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A B S T R A C T
In this paper, we develop a profit-sharing-based optimal routing mechanism to incentivize
horizontal collaboration among urban goods distributors. This paper investigates a collaborative
routing problem for urban logistics, in which the exchange of goods at meet points is optimally
planned en route. We show that collaboration does not only reduce the total cost but also increases
the profit of each company by sharing some customers and the related profit. Hence, we focus
on solving a collaborative electric vehicle routing problem under constraints such as customer-
specific time windows, opportunity charging, vehicle capacity, and meet-point synchronization.
The proposed Collaborative Electric Vehicle Routing Problem with Meet Point (CoEVRPMP) is
modeled as a mixed-integer nonlinear programming problem. We first present an exact method
for optimal benchmarks via decomposition. To handle real-world problems, we suggest using
a metaheuristic method: adaptive large neighborhood search with linear programming. The
viability and scalability of the collaborative method are demonstrated via numerical case studies:
(i) a real-world case of two grocery stores in the city of Gothenburg, Sweden, and (ii) a large-scale
experiment with 500 customers. The results underline the importance of horizontal collaboration
among delivery companies. Collaboration helps to reduce the environmental footprint (total
energy consumed) and to increase the individual company’s profit at the same time.

1. Introduction
Cities are continuously experiencing growing demand for freight transportation (Savelsbergh and Van Woensel,

2016). A 16% annual growth rate in urban logistics is projected over the next five years from 2021, only connected to
e-commerce (Reuters Events, 2022). Traffic congestion and greenhouse gas emissions are expected to increase by 21%
and 32% until 2030, respectively (World Economic Forum, 2020). However, it has been demonstrated that delivery
vehicles often operate below their capacity, delivering nothing more than "air" (Verlinde et al., 2012; Chen, 2016). The
need for reliable and timely transportation solutions to balance the interests of society, businesses, and customers has
never been more crucial.

In response to these challenges, horizontal collaboration through sharing economy business models, such as sharing
logistics infrastructure and services with competitors, has emerged as a potential solution (Los et al., 2020; Salama
and Srinivas, 2022; DHL Trend Research, 2022), and it is gaining traction among practitioners and researchers (Pan
et al., 2019; Ferrell et al., 2020). Such collaboration typically involves companies with shared interests and businesses.
The majority of studies indicate that such collaboration can enhance the non-collaborative solution by approximately
20-30% (Gansterer and Hartl, 2018). However, it’s important to note that existing studies often enforce collaboration
from a holistic perspective, overlooking the individual benefits for each company. This may sacrifice a company in
order to achieve larger total profits, discouraging horizontal collaboration in practice.

Moreover, to address sustainability development needs in the transportation sector, the adoption of electric vehicles
(EVs) for goods distribution is gaining support as a viable solution (Malladi et al., 2022; Yang et al., 2022). In addition
to advancements in vehicular technology and investments in charging infrastructure (Ghamami et al., 2020; McCabe
and Ban, 2023), the transition is impeded by route planning concerns regarding delivery range. The Electric Vehicle
Routing Problem (EVRP), as seen in Schneider et al. (2014), Keskin and Çatay (2016) and Basso et al. (2019), seeks
to bridge the planning gap between limited range and effective urban distribution. Integrating electric vehicles into
horizontal collaboration introduces new benefits but, at the same time, new challenges related to charging and route
planning integration.
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Collaborative electric vehicle routing with meet points

This paper introduces the concept of collaborative routing involving the exchange of goods en route at meet points.
A visual representation of this idea is depicted in Fig. 1. The example involves two logistics companies serving their
respective customers in the same area. Fig.1(a) depicts the vehicle routes if company 1 (black) and company 2 (white)
serve only their own customers. Fig.1(b) demonstrates the collaboration scenario, where vehicles from both companies
can exchange parcels at a "meet-point". In the case of collaboration, company A (B) serves not only its original
customers but also the shared ones from the other company B (A). Each company offers three types of service: i)
serving its own customers from the depot to the end; ii) serving its own customers from the depot to the meet point
for exchange; iii) serving the other company’s customers from the meet-point to the end. Due to the joint activities,
a profit-sharing mechanism is introduced to split the profit from a shared customer, based on the profit ratio concept,
further explained in Section 3.

2023-07-191

Depot of Company 1 Depot of Company 2

Customers of Company 1 Customers of Company 2

Meet point

Routing of vehicle 1 Routing of vehicle 2

(a) (b)

Figure 1: Horizontal collaboration example (a) non-collaboration, (b) collaboration

This paper studies the collaborative electric vehicle routing problem with meet points (CoEVRPMP), explicitly
considering individual companies’ benefits. We explore a scenario where two logistics companies collaborate to plan
vehicle routes to cross-serve a strategically selected set of customers. Individually serving these customers would be
cost-prohibitive for either company. Instead, a unified global optimum solution is designed with the aim to increase
the profitability of each individual company through collaboration and reduce the overall costs compared to non-
collaborative solutions. We assume that the companies opt to transfer goods at several designated meet points and
share customer addresses when collaborating (with standardized shipments). Various factors, such as customer-specific
time windows, vehicle capacity, charging schedules, and meet-point synchronization, are taken into account. To address
these challenges, we’ve developed a solution for CoEVRPMP, suitable for small to medium-sized real-world scenarios,
using both exact and heuristic methods, and with the potential to scale for larger cases of up to 500 customers. The
contributions of this paper can be summarized as follows:

• The concept of meet points (transshipment points) is introduced to the collaborative routing problem, accompa-
nied by a clear profit-sharing mechanism.

• The CoEVRPMP is formally defined and modeled as a mixed integer nonlinear programming problem.
• Practical constraints, including charging, customer time windows, vehicle capacity, and meet-point synchroniza-

tion, are explicitly considered in an integrated framework.
• An exact method and a metaheuristic algorithm are developed for theoretical analysis and practical implemen-

tation purposes, respectively.
The remainder of this paper is organized as follows. Section 2 reviews the literature related to the CoEVRPMP.

Section 3 presents the problem description, formulates the mathematical programming model, and describes the
proposed two solution methods: one exact and one metaheuristic. Section 4 presents the experimental study and
discusses the numerical results. Finally, Section 5 concludes the paper with directions for future research.
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2. Literature review
The collaborative vehicle routing problem (CoVRP) is an operational planning challenge within horizontal

collaboration (Gansterer and Hartl, 2018). Most CoVRPs focus on either routing optimization (Sprenger and Mönch,
2014; Pérez-Bernabeu et al., 2015; Montoya-Torres et al., 2016; Quintero-Araujo et al., 2016; Stellingwerf et al., 2018;
Muñoz-Villamizar et al., 2019; Vahedi-Nouri et al., 2022) or profit sharing (Berger and Bierwirth, 2010; Curiel, 2013).
However, only a limited number of studies have addressed both aspects (Krajewska et al., 2008; Zibaei et al., 2016;
Wang et al., 2017). A more comprehensive review of collaborative vehicle routing can be found at Gansterer and Hartl
(2018). Another critical consideration is the impact of electric vehicles on collaborative routing. This section provides
a comprehensive review of these three aspects: routing optimization in CoVRPs, profit sharing in CoVRPs, and the
integration of electric vehicles into CoVRPs.
Routing optimization in CoVRPs
Collaborative routing Paradigms

Collaborative vehicle routing primarily falls into two categories: centralized planning and decentralized planning.
Unlike decentralized planning, which entails limited or no information exchange, centralized planning involves
information sharing. Centralized collaborative planning prioritizes optimizing the entire system over individual
companies, while decentralized planning emphasizes more localized and independent decision-making. Additionally,
within the literature, there exists a distinction between two types of customer requests: ’reserved’ and ’shared.’ Reserved
requests pertain to customers whom carriers must serve due to contractual obligations or other specific considerations,
while shared requests encompass those customers whom carriers are open to serving collaboratively with others.

Centralized collaborative planning studies assess the potential benefits of collaborative versus non-collaborative
settings. The potential benefits could be based on total costs (Lin, 2008), total travel distance (Montoya-Torres et al.,
2016; Pérez-Bernabeu et al., 2015), profits (Li et al., 2016; Fernández et al., 2016), and emissions (Pérez-Bernabeu
et al., 2015). However, centralized collaborative planning focuses more on the whole system than the single company.
Hence, one possible breakthrough is to incorporate individual profit gains into centralized collaborative planning.

There is limited research that has focused on centralized collaborative planning with profit gains and reserved
customers. Fernández et al. (2016) propose a collaborative uncapacitated arc routing problem with profit gains, where
the goal is to maximize the total profit of the coalition of carriers and take the lower bound on the individual profit of
each carrier into account. The model considers side payments for those customers that are served by different carriers.
Their work is based on the arc routing problem that sets arc as a customer, and the time windows of customers are
ignored. Additionally, the side payments are hard to set. Thus, in this paper, reasonable side payments are set for each
request.

In most of the centralized collaborative routing literature, depots could directly serve other companies’ customers,
where a strong assumption is that the collaborating companies share the same depot (Stellingwerf et al., 2018) or
multiple depots (Pérez-Bernabeu et al., 2015; Montoya-Torres et al., 2016; Quintero-Araujo et al., 2016; Muñoz-
Villamizar et al., 2019). Some studies consider exchanging goods between depots (Sprenger and Mönch, 2014; Vahedi-
Nouri et al., 2022), which reduces the total cost but also brings additional travel costs to connect depots. Consequently,
most of the centralized problems are formulated as the VRP or multi-depot VRP (MDVRP), but those problems have
been widely studied. The main difference between the proposed non-collaborative and collaborative routing problems
occurs only in the customer sets in these studies. Juan et al. (2014) associate collaborative routing with backhaul,
which is a simple collaborative method that merges two routes from different companies to reduce backhaul. In this
way, the merged route visits customers after visiting their depot. Pickup and delivery (PD) requests are frequently added
extensions here (Krajewska et al., 2008; Wang et al., 2014; Buijs et al., 2016; Li et al., 2016), where PD locations do
not coincide with a depot. Then, requests are served and fulfilled before the vehicle returns to the depot. Thus, the
depot is no longer needed to store goods, let alone to share depots or exchange goods. Regardless of whether depots are
shared or connected via routes, the issue that needs to be addressed in this study is how to achieve better collaborative
distribution by exchanging goods among companies.

Considering that carriers are often resistant to sharing all their customers’ data with a central planner, some
research has focused on decentralized planning, including request selection and request exchange (Gansterer and
Hartl, 2018). Regarding the request selection method, carriers need to decide which of their customers can be offered
to the collaboration partners. This is essential because some companies may not be willing to share all of their
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customers. The exchange of goods for customers could be included in vehicle routes (lane exchanges) or via auction-
based systems. However, the sharing preferences of collaborators limit significant profit increases. An interesting
decentralized planning study by Li et al. (2016) proposes a pickup and delivery problem (PDP) with time windows,
profits, and reserved customers in carrier collaboration realized through combinatorial auction. This research focuses
only on one carrier and includes two decisions: which customers to bid for (to serve) and how to build routes for
maximizing "own profit". Like many of the decentralized planning studies, Li et al. (2016) have a myopic focus:
increase profit share for a single company. Therefore, a valid research question is raised on how to jointly ensure the
companies’ profit while lowering the total cost of the whole system.
Transshipment in CoVRPs

Only a few papers have studied the routing problems with transshipment, such as PDP with transshipment
(PDPT) (Cortés et al., 2010), Vehicle Routing Problem with Transhipment Facilities (Baldacci et al., 2017), and Two-
Echelon Vehicle Routing Problem (Crainic et al., 2009). Mitrović-Minić and Laporte (2006) assess the usefulness
of transshipment and state that transshipment points prove highly beneficial in clustered instances. Drexl (2012)
emphasized critical challenges in addressing synchronization aspects, including the PDPT and its related problem
variations. Research shows that the benefit of allowing transshipment can be significant (Lyu and Yu, 2023). The
transshipment in the above studies is within a single company. Expanding the concept of transshipment among
companies may enhance collaboration and yield further benefits. This is one of the objectives of this paper.

The closest study Zhang et al. (2022) addressed the goods exchange issue by transferring goods at customer
points or depots and studied a heterogeneous multi-depot collaborative vehicle routing problem. This work shows
that transferring goods en route (from unloading vehicle to loading vehicle) can result in different gains in the system.
However, several aspects can be added to this study to increase its practical applicability and relevance, which will
be addressed in this paper. These aspects include i) exchanging between two vehicles instead of only from unloading
vehicle to loading one; ii) time windows of customers and specified waiting time at transfer points; iii) profit sharing
or minimal profit guarantee for the initiatives of collaboration.
Profit sharing in CoVRPs

An important aspect of collaborative operations is how to share the potential extra profit among the collaborators.
This calls for the solution of cost allocation problems (Engevall et al., 2004). Guajardo and Rönnqvist (2016) review
cost allocation solutions for collaborative transport services and summarize the most commonly used methods. This
includes the commonly used Shapley value (Vanovermeire and Sörensen, 2014; Kimms and Kozeletskyi, 2016) and
other proportional methods (Berger and Bierwirth, 2010; Özener et al., 2013). Note that these methods of sharing profit
require knowing the total benefit first.

Only a few studies integrate routing planning with profit-sharing aspects in the design of collaborative vehicle
routing problems. Krajewska et al. (2008) combine routing and scheduling problems with cooperative game theory. It
proposes two subproblems to be addressed and integrated. First, it hints at solving the routing problem (multi-depot
PDP with time windows). Second, a profit-sharing mechanism involves the Shapley value to determine a fair allocation.
However, profit sharing of this type may have potential legal risks, e.g., against antitrust or competition laws.
EVs Integration in CoVRPs

The electric vehicle routing problem (EVRP) emerged from the traditional VRP by considering battery constraints,
charging operations, and energy consumption. One of the earliest works on EVRP has been communicated in Conrad
and Figliozzi (2011). It introduces the recharging vehicle routing problem, where vehicles with limited range are
allowed to recharge at customers’ locations. The recharging time is assumed to be fixed. Schneider et al. (2014)
study the electric vehicle routing problem with time windows and recharging stations (EVRPTW). The EVRPTW
considers customer time windows and includes the possibility of opportunity recharging at stations, with the recharging
time being dependent on the battery level. A comprehensive review of EVRP can be referred to Kucukoglu et al.
(2021), where EVRP studies are classified according to four criteria: objective function types, energy consumption
computations, considered constraints in the EVRP, and fleet types.

Very few studies incorporate the collaborative strategy in the EVRP. Muñoz-Villamizar et al. (2019) assess the
implementation of an electric fleet of vehicles in urban goods distribution under a horizontal collaboration strategy
between carriers. A multi-objective optimization is proposed in their study to explore the relationship between the
delivery cost and the environmental impact. Vahedi-Nouri et al. (2022) study a collaborative capacitated electric vehicle
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routing problem, where a bi-objective function is considered to minimize i) the total tardiness costs and fixed costs of
using EVs and ii) the total electrical energy consumption. They assume that there is a Third Party Logistics company
to transship goods between depots and include this cost in the objective function. The above two studies model the
collaborative scenario as MDVRP and multi-depot EVRP, respectively. The former is similar to most of the centralized
planning studies, and the latter injects the electric vehicle characters into the MDVRP setup. Both of these studies
overlooked the profit of the individual company and did not consider the time windows of customers and reserved
customers of companies.

Unlike transferring products unilaterally from one vehicle to another, as seen in Zhang et al. (2022), this paper
emphasizes bilateral exchanges between two vehicles, which may operationally be more tractable. Moreover, we
propose an optimization-driven mechanism to exchange goods en route for collaboration, as opposed to depot-based
transfers (Sprenger and Mönch, 2014; Pérez-Bernabeu et al., 2015; Montoya-Torres et al., 2016; Muñoz-Villamizar
et al., 2019; Vahedi-Nouri et al., 2022). Regarding electric vehicles, only one study (Vahedi-Nouri et al., 2022) has
expanded the basic collaborative routing by adding charging possibilities, which is usually formulated as MDVRP that
is not directly related to collaboration.

This paper investigates collaborative electric vehicle routing problems within a centralized planning framework,
focusing on collaboration and electric vehicles (EVs). The collaboration involves the exchange of goods and profit-
sharing, with a specific focus on partial EV charging. In contrast to existing literature, we consider scenarios where
vehicles can exchange goods en route. Through profit-sharing, we aim to reconcile conflicts between system-wide
optimization and individual benefits. Notably, our approach integrates route optimization and profit-sharing within
a comprehensive structure, seamlessly incorporating profit-sharing into the optimization process. Consequently, our
model allows for the simultaneous derivation of optimal routing and profit-sharing solutions. In doing so, this
study addresses critical practical constraints, including charging challenges, time windows, vehicle capacity, and
synchronization at meet points.

3. Methodology
In this paper, carriers collaborate by exchanging goods at one of several designated ’meet points’. This interaction

occurs because their delivery routes intersect, presenting significant decision-making challenges, including selecting
the meet points, ensuring vehicle arrivals are synchronized at these points, and integrating them into route optimization.
Additionally, we address issues like en-route charging and customer-specified time windows, which intricately link
vehicle routes, energy consumption, and partial charging strategies. These considerations contribute to the complexity
of the collaborative routing problem.

Without loss of generality, the following assumptions (boundary conditions A2-A5, model/method specific
assumptions A1, A6-A9) are used along the paper.

A1 Two companies are considered with one electric vehicle each, starting from and returning to the same depot. 1
A2 Each company has two known sets of customers: a set of reserved customers to be served only by the company

itself (due to company policy, privacy, user agreements, etc.) and a set of customers to share for collaboration.
A3 Each company has certain expectations for the profits of collaboration. Thus, the profit threshold will be defined

by each company separately (based on strategic purpose, long-term development, etc.), below which companies
will refuse to collaborate. Since the companies’ expectations are different from case to case, we deem it irrelevant
to this study. In this work, we simply define the threshold as the non-collaborative profit (maximum profit
achieved by a company operated independently).

A4 There exists a mutually trusted consolidator. The collaboration is planned in a centralized manner, which means
their information should be provided to the central planner, and both companies comply if agreed.

A5 Electric vehicles can be put on charge at customer locations and at meet-points, where partial charging is
considered.

A6 Electric vehicles are fully charged when leaving the depot.
A7 Electric vehicle capacities are deterministic and known.
A8 Each customer is visited by only one company, but the full chain of service may involve another company if they

exchange goods at meet points.
1The proposed model can also be applied to multiple vehicles with slight modifications, which can be found in Appendix A. For ease of

communication, we focus on the two-vehicle case in the main text.
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A9 The travel time, the delivery time window, and the travel distance among customers are known to be
deterministic.

With the above assumptions, we study the CoEVRPMP with predefined profit thresholds, time windows, state of
charge and charging constraints, vehicle capacity, and meet-point synchronization. In the CoEVRPMP, we optimize
several vital decisions to minimize total collaborative operational costs. These decisions encompass meeting time and
location, assignment of the shared customer, vehicle delivery sequence, charging locations, and the amount of energy
to charge. This section provides an overview of the optimization model and the solution approaches.
3.1. Model formulation

To help the reader understand the CoEVRPMP, we now provide a mixed-integer nonlinear programming (MINLP)
formulation of the problem. The CoEVRPMP is modeled using a complete directed graph 𝐺 = (𝑁,𝐴), where
𝑁 = 𝑂 ∪ 𝑅 ∪ 𝑀 represents the node set and 𝐴 is the edge set. Specifically, 𝑂 is the depot set, 𝑅 represents the
customer set, and 𝑀 is the meet point set. The customer set 𝑅 comprises two subsets: reserved customers 𝑅𝑟 and
shared customers 𝑅𝑠. Moreover, each company 𝑘 possesses a set of customers 𝑅𝑘, which can be further divided into
reserved customers 𝑅𝑟

𝑘 and shared customers 𝑅𝑠
𝑘, with 𝑘 belonging to the company (vehicle) set 𝐾 = {1, 2}.

The MINLP uses the following decision variables. Binary variables 𝑥𝑘𝑖𝑗 take value 1 if vehicle 𝑘 delivers from node
𝑖 to node 𝑗. Binary variables 𝑦𝑘𝑗 take value 1 if customer 𝑗 is served by vehicle 𝑘. Binary variables 𝜀𝑚 take value 1
if vehicles choose to meet at meet point 𝑚. Binary variables 𝑧𝑘𝑖 take value 1 if vehicle 𝑘 charges at node 𝑖. Variables
Φ𝑘 refer to the total profit of company 𝑘 (SEK). Variables 𝑏𝑘𝑖 and 𝛿𝑘𝑖 specify the remaining energy and the amount of
battery charged for vehicle 𝑘 at node 𝑖 (Wh). Variables 𝑆𝑇 𝑘

𝑖 are the time for serving goods and charging of vehicle 𝑘
at node 𝑖. Variables 𝑠𝑘𝑖 represent the service start time of vehicle 𝑘 at node 𝑖. Additionally, we introduce variables 𝑇 𝑘

to denote the arrival time of vehicle 𝑘 at the end depot, which aligns with the service start time at node 𝑖 for vehicle 𝑘,
where 𝑖 corresponds to the end depot and is within the set 𝑂−.

For the convenience of communication, all the notations used for problem formulation are presented in Appendix
B (Table 9). In addition, if a customer belongs to Company 1 but is also partially served by Company 2, we refer to
Company 1 as the responsible company and Company 2 as the collaborative company, and vice versa. The MINLP
formulation follows.

The profit is determined by subtracting the total delivery cost from customer revenue. Given constant customer
revenue, lowering the overall delivery cost directly boosts profit. The objective is to minimize the total cost for all
companies, leading to profit-maximizing:

min
∑

𝑘∈𝐾

∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑐𝑑𝐷𝑖𝑗𝑥

𝑘
𝑖𝑗 +

∑

𝑘∈𝐾
𝑐𝑡𝑇

𝑘, (1)

where the first term signifies the energy consumption cost associated with the distance 𝐷𝑖𝑗 , while the second term
represents labor cost tied to arrival time. 𝑐𝑑 stands for unit energy consumption cost, and 𝑐𝑡 represents unit driver
salary. Without loss of generality, the following equality and inequality constraints are defined.

(I) Profit threshold constraints
In practice, collaboration can be highly motivated by a win-win situation, which in this context, means an increase

in profit for both companies. Therefore, to make the results meaningful and practical, we introduce a profit-sharing
threshold as a necessary condition of collaboration. Each company could determine its own threshold 𝑃𝑚𝑖𝑛

𝑘 , and the
collaboration will only occur if the profit Φ𝑘 exceeds the threshold 𝑃𝑚𝑖𝑛

𝑘 for both companies, which can be formulated
as:

Φ𝑘 ≥ 𝑃𝑚𝑖𝑛
𝑘 ,∀𝑘 ∈ 𝐾, (2)

where

Φ𝑘 =
∑

𝑗∈𝑅𝑘

𝑝𝑗𝑦
𝑘
𝑗 +

∑

𝑚∈𝑀

∑

𝑗∈𝑅𝑘

𝑝𝑗𝛼
𝑚
𝑗 𝜀𝑚

(

1 − 𝑦𝑘𝑗
)

+
∑

𝑚∈𝑀

∑

𝑗∈𝑅⧵𝑅𝑘

𝑝𝑗
(

1 − 𝛼𝑚𝑗
)

𝜀𝑚𝑦
𝑘
𝑗 −

∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑐𝑑𝐷𝑖𝑗𝑥

𝑘
𝑖𝑗 − 𝑐𝑡𝑇

𝑘, (3)
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𝛼𝑚𝑗 =
𝐷𝑜𝑘𝑚

𝐷𝑜𝑘𝑚 +𝐷𝑚𝑗
,∀𝑗 ∈ 𝑅𝑘, 𝑘 ∈ 𝐾,𝑚 ∈ 𝑀. (4)

The profit of a companyΦ𝑘 is naturally defined as the net income (income deducting cost) in Eq. (3), with the service
fee of customer 𝑗 represented as 𝑝𝑗 . The income comes from providing service to the three categories of customers,
as corresponding to the first three terms in the equation, respectively. Specifically, the first term denotes income from
customers entirely served by the responsible company; the second term represents income from customers partially
served by the responsible company; and the third term accounts for the income from shared customers of the other
company. Clearly, there is a need for a profit-sharing mechanism to split the income from shared customers.

The profit ratio 𝛼𝑚𝑗 in Eq. (4) serves as the core of our profit-sharing mechanism, which is a distance-based approach.
With the defined ratio, we provide more insights into ratio penalized terms of income function in Eq. (3). If the two
companies jointly serve customer 𝑗, the profits of the responsible company (serving from depot to meet point) and the
collaborative company (serving from meet point to customer) are 𝑝𝑗𝛼𝑚𝑗 and 𝑝𝑗

(

1 − 𝛼𝑚𝑗
)

, respectively. While enabling
the split of income, the profit-sharing mechanism introduces the complex interplay between the selection of meet points
and shared customers (i.e., the multiplication of 𝜀𝑚 and 𝑦𝑘𝑗 in Eq. (3) ). This interplay makes the optimization model
nonlinear and thus computationally intensive (see more details in Section 3.2). Last but not least, the remaining two
terms in Eq. (3) are the energy consumption and labor cost, respectively.

(II) Charging and capacity constraints
We now ensure that the delivery vehicles are running under practical capacity and favorable battery levels. In

existing studies, it has been found that a high depth of discharge exacerbates battery degradation (Schoch et al., 2018).
Thus, it is beneficial for companies to regulate the battery level of EVs and charge it en route. To this end, we constrain
the EV battery energy within a lower and upper bound [𝐿,𝐵], as follows, and enable charge:

𝐿 ≤ 𝑏𝑘𝑖 ≤ 𝐵,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (5)
while visiting customers, the battery state is updated by Eq. (6), and opportunity charging is regulated in Eq. (7).
Notably, energy consumption is directly linked to travel distance, with 𝜖 denoting the unit energy consumption per
distance.

𝑏𝑘𝑗 ≤ 𝑏𝑘𝑖 + 𝛿𝑘𝑖 − 𝜖𝐷𝑖𝑗 + 𝐵
(

1 − 𝑥𝑘𝑖𝑗
)

,∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, (6)

𝛿𝑘𝑖 ≤
(

𝐵 − 𝑏𝑘𝑖
)

𝑧𝑘𝑖 ,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾. (7)
Eq. (8) further ensures that the overall demands of the customers to be visited (where 𝑞𝑗 denotes the demand of

customer 𝑗), encompassing both own and other customers’ demands, do not exceed the capacity 𝑄𝑘 of vehicle 𝑘.
∑

𝑖∈𝑁

∑

𝑗∈𝑅
𝑞𝑗𝑥

𝑘
𝑖𝑗 ≤ 𝑄𝑘,∀𝑘 ∈ 𝐾. (8)

(III) Time window constraints
Exchanging goods at the meet-point, the fundamental enabler of collaboration, entails space and time synchroniza-

tion between the two vehicles in terms of their arrival time at the meet-point. In our study, a maximum waiting time
window 𝑊 𝑇 𝑚𝑎𝑥 is predetermined to ensure the vehicles can meet each other:

|

|

|

𝑠1𝑚 − 𝑠2𝑚
|

|

|

≤ 𝑊 𝑇𝑚𝑎𝑥,∀𝑚 ∈ 𝑀. (9)
In the time domain, the following constraints are further defined to ensure the vehicles deliver goods within the

desired time windows of customers:
𝑠𝑘𝑚 − Γ

(

1 − 𝑦𝑘𝑗
)

≤ 𝑠𝑘𝑗 ,∀𝑗 ∈ 𝑅s − 𝑅s
𝑘, 𝑘 ∈ 𝐾,𝑚 ∈ 𝑀, (10)
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𝑠𝑘𝑖 + 𝑆𝑇 𝑘
𝑖 + 𝑡𝑡𝑘𝑖𝑗 − Γ

(

1 − 𝑥𝑘𝑖𝑗
)

≤ 𝑠𝑘𝑗 ,∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, (11)

𝑆𝑇 𝑘
𝑖 = 𝑠𝑡𝑖 + 60𝛿𝑘𝑖 ∕𝑟𝑖,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (12)

𝑇 𝑘 = 𝑠𝑘𝑖 ,∀𝑖 ∈ 𝑂−, 𝑘 ∈ 𝐾, (13)
where Eq. (10) guarantees that the exchanged goods must be delivered after the meet-point, and arrival time and dwell
time (including charging time and service time 𝑠𝑡𝑖) at each customer are updated and regulated in Eq. (11) and Eq. (12).
The travel time 𝑡𝑡𝑘𝑖𝑗 and dwell time 𝑆𝑇 𝑘

𝑖 are utilized to compute the arrival time. Charging time at node 𝑖 is computed
based on the amount of battery charged 𝛿𝑘𝑖 and charging rate 𝑟𝑖. Eq. (13) ensures that the arrival time of vehicle 𝑘
equals the start service time at the end depot. Customer time windows [𝑒𝑗 , 𝑙𝑗

] are ensured by:

𝑒𝑗 ≤ 𝑠𝑘𝑗 ≤ 𝑙𝑗 ,∀𝑗 ∈ 𝑅, 𝑘 ∈ 𝐾. (14)

(IV) Route constraints
The route constraints make sure that each and every customer will be served only once, and the two vehicles will

meet one time at the same meet-point:
∑

𝑘∈𝐾

∑

𝑖∈𝑁
𝑥𝑘𝑖𝑗 = 1,∀𝑗 ∈ 𝑅, (15)

∑

𝑖∈𝑁

∑

𝑚∈𝑀
𝑥𝑘𝑖𝑚 = 1,∀𝑘 ∈ 𝐾, (16)

∑

𝑖∈𝑁
𝑥1𝑖𝑚 −

∑

𝑖∈𝑁
𝑥2𝑖𝑚 = 0,∀𝑚 ∈ 𝑀, (17)

∑

𝑗∈𝑅∪𝑀
𝑥𝑘
𝑜+𝑘 𝑗

= 1,∀𝑘 ∈ 𝐾, (18)

∑

𝑖∈𝑅∪𝑀
𝑥𝑘𝑖𝑜−𝑘

= 1,∀𝑘 ∈ 𝐾, (19)

∑

𝑗∈𝑁
𝑥𝑘𝑖𝑗 = 1,∀𝑖 ∈ 𝑅r

𝑘, 𝑘 ∈ 𝐾, (20)

where Eq. (15) guarantees that all customers will be visited exactly once, Eq. (16) ensures that each vehicle visits only
one meet-point, and Eq. (17) guarantees that both vehicles will visit the same meet-point. Eq. (18) and Eq. (19) ensure
that vehicle 𝑘 must start from and return to the depot 𝑜𝑘. Eq. (20) guarantees that reserved customers will be served by
the responsive company.

(V) Flow conservation constraints

𝜀𝑚 =
∑

𝑖∈𝑁
𝑥𝑘𝑖𝑚,∀𝑘 ∈ 𝐾,𝑚 ∈ 𝑀, (21)

𝑦𝑘𝑗 =
∑

𝑖∈𝑁
𝑥𝑘𝑖𝑗 ,∀𝑗 ∈ 𝑅, 𝑘 ∈ 𝐾, (22)
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∑

𝑖∈𝑁
𝑥𝑘𝑖𝑗 −

∑

𝑖∈𝑁
𝑥𝑘𝑗𝑖 = 0,∀𝑗 ∈ 𝑅 ∪𝑀,𝑘 ∈ 𝐾, (23)

where Eq. (21) ensures if meet point 𝑚 is chosen, then vehicles must visit 𝑚, Eq. (22) indicates whether request 𝑗 is
served by vehicle 𝑘 through the link 𝑖 − 𝑗, and the conservation of the arriving and the departing vehicle at each node
is ensured by the Eq. (23).

(VI) Decision variables and their domains

𝑥𝑘𝑖𝑗 , 𝑦
𝑘
𝑗 , 𝑧

𝑘
𝑖 ∈ {0, 1} ,∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, (24)

𝑠𝑘𝑖 , 𝑏
𝑘
𝑖 , 𝛿

𝑘
𝑖 , 𝑆𝑇

𝑘
𝑖 ≥ 0,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (25)

𝜀𝑚 ∈ {0, 1} ,∀𝑚 ∈ 𝑀, (26)

Φ𝑘 ≥ 0. (27)
Lastly, the decision variables are injected via the Eq. (24), (25), (26), and (27). Even though the cost function

is linear in the decision variables, the proposed CoEVRPMP is nonlinear due to Eq. (2), (3), (7), and (9). Finally, a
mixture of real-valued and integer-valued decision variables is used.
3.2. Solution approach

The formulated MINLP is computationally intensive owing to the nonlinearity, integer variables, and a large set
of decision variables and hard constraints. We first develop an exact approach that could theoretically achieve global
optimality through linearization techniques. However, for large-scale problems (50 customers and up), the exact method
may be computationally intractable with computer capacity nowadays (as shown later in Section 4). Therefore, we
develop a metaheuristic method to facilitate real-world implementation.
3.2.1. Exact algorithm via branching

Although the MINLP problem is generally undecidable (Jeroslow, 1973), we notice that the nonlinearity of our
problem is mainly due to Eq. (3). The structure paves the way to reduce the numerical complexity from undecidable
to sequentially NP-hard. We present a technique to linearize the nonlinearity injected by the term 𝜀𝑚𝑦𝑘𝑗 . Given that
both decision variables are binary, one approach to linearize the term is by introducing an additional binary decision
variable, denoted as Λ = 𝜀𝑚𝑦𝑘𝑗 . This new decision variable, Λ, must adhere to the following conditions: 1) Λ ≤ 𝜀𝑚,
2) Λ ≤ 𝑦𝑘𝑗 , and 3) Λ ≥ 𝜀𝑚 + 𝑦𝑘𝑗 − 1. However, this introduces a computational burden involving 2 × 𝑈 × 𝐶 decision
variables and additional constraints, rendering it computationally intensive.

Another way is inspired by the branch and bound concept, and we can freeze one variable (constraint linearization).
If 𝑦𝑘𝑗 is branched, 2𝐶𝑠 sub-problems will be created, the number of which grows exponentially with the number of
shared customers. If 𝜀𝑚 is branched, only 𝑈 (number of potential meet points) sub-problems are created, which scales
obviously much better. Therefore, we choose to branch on the finite set of meet points. More intuitively, by fixing the
meet point 𝑚, we convert the original MINLP to a parametrized (𝑚) MILP. The meet point locations hence create
𝑚 independent branches. By sequentially iterating over them, the global optimum of the original MINLP problem
can be found, provided a MILP exact solver is being used. Note that each and every subproblem is still NP-hard to
solve. With the adopted branch approach, each sub-problem is a collaborative electric vehicle routing problem with a
fixed meet-point (m-CoEVRP). Fig. 2 demonstrates the parallel computing process of the solution approach. In each
subproblem, 𝜀𝑚 is no longer a decision variable, so that can be removed, and the profit-sharing ratio will be 𝛼𝑚0

𝑗 , and
the subproblem can then be reformulated as follows:

min
∑

𝑘∈𝐾

∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑐𝑑𝐷𝑖𝑗𝑥

𝑘
𝑖𝑗 +

∑

𝑘∈𝐾
𝑐𝑡𝑇

𝑘, (28)
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Figure 2: Flowchart of parallel computing of the solution approach

subject to

Φ𝑘 =
∑

𝑗∈𝑅𝑘

𝑝𝑗𝑦
𝑘
𝑗 +

∑

𝑗∈𝑅𝑘

𝑝𝑗𝛼
𝑚0
𝑗

(

1 − 𝑦𝑘𝑗
)

+
∑

𝑗∈𝑅⧵𝑅𝑘

𝑝𝑗
(

1 − 𝛼𝑚0
𝑗

)

𝑦𝑘𝑗 −
∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑐𝑑𝐷𝑖𝑗𝑥

𝑘
𝑖𝑗 − 𝑐𝑡𝑇

𝑘, (29)

𝛿𝑘𝑖 ≤ 𝐵 − 𝑏𝑘𝑖 ,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (30)

𝛿𝑘𝑖 ≤ 𝐵𝑧𝑘𝑖 ,∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, (31)

−𝑊 𝑇𝑚𝑎𝑥 ≤ 𝑠1𝑚0
− 𝑠2𝑚0

≤ 𝑊 𝑇𝑚𝑎𝑥, (32)

𝑠𝑘𝑚0
− Γ

(

1 − 𝑦𝑘𝑖
)

≤ 𝑠𝑘𝑖 ,∀𝑖 ∈ 𝑅𝑘, 𝑘 ∈ 𝐾, (33)

∑

𝑖∈𝑁
𝑥𝑘𝑖𝑚0

= 1,∀𝑘 ∈ 𝐾, (34)

∑

𝑖∈𝑁
𝑥1𝑖𝑚0

−
∑

𝑖∈𝑁
𝑥2𝑖𝑚0

= 0, (35)

and Eq. (2), (6), (5), (8), (11)-(15), (22)-(25), (27) remain the same.
Specifically, constraints in Eq. (3) are linearized to Eq. (29); the nonlinear constraints in Eq. (7) can be easily dealt

with by dividing them into two linear constraints in Eq. (30) and Eq. (31). The absolute term in Eq. (9) is linearized to
Eq.(32). With a fixed meet point, Eq. (10), Eq. (16) and Eq. (17) can also be simplified to constraints in Eq. (33), Eq.
(34) and Eq. (35).
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As shown in Fig. 2, the sub-problems are independent so that they can be solved in parallel. By leveraging parallel
computing techniques, the computation time can be significantly reduced, even if the number of potential meet points
is considerable. This facilitates real-world implementation, given the fact that the number of meet points is usually
rather limited due to requirements such as parking space and regulatory permissions in reality.
3.2.2. Metaheuristics with linear programming

Despite the linearization method introduced above, the MILP subproblems (NP-hard) may necessitate heuristics
to address scalability issues. This section presents an approximate approach that integrates heuristics with linear
programming to solve the subproblems in Fig. 2. We integrate mathematical programming with a heuristic framework,
which has been successfully applied for solving various VRP variants in the literature (Archetti and Speranza, 2014;
Seyfi et al., 2022). In this paper, we design search-based metaheuristics for route optimization and a linear programming
(LP) model for charging schedules. To be specific, given an initial solution, the algorithm includes three interactive
modules: 1) an Adaptive Large Neighborhood Search (ALNS) module for route planning, 2) an LP module for charging
schedule optimization, and 3) a local search module for further route improvements.

2023-06-26
1

Within “Iteration” limits

LP

Loop 1

Within “Segment” limits
Loop 2

Loop 3

Optimize 
charging time 

with given 
routes

Final solution

New vehicle routes Local search

New complete solution 𝑠′

Initial solution

Current solution 𝑠 and best solution 𝑠𝑏𝑒𝑠𝑡

Update 𝑠 and 𝑠𝑏𝑒𝑠𝑡 with 𝑠′ based on the 

SA acceptance criterion

Update the weights of operators

Weights of operators

Select destroy and repair operators

New vehicle routes

New complete solution 𝑠′

ALNS module

LP module

Local search module

Legend

Within “Run” limits

Figure 3: Flowchart of the proposed search-based metaheuristics

Before elaborating on the details of the three modules, we first explain the logic of the algorithm framework
as illustrated in Fig. 3. The modules are utilized in three different layers of loops, namely the "iteration" layer, the
"segment" layer, and the "run" layer. Each subsequent layer embeds the previous one, establishing a hierarchical
relationship among them. More specifically, each run has a number of segments, and each segment contains a number
of iterations.

With an initial solution, the algorithm starts from the bottom layer (iterations) by applying the first part of the
ALNS module, i.e., route mutation, which seeks to merely improve EV routes and temporally disregard charging (thus
an incomplete solution). Thereafter, within the same loop layer, the LP module is applied to plan the charging schedule,
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thereby completing the solution. The second part of the ALNS module then evaluates the complete solution and
updates operator weights in each segment loop (second layer), where a rewarding mechanism is designed to incentivize
better operators. In the outermost layer, the local search module is applied in the run loop to further improve the EV
routes, which again needs the LP module to complete the solution. In a nutshell, the CoEVRPMP involves intertwined
decision-making in both spatial and temporal domains. The spatial decisions are the sequences of visiting customers
and meet points, while the temporal decisions concern the timing and duration of visits to these locations (e.g., charging
time). Following this logic, our algorithm divides the solution-finding procedure into the same two domains, with
ALNS and local search focusing only on vehicle routes enhancement and the LP module addressing the charging time
optimization. Therefore, as shown in Fig. 3, whenever a new route is found (either by ALNS or local search), the LP is
implemented to complete the solution. The three modules, called in different layers, are designed to iteratively improve
the solution in a harmonized and feasibility-guaranteed fashion, which are described as follows.

(i) ALNS module
The ALNS module serves as the core of the solving algorithm. ALNS has been widely used and has shown high

performance in various VRP variants. We select the ALNS algorithm for its competing performance and flexibility. As
demonstrated in recent studies, ALNS could often result in high-quality solutions with acceptable computational run
times (Keskin and Çatay, 2016; Hiermann et al., 2016; Sacramento et al., 2019; Pelletier et al., 2019; Chen et al., 2021;
Cheng et al., 2023), which is also the case in our problem (see section 4.3 for more details). The flexibility enables
us to tailor it to the CoEVRPMP. The original ALNS algorithm was proposed by Ropke and Pisinger (2006), which
adopts the principle of removal first and then insertion to find new routes. A set of different removal and insertion
operators (destroy and repair operators) are used and assigned with performance-based weights to adaptively improve
the solution. More details regarding the standard ALNS algorithm can be found in Ropke and Pisinger (2006).

We improve the original ALNS algorithm to guarantee solution feasibility, which can be intractable in our problem
due to two sets of constraints. First of all, the charging constraints (Eq. (5) to Eq. (7)) significantly reduce feasible
solution space. Secondly, exchanging goods at the meet point puts extra constraints on serving shared and reserved
customers, making it even harder to find feasible solutions. To cope with those difficulties, we change the original
ALNS algorithm of Ropke and Pisinger (2006) in two aspects accordingly. We embed the LP module into the ALNS
loops, as shown in Fig. 3, so that route finding and charging are handled sequentially, making it easier to find feasible
solutions. To resolve the meet-point synchronization, new rules are applied: i) exchanged goods must be delivered after
the meet-point, corresponding to Eq. (10); ii) to ensure synchronization at the meet-point, we converted the Eq. (9)
into a penalty function and added it to the objective function.

(ii) LP module
As shown in Fig. 3, a linear programming (LP) module is applied to optimize charging time whenever a new route

solution is obtained. It is worth noting that once the service sequence is determined, for each route, we will be able to
calculate the remaining energy at each node (�̂�𝑖) prior to any charging being performed. Therefore, with the service
route (𝑋) and battery level (�̂�𝑖) information available, the LP module seeks to find optimal charging strategies (𝛿𝓁) that
would minimize the total task time (𝑠𝑖). Note that the 𝑖 here represents the service sequence instead of the node index,
𝑖 ∈ [1, 𝜁], where 𝜁 represents the number of nodes in the route.

After the routing of each vehicle is obtained, the first term of the objective function (1), the energy consumption
cost, is determined. Therefore, the charging battery at each node needs to be optimized to minimize the labor cost,
considering the battery and time constraints. The LP model for a single route can thus be formulated as follows:

min 𝑐𝑡𝑇 , (36)
subject to

𝐿 − �̂�𝑖 ≤
𝑖

∑

𝓁=1
𝛿𝓁 ≤ 𝐵 − �̂�𝑖,∀𝑖 ∈ [1, 𝜁] , (37)

𝛿𝑖 + 𝑠𝑖 − 𝑠𝑖+1 ≤ −𝑡𝑡𝑋𝑖𝑋𝑖+1
− 𝑠𝑡𝑋𝑖

,∀𝑖 ∈ [1, 𝜁 − 1] , (38)

𝑇 = 𝑠𝑖, 𝑖 = 𝜁, (39)
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𝑒𝑋𝑖
≤ 𝑠𝑖 ≤ 𝑙𝑋𝑖

,∀𝑖 ∈ [1, 𝜁] , (40)

𝛿𝑖 ≥ 0,∀𝑖 ∈ [1, 𝜁] . (41)
In the above model, the objective function Eq. (36) is a concise version of the original objective function Eq. (1)

since the first term is deterministic given a route sequence. The original battery constraints (Eq.(5) and Eq. (7)) are
simplified as Eq. (37). The original service time constraints Eq. (11) can be converted to Eq. (38). The developed
LP model has a much lower computational complexity compared to the original MINLP and can be solved by any
commercial solver in polynomial time. Without loss of generality, we assume that there are charging facilities at all
customer and meet point locations, which also represents the most complex scenario of the studied problem. If charging
facilities are not available at some stops, we can easily adapt the model to such simpler cases by restricting charging
opportunities defined in Eq. (37).

(iii) Local search module
The local search module aims to further optimize vehicle routing (and only routes), with the understanding that

metaheuristic algorithms can often benefit from extra randomness and disturbances. Through extensive experiments,
we discover that the following three operators exhibit the best results: 2-opt (Croes, 1958), relocate (Savelsbergh,
1992), and neighbor move. 2-opt and relocate are standard operators, and the neighbor move is specially designed for
the studied problem, inspired by the recursive granular algorithm in Moshref-Javadi and Lee (2016). Specifically, the
neighbor move is applied to each customer and its pre-determined neighbor customers. Among those customers, one
will be selected and relocated as the immediate successor of the ego customer. Note that if an insertion operation is
used, it should be guaranteed shared customers should be inserted in their own vehicle’s routing or others’ routing after
the meet point. In contrast, reserved customers can only be inserted in their own vehicle’s routing. The local search
will accept better new solutions and discard worse solutions.

4. Numerical experiments
In this section, both exact and heuristic-based methods are tested to investigate their viability in various scenarios.

To demonstrate the benefits of collaboration, we showcase both small-medium-sized real-world examples and also
large-scale problems, using non-collaborative results as benchmarks. We also examine the computational performance
of the proposed solution algorithms through a series of numerical experiments. The problem size ranges from 9
customers to 500 customers, representing different use cases.

The experiments are conducted on a standard PC with a six-core Inter(R) Core(TM) i7-8750H CPU at 2.2GHz and
16GB of RAM. The exact method is coded in MATLAB R2021b by using Gurobi 9.5.2 for solving the subproblems.
For practical concerns, we impose a limit on the algorithm’s runtime, which varies from 0.5h to 100h, depending on
the problem size. The heuristic algorithm is also coded in MATLAB R2021b.
4.1. Real-world case

In this section, we use a real-world case to demonstrate the merits of collaboration. To cover the vast spectrum
of real-world situations, we present comprehensive results with varying vehicle types (EVs or conventional vehicles),
time windows, profit thresholds, and numbers of shared customers.
4.1.1. Case description

The case studies are created based on the real locations of large grocery stores from two companies (namely, ICA
and Willys) operating in the city of Gothenburg, Sweden. Both companies routinely deliver goods from depots to their
local stores scattered in the city. Fig. 4 shows the map of interest. Each company has one depot, as marked by the
squares. The circles represent local store locations: 9 stores of ICA (red, marked by R) and 8 stores of Willys (blue,
marked by B). In our problem, those local stores are the "customers" for the company vehicles to visit.

For the meet points, we consider places with vacant spaces that can be used for vehicles to meet each other. We
assume that the two campuses of the Chalmers University of Technology (Johanneberg and Lindholmen) are optional
meet points as marked by the stars in Fig. 4. The asymmetric origin-destination distance matrix was obtained from
Google Maps API (accessed: 20 April 2022). In addition, the shortest path between any two interest spots is used
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for distance/time estimation in this study. The distance between nodes is shown in Appendix C (Table 10). The time
windows related to each store are assumed as those in Table 1.

Figure 4: The locations of all nodes

Table 1
Time windows of customers (minutes)

𝑅R 1 2 3 4 5 6 7 8 9
[

𝑒𝑗 , 𝑙𝑗
]

[0,90] [30,60] [0,90] [30,120] [30,120] [60,150] [60,150] [90,180] [90,180]

𝑅B 10 11 12 13 14 15 16 17
[

𝑒𝑗 , 𝑙𝑗
]

[0,90] [0,90] [30,120] [60,90] [30,120] [60,150] [60,150] [90,180]

Values of other context parameters are determined based on our local survey. Specifically, the amount of service fee
(𝑝𝑗) paid by each customer 𝑗 is 150 in the currency of Swedish Kronor (SEK for short). The unit energy consumption
costs (𝑐𝑑) for conventional and electric vehicles are 3SEK/km and 6SEK/km, respectively. And the unit driver salary
(𝑐𝑡) is 2.05SEK/min. The average speed (𝑣) of both companies’ vehicles is assumed to be 40km/h. The travel time (𝑡𝑡𝑘𝑖𝑗)
from node 𝑖 to node 𝑗 of vehicle 𝑘 can is calculated as 𝑡𝑡𝑘𝑖𝑗 = 𝐷𝑖𝑗∕𝑣. The service time (𝑠𝑡𝑖) at customer 𝑖 is 2 minutes;
the total unloading and loading time (service time) at meet points is 10 minutes; the maximum waiting time (𝑊 𝑇 𝑚𝑎𝑥)
for the other vehicle at meet points is 5 minutes. The large positive number (Γ) is set as 100. For the electric vehicles,
we assume total battery capacity 𝐵 = 60kWh, the minimum battery is 𝐿 = 12kWh (the 20% of the full battery), unit
energy consumption 𝜖 = 1Wh/m, and charging rate 𝑟𝑖 = 60kW.
4.1.2. Collaboration vs non-collaboration

We note that the proposed methods can easily adapt to conventional internal combustion engine vehicles, which
are still prevailing in the market. In scenarios where conventional vehicles are used, Eq. (6), (7), (5), and (12) can be
removed. Moreover, the term 𝑆𝑇 𝑘

𝑖 in constraint (11) will be changed to term 𝑠𝑡𝑖 since there is no charging time. In
practice, time windows are sometimes not enforced, in which case we can further remove Eq. (14).

Due to different problem setups, we solve a few variants of the non-collaborative routing problem: the basic
VRP, VRPTW, EVRP, and EVRPTW models. Accordingly, we solve their collaborative counterparts: CoVRPMP,
CoVRPMP-TW, CoEVRPMP, and CoEVRPMP-TW. In collaborative cases, it is assumed that all customers can be
shared. We use the non-collaboration scenarios as the baselines, where each company’s costs and profits are calculated
separately. The results are summarized in Table 2.

As shown in the table 2, collaboration reduced the total cost by 8%-36% compared to non-collaboration scenarios.
These benefits were more pronounced when time windows (24%-36%) and electric vehicles (19-36%) were taken into
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Table 2
Results of collaboration and non-collaboration scenario (SEK)

Non-collaboration collaboration
without profit thresholds with profit thresholds

𝑘 Model TC Φ Model TC ↓(%) Φ ↑(%) TC ↓(%) Φ ↑(%)

R VRP 1223.1 720.5 CoVRPMP 1095.5 10.4 903.3 25.4 1124.7 8.0 769.9 6.9
B 606.4 551.3 -9.1 655.4 8.1
R VRPTW 1663.9 381.0 CoVRPMP-TW 1267.5 23.8 484.1 27.1 1267.5 23.8 484.1 27.1
B 505.2 798.5 58.1 798.5 58.1
R EVRP 905.6 880.9 CoEVRPMP 719.2 20.6 1112.1 26.2 736.8 18.6 978.7 11.1
B 763.5 718.7 -5.9 834.5 9.3
R EVRPTW 1277.7 577.9 CoEVRPMP-TW 818.8 35.9 716.6 24.0 818.8 35.9 716.6 24.0
B 694.4 1014.6 46.1 1014.6 46.1

account. The difference is the largest when electric vehicles are bound by time windows, resulting in a cost reduction
of 36%. We now focus on the impacts of profit thresholds, the number of shared customers, and the length of time
windows on the results.

Profit threshold
In Table 2, it could also be found that, without restricting the profit threshold, one company may lose profit as a

sacrifice for lower total costs for the two companies. This will, of course, compromise collaboration in real life. For
example, in the comparison between VRP and CoVRPMP, the usage of profit thresholds increases total cost but ensures
a win-win situation. As shown in the last column of Table 2, the profits of companies increase by 7%-58%, which can
lead to a higher willingness to collaborate.

In Assumption A3 (refer to Section 3), we highlighted that each company is responsible for setting its own profit
thresholds. For the purposes of this paper, we’ve chosen the non-collaborative profit as our threshold. If a company
raises this threshold, it will likely reduce the space for collaboration. On the other hand, by lowering the threshold,
there might be more opportunities for collaboration. However, this could come at the expense of individual company
profits. At its core, it is about finding a delicate balance between individual gains and collective collaboration for mutual
benefit.

Shared customers
For the CoEVRPMP problem, different numbers of shared customers are considered. Here, three scenarios are

studied: i) 2 shared customers, where only customers 2 and 13 (3 and 12) could be shared, 𝑅𝑠 = {2, 13} (𝑅𝑠 = {3, 12});
ii) 4 shared customers, where customers 2, 3, 12, and 13 could be shared, 𝑅𝑠 = {2, 3, 12, 13}; iii) all customers shared,
𝑅𝑠 = 𝑅, and there are no reserved customers, 𝑅𝑟 = ∅. Taking the result of EVRPTW of non-collaboration as the
baseline, the results of different numbers of shared customers are shown in Table 3.

Table 3
Results with different numbers of shared customers (SEK)

Non-coooperation collaboration
without profit thresholds with profit thresholds

𝑘 shared customers 𝑅𝑠 TC Φ TC ↓(%) Φ ↑(%) TC ↓(%) Φ ↑(%)
R 𝑅𝑠 = {2, 13}

1277.7

577.9 1158.65 9.3 700.0 21.1 1245.6 2.51 600.3 3.9
B 694.4 691.3 -0.4 704.1 1.4
R 𝑅𝑠 = {3, 12} 577.9 1330.9 -4.2 554.9 -4.0 - - - -
B 694.4 664.2 -4.4 - -
R 𝑅𝑠 = {2, 3, 12, 13} 577.9 1058.43 17.2 779.9 35.0 1058.4 17.2 779.9 35.0
B 694.4 711.7 2.5 711.7 2.5
R 𝑅𝑠 = 𝑅 577.9 818.8 35.9 716.6 24.0 818.8 35.9 716.6 24.0
B 694.4 1014.6 46.1 1014.6 46.1

In Table 3, it could be found that, generally, the more shared customers, the better the results in terms of the total
cost. With all customers shared, 𝑅𝑠 = 𝑅, the best solution is achieved. However, collaboration may be worse than
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non-collaboration if only a few customers are shared (see the case 𝑅𝑠 = {3, 12}). This is because the meet point
introduces additional travel distances that cannot be compensated by the profits of limited shared customers. In this
case, we cannot even find a solution when profit thresholds are applied.

Time windows
Last but not least, the impact of time windows is studied. Without losing generality, we examine different

combinations of earliest service time 𝑒𝑖, length of time windows 𝜏𝑖, and the total range of time windows of all customers
(𝜏 = 𝑚𝑎𝑥

𝑖
𝑙𝑖−𝑚𝑖𝑛

𝑖
𝑒𝑖, where 𝑙𝑖 denotes the latest service time and 𝜏𝑖 = 𝑙𝑖−𝑒𝑖). For each instance, we randomly generate

the earliest service time 𝑒𝑖 for each customer, and r* describes the set of 𝑒𝑖 for all customers, r*=∶ {𝑒1, 𝑒2, ..., 𝑒17}. We
can thereby characterize instances as r*-𝜏𝑖-𝜏. Taking r1-60-180 as an example, all customers have the same length of
time windows (60 minutes) in this instance, but each has a different 𝑒𝑖, and the companies must complete their tasks in
180 minutes. For each combination of 𝜏𝑖 and 𝜏, we reshuffle r* for five times, and hence r*∈ {r1, r2, r3, r4, r5}. This
results in 15 different instances, as shown in Table 4.

Table 4
Results with different time window lengths (SEK)

Non-collaboration collaboration
Instances TC Φ𝐴 Φ𝐵 TC ↓(%) Φ𝐴 ↑(%) Φ𝐵 ↑(%)

r1-60-180 - - 638.4 940.7 - 876.6 - 732.7 14.8
r1-90-210 1225.8 672.9 651.3 929.6 24.2 771.0 14.6 849.4 30.4
r1-120-240 1136.9 759.7 653.4 929.6 18.2 771.0 1.5 894.4 30.0
r2-60-180 1109.0 733.1 707.9 878.1 20.8 929.1 26.7 742.8 4.9
r2-90-210 1067.7 763.0 719.3 868.7 18.6 957.5 25.5 723.8 0.6
r2-120-240 1067.7 763.0 719.3 868.7 18.6 957.5 25.5 723.8 0.6
r3-60-180 - - 687.9 949.6 - 830.6 - 769.8 11.9
r3-90-210 1145.3 716.0 688.7 925.8 19.2 830.6 16.0 793.6 15.2
r3-120-240 1064.7 796.6 688.7 919.2 13.7 889.7 11.7 741.1 7.6
r4-60-180 - - 670.0 924.5 - 916.0 - 709.5 5.9
r4-90-210 1225.8 630.3 693.9 922.1 24.8 904.4 43.5 723.5 4.3
r4-120-240 1100.3 755.9 693.9 922.1 16.2 904.4 19.7 723.5 4.3
r5-60-180 - - 618.5 1092.2 - 712.1 - 745.7 20.6
r5-90-210 1188.7 729.8 631.5 937.4 21.1 850.3 16.5 762.3 20.7
r5-120-240 1116.8 801.7 631.5 893.3 20.0 978.6 22.1 678.0 7.4

In Table 4, it can be observed that collaboration is particularly beneficial when dealing with tighter customer time
windows. Collaboration can provide feasible solutions even when non-collaboration scenarios fail due to short time
windows (𝜏𝑖 = 60). Interestingly, the benefits of collaboration, as reflected by total cost, diminish as the length of time
windows increases. This suggests that collaboration could enable more precise and efficient delivery schedules, which
not only improves service reliability but also enhances customer satisfaction.
4.2. Large-scale case studies

In this section, we focus on large-scale problems that can only be addressed by the metaheuristics method in
practice. We once again consider two companies: red (R) and blue (B). Fig. 5 illustrates the locations of customers,
depots, and meet points with three different problem sizes. Following the same symbolic system as in Fig. 4, depots
are denoted as squares; diamonds represent meet points, and customers are circles. We locate the depots at polar
positions and randomly generate meet points in central zones. Locations of customers are randomly generated, with
100 customers (50 customers for each company), 200 customers (100 customers for each), and 500 customers (250
customers for each) in a 25km × 25km region. We retain the problem setups as the real-world case, except for 1) the
service fee (𝑝𝑗) paid by customer 𝑗 is 50SEK, 2) the total battery capacity is 𝐵 = 200kWh, and 3) the minimum
battery is 20% of the entire battery, 𝐿 = 12kWh. To fully examine the impact of collaboration, we solve the
problems considering both without TWs and with TWs in those cases. To uphold transparency and facilitate clear
communication, we adhere to one vehicle per company. For information on utilizing multiple vehicles, please refer to
Appendix A.

Scenarios with time windows

Zhou et al.: Preprint submitted to Elsevier Page 16 of 29



Collaborative electric vehicle routing with meet points

Depot of red company        Depot of blue company        Meet points        Customers of red company        Customers of blue company

(a) 100 customers                                      (b) 200 customers                                      (c) 500 customers

Figure 5: Location map of large-scale cases

In the context of urban logistics, it is often the companies that give optional serving times for customers to choose
from (such as DHL and Amazon) instead of the other way around. However, time windows can still vary significantly
from case to case, with enormous variants, especially when the number of customers is large. It is thus not practical
to examine all possibilities in one study. In this section, we only investigate a non-overlapping two-slot TW1 set up
to showcase the benefits of collaboration in large-scale problems. In the real world, this can represent, for example, a
choice of morning vs. afternoon delivery or daytime vs. nighttime delivery.

Table 5
Results of collaboration and non-collaboration scenario for virtual cases with TWs (SEK)

Non-collaboration Collaboration
No. customers k Model TC Φ Model TC ↓(%) Φ ↑(%)

100 R EVRP-TW 3168.5 939.8 CoEVRPMP-TW 2440.5 23.0 1023.7 8.9
B 891.7 1535.8 72.2

200 R EVRP-TW 5042.5 2448.9 CoEVRPMP-TW 3983.2 21.0 2865.0 17.0
B 2508.6 3151.9 25.6

500 R EVRP-TW 9158.6 7750.0 CoEVRPMP-TW 7691.1 16.0 9103.0 16.2
B 8012.8 8205.9 2.4

The results are shown in Table 5. It is evident that collaboration results in significant reductions in the total costs,
ranging from 16% to 23%. This leads to profit increases for both companies that could incentivize them to collaborate.
We could also notice that as the density of customers increases, the benefit of collaboration vanishes. One possible
explanation is that it is more rewarding for a company to serve alone if the average energy cost (pure distance-based)
between customers is relatively small. In this case, the company can constantly collect profits without traveling too
much. On the contrary, if customers are distant from each other, it is advantageous to re-assign the tasks through
collaboration so that each company can serve condensed customer areas. This can also be reflected by the routes of
vehicles, as shown in Fig. 6, Fig. 7, and Fig. 8. In these figures, the filled dots represent customers who choose the first
TW slot, and empty circles denote customers who wish to be served in the later slot. Vehicle routes in these figures
indicate that the collaboration tends to separate the pool of customers into two relatively separated clusters for the two
companies so that each could focus on a smaller service zone.

Another interesting observation is that, in non-collaboration, vehicle routes often intersect with each other. This
means that a vehicle is often bypassing the other company’s customers even if they are close and desire the same service
time window. In collaborative cases, this issue is resolved by strategically sharing customers based on our models.

Scenarios without time windows
1The length of TWs depends on the number of customers, 4, 7, and 14 hours for 100, 200, and 500 customers, respectively.
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(a) non-collaboration

(b) collaboration

TW1 TW2

TW1 TW2

Figure 6: Results of 100 customers with TWs

(a) non-collaboration

(b) collaboration

TW1 TW2

TW1 TW2

Figure 7: Results of 200 customers with TWs
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(a) non-collaboration

(b) collaboration

TW1 TW2

TW1 TW2

Figure 8: Results of 500 customers with TWs

In some scenarios, time windows are not binding or too large to come into effect. We present the results of such
cases, as shown in table 6. The vehicle routes are illustrated in Fig. 9, Fig. 10, and Fig. 11. Compared to cases with
TWs, the profits of both companies increase in every scenario since they are freer to plan vehicle routes. In addition,
collaboration leads to a clearer separation of service zones without binding time windows.

Table 6
Results of collaboration and non-collaboration scenario for virtual cases without TWs (SEK)

Non-collaboration collaboration
No. customers k Model TC Φ Model TC ↓(%) Φ ↑(%)

100 R EVRP 2121.2 1477.0 CoEVRPMP 1719.3 18.9 1665.2 12.7
B 1401.8 1615.5 15.3

200 R EVRP 3361.0 3287.8 CoEVRPMP 2674.8 20.4 3428.5 4.3
B 3351.3 3896.6 16.3

500 R EVRP 6281.1 9308.2 CoEVRPMP 5092.6 18.9 9931.6 6.7
B 9410.8 9975.8 6.0

In Table 6, it is obvious that the implementation of collaboration results in approximately 20% savings in the total
costs. It can be clearly seen from Fig. 9, 10 and 11 that the service areas of each company shrink and the travel distance
decreases significantly with collaboration. With collaboration, the company vehicles only need to serve about half of
the areas each instead of the entire area. More specifically, when serving 100 customers (see Fig. 9), the red vehicle
company serves the upper area, while the blue company vehicle serves the lower area. When serving 200 customers (see
Fig. 10), the red vehicle serves the left top area while the blue vehicle serves the right bottom area in the collaboration
scenario. With the increase of the number of customers to 500 (see Fig. 11), we receive similar to the 100 customer
case pattern.
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(a) non-collaboration (b) collaboration

Figure 9: Results of 100 customers without TWs

(a) non-collaboration (b) collaboration

Figure 10: Results of 200 customers without TWs

(a) non-collaboration (b) collaboration

Figure 11: Results of 500 customers without TWs

4.3. Computational performance
In this subsection, we examine the computational performance of the two solution approaches. Based on our

experiments, the removal fraction 𝜌 of 0.3 renders the best performance, and other parameters are tuned based on
the method proposed in Ropke and Pisinger (2006). We use the following naming format 𝑅-𝑅𝑟

1-𝑅𝑠
1-𝑅𝑟

2-𝑅𝑘
2 to denote

different instances. Taking instance 9-0-5-0-4-6 as an example, there are 9 customers in total, including 0 reserved and 5
shared customers of company 1, 0 reserved and 4 shared customers of company 2 as well. The key performance metrics
are defined and explained in Table 7. Table 8 compares the performance of the proposed metaheuristic algorithm with
the exact method.
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Table 7
Abbreviation of experiment indicators and definition

Abbreviation Definition

𝑆𝐸𝑥𝑎𝑐𝑡 The best feasible objective value found by Gurobi solver in a preset running time
𝑆𝑀𝑒𝑡𝑎 The best feasible objective value found by the metaheuristic after a preset number of iterations
𝐼𝑚𝑝𝐸𝑥𝑎𝑐𝑡−𝑀𝑒𝑡𝑎 The improvement of 𝑆𝑀𝑒𝑡𝑎 compare to 𝑆𝐸𝑥𝑎𝑐𝑡, which is calculated by: 𝑆𝐸𝑥𝑎𝑐𝑡−𝑆𝑀𝑒𝑡𝑎

𝑆𝐸𝑥𝑎𝑐𝑡
𝐶𝑃𝑈𝑀𝑒𝑡𝑎 The computation duration of the metaheuristic
𝐶𝑃𝑈𝐸𝑥𝑎𝑐𝑡 CPU time for solving the MILP model by Gurobi

Table 8
Computational results for instances

Instances 𝑆𝐸𝑥𝑎𝑐𝑡(SEK) 𝑆𝑀𝑒𝑡𝑎(SEK) 𝐼𝑚𝑝𝑀𝑒𝑡𝑎−𝐸𝑥𝑎𝑐𝑡(%) 𝐶𝑃𝑈𝐸𝑥𝑎𝑐𝑡(s) 𝐶𝑃𝑈𝑀𝑒𝑡𝑎(s)

9-0-5-0-4 611.2 611.2 0 13.4 3.7
10-0-5-0-5 512.6 512.6 0 157.0 5.3
10-2-3-2-3 585.7 585.7 0 38.2 7.2
10-4-1-4-1 609.5 609.5 0 16.5 10.9
15-0-7-0-8 656.0 656.0 0 5,400 16.1
15-2-5-2-6 666.7 667.9 -0.2 5,400 18.9
15-3-4-4-4 690.3 691.6 -0.2 5,400 32.2
20-0-7-0-13 720.2 707.6 1.8 10,800 19.7
20-2-5-5-8 781.7 742.5 5.3 10,800 46.1
20-6-1-11-2 835.3 778.79 7.3 10,800 84.7
30-0-15-0-15 1008.0 1007.6 0.0 14,400 34.6
30-8-7-8-7 1333.8 1207.9 10.4 14,400 77.9
40-0-20-0-20 1232.6 1228.6 0.3 36,000 108.3
40-10-10-10-10 1626.7 1591.0 2.2 36,000 305.4
50-0-25-0-25 - 1403.4 - 43,200 160.2
60-0-30-0-30 - 1354.6 - 54,000 227.8
60-20-10-20-10 - 1539.5 - 54,000 261.5
80-0-40-0-40 - 1559.4 - 72,000 389.1
80-20-20-20-20 - 1901.0 - 72,000 456.3
100-0-50-0-50 - 1747.3 - 108,000 529.2
100-25-25-25-25 - 1964.8 - 108,000 731.9
200-0-100-0-100 - 2706.2 - 216,000 1137.8
500-0-250-0-250 - 5150.0 - 360,000 2898.6

The proven optima solutions are indicated in boldface. The negative improvement percentages in column
4, which means the solutions of metaheuristics are worse, are marked in red.

As shown in Table 8, the metaheuristic algorithm generally outperforms the exact approach in terms of computa-
tional time and solution quality. Both approaches are able to solve the small-scale problem to optimality. As the problem
size increases, it becomes increasingly unfeasible to find optimal solutions via the exact method within reasonable time
limits. To this end, we apply a relative indicator, 𝐼𝑚𝑝𝑀𝑒𝑡𝑎−𝐸𝑥𝑎𝑐𝑡, to compare the approximate solutions derived from
both approaches. It can be found that the near-optimal solutions obtained by the two solution approaches are very
close. Specifically, the metaheuristic reveals a modest gap at most, by a marginal 0.2% from the exact method. Yet,
in more cases, it leads to improved solutions, outperforming the exact method by a significant margin of up to 10.4%.
However, when the problem size exceeds 40, the exact method fails to return any feasible results. In such cases, the
heuristic-based approach is the only viable option for practical implementation, which aligns with findings from plenty
of existing studies (Wang and Sheu, 2019; Ma et al., 2023; Xia et al., 2023).
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5. Conclusion and future work
This paper introduced and analyzed a CoEVRPMP. We integrated profit sharing into routing planning with

explicit considerations of practical constraints such as charging, time windows, vehicle capacity, and meet-point
synchronization. Two solving methods are developed for the formulated CoEVRPMP, i.e., an exact method and a
metaheuristic algorithm. The computational performance of the proposed solution methods is examined. Numerical
experiments based on real-world cases and large-scale cases are conducted to demonstrate the benefits of collaboration
and examine the impacts of profit threshold, the proportion of shared customers, and time windows.

Our results indicate that collaboration with meet points can effectively reduce the total cost by 8%-36% compared
to the non-collaboration scenarios. In practice, this is reflected in fewer overlaps and intersections between the routes
of the two companies. Our results also suggest that in cases where only a few customers are shared, collaboration may
not necessarily be beneficial; however, the collaborative benefit increases as the companies share more customers. This
indicates significant potential for application in real-world scenarios involving larger customer bases.

The current work also seeks a win-win collaboration by considering profit threshold constraints for participating
companies. Removing the threshold could potentially lead to lower total costs but bears the risk of sacrificing the
profit of one party and thus compromising collaboration. Moreover, collaborative routing is more beneficial to electric
vehicles than conventional vehicles, especially when time windows are considered.

The results of our experiments also indicate that collaboration significantly outperforms non-collaborative solutions
in scenarios with tighter time windows. Here, profit savings were amplified when time windows were shorter compared
to longer ones. This hints that the duration of the time window may be effectively reduced in collaborative scenarios,
which would, in turn, enhance customer satisfaction since customers usually prefer shorter standby times. In this way,
collaborating companies may be able to offer more reliable and precise time windows together.

In addition, our experiments indicate that the proposed method is most effective in service areas characterized by
low demand density. In essence, when customers are dispersed, collaboration can yield greater cost reductions. This
observation underscores the need for future research to thoroughly examine the relationship between customer network
topology and the benefits derived from collaboration.

Our idea of meet points can be used not only in horizontal collaboration among companies but also in vertical
collaboration or collaboration scenarios within a single company. It can be the collaboration within a multimodal
system, which means the carrier can be of any type, and goods can be transferred from one mode to another at meet
points. For example, this could involve collaboration between electric vehicles and cargo bikes or between trucks and
drones. However, if the situation considers only the transfer of goods from one mode to another without exchanging
goods, the point of encounter becomes a transshipment node.

We only consider two companies in the main study, each with one vehicle to focus on the core problem of
collaboration. The model presented in this paper has robust scalability that can be extended in several different ways.
First, we present the potential extension to multiple vehicles in the Appendix. Subsequent research can encompass
multiple companies with multiple vehicles in collaborative routing problems involving meet points. In such scenarios,
goods can be exchanged at customers’ premises, which can be further examined and discussed within the routing
models. Second, the parallel branching structure we proposed can be used for not only exact algorithms but also
metaheuristics so that computational time can be saved significantly by utilizing parallel computing. Besides, more
comprehensive and complex energy consumption estimation methods could be considered in EVRPs and CoEVRPs
rather than distance-based ones.

Moreover, the profit increases of the collaborating companies are, at times, uneven in our numerical experiments.
Although thresholds ensure a win-win situation, one of the companies may still decline collaboration if the profit
increase of the other company is significantly larger. To this end, future research can investigate the balance of profits
for the companies in order to make them more willing to collaborate. Last but not least, the problem we studied entails
a central authority to coordinate the collaboration. How to enable collaboration without such a trusted consolidator
needs further exploration.
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Appendix A
Here, we extend the developed model in Section 3 to multiple vehicle scenarios. For company 𝑘, 𝑣𝑘 vehicles are

present, with 𝑣𝑘 belonging to the set 𝑉𝑘 =
{

𝑉1, 𝑉2
}, which is a subset of the overall vehicle set 𝑉 . The number of

vehicles can vary among companies. We assume that exchanges occur exclusively between distinct companies, negating
the requirement for all vehicles to visit meet points. Compared with the original model, two additional decisions
should be added and considered: 1) pairing two vehicles and determining the meet point for their rendezvous, and
2) determining if a customer transfer is necessary at the meet point and identifying the appropriate location for it.

To accommodate multiple delivery vehicles, we slightly modify the model outlined in Section 3.1. Firstly, we
introduce two new decision variables. Secondly, we update the existing decision variables associated with vehicle 𝑘 to
refer to vehicle 𝑣𝑘. Thirdly, some variables are removed, while others are retained. Specifically, the decision variable
𝜒𝑣1𝑣2
𝑚 signifies whether vehicles 𝑣1 and 𝑣2 meet at meet point 𝑚, where 𝑣1 and 𝑣2 are part of the vehicle set 𝑉 , and 𝑚

belongs to the meet point set 𝑀 . The decision variable 𝜀𝑚𝑗 indicates whether customer 𝑗 is transferred at meet point 𝑚.
The original decision variables 𝑥𝑘𝑖𝑗 , 𝑧𝑘𝑖 , 𝑠𝑘𝑖 , 𝑏𝑘𝑖 , 𝛿𝑘𝑖 , and𝑆𝑇 𝑘

𝑖 are updated to 𝑥𝑣𝑘𝑖𝑗 , 𝑧𝑣𝑘𝑖 , 𝑠𝑣𝑘𝑖 , 𝑏𝑣𝑘𝑖 , 𝛿𝑣𝑘𝑖 , and𝑆𝑇 𝑣𝑘
𝑖 , respectively.

Furthermore, we retain decision variables 𝛼𝑚𝑗 and remove 𝑦𝑘𝑗 and 𝜀𝑚.
Undoubtedly, some equations need slight adjustments due to replacing 𝑘 with 𝑣𝑘. For equations (1), (5), (6), (7),

(8), (11), (12), (13), (14), (15), (18), (19), (20), and (23), apart from changing 𝑘 to 𝑣𝑘, the formulas stay the same.
Equations (2) and (4) remain unchanged. Additionally, we present equations that underwent significant modifications
below.

Φ𝑘 =
∑

𝑗∈𝑅𝑘

𝑝𝑗

(

1 −
∑

𝑚∈𝑀
𝜀𝑚𝑗

)

+
∑

𝑚∈𝑀

∑

𝑗∈𝑅𝑘

𝑝𝑗𝛼
𝑚
𝑗 𝜀

𝑚
𝑗 +

∑

𝑚∈𝑀

∑

𝑗∈𝑅⧵𝑅𝑘

𝑝𝑗
(

1 − 𝛼𝑚𝑗
)

𝜀𝑚𝑗

−
∑

𝑣𝑘∈𝑉𝑘

∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝑐𝑑𝐷𝑖𝑗𝑥

𝑣𝑘
𝑖𝑗 −

∑

𝑣𝑘∈𝑉𝑘

𝑐𝑡𝑇
𝑣𝑘 ,

(42)

∑

𝑚∈𝑀
𝜀𝑚𝑗 ≤ 1,∀𝑗 ∈ 𝑅, (43)

∑

𝑖∈𝑁

∑

𝑚∈𝑀
𝑥𝑣𝑘𝑖𝑚 ≤ 1,∀𝑣𝑘 ∈ 𝑉𝑘, 𝑘 ∈ 𝐾, (44)

∑

𝑚∈𝑀

∑

𝑣2∈𝑉2

𝜒𝑣1𝑣2
𝑚 =

∑

𝑖∈𝑁

∑

𝑚∈𝑀
𝑥𝑣1𝑖𝑚,∀𝑣1 ∈ 𝑉1, (45)

∑

𝑚∈𝑀

∑

𝑣1∈𝑉1

𝜒𝑣1𝑣2
𝑚 =

∑

𝑖∈𝑁

∑

𝑚∈𝑀
𝑥𝑣2𝑖𝑚,∀𝑣2 ∈ 𝑉2, (46)

(

∑

𝑖∈𝑁
𝑥𝑣1𝑖𝑚 −

∑

𝑖∈𝑁
𝑥𝑣2𝑖𝑚

)

𝜒𝑣1𝑣2
𝑚 = 0,∀𝑚 ∈ 𝑀,𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2, (47)

∑

𝑚∈𝑀
𝜀𝑚𝑗 +

∑

𝑣𝑘∈𝑉𝑘

∑

𝑖∈𝑁
𝑥𝑣𝑘𝑖𝑗 = 1,∀𝑗 ∈ 𝑅𝑘, 𝑘 ∈ 𝐾, (48)

∑

𝑖∈𝑁

∑

𝑗∈𝑅2

𝑥𝑣1𝑖𝑗 +
∑

𝑖∈𝑁

∑

𝑗∈𝑅1

𝑥𝑣2𝑖𝑗 ≥
∑

𝑚∈𝑀
𝜒𝑣1𝑣2
𝑚 ,∀𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 (49)

∑

𝑖∈𝑁
𝑥𝑣1𝑖𝑗 𝜀

𝑚
𝑗 ≤

∑

𝑣2∈𝑉2

𝜒𝑣1𝑣2
𝑚 ,∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑅, 𝑣1 ∈ 𝑉1 (50)

∑

𝑖∈𝑁
𝑥𝑣2𝑖𝑗 𝜀

𝑚
𝑗 ≤

∑

𝑣1∈𝑉1

𝜒𝑣1𝑣2
𝑚 ,∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝑅, 𝑣2 ∈ 𝑉2 (51)
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|

|

|

𝑠𝑣1𝑚 − 𝑠𝑣2𝑚
|

|

|

− Γ
(

1 − 𝜒𝑣1𝑣2
𝑚

)

≤ 𝑊 𝑇𝑚𝑎𝑥,∀𝑚 ∈ 𝑀,𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 (52)

𝑠𝑣𝑘𝑚 − Γ
(

1 − 𝜀𝑚𝑗
)

≤ 𝑠𝑣𝑘𝑗 ,∀𝑗 ∈ 𝑅 − 𝑅𝑘, 𝑣𝑘 ∈ 𝑉𝑘, 𝑘 ∈ 𝐾,𝑚 ∈ 𝑀 (53)
For the constraints, we update them as follows. Eq.(42) replaces Eq. (3) to represent the profit of company 𝑘. Eq.

(43) ensures that each customer can be transferred at most once. Eq. (44)-(46) ensure that each vehicle visits at most
one meet point. Among them, Eq. (44) is to instead Eq. (16). Eq. (47) guarantees that vehicles 𝑣1 and 𝑣2 will meet
at the same meet point 𝑚 if they are designated to exchange goods, which has a similar meaning to Eq. (17). Eq.
(48) ensures that if customer 𝑗 requires a transfer at a meet point, the other company should handle the service; if no
transfer is needed, the customer should be served by the original company. Eq. (49) ensures that when vehicles 𝑣1 and
𝑣2 converge at meet points, at least one customer transfer occurs; otherwise, vehicles do not meet there. Eq. (50) and
(51) ensure that if vehicles meet at a meet point, then the goods in both vehicles can only be transferred at this point
if needed. The waiting time at the meet point needs to be guaranteed within 𝑊 𝑇𝑚𝑎𝑥 by Eq. (52), which replaces Eq.
(9). Eq. (53) replaces Eq. (10), ensuring the service sequence that the exchanged goods must be served after the meet
points.

𝑥𝑣𝑘𝑖𝑗 , 𝑧
𝑣𝑘
𝑖 ∈ {0, 1} ,∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑣𝑘 ∈ 𝑉𝑘, 𝑘 ∈ 𝐾, (54)

𝑠𝑣𝑘𝑖 , 𝑏𝑣𝑘𝑖 , 𝛿𝑣𝑘𝑖 , 𝑆𝑇 𝑣𝑘
𝑖 ≥ 0,∀𝑖 ∈ 𝑁, 𝑣𝑘 ∈ 𝑉𝑘, 𝑘 ∈ 𝐾, (55)

𝜀𝑚𝑗 , 𝜒
𝑣1𝑣2
𝑚 ∈ {0, 1} ,∀𝑗 ∈ 𝑅, 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2, 𝑚 ∈ 𝑀. (56)

Moreover, Eq. (27), (54), (55), and (56) are the decision variable domains.

Appendix B
A table with all notations used in this paper is presented below, including abbreviations, sets, parameters, and

decision variables.
Table 9: Mathematical notation

Abbreviation
VRP Vehicle routing problem
EVRP Electric vehicle routing problem
TW Time windows
EVRPTW Electric vehicle routing problem with time windows
CoVRP Collaborative vehicle routing problem
CoVRPMP Collaborative vehicle routing problem with meet points
CoVRPMP-TW Collaborative vehicle routing problem with meet points and time windows
CoEVRPMP Collaborative electric vehicle routing problem with meet points
CoEVRPMP-TW Collaborative electric vehicle routing problem with meet points and time windows
m-CoEVRP Collaborative electric vehicle routing problem with a fixed meet point
MDVRP Multi-depot vehicle routing problem
PD Pickup and delivery
PDP Pickup and delivery problem
MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
ALNS Adaptive Large Neighborhood Search
LP Linear programming
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TC Total cost
SEK Swedish Kronor
Sets:
𝑅𝑟
𝑘 The reserved customers of company 𝑘

𝑅𝑠
𝑘 The shared customers of company 𝑘

𝑅𝑘 The customers of company 𝑘, 𝑅𝑟
𝑘 ∪ 𝑅𝑠

𝑘 = 𝑅𝑘
𝑅 All the customers
𝐾 Vehicles and companies, 𝑘 ∈ 𝐾 , in which 𝑘 is the index of companies/vehicles, 𝐾 = {1, 2}
𝑀 The meet points, 𝑚 ∈ 𝑀 , in which 𝑚 is the index of meet points
𝑂 The depots of companies, 𝑜𝑘 ∈ 𝑂, 𝑂+ and 𝑂− are the start and end depots, 𝑂+ ∪ 𝑂− = 𝑂
𝑁 All nodes, 𝑁 = 𝑅 ∪𝑀 ∪ 𝑂
Parameters:
𝑐𝑑 Unit energy consumption cost (SEK/km)
𝑐𝑡 Unit driver salary (SEK/min)
𝐷𝑖𝑗 Distance from node 𝑖 to node 𝑗 (km)
𝑝𝑗 The service fee customer 𝑗 pays for the delivery service (SEK)
𝑃𝑚𝑖𝑛
𝑘 Minimum profit threshold of company 𝑘 (SEK)

𝑞𝑗 Demand of customer 𝑗
𝛼𝑚𝑗 Profit ratio of customer 𝑗 exchange goods at meet-point 𝑚
𝑄𝑘 Capacity of vehicle 𝑘
𝑡𝑡𝑘𝑖𝑗 Travel time from node 𝑖 to node 𝑗 for vehicle 𝑘 (minutes)
𝑠𝑡𝑖 Service time of goods at node 𝑖 (minutes)
[

𝑒𝑖, 𝑙𝑖
] Time window within which the vehicle should begin to serve node 𝑖 (minutes)

𝑊 𝑇 𝑚𝑎𝑥 Maximum time of the first arrival vehicle at the meet-point waiting for another (minutes)
𝐵 Total battery capacity (Wh)
𝐿 Minimum battery (Wh)
𝜖 Unit energy consumption per distance (W/km)
𝑟𝑖 Charging rate of charging node 𝑖 (W)
𝑈 Number of potential meet points
𝐶 Number of customers
𝐶𝑠 The number of shared customers
𝐶𝑟 The number of reserved customers
Γ A large positive number
𝑋 The service sequence of a single route
�̂�𝑖 Remaining battery at service sequence position 𝑖 before any charging performed (Wh)
𝑡𝑡𝑋𝑖𝑋𝑖+1

Travel time from node 𝑋𝑖 to node 𝑋𝑖+1 (minutes)
𝑠𝑡𝑋𝑖

Service time of goods at node 𝑋𝑖 (minutes)
[

𝑒𝑋𝑖
, 𝑙𝑋𝑖

]

Time window within which the vehicle should begin to serve node 𝑋𝑖 (minutes)
Decision variables:
𝑥𝑘𝑖𝑗 1 if vehicle 𝑘 delivers from node 𝑖 to node 𝑗; otherwise 0
𝑦𝑘𝑗 1 if customer 𝑗 is served by vehicle 𝑘; otherwise 0
𝑧𝑘𝑖 1 if vehicle 𝑘 charges at node 𝑖, otherwise 0
𝜀𝑚 1 if vehicles choose to meet at meet point 𝑚
𝑏𝑘𝑖 The remaining energy in the battery of vehicle 𝑘 when arriving at node 𝑖 (Wh)
𝛿𝑘𝑖 The charging battery of vehicle 𝑘 at node 𝑖 (Wh)
𝑆𝑇 𝑘

𝑖 Time for serving goods and charging of vehicle 𝑘 at node 𝑖 (minutes)
𝑠𝑘𝑖 Time at which vehicle 𝑘 begins service at node 𝑖 (minutes)
𝑇 𝑘 Arrival time of vehicle 𝑘 at the end depot (minutes)
Φ𝑘 Total profit of company 𝑘 (SEK)
𝛿𝓁 The charging battery at service sequence position 𝓁
𝑠𝑖 Start service time at service sequence position 𝑖 (minutes)
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𝑇 Arrival time at the end depot (minutes)

Appendix C
Table 10 shows the actual distance between nodes in the case study, including customer nodes, meet points, and

depots. Among them, 1-17 are customer points, 1-9 are customers of company R, and the rest are company B’s
customers; m1 and m2 are meet points; D1 and D2 are the depots of company R and B, respectively.
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