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A B S T R A C T

Worldwide biodiversity loss is perceived as a major threat and is likely to be enforced by ongoing climate change. 
Continued monitoring of biodiversity can assist in compensating for decreasing biodiversity by goal-oriented 
conservation management. Plant size diversity, also termed size inequality and size hierarchy, has often been 
neglected in studies of biodiversity, but plays a crucial role in many ecosystems, e.g. in forests. Several competing 
diversity indices and other characteristics of spatial plant size inequality have been proposed but to date no 
protocols or guidelines exist for evaluating their relative merits. In our study, we proposed a broad framework for 
such an analysis. In order to put this framework to a test, we revisited the dissimilarity coefficient, a somewhat 
ignored but promising spatial size inequality index published at the end of the 1990s, identified its nearest index 
competitors and analysed their performances in different mathematical-statistical contexts. We learned that the 
dissimilarity coefficient is more sensitive in statistical significance tests relating to three very different summary 
characteristics than its closest competitor, the size differentiation index. In addition the dissimilarity coefficient 
has a more solid foundation than the differentiation index, since it is based on the well-known coefficient of 
variation. The dissimilarity coefficient can be recommended in a wide range of plant diversity applications. The 
principle of the dissimilarity coefficient can also be used to define an effective mark correlation function. We 
recommend our evaluation framework for use in similar analyses of competing diversity characteristics.

1. Introduction

With ongoing climate change the continued monitoring of biodi
versity is crucial to mitigate the loss of species and size diversity in 
terrestrial and aquatic ecosystems (Banks-Leite et al., 2020). At the same 
time plant diversity usually also safeguards ecosystem resilience. In this 
context, spatial plant diversity indices are important, because they can 
be measured with comparatively little effort whilst acting as surrogate 
measures of biodiversity (Pommerening and Grabarnik, 2019).

In the past, structural diversity of plant communities has mainly been 
studied in terms of species diversity (Gaston and Spicer, 2004; Wang 
et al., 2020). Contrary to its importance spatial size diversity, also 
referred to as size hierarchy and size inequality (Weiner and Solbrig, 
1984), has not been considered much in research. Consequently the 
focus in our study was on size inequality.

There are many ways to quantify spatial plant diversity and new 
characteristics are published all the time whilst quite a few older 

approaches are nearly forgotten although they clearly have their merits 
(Magurran, 2004). Usually new and old characteristics are listed or 
referred to in publications side by side without an attempt to identify 
differences in performance. Also, many new and old approaches seem
ingly quantify similar aspects of plant diversity, e.g. location diversity 
(dispersion), species diversity or size diversity (Pommerening and Gra
barnik, 2019), i.e. they appear to compete with one another. This begs 
the question of how such competing characteristics can be analysed in a 
meaningful way so that advantages and disadvantages become 
apparent. To date there is not much of a protocol or consistent meth
odology for carrying out such comparative analyses.

Torquato et al. (2002) and Crawford et al. (2003) proposed the 
intriguing method of reconstruction for evaluating the merits of 
competing spatial characteristics. Reconstruction draws on stochastic 
optimisation techniques that generate realisations of spatial plant pat
terns. This approach is based on the hypothesis that a given character
istic carries more information about a pattern under study if it is able to 
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contribute to a more precise reconstruction of this pattern than another, 
competing characteristic. We have successfully used the reconstruction 
method ourselves in a variety of contexts (Pommerening and Stoyan, 
2008; Pommerening et al., 2019; Wang et al., 2021). Reconstruction 
assumes that in addition to competing indices or measures another or 
several other characteristics exist which are so accurate that they can be 
applied independently for judging the quality of reconstruction. This 
assumption, however, may not be true or it may be hard to find such 
characteristics. In the past, mark correlation functions as introduced in 
Section 3.3 were often used for that purpose in the context of plant size 
inequality, since they are known to be comparatively accurate. How
ever, residual doubts naturally remain.

Pommerening et al. (2024) analysed how competing tree diversity 
indices performed in terms of bias and sampling error when estimating 
them through distance sampling. This is another way of analysing 
comparative properties of competing diversity characteristics. The 
sampling performance of competing diversity indices helps understand 
how they interact with specific sampling designs and provides decision 
support in practical sampling applications in terms of which index to 
prefer from a list of competitors (Pommerening et al., 2024).

In this study, we decided to explore alternative avenues. As study 
object we identified the dissimilarity coefficient, a spatial size inequality 
index which was briefly published by Ali (1997) and Hagner and 
Nyquist (1998) and then largely disappeared from literature records. 
The objective of this paper is to (1) fully characterise the dissimilarity 
coefficient, (2) to explore how it can be applied, to (3) identify its 
competitor(s) and (4) to establish the relative merits of the dissimilarity 
coefficient and its nearest competitor through a combination of simu
lations and data applications.

2. Materials and methods

2.1. Dissimilarity coefficient

The dissimilarity coefficient is a spatial measure of size inequality 
and was first proposed by Ali (1997) and by Hagner and Nyquist (1998). 
The index is based on the coefficient of variation of the pairs of sizes of 
subject plant i and neighbouring plants j, i.e. 

Vi =
1
k
∑k

j=1

s(mi,mj)

m
(1) 

In Eq. (1), s(mi,mj) is the standard deviation of plant sizes mi and mj. 
Denominator m = 0.5 ×

(
mi +mj

)
is the arithmetic mean of the two size 

marks of a given pair. The number of nearest neighbours is denoted by k 
and originally Ali (1997) and Hagner and Nyquist (1998) defined k = 1, 
but from a general multivariate perspective, any other number such as 
k = 4 is also possible. The dissimilarity coefficient used the size difference 
construction principle of spatial diversity indices and test functions (Illian 
et al., 2008; Pommerening and Grabarnik, 2019). Variance computed 
from a pair of plant sizes can be written as 
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Hence 

s(mi,mj) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
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)2
√

=

⃒
⃒mi − mj

⃒
⃒

̅̅̅
2
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We decided to give all computations in Eq. (2), since some steps were 
missing in the original publications, which may impair the appreciation 
of this index (Ali, 1997; Hagner and Nyquist, 1998), and the details 
provided emphasise the solid mathematical-statistical basis of the di
versity index. Using Eqs. (1) and (3), the coefficient of variation 
computed from a single pair of plant sizes (indicated by upper index (1)) 
is then given as 

V(1)
i =

s(mi,mj)

m
=

|mi − mj|̅̅
2

√

m
=

|mi − mj|̅̅
2

√
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In general, for k nearest neighbours, i.e. for k pairs of plants, Eq. (1) can 
now be written as 

Vi =
1
k
∑k

j=1

s(mi,mj)

m
=

1
k
∑k

j=1

̅̅̅
2

√
×
⃒
⃒mi − mj

⃒
⃒

mi + mj
(5) 

Index values of Vi lie between 0 and 1 and Hagner and Nyquist (1998)
interpreted the term 

̅̅̅
2

√
as scale factor leading to a better spread of index 

values between these two boundaries. When one plant size of a pair of 
plants is zero, i.e. V(1)

i =
̅̅̅
2

√
, and when the difference between the sizes 

of pairs of plants is large relative to their sum, i.e. when the ratio |mi − mj|
mi+mj 

exceeds 0.70, the corresponding V(1)
i (Eq. (4) is larger than 1. This is 

probably the reason why Hagner and Nyquist (1998) advocated a 
simplified version of Eq. (5), where 

̅̅̅
2

√
is replaced by 1, i.e. 

Vʹ
i =

1
k
∑k

j=1

⃒
⃒mi − mj

⃒
⃒

mi + mj
(6) 

Individual values of V (́1)
i are always smaller than those of V(1)

i and they 
have the advantage of never exceeding 1. In our experience when using 
tree stem diameters as size variables, cases of V(1)

i > 1 are rare and only 
occur in individual pairs but usually not in Vi. However, if in any 
application many plant sizes have the value of zero or the differences of 
neighbouring sizes are often large, Ví should possibly be preferred to Vi, 
since index values between 0 and 1 are easier to interpret and more 
straightforward to compare with other indices.

Incidentally, the fracture term of Eq. (6) is also known from animal 
movement ecology where distances between moving animals i and j are 
used for size variable m in sociality and interaction indices (Fronville 
et al. 2023).

2.2. Interpretation and properties of the dissimilarity coefficient

Vi and Ví are close to zero when both plants of a pair are of similar 
size. When one plant is double the size of the other in a pair, V(1)

i =

0.4714 and V (́1)
i = 1

3. Vi and Ví tend to 
̅̅̅
2

√
and one, respectively, as the 

difference between plant sizes increases. Vi and Ví are scale invariant, i. 
e. If plant sizes m are multiplied by a constant, the values of Vi and Ví 
remain the same.

2.3. Application of the dissimilarity coefficient

After calculating individual-plant indices Vi, the arithmetic mean for 
a whole plant population can be computed as an estimation of popula
tion dissimilarity: 

V =
1
N
∑N

i=1

̅̅̅
2

√

k
∑k

j=1

⃒
⃒mi − mj

⃒
⃒

mi + mj
(7) 

The number of all plants in a population is denoted as N. In analogy to 
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Eq. (7), Vʹ can be calculated, however, 
̅̅̅
2

√
then needs to be replaced by 1 

as before. Either mi or mj of a given pair of plants can be 0, as long as not 
both of them are 0. When computing mean size dissimilarity for a 
particular species population, the values of Vi of the whole population 
(regardless of species) are simply a subset for that species: 

Va =
1
Na

∑Na

i=1

̅̅̅
2

√

k
∑k

j=1

⃒
⃒mi − mj

⃒
⃒

mi + mj
(8) 

Here, index a denotes a theoretical species a occurring in a plant pop
ulation alongside others. For example, Na is the number of plants of 
species a. This definition usually implies that all plants i must be of 
species a, but their k nearest neighbours j can be of any species 
(Pommerening and Grabarnik, 2019). The neighbourhood definition 
implied in Eq. (8) relies on “natural” neighbourhoods defined by spatial 
proximity alone. Theoretically another option of calculating conspecific 
means is to subset for species a in such a way that also the k neighbours 
of a given plant i have to be of the same species a (intratype analysis; 
Lotwick and Silverman, 1982). This can be achieved by excluding all 
plants that are not of species a from the conspecific analysis. Such an 
intratype strategy would, however, define a very different neighbour
hood and address different eco-physiological questions.

Apart from population means it is also possible to consider density 
distributions of individual-plant Vi or Ví as shown by Pommerening et al. 
(2020). Another option for analysis is to calculate V and Vʹ separately for 
several numbers of nearest neighbours k and then to compose a function 

V(r) =

⎧
⎪⎨

⎪⎩

V(k) for ​ r= rk,k=1,2,3,⋯,

V(k)+
V(k+1) − V(k)

rk+1 − rk
×(r − rk) for rk < r< rk+1,k=1,2,3,⋯

(9) 

In Eq. (9), rk is the population mean distance rk = 1
N
∑N

i=1rik between any 
individual i and its kth nearest neighbour. V(k) is the set of means of Vi 

(Eq. (7)) calculated for increasing k. Essentially, Eq. (9) assembles V 
calculated iteratively from Eq. (7) with k = 1,2, 3,⋯ in a continuous 
curve with a linear interpolation between the different means. Since 
different numbers of k can involve quite different distances between 
plants i and neighbours k, k is translated to distance r in Eq. (9) for better 
comparison between plant populations. A similar function can also be 
defined for conspecific plant communities, i.e. for the specimens of only 
one species. Function V(r) describes how size dissimilarity changes with 
increasing neighbourhood.

In many situations when population means are calculated, it is rec
ommended to apply methods of spatial edge-bias compensation 
(Pommerening and Stoyan, 2006). This is particular important for small 
numbers of plants and for large k.

2.4. Expected dissimilarity coefficient

The expected dissimilarity coefficient, EV, is independent of the 
number of nearest neighbours, k. This measure is based on a plant 
population’s size distribution and describes the mean dissimilarity co
efficient when all plant sizes are spatially completely (independently) 
dispersed without any spatial correlation. It is useful to consider EV, 
because this quantity can serve as a reference to understand to what 
degree ecological processes have influenced the spatial plant pattern so 
that observed V differs from EV. Expected size dissimilarity can be 
calculated for any plant population as 

EV =

̅̅̅
2

√

N(N − 1)
∑N

i=1

∑N

j∕=i

⃒
⃒mi − mj

⃒
⃒

mi + mj
(10) 

Again, EVʹ can be computed in analogy to Eq. (10) by simply replacing 
̅̅̅
2

√
by 1. EV and EVʹ can be approximated by random labelling 

simulations (Illian et al, 2008), i.e. by a randomisation or permutation of 
plant sizes. For example, when permuting plant sizes, i.e. when 
randomly assigning them to the fixed locations of plants of an observed 
population, e.g. 9999 times, thus simulating complete spatial indepen
dence, the arithmetic means of the population means of 9999 simula

tions, V or V
ʹ
, are very close to EV or EV .́ Thus considering random 

labelling simulations offers another way to understand the meaning of 
Eq. (10).

Mean population and expected plant size dissimilarity can be com
bined in a size segregation index (Pommerening and Uria-Diez, 2017), Υ ,
providing more detailed information on the difference between 
observed and expected spatial size inequality patterns: 

Y = 1 −
V

EV
(11) 

If plant sizes are independently dispersed without any spatial correla
tion, Υ = 0. If the sizes of neighbouring plants are always of similar size, 
Υ ≈ 1, i.e. there is a spatial attraction of similar sizes leading to a 
segregation or clustering of sizes. If all neighbours tend to have sizes 
quite different of that of plant i, Υ is negative and tends towards − 1 in 
the extreme case (spatial attraction or aggregation of different sizes).

Based on the definition of conspecific means given in Section 2.3, 
expected size dissimilarity of species community a is given as 

EVa =

̅̅̅
2

√

Na(N − 1)
∑Na

i=1

∑N

j∕=i

⃒
⃒mi − mj

⃒
⃒

mi + mj
(12) 

Similar to the analyses of the whole population regardless of species, it is 
possible to define a conspecific size segregation index Ya for any species 
community a. Functions of distance r similar to Eq. (9), i.e. Υ(r) and 
Υa(r), can be constructed from both Υ and Υa (Wang et al., 2020) and 
they describe how the effect of spatial correlation between plant sizes 
declines with distance.

2.5. Mark correlation functions

Mark correlation functions are second-order characteristics. They 
depend on a distance variable r and quantify structural properties of 
spatial plant patterns based on the probability that two plant locations 
are r distance away from each other (Illian et al., 2008; Pommerening 
and Grabarnik, 2019). This allows second-order characteristics to be 
related to various ecological scales and to account for short, medium and 
long-range plant size interactions. Due to this scale dependency second- 
order characteristics are often considered less ambiguous and more 
precise than spatial diversity indices, if the data they are applied to are 
of sufficient quality and quantity. The mark correlation function quan
tifies the similarity and dissimilarity of pairs of plant sizes at a given 
distance r (Penttinen et al., 1992; Illian et al., 2008; Pommerening and 
Grabarnik, 2019). The general form of the estimator of the mark cor
relation functions is: 

kt(r) =
1
Et
∑∕=

ξi ,ξj∈W

t
(
m(ξi),m

(
ξj
))

× kh(‖ξi − ξj‖ − r)

2πr × A
(

Wξi ∩ Wξj

) (13) 

Here ξi and ξj are two arbitrary plant locations of the spatial plant 

pattern in observation window W. kh is a kernel function, A
(

Wξi ∩ Wξj

)

is the area of intersection of Wξi and Wξj , see Illian et al. (2008), relating 
to the translation edge correction (Ohser and Stoyan, 1981). Function kt 
is usually standardised using an expected value of the test function of 

plant sizes m(ξi) and m
(

ξj

)
, Et (similar to Eqs. (10) and (12), corre

sponding to test function t.
The key element of any mark correlation function is test function 

t
(

m(ξi),m
(

ξj

))
in the numerator of Eq. (13), quantifying the similarity 
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or dissimilarity of plant sizes m at locations ξi and ξj. This test function 
can be defined in a way similar to spatial inequality indices. In this study 
we selected the following options: 

t1
(
m(ξi),m

(
ξj
))

=
̅̅̅
2

√
×

⃒
⃒m(ξi) − m

(
ξj
)⃒
⃒

m(ξi) + m
(
ξj
) (14) 

t2
(
m(ξi),m

(
ξj
) )

= 1 −
min

(
m(ξi),m

(
ξj
) )

max
(
m(ξi),m

(
ξj
) ) (15) 

t3
(
m(ξi),m

(
ξj
))

=
1
2
(
m(ξi) − m

(
ξj
))2 (16) 

Obviously, test function t1 reflects the principle of the dissimilarity co
efficient (Eq. (4), test function t2 that of the differentiation index (Eq. 
(16) whilst we decided to use the mark variogram γ(r) (Wälder and 
Stoyan, 1996; Stoyan and Wälder, 2000; Pommerening and Särkkä, 
2013; defined by test function t3) as a reference due to its prominence in 
the literature. We calculated the mark correlation functions using the R 
spatstat package (Baddeley et al., 2016; R Development Core Team, 
2023).

We carried out 2499 random labelling simulations using the mark 
variogram (including test function t3) and the mark correlation function 
based on test functions t1 and t2. Then we applied a simultaneous global 
envelope test (Myllymäki et al., 2017) to the results using the R GET 
package whilst correcting for multiple testing at the same time.

2.6. Competing spatial inequality indices

Considering the nearest competitors of spatial diversity indices is a 
way commonly used in spatial statistics for identifying comparative 
properties and behaviour (Crawford et al., 2003; Torquato, 2002). There 
are quite a few alternative indices of spatial size inequality. Among 
these, close competitors of a given index can be identified by similar 
construction principles and similar purpose. Some indices of spatial size 
inequality are further removed from the concept of size dissimilarity so 
that they can be excluded from this study. These include the size 
dominance index (Aguirre et al., 2003), the hyperbolic tangent index 
(Pommerening et al., 2020) and the size dominance-differentiation 
index (Albert, 1999). These three indices are representatives of a sub- 
group of size inequality indices, the dominance indices, which have the 
special purpose of indicating whether some plants dominate their local 
neighbourhoods or whether they are rather dominated by their neigh
bours. They share some similarities with competition indices (Burkhart 
and Tomé, 2012; Weiskittel et al, 2011). This is contrasted by the sub- 
group of size diversity indices quantifying the spatial diversity of 
plants in local neighbourhoods. Size dominance indices tend to be 
closely correlated with plant growth rates, size diversity indices usually 
do not have this tendency.

An early measure of spatial size inequality in plants was the size 
differentiation index introduced by Gadow (1993) as the mean of the 
ratio of smaller and larger plant sizes m of the k nearest neighbours 
subtracted from one (Eq. (17). This ratio is based on the size ratio con
struction principle (Illian et al, 2008; Pommerening and Grabarnik, 
2019): 

Ti = 1 −
1
k
∑k

j=1

min(mi,mj)

max(mi,mj)
(17) 

As with the dissimilarity coefficient and other indices, m can be any 
quantifiable plant size measure, e.g. biomass, weight, carbon, height, 
stem diameter among others. The value of Ti increases with increasing 
average size difference between neighbouring trees. Ti = 0 implies that 
neighbouring trees have equal size (Pommerening and Grabarnik, 
2019). Occasional sizes m = 0 are possible to process with the size dif
ferentiation index, as long as no division by zero occurs. Ti takes values 

between 0 and 1.
Based on the test function of the mark variogram, Pommerening et al. 

(2011) introduced the size variogram index. This index uses the same 
size difference construction principle as the dissimilarity coefficient: 

V*
i =

1
2kσ̂2

m

∑k

j=1

(
mi − mj

)2 (18) 

Dividing by size variance, σ̂2
m, estimated from all plant sizes of a given 

population, is a normalisation easing the interpretation of index values 
and the comparison between plants and plant communities. The smaller 
V*

i the more similar the plant sizes considered are. In this case either 
both plants are small or both plants are large, no difference is made 
between these two scenarios (Pommerening et al., 2020). Index V*

i often 
takes values larger than 1. Sizes m = 0 are acceptable when using this 
index as long as the variance estimation is not zero.

Finally inspired by the test function of the mark correlation function 
(Illian et al., 2008; see Section 2.5), Davies and Pommerening (2008)
introduced the size correlation index. Realising the size-product con
struction principle (Illian et al, 2008; Pommerening and Grabarnik, 
2019), this index compares the mean product of the sizes of a subject 
plant and its k nearest neighbours with the squared arithmetic mean 
size, m̃2, of all plants in a given plant population: 

Ci =
mi

∑k
j=1mj

k × m̃2 (19) 

Values of Ci larger than 1 indicate positive correlation which can be the 
result of similar-sized large plants at close proximity whilst Ci < 1 in
dicates negative correlation which typically is the result of pairs of 
plants with large and very small sizes and pairs of plants with small sizes 
only (Pommerening et al., 2020). Index Ci often takes values larger than 
1. Occasional size marks m = 0 are acceptable when using this index, but 
can lead to Ci = 0 when mi = 0.

All of these three closest competing indices can be used in ways 
similar to those of applying the dissimilarity coefficient, which are 
described in Sections 2.3-2.5.

2.7. Test sensitivity

Monte Carlo tests are a way of testing spatial diversity against a well- 
defined null hypothesis. In the context of this study the null hypothesis is 
plant size independence, i.e. a situation where there is no spatial cor
relation between tree sizes.

We devised an experiment by (1) simulating 1000 Poisson point 
processes with an overall density λ = 0.035 trees/m2 in an observation 
window of size 120 × 120 m so that spatial edge effects are minor. The 
points simulated by a Poisson point process are spatially uncorrelated 
and can represent plant locations (Illian et al., 2008; Pommerening and 
Grabarnik, 2019). In this study, we assumed tree populations and for 
each tree location, local tree density was determined. Depending on a 
chosen quantile q of local tree density, λloc, (2) the stem diameter of each 
tree was either sampled from a three-parameter Weibull diameter dis
tribution describing comparatively large trees (α = 25.1, β = 22.8, γ =

2.5) or from a separate Weibull diameter distribution of comparatively 
small trees (α = 3.0, β = 3.8, γ = 2.5): Mimicking natural patterns, 
small trees were simulated where local density was high and large trees 
where local density was low. Thus through this method of density 
dependent marking, spatial correlations of tree sizes were introduced to 
the plant pattern and quantile q of local tree density, λloc, is the key 
factor in this process: With very small values of q, only small trees are 
simulated and with large values of q only large trees are simulated.

In a third step, (3) for each Poisson point pattern with dependent 
marking, 9999 so-called random labelling simulations were carried out. 
In each of them, all stem diameters were randomly re-allocated 
(permuted) to fixed tree locations, as described in Section 2.4. These 
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simulations typically produce patterns without spatial correlation of tree 
sizes, i.e. patterns supporting the null hypothesis. The simulation results 
can be used to calculate the p-values for a two-sided test (Baddeley et al., 
2016; Pommerening and Grabarnik, 2019). To establish sensitivity, we 
studied the p-values for very small (λloc ≤ 10 %) and very large values 
(λloc ≥ 90 %) of quantile q of local density to see which of the compet
itive indices indicated significant spatial inequality patterns in this sta
tistical boundary region. We calculated local density using the spatstat 
function density, where parameter sigma determining kernel density 
was set to the value of 2.0 (Baddeley et al., 2016; R Development Core 
Team, 2023).

2.8. Example data

Clocaenog Forest lies on the southern side of the Denbigh moors, a 
relatively high dissected plateau. The forest stand (Tyfiant Coed plot 1 at 
53◦ 04′ 29″ N, 003◦ 25′ 48″ W) included in this study is situated at an 
altitude of 395 m asl. The underlying solid geology is Silurian made up 
of slates, shales and grits. The soil is generally fine textured and often 
quite stony. Podzolic brown earth predominates where site drainage is 
sufficient. The climate is relatively harsh with cool temperatures and 
high rainfall. Rainfall is in excess of 1300 mm. The site was planted with 
Sitka spruce (Picea sitchensis (BONG.) CARR.) and lodgepole pine (Pinus 
contorta DOUGL. ex LOUD.) in 1951, but only Sitka spruce survived. Clo
caenog forest area has size 100 × 100 m and was surveyed in 2002 
(Pommerening et al., 2024).

Beech (Fagus sylvatica L.) plot 41–700 (0.25 ha in size) is part of the 
Swiss thinning trial at Embrach (longitude: 8◦ 10′22.13′’, latitude: 47◦

22′18.32′’). The plot is in an even-aged beech forest which was estab
lished between 1891 and 1905 and re-measured every 5–10 years until 
1991. However, spatial information is only available from 1940 onwards 
and the 1961 survey data were used in this study. A minor species 
proportion includes oak (Quercus robur L.). The plot is located at 590 m 
a.s.l with a mean annual temperature of 8.3 ◦C and a mean annual 
precipitation of 1030 mm (Pommerening and Särkkä, 2013).

Knysna Forest is part of the southernmost patches of the Afro
montane forest in South Africa located south of the mountains between 
Humansdorp and Mossel Bay. Established in the Diepwalle State Forest 
in 1937, the Knysna Forest represents the largest indigenous forest 
complex in South Africa. The forest has been taken out of forest man
agement in 1954 and is located to the north of the southern coastal town 
of Knysna (at about 33◦ 57′S, 23◦ 11′E). The forest area involves 25 
different species, the most frequent ones include ironwood (Olea capensis 
L. subsp. macrocarpa), kamassi (Gonioma kamassi E. MEY.) and real 
yellowwood (Podocarpus latifolius (THUNB.) R. BR. EX MIRB.). The study 
area is situated at 517 m asl and the average annual maximum tem
perature for the region is 19.2 ◦C whilst the average minimum is 11.1 ◦C. 
The mean annual precipitation may vary between 700 and 1230 mm 
(Gadow et al., 2016). A large sub-plot of size 116 × 116 m measured in 
1972 was included in this study (Pommerening et al., 2024).

Species richness, S, is comparatively high at Knysna Forest and very 
low for the other two sites. The highest tree density both in terms of 
number of trees per hectare and basal area occurs at the Embrach 
monitoring plot followed by Knysna (Table 1). The size range in terms of 
stem diameter is largest at Knysna and lowest at Clocaenog. 

Dissimilarity coefficient (Eq. (5)) and diameter differentiation (Eq. (17)) 
are very similar and so are the corresponding size segregation indices 
(Eq. (11)). Size diversity is highest in the Embrach and lowest in the 
Clocaenog monitoring plot. For all three sites and both size inequality 
indices, the corresponding size segregation indices yielded values near 
zero, which indicates a trend towards spatial independence, i.e. spatial 
size correlation is weak. However, at Embrach, there is a stronger trend 
towards an attraction of similar sizes, whilst at Clocaenog and Knysna 
there is a weak trend towards and attraction of different sizes (Table 1).

3. Results

3.1. Index correlations

We applied the dissimilarity coefficient and the competing indices to 
the highly diverse data of the South African Knysna Forest (see Section 
2.8). As stated in Section 2.1, the values of Ví are smaller than those of 
Vi, a tendency that increases with increasing size dissimilarity, and Ví, 
values also have a shorter range (Fig. 1).

It is also clear that the strongest relationship of the dissimilarity 
coefficient with competing indices (listed in Section 2.6) exists for size 
differentiation index Ti (Eq. (17); Fig. 1A), even though the relationship 
is nonlinear and weakly hyperbolic. The values of the original index 
including 

̅̅̅
2

√
as expansion factor, Vi (Eq. (5)), are apparently more 

similar to Ti than the simplified index values Ví (Eq. (6).
For the other two competing indices, size variogram index V*

i (Eq. 
(18)) and size correlation index Ci (Eq. (19)), the relationships with the 
size dissimilarity coefficient are much noisier than for the size differ
entiation index. For both indices, variance markedly increases with 
increasing values of V*

i and Ci. The relationship with the size variogram 
index (Fig. 1B) is stronger than that with the size correlation index 
(Fig. 1C). We also computed all three indices for a range of other data 
and always found similar relationships between the individual-tree 
indices (not shown).

Accordingly we have identified size differentiation index Ti as the 
main competitor of the size dissimilarity coefficient and only proceeded 
with these two indices in the following analysis.

3.2. Monte Carlo test performance

We tested the performance of mean population size dissimilarity, V, 
and mean size differentiation, T, to detect significant trends in simulated 
plant patterns with spatial correlations between neighbouring plants 
(dependent marking). Here the boundary regions defined by quantile q 
of local tree density were examined to see whether the use of the two 
indices would lead to a different behaviour of the corresponding 
p-values (Fig. 2).

In both boundary regions, the curve associated with the size 
dissimilarity index was always lower than that related to the size dif
ferentiation index, particularly for q values leading to increasing p. This 
suggests that under the same conditions the size dissimilarity index is 
more sensitive than the size differentiation index. The difference in 
p-values is largest where p for the dissimilarity index is around 0.5.

Table 1 
Area, species richness, S, number of trees, N, basal area, G, minimum stem diameter, dmin, maximum stem diameter, dmax, mean size dissimilarity, V, mean size 
differentiation, T, and the corresponding size segregation indices, Υ (V) and Υ (T), in the three sample monitoring plots Clocaenog, Embrach and Knysna. The spatial 
indices were calculated from all trees in the plots using k = 4 nearest neighbours and the NN1 spatial edge correction method (Pommerening and Stoyan, 2006).

Forest Area [ha] S N[ha− 1] G[m2/ha] dmin[cm] dmax[cm] V T Υ (V) Υ(T)

Clocaenog 1.02 1 281 29.3 20.4 55.5 0.14 0.17 − 0.01 − 0.01
Embrach 0.25 2 600 32.4 6.7 51.0 0.45 0.45 − 0.08 − 0.07
Knysna 1.35 20 562 26.0 5.5 66.7 0.42 0.42 0.02 0.02
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3.3. Mark correlation functions

Competing diversity indices can also be used as test functions in 
mark correlation functions, see Section 2.5. We applied the resulting 
mark correlation functions δ(r) (using test function t1) and τ(r) (using 
test function t2) to the Embrach (Fig. 3A) and Clocaenog data (Fig. 3B; 
see Section 2.8). As another reference we computed the mark variogram, 
γ(r), using test function t3.

All three mark correlation functions indicated the same trends in 
both forests. For the beech forest at Embrach (Fig. 3A) all three mark 
correlation functions had curves that were larger than 1 up to a distance 
of r ≈ 7.5 m, a phenomenon referred to as negative autocorrelation 
(Pommerening and Särkkä, 2013). In this distance range, tree sizes 
markedly differed at short distances. This was followed by a depression 

around r ≈ 10 m where tree sizes of pairs of trees tended to be similar, 
which is termed positive autocorrelation (Illian et al., 2008; Pommerening 
and Grabarnik, 2019). For larger r there were random fluctuations 
around 1, which is to be expected.

For the Sitka spruce forest at Clocaenog (Fig. 3B) all three mark 
correlation functions initially indicated mainly negative autocorrelation 
at r ≈ 2.5 m, which was weaker here than at Embrach (Fig. 3A). This 
first maximum was followed by a depression showing positive auto
correlation at r ≈ 7 m. After that two smaller maxima indicating 
negative autocorrelation occurred for larger r followed by random 
fluctuations around 1.

A comparison of the curves in the two forests shows that δ(r) and τ(r)
were always very close, while γ(r) often produced greater deviations 
from the other two mark correlation functions. When comparing δ(r)

Fig. 1. Scatterplots of individual-plant size dissimilarity indices Vi (black) or Ví (red) of Eqs. (5) and (6) over (A) the size differentiation index Ti (Eq. (17)), (B) the 
variogram index V*

i (Eq. (18)) and (C) the mark correlation index Ci (Eq. (19) ) applied to mapped trees at Knysna Forest. For better comparison, the values of the 
latter two indices were transformed to values between 0 and 1 using the common formula xí =

xi − min(xi)
max(xi)− min(xi)

, where xi represents the index values V*
i and Ci. Mean 

population characteristics are V = 0.42, Vʹ
= 0.29 and T = 0.42.

Fig. 2. Results of the Monte Carlo random labelling test applied to density-dependent size marking of 1000 replications of a Poisson point process. The p-value of the 
two-sided test is denoted as p for V (Eq. (7); black) and T (Eq. (17); red). The quantile of local tree density is q. A: q ≤ 10 % of local tree density, B: q ≥ 90 % of local 
tree density.
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and τ(r), it also becomes clear that δ(r) tended to produce larger values 
in local maxima and minima than τ(r).

When considering the random-labelling envelopes it is evident that 
those of δ(r) and τ(r) were more similar and narrower than those of γ(r). 
Although the mark variogram produced the largest and smallest func
tion values, none of them were significant for any r neither at Embrach 
nor at Clocaenog. This was different for δ(r) and τ(r) at Embrach 
(Fig. 3A), because the functions’ first peaks at around r ≈ 2 m were 
partly outside the corresponding envelopes and therefore significant. It 
is also interesting to note that more values of δ(r) were significant than 
values of τ(r).

For Clocaenog Forest (Fig. 3B), only few instances of δ(r) were sig
nificant in the first local minimum at r ≈ 7 m whilst τ(r) came very close 
to significance at this distance. Also here, more values of δ(r) were sig
nificant than values of τ(r). Overall the results suggest that δ(r) using the 
principle of the dissimilarity coefficient as test function is more sensitive 
than the other two correlation functions.

3.4. Dissimilarity, differentiation and size segregation functions

When comparing functions V(r) and T(r) applied to the two forests, it 
is evident that size diversity is markedly larger and more variable at 
Embrach (Fig. 4A) than at Clocaenog Forest (Fig. 4B). While at Embrach 
both functions decline with increasing numbers of neighbours and dis
tance, they remain fairly constant at Clocaenog Forest. At Embrach 
Forest, V(r) > T(r) particularly at short distances, but both curves were 
quite similar (and significant up to r ≈ 2.5 m), whilst at Clocaenog 
Forest, V(r) < T(r) and there was a marked difference between the two 
curves and their envelopes did not overlap.

The corresponding size segregation functions are very similar for 
both forests, but more similar at Clocaenog Forest (Fig. 4B). At Clo
caenog Forest, the size segregation functions for both size diversity 
indices largely suggest independent tree sizes with nearly no spatial 
correlation. At Embrach, both size segregation functions, similar to the 
mark correlations functions (see Section 3.3), indicate a marked 
attraction of different sizes, which is significant for r ≈ 2.5 m. This trend 
is slightly stronger and more significant for the size segregation function 
which is based on the dissimilarity coefficient.

4. Discussion

Analysing the comparative properties of competing spatial plant 
diversity indices is not an easy task and to date there are no firm pro
tocols or guidelines for such work. Our study attempted to introduce a 
broad framework or protocol for such an analysis that examines a 
number of different aspects of the characteristic under study. This was 
possible by analysing the behaviour of the two competing indices in (1) 
Monte Carlo tests (Baddeley et al., 2016), (2) in mark correlation 
functions (Illian et al., 2008) and (3) in size segregation functions 
including the associated global envelope tests (Myllymäki et al., 2017). 
Each of these analyses highlighted different properties of the dissimi
larity coefficient.

Our study identified size diversity rather than size dominance as the 
main objective of analysis rather than size dominance. Given this, the 
results in Fig. 1A highlighted that the dissimilarity coefficient by Ali 
(1997) and Hagner and Nyquist (1998) shares much similarity with the 
size differentiation index by Gadow (1993). Ali (1997) even explicitly 
referred to the size differentiation index as competitor, but did not carry 
out any comparative analysis. As Section 2.1 has demonstrated, the 
statistical reasoning of the dissimilarity coefficient likely is better than 
that of the differentiation index.

The Monte Carlo test simulations revealed a greater sensitivity of the 
size dissimilarity coefficient compared to the size differentiation index. 
Under ‘normal’ conditions between 0.10 < q < 0.90, both indices per
formed equally well, but in the boundary regions of q < 0.10 and q >

0.90 the dissimilarity coefficient clearly turned out to be more sensitive. 
This could mean that the statistical power (i.e. 1 – probability of type II 
error) associated with the dissimilarity coefficient is greater than that 
related to the differentiation index, but this is notoriously difficult to 
determine, since true size inequality is hard to define. However, we 
know that the simulations were clearly based on dependent marking, i.e. 
the point process model used indeed included a correlation between 
space and size differences. Therefore it is likely that the curves in Fig. 2
describe the type II error.

When using mark correlation functions with three different test 
functions, it was interesting to see how some of the corresponding 
function curves indicated the trends involved more strongly than others 

Fig. 3. Mark variogram, γ(r), using test function t3 (Eq. (16)), mark correlation function, δ(r), (Eq. (13)) using test function t1 (Eq. (14)) and mark correlation 
function, τ(r), (Eq. (13)) using test function t2 (Eq. (15)) with bandwidth h = 1.0 m for all three functions along with the corresponding envelopes obtained from 
global envelope tests (Myllymäki et al., 2017) based on 2499 random labelling simulations applied to the (A) Embrach and (B) Clocaenog mapped tree data.
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(Fig. 3). On first sight, the mark variogram based on test function t3 (Eq. 
(16)), appeared to show the spatial trends more clearly, but none of the 
γ(r) curves were statistically significant according to the global envelope 
test. Mark correlation function δ(r) using test function t1 (Eq. (14)), 
based on the dissimilarity coefficient, more strongly indicated spatial 
inequality trends than mark correlation function τ(r) using test function 
t2 (Eq. (15)), based on the size differentiation index. In addition, δ(r) was 
significant for more instances of r than τ(r). This outcome supports the 
view that δ(r) is potentially a powerful characteristic that owes its 
strength much to test function t1, which again is based on the dissimi
larity coefficient.

Similar trends as for the mark correlation functions we obtained from 
the V(r) and T(r) functions and from the corresponding size segregation 
functions Υ(r) (Fig. 4). These are functions which are based on mean 
dissimilarity and mean differentiation using different numbers of near
est neighbours k. As expected, the difference between mean dissimilarity 
and mean differentiation were often small, however, V(r) and Υ (V)(r)
showed greater sensitivity and often led to statistical significance for 
more instances of r than T(r) and Υ (T)(r).

The strategy of using a diversity index under study in different 

functional contexts has clearly helped us to identify subtle differences in 
the performance of this index.

5. Conclusions

When size diversity rather than size dominance is the study objec
tive, the size dissimilarity index by Ali (1997) and Hagner and Nyquist 
(1998) definitely is a size inequality index that merits attention, since it 
is statistically more sensitive and most likely also has greater statistical 
power than its closest competitor, the size differentiation index by 
Gadow (1993). The statistical rationale of the size dissimilarity coeffi
cient also has a solid foundation and the characteristic can also be used 
in a context where occasional sizes are zero. When many of neigh
bouring plant sizes are zero, the simplified version of the index (Eq. (6) is 
recommended. In addition, the principle of the dissimilarity coefficient 
can also be recommended as a test function of the mark correlation 
function. Our new method of analysing competing diversity indices has 
revealed interesting properties of the dissimilarity coefficient.

Fig. 4. Size dissimilarity and size differentiation functions, V(r) and T(r), respectively, along with their size segregation variants, Υ (V)(r) and Υ (T)(r), computed based 
on Eqs. (9) and (11) for (A) Embrach and (B) Clocaenog mapped tree data.
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