisenstein series that 
fall under type IIa. See Section 5 for details.

Elementary Lie algebra considerations that serve well in the harmonic setup cease 
to work in ours. In particular, the method of classification employed by Bringmann–
Kudla relies heavily on the harmonicity condition Δk f = 0, which implies that K-types 
of the Harish-Chandra module associated with f occur with multiplicity at most 1. 
The transition between K-types can therefore be adequately described by the vanishing 
or non-vanishing of scalars. This no longer holds true for general polyharmonic Maaß 
forms, which is the major obstacle to the classification that we achieved. It turns out 
that the theory of quiver representations beautifully enables us to circumvent this obsta-
cle. In Proposition 1.6 and Theorem 1.9, we provide equivalences between categories of 
specific Harish-Chandra modules and quiver representations following [4,5,15,17,25,26]. 
This naturally leads us to representations of the Gelfand quiver, which are well-known 
to be intricate. A key step in our classification is Theorem 3.7, in which we show that 
quiver representations that arise from polyharmonic Maaß forms are cyclic and inde-
composable. There are only few cyclic representations of the Gelfand quiver, which we 
give in Theorem 2.5 and which mirror the Cases Ia–d and IIIa–d in our classification. 
Cases IIa and IIb arise from the two-cyclic quiver as discussed in Remark 2.8.
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0.2. The explicit realization

Our second main result is the explicit realization of all cases of the classification. 
Classification A constrains the possible Harish-Chandra modules associated with poly-
harmonic weak Maaß forms, however a priori it is not clear whether each case appears.

Theorem C. For any k ∈ Z and any case of Classification A associated with this k, there 
is a (vector-valued) polyharmonic weak Maaß form of weight k that realizes this case.

Remark. In Theorem 4.15 we provide a comprehensive theory that allows us to alter 
the weight of a modular realization of Cases Ia–d or IIIa–d if it is obtained from a 
spectral family. This theory involves a detailed analysis of the action of several differential 
operators on spectral families and is interesting in its own right.

To prove Theorem C we construct preimages under Δd
k of the realizations provided by 

Bringmann and Kudla. For scalar-valued realizations we can employ a classical approach 
and extract polyharmonic Maaß forms from the Taylor coefficients of a spectral family. 
This idea was already used by Lagarias and Rhoades [29] for Eisenstein series and by 
Duke–İmamoğlu–Tóth [20] for Poincaré series. For vector-valued forms we vastly gener-
alize this method. We show that the weight of a modular realization can be adjusted 
when taking products with specific vector-valued Maaß forms. In special cases this was 
also used by Bringmann and Kudla. Our Theorem 4.15 extends this approach to the 
broadest context compatible with our classification.

The proof of Theorem 4.15 depends on a delicate analysis of the action of the Laplace 
operator on specific products of Maaß forms. It can be viewed as an explicit instance 
of a theory by Bernstein–Gelfand [3], who studied tensor products of Harish-Chandra 
modules with finite dimensional representation. Our treatment is sufficiently explicit 
to accommodate a computer implementation, which is available on the third author’s 
homepage and allows for the precise calculation of coefficients in every single case.

0.3. Structure of the paper

The paper is structured as follows. In Section 1 we provide preliminaries on Harish-
Chandra modules and investigate the structure of the relevant path algebra. In Sec-
tion 2 we classify the corresponding cyclic modules. The bridge between these results 
and the classification of the Harish-Chandra modules arising from polyharmonic weak 
Maaß forms is provided in Section 3. In Section 4 we develop the results that enable 
us to alter the weight of spectral families. We use these results to show that there 
exist polyharmonic weak Maaß forms for each of the cases of the classification in Sec-
tion 5.
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1. Blocks of the category of Harish-Chandra–modules for SL2(R)

1.1. Preliminaries on Harish-Chandra–modules

Let G = SL2(R) and K = SO2(R) be a maximal compact subgroup. Let

g := Lie(G) ⊗R C ∼= sl2(C) =
〈
H =

( 0 −i
i 0

)
,X = 1

2

(
1 i
i −1

)
,Y = 1

2

(
1 −i
−i −1

)〉
be the complexified Lie algebra of G and U(g) be the universal enveloping algebra of g. 
The following relations in g are satisfied:

[H,X] = 2X, [H,Y ] = −2Y and [X,Y ] = H. (1.1)

Let

C = H2 − 2H + 4XY = H2 + 2H + 4Y X ∈ U(g) (1.2)

be a Casimir element. It is well-known that the center z of U(g) is C[C] (the algebra of 
polynomials in C). For any θ ∈ R, we set

kθ = exp(iθH) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ K = SO2(R). (1.3)

Definition 1.1. A complex vector space M is a (g, K)–module if it has a structure (M, ◦)
of a representation of g as well as a structure (M, ·) of a locally smooth representation 
of K such that, first, (

Adk(Z)
)
◦ v = k ·

(
Z ◦ (k−1 · v)

)
for any v ∈ M , k ∈ K, and Z ∈ g, where Ad is the adjoint action of G on g, and second,

d
dt

(
exp(tZ) · v

)∣∣
t=0 = Z ◦ v

for any v ∈ M and Z ∈ k ⊂ g, the complexified Lie algebra of K. In what follows, we 
shall omit ◦ and · from the notation for the action on M . For n ∈ Z we put:

Mn =
{
v ∈ M : H ◦ v = nv

}
.

A (g, K)–module M is a Harish-Chandra module if it is finitely generated over U(g) and

M ∼=
⊕
n∈Z

Mn with dimC(Mn) < ∞ for all n ∈ Z.

In what follows, HC(g, K) denotes the category of Harish-Chandra (g, K)–modules.
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Definition 1.2. Let l ∈ Z≥0 and γ = l2 − 1. Let HCl(g, K) be the full subcategory of 
HC(g, K) consisting of such Harish-Chandra modules M for which there exists m ∈ Z>0
(depending on M) such that (C − γI)m ·M = 0.

We have the following standard result.

Lemma 1.3. The category HCl(g, K) is a full subcategory of HC(g, K). For any object M
of HCl(g, K) we have a direct sum decomposition

M =
⊕
i∈Z

M−l−1+2i

and its g–module structure can be visualized by the following (infinite) diagram of finite 
dimensional vector spaces and linear maps:

· · · M−l−1 M−l+1 · · · Ml−1 Ml+1 · · · .
X X X X X X

YYYYYY

(1.4)

We call (1.4) a diagram description of a Harish-Chandra module M ∈ HCl(g, K) (see 
also [31] for a detailed treatment of various classes of representations of g).

For any p ∈ Z, consider the following fragment of (1.4):

Mp−1 Mp+1.

X

Y

A calculation shows that

XY = 1
4
(
C −H2 + 2H

)
= 1

4
(
C − (p2 − 1)

)
,

Y X = 1
4
(
C −H2 − 2H

)
= 1

4
(
C − (p2 − 1)

)
.

(1.5)

As a consequence of (1.5), we obtain the following statements about the diagram de-
scription (1.4) of M ∈ HCl(g, K):

• X|Mp−1 is an isomorphism for p �= ±l.
• Y |Mp+1 is an isomorphism for p �= ±l.
• For p = ±l, the corresponding endomorphisms XY and Y X are nilpotent.

Let M ψ−−−→ N be a morphism in the category HCl(g, K). Then for any i ∈ Z we have: 
ψ(Mi) ⊆ Ni and for any p ∈ Z the following diagram is commutative:
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Mp−1 Mp+1

Np−1 Np+1

ψp−1 ψp+1

XM

YM

XN

YN

(1.6)

where ψp±1 := ψ
∣∣
Mp±1

. Conversely, let M, N ∈ HCl(g, K) and 
(
Mi

ψi−−−→ Ni

)
i∈Z be any 

family of linear maps such that the diagram (1.6) is commutative for any p ∈ Z. We put 
ψ = ⊕i∈Zψi. Then M

ψ−−−→ N is a morphism in the category HCl(g, K).

1.2. Path algebras

Let D = C�t�, m = (t) and

A =
(

D m m

D D m

D m D

)
⊂ Mat3×3(D) and B =

(
D m

D D

)
⊂ Mat2×2(D). (1.7)

Note that the algebra B is isomorphic to the arrow ideal completion of the path algebra 
of the cyclic quiver

− +
a

b

, (1.8)

whereas A is isomorphic to the arrow ideal completion of the path algebra of the so-called 
Gelfand quiver

− ∗ +
a−

b−

a+

b+

, a−b− = a+b+. (1.9)

Remark 1.4. The visualization of the Gelfand quiver in (1.9) is the usual one, but in this 
work another one naturally emerges. We will apply the following identification without 
further mentioning:⎡⎢⎢⎢⎣ − ∗ +

a−

b−

a+

b+

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣ − ∗ +
a−

b− a+

b+

⎤⎥⎥⎥⎦ .
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Example 1.5. The isomorphisms between B and A and the completed path algebras 
of (1.8) and (1.9) can be implemented as follows:

a −→
( 0 0

1 0

)
, b −→

( 0 t
0 0

)
;

a− −→
(

0 t 0
0 0 0
0 0 0

)
, a+ −→

(
0 0 t
0 0 0
0 0 0

)
, b− −→

(
0 0 0
1 0 0
0 0 0

)
, b+ −→

(
0 0 0
0 0 0
1 0 0

)
.

More graphically, a matrix with a single nonzero, monomial entry corresponds to a path, 
whose source and target are recorded by its position. The column position records the 
source and the row position records the target of a path. In the case of the cyclic quiver 
we assign the labels “−” and “+” to the first and second position, respectively. The 
exponent of t in a monomial records the number of times a path arrives at “−”. For 
instance, we next depict the path starting at “+” and ending at “−” with 2 loops and 
the reverse path together with the corresponding elements of B:

− +
(

0 t3

0 0

)
, − +

( 0 0
t2 0

)
.

The composition of the left with the right path yields five loops starting at “+”, corre-
sponding to

(
0 t3

0 0

)( 0 0
t2 0

)
=

( 0 0
0 t5

)
∈ B.

In the case of the Gelfand quiver, the source and target “∗”, “−”, and “+” in that 
order correspond to the positions in the matrix. The exponent of t records the number 
of times a path arrives at “∗”. It is crucial for this correspondence that the two loops 
starting at “∗” are considered equivalent by the relation a−b− = a+b+ in (1.9).

In what follows, Rep(A) and Rep(B) denote the categories of finite dimensional left 
A–modules and B–modules. They are equivalent to the categories of finite dimensional 
nilpotent representations of (1.9) and (1.8).

The cyclic quiver Let M ∈ HC0(g, K), whose diagram description is (1.4). We use the 
following notation:

Z− = X
∣∣
M−1

and Z+ = Y
∣∣
M+1

. (1.10)

Proposition 1.6. There is an equivalence of categories

HC0(g,K) E−−−→ Rep(B) (1.11)

given on the level of objects by the assignment

M  E−−−→

⎡⎢⎢⎣ V− V+

A

B

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣ M−1 M+1

Z−

Z+

⎤⎥⎥⎥⎦ . (1.12)
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Proof. Let M and N be a pair of objects of HC0(g, K) and M
ψ−−−→ N be any morphism. 

Commutativity of the diagram (1.6) for p = 0 implies that the assignment (1.12) is 
functorial. Moreover, for any n ∈ Z>0 we have:

ψ2n+1 =
(
XN

)n
ψ1

(
XM

)−n and ψ−2n−1 =
(
XN

)−n
ψ−1

(
XM

)n
. (1.13)

Hence, ψ1 = 0 = ψ−1 implies that ψ = 0. As a consequence, the functor E is faithful.
Now we prove that E is full. Let φ±1 : M±1 −→ N±1 be linear maps such that the 

diagram

M−1 M+1

N−1 N+1

φ−1 φ+1

XM

YM

XN

YN

(1.14)

is commutative. For any n ∈ Z>0 consider the linear maps M±2n±1
φ±2n±1−−−−−→ N±2n±1

given by the formulae φ2n+1 =
(
XN

)n
φ1

(
XM

)−n and φ−2n−1 =
(
XN

)−n
φ−1

(
XM

)n. It 
follows by construction that φ2n+1XM = XNφ2n−1 for all n ∈ Z. It can be checked that 
φ2n−1YM = YNφ2n+1 for all n ∈ Z, too. We put: φ := ⊕n∈Zφ2n+1. Then M

φ−−−→ N is a 
morphism in HC0(g, K). Hence, the functor E is full, as asserted.

It remains to be proven that E is essentially surjective. Take an arbitrary nilpotent 
representation

W =

⎡⎢⎢⎣ V− V+

A

B

⎤⎥⎥⎦
of the cyclic quiver (1.8). For any n ∈ Z>0 we put: M2n+1 = V+ and M−2n−1 = V−. Let 
M = ⊕n∈ZM2n+1. We define X, Y, H ∈ EndC(M) using the following rules:

• H
∣∣
M2n+1

:= (2n + 1)Id, X(M2n−1) ⊆ M2n+1 and Y (M2n+1) ⊆ M2n−1 for all n ∈ Z.
• X

∣∣
M−1

:= A and Y
∣∣
M1

:= B.
• X

∣∣
M2n−1

:= Id for all n �= 0.

A description of Y requires more efforts. We first introduce operators C± ∈ EndC(V±)
by the formulae

AB = 1(
C+ + I

)
and BA = 1(

C− + I
)
. (1.15)
4 4
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Then for any n ∈ Z>0 we define the corresponding linear map

Mp+1 = V+
Y−−−→ V+ = Mp−1

by the rule: Y = 1
4
(
C+ − (p2 − 1)I

)
, where p = 2n. Analogously, for any n ∈ Z<0 and 

p = 2n we set:

Y := 1
4
(
C− − (p2 − 1)I

)
: Mp+1 = V− −−→ V− = Mp−1.

It can be checked that X, Y, H ∈ EndC(M) satisfy the identities (1.1) and hence define 
the structure of a g-module on the vector space M .

Let (u±
1 , . . . , u

±
m±) be bases of V±. Then u+

1 , . . . , u
+
m+

, u−
1 , . . . , u

−
m− ∈ M generate M

as a g-module. Finally, it can be shown that the Casimir element C defined by (1.2)
acts on M2n+1 = V+ as C+ and on M−2n−1 = V− as C− for any n ∈ Z≥0. It follows 
that (C + I)mM = 0, where m = max{m+, m−}. Summing up, M ∈ HC0(g, K) and 
E(M) ∼= W . Hence, the functor E is fully faithful and essentially surjective, hence an 
equivalence of categories. �
The Gelfand quiver Let l ∈ Z>0 and M ∈ HCl(g, K), whose diagram description 
is (1.4). We use the following notation:

X− = X
∣∣
M−l−1

, X+ = X
∣∣
Ml−1

and Xi = X
∣∣
M−l−1+2i

for 1 ≤ i ≤ l − 1;

Y− = Y
∣∣
M−l+1

, Y+ = Y
∣∣
Ml+1

and Yi = Y
∣∣
M−l+1+2i

for 1 ≤ i ≤ l − 1;

X∗ = Xl−1 · · ·X1 and Y∗ = Y1 · · ·Yl−1.

(1.16)

Lemma 1.7. In the above notation (1.16), the following identities are true:

X∗X−Y− = Y+X+X∗ and X−Y−Y∗ = Y∗Y+X+.

Proof. We only show the first statement since a proof of the second one is completely 
analogous. The commutator relation

[
X l, Y

]
= lX l−1(H + l − 1)

implies:

X∗X−Y− = X lY
∣∣
M−l+1

= Y X l
∣∣
M−l+1

+ lX l−1(H + l − 1)
∣∣
M−l+1

= Y X l
∣∣
M−l+1

= Y+X+X∗. �
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Lemma 1.8. Let l ∈ Z>0 and M be an object of HCl(g, K) with diagram description

· · · M−l−1 M−l+1 · · · Ml−1 Ml+1 · · ·

X− X1 Xl−1 X+

Y+Yl−1Y1Y−

(1.17)

Then

M−l−1 M−l+1 Ml+1

X− X+X∗

X−1
∗ Y+Y−

and M−l−1 Ml−1 Ml+1

Y −1
∗ X− X+

Y+Y−Y∗

(1.18)

are nilpotent representations of the Gelfand quiver (1.9) which are moreover isomorphic 
(as before, X∗ = Xl−1 · · ·X1 and Y∗ = Y1 · · ·Yl−1).

Proof. The fact that (1.18) are representations of the Gelfand quiver follows from 
Lemma 1.7. The requested isomorphism of representations is constructed as follows:

M−l−1 M−l+1 Ml+1

M−l−1 Ml−1 Ml+1

T X∗ I

X− X+X∗

X−1
∗ Y+Y−

Y −1
∗ X− X+

Y+Y−Y∗

(1.19)

First note that both squares in the right part of (1.19) are commutative. To define T , 
note that

Y∗X∗ = Y1 . . . Yl−1Xl−1 . . . X1 = p(C1),

where p(t) = 1
4l−1 (t − γ1) . . . (t − γl−1) ∈ C[t] for appropriate γ1, . . . , γl−1 ∈ Z, which are 

all different from γ. We put T = p(C0), where C0 = C
∣∣
M−l−1

. It follows that T is an iso-
morphism of vector spaces. The commutativity of both left squares of the diagram (1.19)
follows in particular from the fact that C is a central element of U(g). �
Theorem 1.9. For any l ∈ Z>0 there is an equivalence of categories

HCl(g,K) E−−−→ Rep(A) (1.20)
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given on the level of objects by the assignment

M  E−−−→

⎡⎢⎢⎢⎣ V− V∗ V+

A−

B−

A+

B+

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣ M−l−1 M−l+1 Ml+1

X− X+X∗

X−1
∗ Y+Y−

⎤⎥⎥⎥⎥⎦ .

(1.21)

Proof. Let M ψ−−−→ N be a morphism in HCl(g, K). We claim that the following diagram

M−l−1 M−l+1 Ml+1

N−l−1 Nl−1 Nl+1

ψ−l−1 ψ−l+1 ψl+1

X− X+X∗

X−1
∗ Y+Y−

X− X+X∗

X−1
∗ Y+Y−

(1.22)

is commutative (abusing the notation, we use same symbols for the structure maps of g-
modules M and N in their diagram descriptions). It follows from (1.6) that the left square 
of (1.22) is commutative and ψl+1X+X∗ = X+X∗ψ−l+1. Next, ψl−1X∗ = X∗ψ−l+1 and 
ψl−1Y+ = Y+ψl+1, implying that

ψ−l+1X
−1
∗ Y+ = X−1

∗ ψl−1Y+ = X−1
∗ Y+ψl+1.

Hence, the diagram (1.22) is indeed commutative, which implies that the assignment 
(1.21) is indeed functorial.

Next, similarly to the case l = 0 (see (1.13)) one can show that all linear maps 
ψ−l+1+2n can be expressed via ψ−l−1, ψ−l+1, ψl+1 and the structure maps X and Y of 
the modules M and N . This implies that the functor E is faithful. The fact that E is full 
and essentially surjective can be shown analogously to the proof of Proposition 1.6. See 
also [31, Section 3.9] for another description of an equivalence between HCl(g, K) and 
Rep(A). �
Remark 1.10. In what follows we shall use the fact that in the spirit of Lemma 1.8

E(M) ∼= M−l−1 Ml−1 Ml+1.

Y −1
∗ X− X+

Y+Y−Y∗

(1.23)
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2. Cyclic modules over A and B

We refer to [18] for basic notions and results from the representation theory of asso-
ciative algebras. Let

e∗ =
(

1 0 0
0 0 0
0 0 0

)
, e+ =

(
0 0 0
0 1 0
0 0 0

)
and e− =

(
0 0 0
0 0 0
0 0 1

)
(2.1)

be three primitive idempotents of the algebra A corresponding to three vertices of the 
Gelfand quiver (1.9). Then

P∗ = Ae∗ ∼=
(

D

D

D

)
, P+ = Ae+ ∼=

(
m

D

m

)
and P− = Ae− ∼=

(
m

m

D

)
are indecomposable projective A–modules. Conversely, any indecomposable projective 
A–module is isomorphic to P∗ or P±.

Definition 2.1. A finite dimensional A–module V is called cyclic if there exists an epi-
morphism P →→ V for an indecomposable projective A–module P .

Lemma 2.2. Any cyclic A–module is indecomposable.

Proof. Assume that V ∼= V ′⊕V ′′ is a direct sum decomposition with V ′ �= 0 �= V ′′. Take 

projective coverings P ′ f ′

−−→→ V ′ and P ′′ f ′′

−−→→ V ′′. Then P ′ ⊕ P ′′ (f ′ f ′′)−−−−−→→ V is a projective 
covering of V . It follows that P ∼= P ′ ⊕ P ′′ is decomposable. Contradiction. �
Remark 2.3. The above result is true for arbitrary semi-perfect rings (i.e. those rings for 
which any finitely generated left module has a projective cover).

Our next goal is to give a classification of cyclic A–modules.

Definition 2.4. A finitely generated A–module Q is called a lattice if it is free as a 
D–module.

The algebra A belongs to the class of the so-called nodal orders; see [16] and in 
particular [16, Example 3.18]. The study of lattices over orders is a classical subject 
of representation theory of associative algebras [18]. Consider the so-called hereditary 
envelope

H =
(

D m m

D D D

D D D

)
(2.2)

of the nodal order A (see [16] for the definition). Then any indecomposable A–lattice 
is a direct summand of A ⊕ H (this result is true for arbitrary nodal orders; see [16]). 
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As a consequence, there are only four isomorphism classes of indecomposable A–lattices: 
indecomposable projective modules P∗, P+ and P− and as well as

Q =
(

m

D

D

)
.

This fact is essential for the classification of cyclic A–modules given below.
For a finite dimensional A–module

V =

⎡⎢⎢⎢⎣ V− V∗ V+

A−

B−

A+

B+

⎤⎥⎥⎥⎦ (2.3)

we put: C± := B±A± and C∗ = A+B+ = A−B−. Let m± and m∗ be the nilpotency 
degrees of the endomorphisms C± and C∗, respectively, i.e. Cm∗+1

∗ = 0 but Cm∗∗ �= 0
etc., whereas

dim(V ) =
(
dim(V−), dim(V∗), dim(V+)

)
∈ Z3

≥0

is the dimension vector of V .
A cyclic A–module V has type i ∈ {+, −, ∗} if there exists an epimorphism Pi →→ V .

Theorem 2.5. Let V be a cyclic A–module of type i ∈ {+,−, ∗}. Then its isomorphism 
class is uniquely determined by the corresponding dimension vector dim(V ). For d ∈ Z≥0, 
the possibilities are as follows:

(I) Cyclic modules of type “∗”. Possible dimension vectors are:

(a) (d, d + 1, d),
(b) (d + 1, d + 1, d + 1),
(c) (d, d + 1, d + 1),
(d) (d + 1, d + 1, d).

For all these representations we have: m∗ = d + 1.
(II) Cyclic modules of type “+”. Possible dimension vectors are:

(a) (d, d, d + 1).,
(b) (d, d + 1, d + 1),
(c) (d + 1, d + 1, d + 1),
(d) (d − 1, d, d + 1) (it exists only for d ≥ 1).

For these cyclic modules we have: m+ = d + 1.
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(III) A description of the cyclic modules of type “−” is symmetric to those given in (II). 
Specifically, possible dimension vectors are:

(a) (d + 1, d, d).,
(b) (d + 1, d + 1, d),
(c) (d + 1, d + 1, d + 1),
(d) (d + 1, d, d − 1) (it exists only for d ≥ 1).

For these cyclic modules we have: m− = d + 1.

Proof. Let V be a cyclic A–module and P π−−→→ V be its projective cover. Consider the 
short exact sequence

0 −−→ N
ı−−−→ P

π−−−→ V −−→ 0.

Note that P is free viewed as a D–module. Since D is a principal ideal domain and N
is a D-submodule of P , N is free over D as well and thus is an A–lattice. As V is a 
D–module of finite length, we have:

K⊗N ∼= K⊗ P ∼= U :=
(

K

K

K

)
,

where K = C( (t) ). Hence, N is an indecomposable A–lattice, i.e. N ∈
{
P∗, P±, Q

}
. Next, 

we can view P and N as subsets of U . Then we get:

HomA(N,P ) =
{
a ∈ K : aN ⊆ P

}
=

{
a ∈ D : aN ⊆ P

}
.

It follows that any non-zero A–module map N −→ P is injective and its cokernel is a 
cyclic A–module. We hence have the following cases, corresponding to the enumeration 
in the Theorem 2.5.

(I) Cyclic modules of type “∗”.

(a) The dimension vector of

cok
(
Q

td−−→ P∗
)

= cok
(( m

D

D

)
td−−→

(
D

D

D

))
is (d, d + 1, d).

(b) The dimension vector of

cok
(
P∗

td+1

−−−→ P∗
)

= cok
((D

D

D

)
td+1

−−−→
(

D

D

D

))
is (d + 1, d + 1, d + 1).
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(c) The dimension vector of

cok
(
P−

td−−→ P∗
)

= cok
(( m

m

D

)
td−−→

(
D

D

D

))
is (d, d + 1, d + 1).

(d) The dimension vector of

cok
(
P+

td−−→ P∗
)

= cok
(( m

D

m

)
td−−→

(
D

D

D

))
is (d + 1, d + 1, d).

(II) (a) The dimension vector of

cok
(
P∗

td+1

−−−→ P+

)
= cok

((D

D

D

)
td+1

−−−→
(

m

D

m

))
is (d, d, d + 1).

(b) The dimension vector of

cok
(
Q

td+1

−−−→ P+

)
= cok

(( m

D

D

)
td+1

−−−→
(

m

D

m

))
is (d, d + 1, d + 1).

(c) The dimension vector of

cok
(
P+

td+1

−−−→ P+

)
= cok

(( m

D

D

)
td+1

−−−→
(

m

D

m

))
is (d + 1, d + 1, d + 1).

(d) The dimension vector of

cok
(
P−

td−−→ P+

)
= cok

(( m

m

D

)
td−−→

(
m

D

m

))
is (d − 1, d, d + 1) with d ≥ 1.

The assertion about the nilpotency degrees m± and m∗ follows from the observation 
that C∗ (respectively, C±) is a nilpotent Jordan block of size dim(V∗) (respectively, 
dim(V±)). �
Remark 2.6. Theorem 2.5 asserts that cyclic A–modules are determined by purely “dis-
crete data”: their types and dimension vectors. It is not true in general, even in the case 
of arbitrary nodal orders. For example, let N = C�x, y�

//
(xy). Then for n, m ∈ Z>0 and 
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λ ∈ C∗ the module V(m,n,λ) = N
/
(xm − λyn) is cyclic. However, V(m,n,λ) ∼= V(m′,n′,λ′) if 

and only if (m, n, λ) = (m′, n′, λ′).

Remark 2.7. The problem of the classification of all indecomposable finite dimensional 
A–modules was posed by I. Gelfand in [25]. In 1973 Nazarova and Roiter proved that 
Rep(A) is representation tame, reducing the problem of the description of its indecompos-
able objects to a certain problem of linear algebra (matrix problem). However, the correct 
combinatorics of indecomposables was obtained only in 1988 by Bondarenko [4,5]. Inde-
pendently and about the same time, Crawley-Boevey gave another solution of Gelfand’s 
problem using a completely different approach [17]. In 2004 Burban and Drozd proved 
that the derived category Db

(
Rep(A)

)
is also representation tame and gave an explicit 

description of the corresponding indecomposable complexes of projective modules [15]. 
See also [26] for further elaborations of this approach.

Remark 2.8. Since B is a hereditary order, any indecomposable finite dimensional 
B–module is cyclic; see for instance [19]. Let

V =

⎡⎢⎢⎢⎢⎣ V− V+

A+

A−

⎤⎥⎥⎥⎥⎦
be a nilpotent representation of (1.8). We put: C± := A∓A±. Let m± be the nilpotency 
degree of C± and dim(V ) =

(
dim(V−), dim(V+)

)
the dimension vector of V . Let

e+ =
( 1 0

0 0

)
∈ B and e− =

( 0 0
0 1

)
∈ B.

We put:

P+ = Be+ ∼=
(
D

D

)
and P− = Be− ∼=

(
m

D

)
.

Cyclic B–modules are up to isomorphism characterized by their types and dimension 
vectors. Let d ∈ Z≥0.

(I) Cyclic modules of type “+” are the following.

(a) The dimension vector of

cok
(
P−

td−−→ P+

)
= cok

((
m

D

) td−−→
(
D

D

))
is (d, d + 1).
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(b) The dimension vector of

cok
(
P+

td−−→ P+

)
= cok

((
m

D

) td+1

−−−→
(
D

D

))
is (d + 1, d + 1).

For both types of cyclic modules we have: m+ = d + 1.
(II) The classification of cyclic B–modules of type “−” is analogous.

3. From polyharmonic Maaß forms to quiver representations

We describe and classify quiver representations associated to polyharmonic weak Maaß 
forms and provide in each case of the classification polyharmonic weak Maaß forms in 
all possible weights that yield the relevant quiver representation. The classification is 
done in Section 3.3 by linking it to the classification of cyclic quiver representations from 
Section 2. Our modular realizations are given in Section 5.

The representation theoretic labels that arise in Section 2 do not match the ones for 
harmonic Maaß forms that appeared in work of Bringmann–Kudla [7]. We provide a 
translation in Section 3.5.

3.1. Polyharmonic Maaß forms

The group G = SL2(R) acts on the upper half-plane H = {τ = x + iy ∈ C : Im(τ) >
0} by Möbius transformations:

(
a b
c d

)
τ = aτ + b

cτ + d
.

For k ∈ Z, we obtain the weight-k slash action on functions f : H −→ C defined by(
f
∣∣
k
g
)
(τ) = (cτ + d)−kf(gτ), g =

(
a b
c d

)
∈ SL2(R).

Given k ∈ Z, we consider the weight-k Maaß lowering and raising operators

Lk = −2iy2∂τ and Rk = 2i∂τ + ky−1,

and the Maaß–Laplace operator

Δk = −y2(∂2
x + ∂2

y) + iky(∂x + i∂y) = −Rk−2 Lk = −(Lk+2Rk + k), (3.1)

acting on the space of smooth functions on H. We also define iterated versions of the 
lowering and raising operators by

Lj
k = Lk−2(j−1) ◦ · · · ◦ Lk−2 ◦ Lk and Rj

k = Rk+2(j−1) ◦ · · · ◦ Rk+2 ◦ Rk.
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For k ∈ Z≤0, we define the flipping operator

Fk f = y−k

(−k)! R−k
k f . (3.2)

Closely related to this, we record that for all functions f on H and all k ∈ Z, γ ∈ SL2(R), 
we have

yk
(
f
∣∣
k
γ
)

=
(
yk f

)∣∣
−k

γ. (3.3)

Definition 3.1. Let Γ ⊂ SL2(Z) be a finite index subgroup and ρ : Γ −→ GL(V (ρ)) a 
representation on a finite dimensional, complex vector space V (ρ). We call a smooth 
function f : H −→ V (ρ) a polyharmonic weak Maaß form for ρ of weight k ∈ Z and 
depth d ∈ Z≥0, if

(i) f |kγ = ρ(γ)f for all γ ∈ Γ,
(ii) Δd+1

k f = 0,
(iii) ‖(f |kγ)(τ)‖ � exp(ay) as y −→ ∞ for some a ∈ R, some norm ‖ · ‖ on V (ρ), and 

all γ ∈ SL2(Z).

The space of such functions will be denoted by H(d)
k (ρ). If ρ is the trivial representation, 

we may instead write H(d)
k (Γ). We say that a nonzero f ∈ H(d)

k (ρ) has exact depth d

if d = 0 or if f �∈ H(d−1)
k (ρ).

Remark 3.2. In analogy with the scalar-valued harmonic case, the first and third con-
dition are compatible with products: Given polyharmonic weak Maaß forms f and g

of weights k1 and k2 for representations ρ1 and ρ2, the tensor product yields a func-
tion f ⊗ g that satisfies the first condition of Definition 3.1 for weight k1 + k2 and the 
representation ρ1 ⊗ ρ2, and the third one holds as well.

The second condition in Definition 3.1, however, is generally not compatible with 
products, which leads us to our considerations in Section 4.5.

Remark 3.3. In their seminal work [13] Bruinier and Funke introduced the notion of 
harmonic weak Maaß forms for finite index subgroups of SL2(Z) and its metaplectic 
cover (in our notation these are the forms of exact depth d = 0).

Remark 3.4. Lagarias–Rhoades [29] investigated the space of polyharmonic Maaß forms 
and showed that the Taylor coefficients of certain Eisenstein series can be used to build 
bases for these spaces. Their results were refined by Matsusaka [30] to apply to spaces 
of polyharmonic weak Maaß forms (i.e. forms that satisfy a growth condition as in (iii) 
as opposed to a polynomial growth condition that Maaß forms satisfy).

Example 3.5. Following Verdier [33] Bringmann and Kudla introduce certain vector-
valued harmonic weak Maaß forms in [7]. We let k ∈ Z≥0 and set m = −k. By Polm
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we denote the space of polynomials of degree at most m in the variable X. The group 
SL2(R) acts on Polm via

(
ρm(γ)p

)
(X) = (−cX + a)mp

(
dX − b

−cX + a

)
, γ =

(
a b
c d

)
.

Let r ∈ Z with 0 ≤ r ≤ m and define

er,m−r(τ)(X) = (−1)m−r

r! yr−m(X − τ)r(X − τ)m−r.

For γ =
(
a b
c d

)
∈ SL2(R) we then have

er,m−r(γτ) = (cτ + d)m−2rρm(γ)er,m−r(τ),

that is er,m−r has weight m − 2r. The holomorphic function em,0 is a harmonic weak 
Maaß form of weight −m and type ρm.

The functions er,m−r in Example 3.5 behave as follows under the lowering and raising 
operators:

Lm−2rer,m−r = (r + 1)(m− r) er+1,m−r−1, Rm−2rer,m−r = er−1,m−r+1. (3.4)

In particular, L−mem,0 = 0 and Rme0,m = 0. For later reference we also note that

Δm−2r er,m−r = −(r + 1)(m− r) er,m−r (3.5)

and

ym−2r er,m−r = (−1)m(m− r)!
r! em−r,r. (3.6)

Finally, we note that the behavior of the functions in Example 3.5 under the flipping 
operator is

F−mem,0 = (−1)m em,0. (3.7)

3.2. Automorphic forms

The map G/K −−→ H, [g] −→ gi is an isomorphism of real manifolds and K is the 
stabilizer of the point i ∈ H. This allows us to lift polyharmonic weak Maaß forms to 
“weak” automorphic forms.

Recall the setting of Definition 3.1. We associate to f ∈ H(d)
k (ρ) a smooth function

ϕf : G −→ V (ρ), g −−→
(
f
∣∣
k
g
)
(i). (3.8)
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We see that ϕf satisfies the following properties:

ϕf (hg) = ρ(h)
(
ϕf (g)

)
for all h ∈ Γ and g ∈ G;

ϕf (gkθ) = exp(ikθ)ϕf (g) for all g ∈ G and θ ∈ R,
(3.9)

where kθ = exp(iθH) ∈ K is given in (1.3). The second relation in (3.9) implies that we 
have Hϕf = kϕf . Further, the condition Δd+1

k f = 0 in Definition 3.1 translates to

(
C − (k2 − 2k)

)d+1
ϕf = 0, (3.10)

where C is the Casimir element in (1.2), which generates z ⊂ U(g).
Consider the vector space

A
(
G,Γ, ρ

)
:=

{
H

ϕ−−−→ W :
ϕ(hg) = ρ(h)

(
ϕ(g)

)
for all h ∈ Γ, g ∈ G,

ϕ is K-finite and z-finite

}
. (3.11)

The space A
(
G, Γ, (W, ρ)

)
is naturally a (g, K)–module and for any f ∈ H(d)

k (ρ) we have: 
ϕf ∈ A (G, Γ, ρ).

Remark 3.6. Compared to the definition of the space of automorphic forms the space 
in (3.11) lacks an (exponential) growth condition mirroring the one in Definition 3.1. 
Since we are merely interested in (g, K)–submodules that are generated by ϕf for f ∈
H(d)

k (ρ), this does not affect our further discussion.

3.3. Harish-Chandra modules and quiver representations

We continue to work in the setting of Definition 3.1. We attach to a function f ∈ Hk(ρ)
the Harish-Chandra module M(ϕf ) ⊂ A (G, Γ, ρ) generated by the function ϕf .

Let

γ = k2 − 2k = (k − 1)2 − 1.

We define l ∈ Z≥0 according to the following cases:

l = 1 − k, if k < 1;

l = 0 = 1 − k = k − 1, if k = 1;

l = k − 1, if k > 1.

(3.12)

With this notion, we have γ = l2 − 1 and M(ϕf ) ∈ HCl(g, K). We assume that f �= 0
has exact depth d. Then d + 1 ∈ Z>0 is the nilpotency degree of f with respect to Δk.

Our next goal is to characterize the quiver representation E
(
M(ϕf )

)
.
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Theorem 3.7. For any nonzero f ∈ H(d)
k (ρ) of exact depth d, the corresponding quiver 

representation Vf := E
(
M(ϕf )

)
is cyclic. In particular, the Harish-Chandra module 

M(ϕf ) is indecomposable.

Proof. First note that

M(ϕf ) =
〈
Xa1Y b1 . . . XasY bsϕf

∣∣ s ∈ Z≥0, a1, . . . , as, b1, . . . , bs ∈ Z≥0
〉
C
. (3.13)

Recall that for any k �= 1 we have an equivalence of categories HCl(g, K) E−−→ Rep(A), 
where A is the Gelfand quiver (1.9).

Consider the case k < 1. Then l = 1 − k. We claim that Vf is a cyclic A–module of 
type ∗. To show this, we use the description of the functor E given in Theorem 1.9. Let

Vf =

⎡⎢⎢⎢⎣ V− V∗ V+

A−

B−

A+

B+

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣ M−l−1 M−l+1 Ml+1

X− X+X∗

X−1
∗ Y+Y−

⎤⎥⎥⎥⎥⎦ .

We have the following identifications: A− = X−, B− = Y− and B+ = X+X∗. Recall 
that A−B− = C∗ = A+B+. It follows from (3.13), the identities (1.5) and the fact that 
C is central in U(g) that the following statements are true:

V∗ = spanC
{
Cn

∗ ϕf

∣∣n ∈ Z≥0
}

and V± = spanC
{
B±C

n
∗ ϕf

∣∣n ∈ Z≥0
}
. (3.14)

Now let us view Rep(A) as the category of finite dimensional modules over the C-algebra 
A given by (1.7). Let e∗ be the primitive idempotent corresponding to the vertex ∗ of the 
Gelfand quiver; see (2.1). Note that for any W ∈ Ob

(
Rep(A)

)
, we have an isomorphism 

of complex vector spaces

HomA(Ae∗,W ) ∼= e∗W = W∗,

which assigns to a homomorphism Ae∗
ϑ−−→ W the element ϑ(e∗) ∈ W∗.

Consider now the homomorphism of A-modules Ae∗
ξ−−−→ Vf which is determined by 

the condition ξ(e∗) = ϕf ∈ M−l+1 = V∗. It follows from A-linearity of ξ and the descrip-
tion (3.14) of the vector spaces V∗ and V± that ξ is an epimorphism. As a consequence, 
Vf is cyclic of type ∗, as asserted. Moreover, the nilpotency degree d + 1 of f is equal to 
m∗ (which is the nilpotency degree of C∗). Since E is an equivalence of categories, the 
Harish-Chandra module M(ϕf ) is indecomposable.

The case k > 1 is analogous. We have: k = l + 1 and Vf is a cyclic A–module of type 
+. We have: ϕf ∈ V+ and d + 1 = m+ is the nilpotency degree of the endomorphism 
C+ = B+A+.
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The case k = 1 is exceptional since in this case we have an equivalence of categories 
HC0(g, K) E−−→ Rep(B), where B is given by (1.8). In this case

Vf =

⎡⎢⎢⎢⎢⎣ V− V+

Z+

Z−

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣ M−1 M1

X

Y

⎤⎥⎥⎥⎦
is a cyclic representation of B of type + and d + 1 = m+ is the nilpotency degree of 
C+ := Z+Z−. �
Remark 3.8. It is not true in general that a g-module generated by a cyclic vector 
is automatically indecomposable.4 Indeed, let U and U ′ be two non-isomorphic finite 
dimensional simple representations of g. Then there are precisely two non-trivial g-
submodules of U⊕U ′: 

{
(u, 0)

∣∣u ∈ U
}

and 
{
(0, u′)

∣∣u′ ∈ U ′} (this statement follows easily 
from the fact any finite dimensional g-module is a direct sum of simple ones and there 
are no non-zero morphisms between non-isomorphic simple representations). As a con-
sequence, for any 0 �= u ∈ U and 0 �= u′ ∈ U ′ the vector (u, u′) ∈ U ⊕ U ′ is cyclic.

3.4. Classification by representation theoretic labels

Let f ∈ H(d)(ρ) be a polyharmonic form of weight k ∈ Z and exact depth d. Recall the 
operators C∗ = A−B− and C+ = Z+Z− from the proof of Theorem 3.7. The correspon-
dence between the Harish-Chandra module M(ϕf ) and the cyclic quiver representation 
Vf = E

(
M(ϕf )

)
classified in Theorem 2.5 and Remark 2.8 is as follows. Labels prefixed 

with G stand for representations of the Gelfand quiver, and those prefixed with C stand 
for representations of the cyclic quiver.

(GI) Let k < 1. Then Vf be a cyclic representation of A of type “∗” and m∗ = d + 1. 
Writing ψf := Cd

∗ (ϕf ) we have the following cases:

(a) Vf has type GIa if Y−ψf = 0 and X+X∗ψf = 0.
(b) Vf has type GIb if Y−ψf �= 0 and X+X∗ψf �= 0.
(c) Vf has type GIc if Y−ψf = 0 but X+X∗ψf �= 0.
(d) Vf has type GId if Y−ψf �= 0 and X+X∗ψf = 0.

(GII) Let k > 1. Then Vf be a cyclic representation of A of type “+” and m+ = d + 1.

(1) Assume that d = 0. We have the following cases:

4 The second-named author is grateful to Volodymyr Mazorchuk for drawing his attention to this fact.
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(a) Vf has type GIIa if Y+ϕf = 0.
(b) Vf has type GIIb if Y+ϕf �= 0 but Y−Y∗Y+ϕf = 0.
(c) Vf has type GIIc if Y−Y∗Y+ϕf �= 0.
(d) Type GIId does not occur for d = 0.

(2) Assume that d ≥ 1. Writing ψf := Cd−1
∗ Y+ϕf , where we note that X+ψf =

Cd
+ϕf �= 0, we have the following cases:

(a) Vf has type GIIa if Y−Y∗ψf �= 0 and C∗ψf = 0.
(b) Vf has type GIIb if Y−Y∗ψf �= 0, C∗ψf �= 0, and Y−Y∗C∗ψf = 0.
(c) Vf has type GIIc if Y−Y∗ψf �= 0 and Y−Y∗C∗ψf �= 0.
(d) Vf has type GIId if Y−Y∗ψf = 0.

(CI) Let k = 1. Then Vf is a cyclic representation of B of type “+” and d = m+ + 1. 
Writing ψf := Cd

+ϕf we have the following cases:

(a) Vf has type CIa if Y ψf = 0.
(b) Vf has type CIb if Y ψf �= 0.

3.5. Classification by BK-style labels

The classification in Section 3.4 matches with the one obtained by Bringmann and 
Kudla in Theorem 5.2 of [7] in the case d = 0. However, the labels, which are natural from 
the point of view of representation theory, do not agree with the ones of Bringmann–
Kudla, which are natural from the perspective of modular forms. Table 1 provides a 
translation between them. In higher depth we encounter an additional Case IIId, which 
corresponds to the representation theoretic Case GIId.

Let f ∈ H(d)(ρ) be a polyharmonic form of weight k ∈ Z and exact depth d. The 
Harish-Chandra module M(ϕf ) as in Section 3.4 is classified using the labels of Bring-
mann–Kudla as follows:

(I) k < 1.

(Ia) L Δd f = 0 and R1−k Δd f = 0.
(Ib) L Δd f = 0 and R1−k Δd f �= 0.
(Ic) L Δd f �= 0 and R1−k Δd f = 0.
(Id) L Δd f �= 0 and R1−k Δd f �= 0.

(II) k = 1.

(IIa) L Δd f = 0.
(IIb) L Δd f �= 0.
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(III) k > 1.

(IIIa) Lk Δd−1 f �= 0, if d ≥ 1, and L Δd f = 0.
(IIIb) L Δd f �= 0 and Lk Δd f = 0.
(IIIc) Lk Δd f �= 0.
(IIId) d ≥ 1 and Lk Δd−1 f = 0.

To translate the classification in Section 3.4, it suffices to recall the notation in (1.10)
and (1.16). The operators X and Y restricted to Mk yield nonzero multiples of Lk

and Rk. In Cases IIIb and IIIc, we have removed extraneous conditions. For example, in 
Case IIIc Lk Δd f �= 0 implies Lk Δd−1 f �= 0, which is therefore omitted.

Table 1
Translation between labels assigned by Bringmann–Kudla and representation theoretic labels 
emerging in Section 2, including page references to their modular and representation theoretic 
realizations.

BK label Ia Ib Ic Id IIa IIb IIIa IIIb IIIc IIId
mod. form on p. 751 751 752 752 753 753 754 754 754 755
repr. label GIa GIc GId GIb CIa CIb GIIa GIIb GIIc GIId
repr. on p. 727 728 728 727 729 730 728 728 728 728

4. Construction of spectral derivatives and modular realizations

In this section we give an existence theorem for spectral derivatives. In particular, we 
employ our theorem in Section 5 to provide examples that realize all possible modules 
that occur in our classification.

4.1. Commutation relations for differential operators

To perform the calculations in Section 4.5, we need several algebraic relations for the 
Maaß operators. We preserve the subscripts of all operators, but when viewing Δ, L, 
and R as graded operators they can be suppressed for clarity. In particular, the next 
relations can be verified by merely using the commutator [L, R] = −k, which follows 
from (3.1) and in which k on the right hand side is viewed as a graded scalar as well. 
We have the commutator relations for the Laplace operator:

Δk−2r Lr
k = Lr

k

(
Δk − r(k − r − 1)

)
,

Δk+2r Rr
k = Rr

k

(
Δk + r(k + r − 1)

)
;

(4.1)

And for the Maaß lowering and raising operators:

Rk−2rLr
k = −Lr−1

k

(
Δk − (r − 1)(k − r))

)
,

Lk+2r Rr
k = −Rr−1

k

(
Δk + r(k + r − 1)

)
.

(4.2)
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The Bol Identity asserts that for an integer k ≤ 0 and a weight-k harmonic function f

we have

R1−k
k f = (2π∂τ )1−k f . (4.3)

A straightforward calculation shows that for smooth functions f and g and integers k1, 
k2 we have

Δk1+k2(f · g) = (Δk1f) · g + f · (Δk2g) − (Rk1f) · (Lk2g) − (Lk1f) · (Rk2g). (4.4)

Proposition 4.1. The intertwining relations for the flipping operator and the Maaß oper-
ators, k ≤ 0, are

Lk FkΔk = −(k − 2)(k − 1)Fk−2 Lk,

−k(k + 1) Rk Fk = Fk+2 Rk(Δk + k).
(4.5)

Proof. We begin with the first identity and evaluate by a short calculation

Lk
y−k

(−k)!R
−k
k Δk f = y2−k

(−k)! R−k+1
k Δk f .

Now we write Δk = −Rk−2Lk and see

y−k+2

(−k)! R−k+1
k Δk f = −y−k+2

(−k)! R−k+1
k Rk−2Lk f = −(−k + 2)(−k + 1) Fk−2Lk f .

For the second identity we calculate

RkFk f = y−k−2

(−k)! L−kR−k
k f .

Then we use (4.1) and obtain

y−k−2

(−k)! R−k−1
k

(
Δk − k(k − k − 1)

)
f = −1

(−k)(−k − 1) Fk+2Rk

(
Δk + k

)
f . �

Proposition 4.2. We have

Δk Fk = Fk Δk,

Fk Fk = (−1)−k

(−k)!2
(
Δk + 1k

)(
Δk + 2(k + 1)

)
· · ·

(
Δk + (−k)(−1)

)
.

(4.6)

Proof. For the first identity we write f = Δkg locally and use both identities in (4.5) as 
well as (4.1) to obtain



C. Alfes et al. / Journal of Algebra 661 (2025) 713–756 739
ΔkFk f = −Rk−2LkFkΔk g = Rk−2(k − 2)(k − 1) Fk−2Lk g

= −(k − 2)(k − 1)
(k − 2)(k − 1) FkRk−2(Δk−2 + k − 2) Lkg

= −Fk(Δk − k + 2 + k − 2) Rk−2Lk g = FkΔ2
k g = FkΔk f .

For the second identity we use that for any real-analytic function g we have the identity

Rk

(
y−k R−k−2g

)
= y−k−2 (Δ−k−2 + k + 2)g.

A repeated application of this identity yields the result. �
Remark 4.3. To maintain the algebraic perspective of Section 3 on polyharmonic Maaß 
forms, we can lift the flipping operator to the automorphic forms as remarked on 
page 1738 of [7]:

φFk f = 1
(−k)!X

−kφf .

Then Propositions 4.1 and 4.2 can be verified by a Lie algebra computation. This dras-
tically reduces the calculation required for (4.5) and the first relation in (4.6).

A direct calculation shows that for smooth functions f we have

Lk Fk f = y2−k

(−k)! R1−k
k f . (4.7)

As a consequence of Proposition 4.2 if Δk f = 0, we have FkFk f = f and, compare 
for example with Proposition 5.14 of [6],

R1−k
k Fk f = (−k)!yk−2 Lk f . (4.8)

4.2. Eisenstein and Poincaré series

In this section we revisit some Eisenstein and Poincaré series that we will later use as 
an input for spectral families when constructing examples of polyharmonic Maaß forms. 
Let Γ∞ ⊂ SL2(Z) be the subgroup of upper triangular matrices.

We first define the Eisenstein series of weight k ∈ Z. Let s ∈ C with Re(s) > 1 − k
2 . 

Then we set

Ek(τ, s) =
∑

γ∈Γ∞\SL2(Z)

ys
∣∣
k
γ. (4.9)

Via analytic continuation Ek(τ, s) extends to all s ∈ C except for possible simple poles. 
We set Ek(τ) = Ek(τ, 0). The Maaß lowering and raising operators act as
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Lk Ek(τ, s) = sEk−2(τ, s + 1),

Rk Ek(τ, s) = (s + k)Ek+2(τ, s− 1).
(4.10)

In particular, we have Δk Ek(τ, s) = s(1 − k − s)Ek(τ, s). Moreover, we have

yk Ek( · , s) = E−k( · , s + k). (4.11)

Now we recall some facts on Poincaré series with exponential growth at the cusps 
following [12]. We let Mν,μ(z) and Wν,μ(z) denote the usual Whittaker functions (see 
p. 190 of [1]). For integers k and m �= 0, τ = x + iy ∈ H, and s ∈ C with Re(s) > 1, we 
define

Fk,m(z, s) =
1

2Γ(2s)

∑
γ∈Γ∞\SL2(Z)

((
− sgn(m)

)1−k(4π|m|y
)− k

2 Msgn(m) k
2 ,s− 1

2

(
4π|m|y

)
e(mx)

)∣∣∣
k
γ.

(4.12)

This Poincaré series converges for Re(s) > 1 and is an eigenfunction of Δk with eigenvalue 
s(1 − s) + (k2 − 2k)/4.

We recall its behavior under the Maaß raising and lowering operators.

Proposition 4.4. We have

Rk Fk,m(τ, s) = 4π|m|
(
s + k

2
)
Fk+2,m(τ, s),

Lk Fk,m(τ, s) = 1
4π|m|

(
s− k

2
)
Fk−2,m(τ, s).

(4.13)

Proof. Since Lk and Rk commute with the slash operator, it suffices to show the iden-
tity on the corresponding Whittaker functions. We use equations (13.4.10), (13.4.11) 
and (13.1.32) in [1] which imply the desired identity. Note that parts of these identities 
were already proven in [14] and [2]. �
Proposition 4.5. Complex conjugation yields

yk Fk,m(τ, s) = (−1)1−k(4π|m|)−k F−k,−m(τ, s). (4.14)

Proof. We have

yk
( 1

2Γ(2s)
(
− sgn(m)

)1−k(4π|m|y
)− k

2 Msgn(m) k
2 ,s− 1

2

(
4π|m|y

)
e(mx)

)∣∣
k
γ

= yk
1

2Γ(2s)
(
− sgn(m)

)1−k(4π|m|Im(γτ)
)− k

2

×Msgn(m) k
2 ,s− 1

2

(
4π|m|Im(γτ)

)
e(−mRe(γτ))(cτ + d)−k.
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Note that Im(γτ) = y(cτ + d)−1(cτ + d)−1. A short calculation then yields the desired 
result. �

We also recall the existence of spectral families of Poincaré series (compare [11] and 
[32]).

Proposition 4.6. Let f be a harmonic weak Maaß form of weight k ≤ 0. There exists an 
open neighborhood U in C of 1 − k/2 and a holomorphic family of functions (fs)s∈U on 
H, where fs is a weak Maaß form of weight k of eigenvalue s(1 − s) + (k2 − 2k)/4, and 
f1−k/2 = f .

4.3. Derivatives of spectral families: constant weight

Differentials of spectral families are one tool to provide higher depth Maaß forms. We 
briefly revisit the case of fixed weight for comparison with the later approach that allows 
us to change the weight. Prototypical fs that fit into the following setup are provided 
by Eisenstein series and Poincaré series.

Lemma 4.7. Let k be an integer, and U ⊆ C be an open neighborhood of 0. Given func-
tions fs : H −→ V for a complex vector space V that are smooth in s and τ , we assume 
that for all τ ∈ H and s ∈ U we have

Δk fs = s(1 − k − s)fs.

Then with

f (d) :=
(
∂d
s fs

)
s=0

we have

Δk f
(d) = d(1 − k) f (d−1) − d(d− 1) f (d−2). (4.15)

Proof. Since fs(τ) is smooth in s and τ , then ∂s and Δk, which is a differential operator 
with respect to τ , intertwine. For simplicity, we set ∂d

sfs = 0 if d < 0. By the product 
rule, we have

Δk ∂
d
sfs = ∂d

s Δkfs = ∂d
s s(1 − k − s)fs

= s(1 − k − s) ∂d
sfs + d(1 − k − 2s) ∂d−1

s fs − d(d− 1) ∂d−2
s fs.

Inserting s = 0 yields the statement. �
We can employ this lemma to produce polyharmonic Maaß forms from spectral fami-

lies. More specifically, we obtain a preimage of f (0) under Δd
k. Note that the case k = 1

requires special treatment.
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Corollary 4.8. Let k and f (d) be as in Lemma 4.7. Then

Δd
k

1
d!(1 − k)d f

(d) = f (0), if k �= 1; Δd
k

(−1)d

(2d)! f
(2d) = f (0), if k = 1.

4.4. Altering weights of harmonic Maaß forms

The construction of polyharmonic Maaß forms in Section 4.3 preserves the weight k

of fs. We next derive a formalism that allows us to produce polyharmonic Maaß forms 
of weight k ±m for m ∈ Z≥0 by extending the approach of Section 4.3.

Lemma 4.9. Let k and m ≥ 0 be integers, and consider a smooth function f : H −→ V

for a complex vector space V . We assume that Δk f = αf for some α ∈ C.
Writing for integers 0 ≤ r ≤ m

fL,r := er,m−r Lm−r
k f and fR,r := er,m−r Rr

kf

and fL,r = fR,r = 0 for r < 0 and r > m, we have

Δk−m fL,r =
(
α + (m− r)(m− 2r − k)

)
fL,r

− fL,r−1 + (r + 1)(m− r)
(
α + (m− r − 1)(m− r − k)

)
fL,r+1,

Δk+m fR,r =
(
α− r(m− 2r − k) −m

)
fR,r

+
(
α + r(r − 1 + k)

)
fR,r−1 − (r + 1)(m− r) fR,r+1.

Proof. We will apply (4.4) and simplify the contributions arising from the first two 
terms. To this end, recall from (3.5) the Laplace eigenvalues −(r + 1)(m − r) of er,m−r. 
From (4.1), we find that

Δk+2m−2r Lm−r
k f =

(
α + (m− r)(m− r − k + 1)

)
Lm−r
k f ,

Δk+2r Rr
kf =

(
α + r(r − 1 + k)

)
Rr

kf .

The images of er,m−r under the Maaß operators are given in (3.4). Finally, we obtain 
from (4.2) that

−Rk−2m+2r Lm−r
k f =

(
α− (m− r − 1)(m− r − k)

)
Lm−r−1
k f ,

−Lk−2r Rr
kf =

(
α− r(r − 1 + k)

)
Rr−1

k f . �
Proposition 4.10. Given a harmonic weak Maaß form f of weight k and a non-negative 
integer m ≥ k, set

fL =
min{m,m−k}∑

r=0

1
(m− r)!(m− r − k)!er,m−rLm−rf .



C. Alfes et al. / Journal of Algebra 661 (2025) 713–756 743
If m < k, then set

fL =
m∑
r=0

1
(m− r)!(1 − k)m−r

er,m−rLm−rf ,

where (a)r = a(a + 1) · · · (a + r − 1) is the Pochhammer symbol.
We have Δk−m fL = 0. Further, if fL �= 0 then any linear combination of the func-

tions er,m−rLm−rf that vanishes under Δk−m is a scalar multiple of fL.

Proof. The case m = 0 is vacuous, and we thus can and will assume that m is positive. To 
shorten notation, we adopt the notation fL,r from Lemma 4.9, write cr for the coefficient 
of fL,r in the definition of fL, and write c′r for the coefficient of fL,r in Δk−m fL. We will 
use repeatedly that for r < min{m, m −k} if m ≥ k and for 0 ≤ r < m if m < k we have

cr+1 = (m− r)(m− r − k) cr.

We apply Lemma 4.9 with α = 0 and the recursion equation for cr to find that 
for 0 ≤ r < min{m, m − k} if m ≥ k and for 0 ≤ r < m if m < k we have

c′r = (m− r)(m− 2r − k)cr − cr+1

+ (r − 1 + 1)(m− r + 1)(m− r + 1 − 1)(m− r + 1 − k)cr−1

=
(m− 2r − k

m− r − k
− 1 + r

m− r − k

)
cr+1 = 0.

We need a case distinction to check the remaining coefficients c′r. If m = k, we have

c′0 = (m− 0)(m− 0 − k)c0 = 0 and

c′1 = (0 + 1)(m− 0)(m− 0 − 1)(m− 0 − k)c0 = 0.

If m �= k, we have

c′0 = (m− 0)(m− 0 − k)c0 − c1 = (1 − 1)c1 = 0

by the recursion for cr. Still assuming that m �= k, we have for r = min{m, m − k}
if m ≥ k and r = m if m < k that

c′r = (m− r)(m− 2r − k)cr
+ (r − 1 + 1)(m− r + 1)(m− r + 1 − 1)(m− r + 1 − k)cr−1

=
(
(m− r)(m− 2r − k) + r(m− r)

)
cr = (m− r − k)cr = 0.

Finally, we consider m > k > 0, in which case we have for r = m − k + 1
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c′r = (r − 1 + 1)(m− r + 1)(m− r + 1 − 1)(m− r + 1 − k)cr−1 = 0.

This shows that Δk−m fL vanishes.
To prove the second part of the proposition, we consider the vector space

F = spanC
{
er,m−rLm−rf : 0 ≤ r ≤ m

}
,

which by Lemma 4.9 with α = 0 carries an action of Δk−m. Also from Lemma 4.9 and 
the contribution of Δk−mfL,r to fL,r−1 stated there, we see that Δk−m yields a surjective 
map from F to F/Cem,0f . In particular, its kernel has dimension at most 1 and is thus 
spanned by fL if fL �= 0. �
Example 4.11. The vector-valued modular form em,0 of weight −m from Example 3.5
that appears in case I(a) of Bringmann–Kudla’s classification matches the case k = 0
for the constant modular form f = 1 of Proposition 4.12. Note that Lm−r1 = 0 for 
0 ≤ r < m.

Proposition 4.12. Given a harmonic weak Maaß form f of weight k and an integer m >
−k, set

fR =
m∑

r=max{0,1−k}

1
(m− r)!(r + k − 1)! er,m−rRr

kf .

If m ≤ −k, set

fR =
m∑
r=0

1
(m− r)!(k)r

er,m−rRr
kf ,

where (a)r is the Pochhammer symbol as in Proposition 4.10.
We have Δk+m fR = 0. Further, if fR �= 0 then any linear combination of 

the er,m−rRr
kf that vanishes under Δk+m is a scalar multiple of fR.

Proof. The proof is analogous to the one of Proposition 4.10. We write cr for the coeffi-
cient of fR,r in the definition of fR, and write c′r for the coefficient of fR,r in Δk+m fR, 
and obtain the relation

(r + k)cr+1 = (m− r)cr

for the nonzero coefficient of er,m−rRr
kf in fR.

Lemma 4.7 with α = 0 yields that for 0 < r < min{m, 1 − k} if m > −k and 
for 0 < r < m if m ≤ −k we have
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c′r =
(
− r(m− 2r − k) −m

)
cr + (r + 1)(r + k)cr+1 − r(m− r + 1)cr−1

=
(
− r(m− 2r − k) −m

)
cr + (r + 1)(m− r)cr − r(r − 1 + k)cr = 0.

The special cases for r = 0, r = 1 − k, r = −k, and r = m follow the same pattern.
To see that Δk+m is a linear transformation of rank at least m on

F = spanC
{
er,m−rRrf : 0 ≤ r ≤ m

}
,

we note that it is surjective onto F/Ce0,mf by inspection of the contribution of fR,r

to fR,r+1 in Lemma 4.9. �
Example 4.13. The vector-valued Eisenstein series of weight 2 + m in case III(b) of 
Bringmann–Kudla’s classification matches the case k = 2 of Proposition 4.12. In (6.10) 
of [7] they consider

m∑
r=0

m!
(r + 1)!(m− r)! er,m−rRrE2, (4.16)

where E2 is the modular Eisenstein series of weight 2 and level 1.

4.5. Derivatives of spectral families: altering weight

In preparation to the construction of polyharmonic Maaß forms, we consider the action 
of the Laplace operator on spectral families.

Lemma 4.14. Let k and m ≥ 0 be integers, and U ⊆ C be an open neighborhood of 0. 
Given functions fs : H −→ V for a complex vector space V that are smooth in s and τ , 
we assume that for all τ ∈ H and s ∈ U we have

Δk fs = s(1 − k − s)fs.

We set

f
(d)
L,r :=

(
∂d
s er,m−r Lm−r

k fs

)
s=0

and f
(d)
R,r :=

(
∂d
s er,m−r Rr

kfs

)
s=0

,

and if d < 0, r < 0, or r > m set f (d)
L,r = f

(d)
R,r = 0. Then we have

Δk−m f
(d)
L,r = (m− r)(m− 2r − k) f (d)

L,r

− f
(d)
L,r−1 + (r + 1)(m− r)(m− r − 1)(m− r − k) f (d)

L,r+1

+ d(1 − k) f (d−1)
L,r + d(r + 1)(m− r)(1 − k) f (d−1)

L,r+1

− d(d− 1) f (d−2)
L,r − d(d− 1)(r + 1)(m− r) f (d−2)

L,r+1,
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Δk+m f
(d)
R,r = −

(
r(m− 2r − k) + m

)
f

(d)
R,r

+ r(r − 1 + k) f (d)
R,r−1 − (r + 1)(m− r) f (d)

R,r+1

+ d(1 − k) f (d−1)
R,r + d(1 − k) f (d−1)

R,r−1

− d(d− 1) f (d−2)
R,r − d(d− 1) f (d−2)

R,r−1.

Proof. Since fs(τ) is smooth in s and τ , we can intertwine differentials with respect to s

and τ . In particular, we can apply Lemma 4.9 to fs with α = s(1 − k − s) to compute

Δk−m

(
∂d
s er,m−r Lm−r

k fs
)

= ∂d
s

(
Δk−m er,m−r Lm−r

k fs
)

and

Δk+m

(
∂d
s er,m−r Rr

kfs
)

= ∂d
s

(
Δk+m er,m−r Rr

kfs
)
.

The result follows after simplifying the resulting right hand side in Lemma 4.9 and 
setting s = 0. �

We are now ready to produce polyharmonic Maaß forms from spectral families.

Theorem 4.15. Let U ⊆ C be an open neighborhood of 0, and k and m ≥ 0 be integers. 
Given functions fs : H −→ V for a complex vector space V that are smooth in s and τ , 
we assume that for all τ ∈ H and s ∈ U , we have

Δk fs = s(1 − k − s)fs.

For integers 0 ≤ r ≤ m and d ≥ 0, we write

f
(d)
L,r :=

(
∂d
s er,m−r Lm−r

k fs

)
s=0

and f
(d)
R,r :=

(
∂d
s er,m−r Rr

kfs

)
s=0

,

and let fL and fR be as in Propositions 4.10 and 4.12.
Assume that k ≤ 0 or k −m > 1. Given an integer d ≥ 0 there are functions

f
(d)
L ∈ spanC

{
f

(d−t)
L,r : 0 ≤ r ≤ m, 0 ≤ t ≤ d

}
with

Δd
k−m f

(d)
L = fL.

Assume that k > 1 or k + m < 1. Given an integer d ≥ 0 there are functions

f
(d)
R ∈ spanC

{
f

(d−t)
R,r : 0 ≤ r ≤ m, 0 ≤ t ≤ d

}
with

Δd
k+m f

(d)
R = fR.
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Proof. The case m = 0 follows from Corollary 4.8. We therefore assume that m is 
positive, and proceed with the following strategy. The cases of f (d)

L and f
(d)
R differ only 

in the last step. We start by identifying the C[Δk]-modules generated by f
(d)
L,r , 0 ≤ r ≤ m, 

with quotients of C[T ] ⊗V for a fixed complex vector space V of dimension m +1, which is 
independent of d. While this is merely a matter of renormalization, it allows us to relate 
the functions f

(d)
L for varying d to each other. Specifically, it enables us to reformulate 

the statement of the theorem in terms of generalized eigenvectors. Using the grading with 
respect to powers of T , we can then reduce our considerations to a problem concerning 
the interplay of three endomorphisms of V . We solve it by inspection of ranks and images 
via a coordinate projection. The ideas for f

(d)
R remain the same, but in the last step we 

use an alternating trace instead of a coordinate projection.
We consider the case of fL. We let V = Cm+1 with basis v0, . . . , vm and set

Wd :=
(
C[T ]/T d+1)⊗ V .

These are modules for R = C[T ] ⊗ End(V ) with R-module homomorphisms

Wd ↪−→ Wd+1, w −→ Tw and Wd+1 →→ Wd, w −→ w (modT d+1).

We identify V with W0.
The vector space isomorphisms

φd : Wd −−→ spanC
{
f

(d−t)
L,r : 0 ≤ r ≤ m, 0 ≤ t ≤ d

}
, T tvr −−→ 1

(d− t)! f
(d−t)
L,r

allow us to reformulate the formula for Δk−m in Lemma 4.14 as an endomorphism of Wd. 
Specifically, we have the pullback

φ∗
d Δk−m = A + TB + T 2C

with linear transformations A, B, C ∈ End(V ) defined by

Avr = (m− r)(m− 2r − k)vr − vr−1 + (r + 1)(m− r)(m− r − 1)(m− r − k)vr+1,

Bvr = (1 − k)vr + (r + 1)(m− r)(1 − k)vr+1,

Cvr = − vr − (r + 1)(m− r)vr+1,

where we set v−1 = vm+1 = 0 to simplify notation. Since d does not appear in these 
equations, we conclude that these pullbacks lift to an element Δ of R. We consider Δ as 
an element of End(Wd) for any d, depending on the context, and observe it commutes 
with Wd ↪−→ Wd+1 and Wd+1 →→ Wd.

Since we assume that k ≤ 0 or k > m, the function fL defined in Proposition 4.10
receives a contribution from em,0L0 f and is hence nonzero. Translated to the current 
notation via φ0, the same proposition implies that the kernel of Δ on W0, that is the 
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kernel of A, is spanned by the preimage of fL under φ0. Up to rescaling it equals a 
vector w0 =

∑
r crvr, cr ∈ C, with cm = (1 −k) and cm−1 = 1. Note that when referring 

to cm−1, we use our assumption that m > 0. We have k �= 1, since k ≤ 0 or k > m.
From the formula for Avr with r = m − 1 and r = m, we infer that the image of A is 

spanned by v0, . . . , vm−1. Since w0 ∈ kerA receives a nontrivial contribution from vm, we 
conclude that kerA = kerA2. In other words, the generalized eigenspace of A associated 
with the eigenvalue zero has dimension one.

The action of Δ on Wd preserves the filtration Wd ⊃ TWd−1 ⊃ · · ·T dW0. From the 
expression Δ = A + TB + T 2C, we see that its action on the associated graded space

Wd/TWd−1 ⊕ TWd−1/T
2Wd−2 ⊕ · · · ⊕ T dW0

coincides with the action of A. We conclude that zero is an eigenvalue of Δ ∈ End(Wd)
with multiplicity d + 1. For clarity, we recall that the multiplicity of an eigenvalue is the 
exponent of the corresponding term in the factorization of the characteristic polynomial, 
while the exact depth is the exponent in the minimal polynomial minus one.

We next show the existence of generalized eigenvectors wd ∈ Wd for Δ ∈ End(Wd) of 
eigenvalue 0 and exact depth d in Wd. We record that this together with the previous 
multiplicity statement implies that the kernel of Δ ∈ End(Wd) is spanned by T dw0. Note 
that the case d = 0 follows with w0 ∈ W0.

We consider the case d = 1. Since w0 ∈ W0 ↪−→ TW0 ⊂ W1 lies in the kernel of Δ, it 
suffices to construct a preimage w1 of Tw0 ∈ W1 under Δ. To this end, we first verify by 
a calculation that ((m +1 − k) −B)w0 lies in the image of A, which we recall is spanned 
by v0, . . . , vm−1. We have

Bw0 = B
(
· · · + vm−1 + (1 − k)vm

)
= · · · + (m + 1 − k)(1 − k)vm.

In particular, ((m +1 −k) −B)w0 lies in the span of v0, . . . , vm−1 as desired. We let w̃0 be 
a preimage under A, and set w1 = (w0 +Tw̃0)/(m +1 −k) ∈ W1. The assumption k ≤ 0
or k −m > 1 guarantees that m + 1 − k �= 0, i.e. w1 is well-defined.

We have

Δw0 + Tw̃0

m + 1 − k
≡ (A + TB)(w0 + Tw̃0

m + 1 − k
≡ T (Bw0 + Aw̃0)

m + 1 − k
≡ Tw0 (modT 2).

That is, w1 is indeed a preimage of Tw0 and thus a generalized eigenvector of exact 
depth 1.

Now by induction on d ≥ 2, we assume that the desired vector wd−1 exists. We 
recall that Δ ∈ End(Wd−1) has eigenvalue 0 with multiplicity d. We record that this 
in conjunction with the depth of wd−1 implies that the kernel of Δd−1 ∈ End(Wd−1) is 
contained in TWd−2.

We will now show that every v ∈ Wd with Δdv = 0 lies in TWd−1 ⊂ Wd. By contra-
position, we suppose that there were v ∈ Wd \ TWd−1 with Δdv = 0. Then v (modT )
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in Wd/TWd−1, i.e., the 0-th coefficient of v with respect to T , is nonzero, but lies in the 
kernel of Δd. Since Δ acts on Wd/TWd−1 ∼= W0 as A and since kerA = kerAd is spanned 
by w0, the 0-th coefficient of v is a nonzero multiple of w0. That is, after rescaling v we 
can assume that

v = (m + 1 − k)w0 +
d∑

i=1
T ivi.

We next consider v (modT 2) in Wd/T
2Wd−2 ∼= W1. Recall that the generalized 

eigenspace of Δ ∈ End(W1) associated with the eigenvalue 0 is 2-dimensional and 
spanned by the vectors Tw0 and w1. By matching coefficients of v0, we thus find 
that v ≡ w1 + Tcw0 (modT 2) for some c ∈ C, and Δv ≡ Tw0 (modT 2).

Since Δdv = 0 by assumption, we see that Δv ∈ TWd−1 lies in the kernel of Δd−1. We 
recorded before that the kernel of Δd−1 acting on Wd−1 is contained in TWd−2. Since 
further TWd−1 ∼= Wd−1 as C[Δ]-modules, we conclude that Δv ∈ T 2Wd−2. This implies 
that Δv ≡ 0 (modT 2), a contradiction

We have shown by contradiction that the kernel Δd acting on Wd is contained 
in TWd−1 and thus has dimension d by the multiplicity statement for the eigenvalue 0
of Δ acting on the associated graded module. By the same multiplicity statement and the 
fact that A has one-dimensional kernel on Wd/TWd−1, we conclude that there is a gen-
eralized eigenvector wd ∈ Wd for Δ of exact depth d + 1. Its image under φd yields f

(d)
L . 

This finishes the proof in the case of fL.
In the case of fR, we follow the same pattern with

φd : Wd −−→ spanC
{
f

(d−t)
R,r : 0 ≤ r ≤ m, 0 ≤ t ≤ d

}
, T tvr −−→ 1

(d− t)! f
(d−t)
R,r

and Δ = A + TB + T 2C ≡ φ∗
dΔk+m, where

Avr = −
(
r(m− 2r − k) + m

)
vr + r(r − 1 + k)vr−1 − (r + 1)(m− r)vr+1,

Bvr = (1 − k)vr + (1 − k)vr−1,

Cvr = − vr − vr−1.

The image of A consists of all vectors v =
∑

crvr with vanishing alternating trace

t̃r(v) :=
∑

(−1)rcr.

Proposition 4.12 provides an element w0 in the kernel of A. We want to verify that w0
does not lie in the image of A, that is, t̃r(w0) �= 0. In the case k ≤ −m, we have k < 0
and t̃r(w0) �= 0 follows from the inspection of the expression for fR in Proposition 4.12, 
since the coefficients of w0 with respect to v0, . . . , vm+1 have alternating sign. We consider 
the case k > 1, which implies m > −k. Then we need to check that the following 
expression does not vanish:
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t̃r(w0) =
m∑
r=0

(−1)r

(m− r)!(r + k − 1)! .

We multiply by (−1)k−1(m + k− 1)! and shift r by k− 1 to obtain a tail of the binomial 
expansion of 0 = (1 − 1)m+k−1:

m+k−1∑
r=k−1

(
m + k − 1

r

)
(−1)r = −

k−1∑
r=0

(
m + k − 1

r

)
(−1)r.

If 2m ≤ m + k − 1, the summands on the left hand side have monotone absolute value, 
otherwise the ones on the right hand side do. We conclude that the sum is nonzero as 
desired by grouping successive terms.

To finish the proof, we show the existence of generalized eigenvectors wd ∈ Wd as 
before. We can choose

w1 = t̃r(w0)(w0 − Tw̃0)
(1 − k)c0

,

where w̃0 is a preimage under A of ((1 − k)c0/t̃r(w0) − B)w0 and w0 =
∑

crvr. The 
inductive proof of the existence of wd for d ≥ 2 follows the same line as before. �
Remark 4.16. The maps Wd−1 ↪−→ Wd and Wd →→ Wd−1 can be used to iteratively 
determine the vectors wd. More specifically, w0 is given by Propositions 4.10 and 4.12. 
Further, for d ≥ 1 we have wd ≡ wd−1 (modT d) and Δwd lies in the span of T twd−t

for 1 ≤ t ≤ d. That is, we can set wd = wd−1 + T dv for some v ∈ V that is unique up to 
scalar multiples of w0, and determine Av uniquely from

Δwd−1 + T dAv ∈ imgΔ ∩ spanC{T twd−t : 1 ≤ t ≤ d}.

Note that in this step we use imgA ∩ kerA = {0}.

5. Modular realizations

We next provide modular realizations for each representation that we found in Sec-
tion 3.4 by providing the correct input to Corollary 4.8 and Theorem 4.15. Both require 
a spectral family fs. We primarily use spectral families that specialize at s = 0 to the 
modular realizations provided by Bringmann–Kudla in the case of d = 0. Case IIId, 
which does not occur for d = 0, can be constructed from Case Ib.

Many of the examples in this section are products of functions that are modular co-
variant. Note that by the remark following Definition 3.1 both the modular co-variance 
and the growth condition on polyharmonic weak Maaß forms are compatible with prod-
ucts. Our application of Theorem 4.15 then ensures that the products that we encounter 
in this section are also polyharmonic.
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We calculated the examples in this section via an implementation of Remark 4.16
in the computer algebra system Nemo [23]. The code is available on the third named 
author’s homepage. We use the notation

E
(d)
k,s0

(τ) =
(
∂d
sEk(τ, s)

)
s=s0

, E
(d)
k (τ) = E

(d)
k,0(τ),

P
(d)
k,n,s0

(τ) =
(
∂d
sFk,n(τ, 1 − k

2 − s)
)
s=s0

, P
(d)
k,n(τ) = P

(d)
k,n,0(τ).

(5.1)

The primary purpose of our implementation is to determine linear combinations of these 
functions that fall under Cases Ia–IIId.

The cases in this section are labeled in a compatible way with Bringmann–Kudla; See 
Table 1 for a translation between these labels and the representation theoretic labels 
that we employed in Section 3.4.

5.1. Case Ia

We provide a polyharmonic weak Maaß form f of exact depth d and weight k < 1
with Lk Δd

k f = 0 and R1−k
k Δd

k f = 0.
The case of k = 0 and d = 0 is classical: We have the modular form f(τ) = 1, which 

vanishes under L0 and R0. Bringmann and Kudla extended this to all k ≤ 0 via a vector-
valued construction, which also falls under the scope of Proposition 4.10. Specifically, we 
have a modular form e−k,0 of weight k ≤ 0 that vanishes under Lk and R1−k

k by (3.4).
Theorem 4.15 gives the existence of preimages of e−k,0 under Δd

k when setting fs =
E0( · , s), m = −k, and k = 0.

Example 5.1. We obtain a modular realization f (2) of this case in weight −3 and depth 2
using pure Nemo code with f (0) = Δ2

−3 f
(2) given by

1
72 e0,3 L3E

(2)
0 + 1

8 e1,2 L2E
(2)
0 + 1

2 e2,1 L1E
(2)
0 + 1

2 e3,0 E
(2)
0

+ 11
216 e0,3 L3E

(1)
0 + 3

8 e1,2 L2E
(1)
0 + e2,1 L1E

(1)
0

= 1
2 e3,0 E

(2)
0,0 + 1

18 e0,3 E
(1)
−6,3 + 1

4e1,2 E
(1)
−4,2 + e2,1 E

(1)
−2,1

+ 5
27 e0,3 E

(0)
−6,3 + 5

8e1,2 E
(0)
−4,2 + e2,1 E

(0)
−2,1.

5.2. Case Ib

We provide a polyharmonic weak Maaß form f of exact depth d and weight k < 1
with Lk Δd

k f = 0, and R1−k
k Δd

k f �= 0.
Bringmann–Kudla realized Case Ib for d = 0 in terms of weakly holomorphic modular 

forms (excluding constants in weight k = 0). Indeed, a weakly holomorphic modular 
form f with nonzero principal part behaves as required under Lk and R1−k

k . We can 
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obtain further modular realizations em,0f in depth 0 and weight k − m by Proposi-
tion 4.10 for such f and a non-negative integer m. Indeed, we have L em,0f = em,0 Lf = 0
and R1−k+m em,0f can be written as a linear combination

∑
r crer,m−rR1−k−rf , cr ∈ C, 

with nonzero c0. Since we have e0,m R1−kf �= 0 by the Bol Identity, we conclude 
that R1−k+m em,0f �= 0.

Given such a weakly holomorphic modular form f there is a holomorphic family fs, 
s ∈ C, with f = f0 and Δ fs = s(1 − s − k) fs after substituting 1 − k

2 − s for s

in Proposition 4.6. This family can be explicitly constructed via Poincaré series. The 
desired modular realization of Case Ib therefore exists for all k ≤ 0 by Corollary 4.8
applied to this family fs and given k. The vector-valued generalizations em,0fs give rise 
to preimages under Δd of em,0f by Theorem 4.15 applied to fs, k, and m.

5.3. Case Ic

We provide a polyharmonic weak Maaß form f of exact depth d and weight k < 1
with Lk Δd

k f �= 0, and R1−k
k Δd

k f = 0.
Recall the flipping operator from (3.2). Given a polyharmonic Maaß form of exact 

depth d and weight k that realizes Case Ib, Fk f realizes Case Ic in the same depth and 
weight. The depth of f and Fk f coincides by the commutator relation in (4.6). We apply 
Equations (4.8) and (4.7) to find that

Lk Δd
k Fk f = Lk Fk Δd

k f = y2−k

(−k)! R1−k Δd
kf �= 0

and likewise R1−k
k Δd

k Fk f = 0.

5.4. Case Id

We provide a polyharmonic weak Maaß form f of exact depth d and weight k < 1
with Lk Δd

k f �= 0, and R1−k
k Δd

k f �= 0.
As in the work of Bringmann–Kudla, we can obtain this form from polyharmonic weak 

Maaß forms fIb and fIc that realize Cases Ib and Ic. Then f = fIb + fIc is harmonic of 
depth d and satisfies

LkΔd
k f = LkΔd

k fIb + LkΔd
k fIc = LkΔd

k fIc �= 0,

RkΔd
k f = RkΔd

k fIb + RkΔd
k fIc = RkΔd

k fIb �= 0.

Another construction is given by Eisenstein series. Recall that Ek( · , 1 −k) is harmonic. 
We have L Ek( · , 1 − k) = Ek−2( · , −k) �= 0 and R1−k

k Ek( · , 1 − k) = (1 − k)!E2−k �= 0
by (4.10).

For any non-negative integer m, Proposition 4.10 applied to Ek( · , 1 − k) yields fur-
ther realizations in weight k − m. If m ≤ −k, then Proposition 4.12 yields yet further 
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realizations in weight k +m. Note that this includes the choice m = −k, which provides 
modular realizations in weight 0.

If k < 0 we obtain modular realizations in weight k and depth d from Corollary 4.8
applied to Ek( · , 1 − k − s). The vector-valued realizations in depth 0 and weight k ±m

arising from Ek( · , 1 −k) via Propositions 4.10 and 4.12, can be extended to higher depth 
by virtue of Theorem 4.15.

Remark 5.2. The exceptional role of k = 0 in Case Id is connected to the realization of 
Case Ia via E0( · , 0).

5.5. Case IIa

We provide a polyharmonic weak Maaß form f of exact depth d and weight k = 1
with Lk Δd

k f = 0.
In analogy with Case Ib, weakly holomorphic modular forms provide modular real-

izations of Case IIa in depth d = 0. Corollary 4.8 in conjunction with Proposition 4.6
allows us to extend them to positive depth. More specifically, given a weakly holomor-
phic modular form f of weight k = 1, as in Case Ib Proposition 4.6 yields a spectral 
family fs with f0 = f and Δ1 fs = s(1 − 1 − s)fs = −s2fs. Note that as opposed to 
Cases Ia–Id, only even iterated derivatives

(
∂2d−2t
s fs

)
s=0, 0 ≤ t ≤ d, of fs occur when 

applying Corollary 4.8 to fs.

5.6. Case IIb

We provide a polyharmonic weak Maaß form f of exact depth d and weight k = 1
with Lk Δd

k f �= 0.
Bringmann–Kudla realized depth 0 of Case IIb via incoherent Eisenstein series asso-

ciated to prime fundamental discriminants −D < 0 and the function

φ−
D

((
a b
c d

))
= −i

√
D
(−D

c

)
, if gcd(D, c) = 1; φ−

D

((
a b
c d

))
=

(−D

a

)
, otherwise,

where (−D/c) is the quadratic symbol. In the next definition, the normalization of s

differs from the one in [7] in order to obtain a spectral family that satisfies the usual 
eigenvalue equation Δ1E

−
D(τ, s) = s(1 − 1 − s)E−

D(τ, s) = −s2E−
D(τ, s):

E−
D(τ, s) :=

∑
γ∈Γ∞\SL2(Z)

φ−
D(γ) ys

∣∣
1γ.

Since E−
D(τ, s) vanishes at s = 0, the next definition features the exponent d + 1 as 

opposed to d. We set

E
−(d)
D (τ) :=

(
∂d+1
s E−

D(τ)
)
s=0.
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A modular realization for d = 0 is given by E
−(0)
D (τ). We can apply Corollary 4.8 to 

the spectral family E−
D( · , s)/s in weight k = 1 to obtain modular realizations in positive 

depth d from linear combinations of E−(2d−2t)
D for 0 ≤ t ≤ d.

5.7. Case IIIa

We provide a polyharmonic weak Maaß form f of exact depth d and weight k > 1
with Lk

kΔ
d−1
k f �= 0, if d > 0, and Lk Δd

k f = 0.
A modular realization in depth 0 is provided by holomorphic modular forms. For 

general d, let f be a modular realization of Case Id in depth d > 0 and weight 2 − k. We 
claim that then Rk−1

2−k f is a modular realization of Case IIIa in depth d and weight k. 
Indeed, by (4.1) and (4.2) we have

Lk Δd
k Rk−1

2−k f = Lk Rk−1
2−k Δd

2−k f = −Rk−2
2−k Δd+1

2−k f = 0,

Lk
k Δd−1

k Rk−1
2−k f = Lk

k Rk−1
2−k Δd−1

2−k f = (k − 1)!(k − 2)! L2−k Δd
2−k f �= 0.

Remark 5.3. A spectral deformation of holomorphic cusp forms can be achieved directly 
via Theorem 4.15 applied to the Poincaré series in Theorem 3.1 and 3.4 of [22].

5.8. Case IIIb

We provide a polyharmonic weak Maaß form f of exact depth d and weight k > 1
with LkΔd f �= 0 and Lk

k Δd
k f = 0.

A modular realization in depth 0 and weight 2 is given by the weight-2 Eisenstein 
series E2. We have L E2 = 3

π �= 0 and L2 E2 = 0 as required. For any positive integer m

Proposition 4.12 applied to E2 yields a modular realization in weight 2 + m, which has 
already appeared in the work of Bringmann–Kudla:

m∑
r=0

1
(m− r)!(r + 1)! er,m−rRr

2E2.

We employ Theorem 4.15 to the spectral family E2( · , s) of weight k = 2 and any 
non-negative integer m to obtain modular realization of given depth d and weight 2 +m.

5.9. Case IIIc

We provide a polyharmonic weak Maaß form f of exact depth d and weight k > 1
with Lk

k Δd
k f �= 0.

Bringmann–Kudla utilized Poincaré series to provide a modular realization. They fit, 
more generally, in the following framework. Let f be a modular realization of Case Ic 
in depth d + 1 and weight 2 − k. We claim that then Rk−1

2−k f is a modular realization of 
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Case IIIc in depth d and weight k. Similar to the treatment of Case IIIa, we employ (4.1)
and (4.2) to find that if d > 0 then

Lk
k Δd

k Rk−1
2−k f = Lk

k Rk−1
2−k Δd

2−k f = (k − 1)!(k − 2)! Lk Δd+1
2−k f �= 0,

Δd+1
k Rk−1

2−k f = Rk−1
2−k Δd+1

2−k f = 0.

5.10. Case IIId

We provide a polyharmonic weak Maaß form f of exact depth d > 0 and weight k > 1
with Lk Δd−1 f = 0. Recall that this case does not appear in depth 0 and thus is absent 
from the classification of Bringmann–Kudla.

Let f be a modular realization of Case Ib in depth d + 1 and weight 2 − k. We claim 
that then Rk−1

2−k f is a modular realization of Case IIId in depth d and weight k. Repeating 
the computation of Case IIIc based on (4.1) and (4.2), we confirm that

Lk
k Δd−1

k Rk−1
2−k f = Lk

k Rk−1
2−k Δd−1

2−k f = (k − 1)!(k − 2)! L2−k Δd
2−k f = 0,

Δd
k Rk−1

2−k f = Rk−1
2−k Δd

2−k f �= 0.

Observe that the first equality also implies that Rk−1
2−k f vanishes under Δd+1

k .
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