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A B S T R A C T

In this paper, we develop a profit-sharing-based optimal routing mechanism to incentivize horizontal collabo-
ration among urban goods distributors. The core of this mechanism is based on exchanging goods at meet points,
which is optimally planned en route. We propose a Collaborative Electric Vehicle Routing Problem with Meet
Points (CoEVRPMP) considering constraints such as time windows, opportunity charging, and meet-point syn-
chronization. The proposed CoEVRPMP is formulated as a mixed-integer nonlinear programming model. We
present an exact method via branching and a matheuristic that combines adaptive large neighborhood search with
linear programming. The viability and scalability of the collaborative method are demonstrated through nu-
merical case studies, including a real-world case and a large-scale experiment with up to 500 customers. The
findings underscore the significance of horizontal collaboration among delivery companies in attaining both
higher individual profits and lower total costs. Moreover, collaboration helps to reduce the environmental
footprint by decreasing travel distance.
1. Introduction

Cities are continuously experiencing growing demand for freight
transportation (Savelsbergh and Van Woensel, 2016). A 16% annual
growth rate in urban logistics is projected over the next five years from
2021, only connected to e-commerce (Reuters Events, 2022). Traffic
congestion and greenhouse gas emissions are expected to increase by
21% and 32% until 2030, respectively (World Economic Forum, 2020).
However, it has been demonstrated that delivery vehicles often operate
below their capacity, delivering nothing more than “air” (Chen, 2016;
Verlinde et al., 2012). The need for reliable and timely transportation
solutions to balance the interests of society, businesses, and customers
has never been more crucial (Fotouhi and Miller-Hooks, 2023; Wu et al.,
2020; Zaidi et al., 2015).

In response to these challenges, horizontal collaboration through
sharing economy business models, such as sharing logistics infrastructure
and services with competitors, has emerged as a potential solution (DHL
Trend Research, 2022; Los et al., 2020), and it is gaining traction among
practitioners and researchers (Ezaki et al., 2022; Ferrell et al., 2020; Pan
et al., 2019; Qu et al., 2022). Such collaboration typically involves
companies with shared interests and businesses. The majority of studies
indicate that such collaboration can enhance the non-collaborative
).
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solution by approximately 20%–30% (Gansterer and Hartl, 2018).
However, it is important to note that existing studies often enforce
collaboration from a holistic perspective, overlooking the individual
benefits for each company. This may sacrifice a company in order to
achieve larger total profits, discouraging horizontal collaboration in
practice.

Moreover, to address sustainability development needs in the trans-
portation sector, there is a growing trend towards the adoption of electric
vehicles (EVs) (Guo et al., 2022; Ji et al., 2024; Ruan and Lv, 2022; Zeng
et al., 2024). This shift is underscored by recent research for goods dis-
tribution (Haghani et al., 2023; Malladi et al., 2022). In addition to ad-
vancements in vehicular technology and investments in charging
infrastructure, the transition is impeded by route planning concerns
regarding delivery range. The Electric Vehicle Routing Problem (EVRP),
as seen in Basso et al. (2019b), Keskin Çatay (2016), and Schneider et al.
(2014) seeks to bridge the planning gap between limited range and
effective urban distribution. Integrating electric vehicles into horizontal
collaboration introduces new benefits but, at the same time, new chal-
lenges related to charging and route planning integration.

This paper introduces the concept of collaborative routing involving
the exchange of goods en route at meet points. Deviating from the con-
ventional transshipment concept, which typically involves a one-way
2024
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Fig. 1. Horizontal collaboration example: (a) non-collaboration and (b)
collaboration.
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transfer from one vehicle to another, our emphasis is on the bidirectional
exchange between two vehicles. Meet points function as locations where
vehicles converge to facilitate the exchange of goods. A visual repre-
sentation of this idea is depicted in Fig. 1. The example involves two
logistics companies serving their respective customers in the same area.
Fig. 1a depicts the vehicle routes if company 1 (black) and company 2
(white) serve only their own customers. Fig. 1b demonstrates the
collaboration scenario, where vehicles from both companies can ex-
change parcels at a “meet point”. In the case of collaboration, company A
(B) serves not only its original customers but also the shared ones from
the other company B (A). Each company offers three types of service: (1)
serving its own customers from the depot to the end; (2) serving its own
customers from the depot to the meet point for exchange; (3) serving the
other company’s customers from the meet point to the end. Due to the
joint activities, a profit-sharing mechanism is introduced to split the
profit from a shared customer, based on the profit ratio concept, further
explained in Section 3.

This paper studies the collaborative electric vehicle routing problem
with meet points (CoEVRPMP), explicitly considering individual com-
panies’ benefits. We explore a scenario where two logistics companies
collaborate to plan vehicle routes to cross-serve a strategically selected
set of customers. Individually serving these customers would be cost-
prohibitive for either company. Instead, a unified global optimum solu-
tion is designed with the aim to increase the profitability of each indi-
vidual company through collaboration and reduce the overall costs
compared to non-collaborative solutions. We assume that the companies
opt to transfer goods at several designated meet points and share
customer addresses when collaborating (with standardized shipments).
Various factors, such as customer-specific time windows, vehicle capac-
ity, charging schedules, and meet-point synchronization, are taken into
account. To address these challenges, we have developed a solution for
CoEVRPMP, suitable for small to medium-sized real-world scenarios,
using both exact and heuristic methods, and with the potential to scale
for larger cases of up to 500 customers. The contributions of this paper
can be summarized as follows.

� The concept of meet points is introduced to the collaborative routing
problem, accompanied by a clear profit-sharing mechanism.

� The CoEVRPMP is formally defined and modeled as a mixed integer
nonlinear programming problem.

� Practical constraints, including charging, customer time windows,
vehicle capacity, and meet-point synchronization, are explicitly
considered in an integrated framework.

� An exact method and a matheuristic algorithm are developed for
theoretical analysis and practical implementation purposes,
respectively.

The remainder of this paper is organized as follows. Section 2 pro-
vides a comprehensive review of the literature concerning the
CoEVRPMP. Section 3 outlines the problem, formulates the mathematical
programming model, and introduces two solution approaches—an exact
method and a matheuristic. The experimental study and corresponding
numerical results are presented in Section 4. Section 5 delves into key
findings and insights. Finally, Section 6 concludes the paper, offering
directions for future research.

2. Literature review

The collaborative vehicle routing problem (CoVRP) is an operational
planning challenge within horizontal collaboration (Gansterer and Hartl,
2018). Most CoVRPs focus on either routing optimization (Mon-
toya-Torres et al., 2016; Mu~noz-Villamizar et al., 2019; P�erez-Bernabeu
et al., 2015; Quintero-Araujo et al., 2016; Stellingwerf et al., 2018;
Vahedi-Nouri et al., 2022) or profit sharing (Berger and Bierwirth, 2010;
Curiel, 2013). However, only a limited number of studies have addressed
both aspects (Krajewska et al., 2008; Wang et al., 2017; Zibaei et al.,
2

2016). A more comprehensive review of collaborative vehicle routing
can be found at Gansterer and Hartl (2018). Another critical consider-
ation is the impact of electric vehicles on collaborative routing. This
section provides a comprehensive review of these three aspects: routing
optimization in CoVRPs, profit sharing in CoVRPs, and the integration of
electric vehicles into CoVRPs.
2.1. Routing optimization in CoVRPs

2.1.1. Collaborative routing paradigms
Collaborative vehicle routing primarily falls into two categories:

centralized planning and decentralized planning. Unlike decentralized
planning, which entails limited or no information exchange, centralized
planning involves information sharing. Centralized collaborative plan-
ning prioritizes optimizing the entire system over individual companies,
while decentralized planning emphasizes more localized and indepen-
dent decision-making. Additionally, within the literature, there exists a
distinction between two types of customer requests: “reserved” and
“shared”. Reserved requests pertain to customers whom carriers must
serve due to contractual obligations or other specific considerations,
while shared requests encompass those customers whom carriers are
open to serving collaboratively with others.

Centralized collaborative planning studies assess the potential bene-
fits of collaborative versus non-collaborative settings. The potential
benefits could be based on total costs (Lin, 2008), total travel distance
(Montoya-Torres et al., 2016; P�erez-Bernabeu et al., 2015), profits
(Fern�andez et al., 2016; Li et al., 2016), and emissions (P�erez-Bernabeu
et al., 2015). However, centralized collaborative planning focuses more
on the whole system than the single company. Hence, one possible
breakthrough is to incorporate individual profit gains into centralized
collaborative planning.

There is limited research that has focused on centralized collaborative
planning with profit gains. Fern�andez et al. (2016) propose a collabo-
rative uncapacitated arc routing problem with profit gains and reserved
customers, where the goal is to maximize the total profit of the coalition
of carriers and take the lower bound on the individual profit of each
carrier into account. The model considers side payments for those cus-
tomers that are served by different carriers. Their work is based on the
arc routing problem that sets arc as a customer, and the time windows of
customers are ignored. Additionally, the side payments are hard to set.
Mancini et al. (2021) introduce the collaborative VRP with workload
balance. It was assumed that carriers might only be willing to collaborate
if a minimum market share can be guaranteed. Two constraints are thus
incorporated: (1) each carrier’s profit must be equal to or higher than the
profit obtainable without taking part in the coalition, and (2) the number
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of customers assigned to a given carrier cannot be lower than the mini-
mum value imposed by the carrier. A similar profit constraint is used in
our paper.

In most of the centralized collaborative routing literature, depots
could directly serve other companies’ customers, where an implicit and
too restrictive assumption is that the collaborating companies share the
same depot (Stellingwerf et al., 2018) or multiple depots (Mon-
toya-Torres et al., 2016; Mu~noz-Villamizar et al., 2019; P�erez-Bernabeu
et al., 2015; Quintero-Araujo et al., 2016). Some studies consider
exchanging goods between depots (Vahedi-Nouri et al., 2022; Wang
et al., 2017), which reduces the total cost but also brings additional travel
costs to connect depots. Consequently, most of the centralized problems
are formulated as the VRP or multi-depot VRP (MDVRP), and their var-
iants are widely studied (Afsar et al., 2021; Wang et al., 2022; Zhen et al.,
2020). The main difference between the proposed non-collaborative and
collaborative routing problems occurs only in the customer sets in these
studies. Juan et al. (2014) associate collaborative routing with backhaul,
which is a simple collaborative method that merges two routes from
different companies to reduce backhaul. In this way, the merged route
visits customers after visiting their depot. Pickup and delivery (PD) re-
quests are frequently added extensions here (Buijs et al., 2016; Krajewska
et al., 2008; Li et al., 2016), where PD locations do not coincide with a
depot. Then, requests are served and fulfilled before the vehicle returns
to the depot. Thus, the depot is no longer needed to store goods, let alone
to share depots or exchange goods. Regardless of whether depots are
shared or connected via routes, the issue that needs to be addressed in
this study is how to achieve better collaborative distribution by
exchanging goods among companies.

Considering that carriers are often resistant to sharing all their cus-
tomers’ data with a central planner, some research has focused on
decentralized planning, including request selection and request exchange
(Gansterer and Hartl, 2018). Regarding the request selection method,
carriers need to decide which of their customers can be offered to the
collaboration partners. This is essential because some companies may not
be willing to share all of their customers. The exchange of goods for
customers could be included in vehicle routes (lane exchanges) or via
auction-based systems. However, the sharing preferences of collaborators
limit significant profit increases. An interesting decentralized planning
study by Li et al. (2016) proposes a pickup and delivery problem (PDP)
with time windows, profits, and reserved customers in carrier collabo-
ration realized through combinatorial auction. This research focuses only
on one carrier and includes two decisions: which customers to bid for (to
serve) and how to build routes for maximizing “own profit”. Like many of
the decentralized planning studies, Li et al. (2016) have a myopic focus:
increase profit share for a single company. Therefore, a valid research
question is raised on how to jointly ensure the companies’ profit while
lowering the total cost of the whole system.

2.1.2. Transshipment in CoVRPs
Only a few papers have studied the routing problems with trans-

shipment, such as PDP with transshipment (PDPT) (Cort�es et al., 2010),
Vehicle Routing Problem with Transhipment Facilities (Baldacci et al.,
2017), and Two-Echelon Vehicle Routing Problem (Crainic et al., 2009).
Mitrovi�c-Mini�c and Laporte (2006) assess the usefulness of trans-
shipment and state that transshipment points prove highly beneficial in
clustered instances. Drexl (2012) emphasized critical challenges in
addressing synchronization aspects, including the PDPT and its related
problem variations. Research shows that the benefit of allowing trans-
shipment can be significant (Lyu and Yu, 2023). The transshipment in the
above studies is within a single company. Expanding the concept of
transshipment among companies may enhance collaboration and yield
further benefits. This is one of the objectives of this paper.

The closest study by Zhang et al. (2022) addressed the goods ex-
change issue by transferring goods at customer points or depots and
studied a heterogeneous multi-depot collaborative vehicle routing
problem. This work shows that transferring goods en route (from
3

unloading vehicle to loading vehicle) can result in different gains in the
system. However, several aspects can be added to this study to increase
its practical applicability and relevance, which will be addressed in this
paper. These aspects include (1) exchanging between two vehicles
instead of only from unloading vehicle to loading one; (2) time windows
of customers and specified waiting time at transfer points; (3) profit
sharing or minimal profit guarantee for the initiatives of collaboration.

2.2. Profit sharing in CoVRPs

An important aspect of collaborative operations is how to share the
potential extra profit among the collaborators. This calls for the solution
of cost allocation problems (Engevall et al., 2004). Guajardo and
R€onnqvist (2016) review cost allocation solutions for collaborative
transport services and summarize the most commonly used methods.
This includes the commonly used Shapley value (Kimms and Kozeletskyi,
2016; Vanovermeire and S€orensen, 2014) and other proportional
methods (Berger and Bierwirth, 2010; €Ozener et al., 2013). Note that
these methods of sharing profit require knowing the total benefit first.

Only a few studies integrate routing planning with profit-sharing
aspects in the design of collaborative vehicle routing problems. Kra-
jewska et al. (2008) combine routing and scheduling problems with
cooperative game theory. It proposes two subproblems to be addressed
and integrated. First, it hints at solving the routing problem (multi-depot
PDP with time windows). Second, a profit-sharing mechanism involves
the Shapley value to determine a fair allocation. However, profit sharing
of this type may have potential legal risks, e.g., against antitrust or
competition laws.

2.3. EV integration in CoVRPs

The electric vehicle routing problem (EVRP) emerged from the
traditional VRP by considering battery constraints, charging operations,
and energy consumption (Basso et al., 2019a, 2021, 2022). Conrad and
Figliozzi (2011) were one of the earliest works in introducing recharging
within EVRP, allowing vehicles with limited range to recharge at cus-
tomers’ locations. The recharging time is assumed to be fixed. Schneider
et al. (2014) study the electric vehicle routing problem with time win-
dows and recharging stations (EVRPTW). It explored the integration of
customer time windows and the possibility of recharging at stations. The
study assumes a full recharge strategy, with the recharging time depen-
dent on the battery level. Subsequently, Bruglieri et al. (2015) relaxed the
assumption, and then Desaulniers et al. (2016) and Keskin and Çatay
(2016) adopted the partial recharge strategy in EVRPTW. Numerous
partial charging EVRP variations have been explored, as indicated by the
work of Macrina et al. (2019). Additionally, Rezgui et al. (2019) assumed
the feasibility of charging for delivery vehicles at customer locations. A
comprehensive review of EVRP can be referred to Kucukoglu et al.
(2021), where EVRP studies are classified according to four criteria:
objective function types, energy consumption computations, considered
constraints in the EVRP, and fleet types.

Very few studies incorporate the collaborative strategy in the EVRP.
The first attempt is Mu~noz-Villamizar et al. (2017), which evaluates the
integration of an electric fleet for collaborative urban goods distribution,
aiming to mitigate environmental impacts while maintaining service
levels. A multi-objective optimization is proposed in their study to
explore the relationship between the environmental impact and cost. A
similar research, conducted by Mu~noz-Villamizar et al. (2019), evaluates
short- and mid-term environmental impacts associated with the adoption
of electric vehicles within the collaborative transport network configu-
ration. However, both studies (Mu~noz-Villamizar et al., 2017, 2019)
overlooked specific constraints of EVs in their models, such as battery
capacity, energy consumption, and the need for recharging during routes.
They also model the collaborative scenario as MDVRP, similar to most
centralized planning studies. Vahedi-Nouri et al. (2022) study a collab-
orative capacitated EVRP, injecting the electric vehicle characters into
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the MDVRP setup, termed as MDEVRP. In their study, a bi-objective
function is considered to minimize (1) the total tardiness costs and
fixed costs of using EVs and (2) the total electrical energy consumption.
They assume that there is a Third Party Logistics company to transship
goods between depots and include this cost in the objective function.
Furthermore, Zhang et al. (2024) investigate a collaborative electric
vehicle routing problem with multiple prioritized time windows and
time-dependent hybrid recharging. They introduce the concept of
battery-swapping vans providing on-route battery services for collabo-
rative EVRP, with a primary emphasis on time windows and recharging
rather than collaboration. All of the above studies overlooked the profit
of the individual company and did not consider the reserved customers of
companies. Those collaborative EVRP studies (Mu~noz-Villamizar et al.,
2017, 2019; Zhang et al., 2024) carry an implicit assumption, common to
many collaborative routing papers, that either all depots contain iden-
tical goods or companies share depots, thereby eliminating the need for
goods exchange. This assumption, as previously noted, is overly restric-
tive and unnecessary. Vahedi-Nouri et al. (2022) stand out as the only
study to incorporate transportation costs between depots in collaborative
EVRP.
1 The proposed model can also be applied to multiple vehicles with slight
modifications, which can be found in Appendix A. For ease of communication,
we focus on the two-vehicle case in the main text.
2.4. Summary

As we mentioned above, most collaborative routing problems have an
implicit assumption that depots have identical goods or shared. This
paper contends that goods should be exchanged in the presence of
collaboration. Unlike transferring products unilaterally from one vehicle
to another, as seen in Zhang et al. (2022), this paper emphasizes bilateral
exchanges between two vehicles, which may operationally be more
tractable. Moreover, we propose an optimization-driven mechanism to
exchange goods en route for collaboration, as opposed to depot-based
transfers (Vahedi-Nouri et al., 2022; Wang et al., 2017). Regarding
electric vehicles, only two studies (Vahedi-Nouri et al., 2022; Zhang
et al., 2024) have expanded the basic collaborative routing by adding
charging possibilities, and are formulated as the variant of MDEVRP that
is not directly related to collaboration.

This paper investigates collaborative electric vehicle routing prob-
lems within a centralized planning framework, focusing on collaboration
and electric vehicles (EVs). The collaboration involves the exchange of
goods and profit-sharing, with a specific focus on partial EV charging. In
contrast to existing literature, we consider scenarios where vehicles can
exchange goods en route. Through profit-sharing, we aim to reconcile
conflicts between system-wide optimization and individual benefits.
Notably, our approach integrates route optimization and profit-sharing
within a comprehensive structure, seamlessly incorporating profit-
sharing into the optimization process. Consequently, our model allows
for the simultaneous derivation of optimal routing and profit-sharing
solutions. In doing so, this study addresses critical practical constraints,
including charging challenges, time windows, vehicle capacity, and
synchronization at meet points.

3. Methodology

In this paper, carriers collaborate by exchanging goods at one of
several designated “meet points”. This interaction occurs because their
delivery routes intersect, presenting significant decision-making chal-
lenges, including selecting the meet points, ensuring vehicle arrivals are
synchronized at these points, and integrating them into route optimiza-
tion. Additionally, we address issues like en-route charging and
customer-specified time windows, which intricately link vehicle routes,
energy consumption, and partial charging strategies. These consider-
ations contribute to the complexity of the collaborative routing problem.

Without loss of generality, the following assumptions (boundary
conditions A2–A5, model/method specific assumptions A1, A6–A9) are
used along the paper.
4

A1 Two companies are considered with one electric vehicle each,
starting from and returning to the same depot.1

A2 Each company has two known sets of customers: a set of reserved
customers to be served only by the company itself (due to com-
pany policy, privacy, user agreements, etc.) and a set of customers
to share for collaboration.

A3 Each company has certain expectations for the profits of collabo-
ration. Thus, the profit threshold will be defined by each company
separately (based on strategic purpose, long-term development,
etc.), below which companies will refuse to collaborate. Since the
companies’ expectations are different from case to case, we deem
it irrelevant to this study. In this work, we simply define the
threshold as the non-collaborative profit (maximum profit ach-
ieved by a company operated independently). A similar profit
constraint is also used by Mancini et al. (2021).

A4 There exists a mutually trusted consolidator. The collaboration is
planned in a centralized manner, which means that their infor-
mation should be provided to the central planner, and both
companies comply if agreed.

A5 Electric vehicles can be put on charge at customer locations and at
meet points, where partial charging is allowed and its duration
depends on the amount of energy transferred.

A6 Electric vehicles are fully charged when leaving the depot.
A7 Electric vehicle capacities are deterministic and known.
A8 Each customer is visited by only one company, but the full chain of

service may involve another company if they exchange goods at
meet points.

A9 The travel time, the delivery time window, and the travel distance
among customers are known to be deterministic.

With the above assumptions, we study the CoEVRPMP with pre-
defined profit thresholds, time windows, state of charge and charging
constraints, vehicle capacity, and meet-point synchronization. In the
CoEVRPMP, we optimize several vital decisions to minimize total
collaborative operational costs. These decisions encompass meeting time
and location, assignment of the shared customer, vehicle delivery
sequence, charging locations, and the amount of energy to charge. This
section provides an overview of the optimization model and the solution
approaches.
3.1. Model formulation

To help the reader understand the CoEVRPMP, we now provide a
mixed-integer nonlinear programming (MINLP) formulation of the
problem. The CoEVRPMP is modeled using a complete directed graph G
¼ (N, A), where N ¼ O [ R [M represents the node set and A is the edge
set. Specifically,O is the depot set, R represents the customer set, andM is
the meet point set. The customer set R comprises two subsets: reserved
customers Rr and shared customers Rs. Moreover, each company k pos-
sesses a set of customers Rk, which can be further divided into reserved
customers Rr

k and shared customers Rs
k, with k belonging to the company

(vehicle) set K ¼ f1;2g.
The MINLP uses the following decision variables. Binary variables xkij

take value 1 if vehicle k delivers from node i to node j. Binary variables ykj
take value 1 if customer j is served by vehicle k. Binary variables εm take
value 1 if vehicles choose to meet at meet point m. Binary variables zki
take value 1 if vehicle k charges at node i. Variables Φk refer to the total
profit of company k (SEK). Variables bki and δki specify the remaining
energy and the amount of battery charged for vehicle k at node i (Wh).
Variables STk

i are the time for serving goods and charging of vehicle k at
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node i. Variables ski represent the service start time of vehicle k at node i.
Additionally, we introduce variables Tk to denote the arrival time of
vehicle k at the end depot, which aligns with the service start time at
node i for vehicle k, where i corresponds to the end depot and is within
the set O�.

For the convenience of communication, all the notations used in this
paper are presented in Table B1 in Appendix B. In addition, if a customer
belongs to Company 1 but is also partially served by Company 2, we refer
to Company 1 as the responsible company and Company 2 as the
collaborative company, and vice versa. The MINLP formulation follows.

The profit is determined by subtracting the total delivery cost from
customer revenue. Given constant customer revenue, lowering the
overall delivery cost directly boosts profit. The objective is to minimize
the total cost for all companies, leading to profit-maximizing:

min
X
k2K

X
i2N

X
j2N

cdDijxkij þ
X
k2K

ctTk (1)

where the first term signifies the energy consumption cost associated
with the distance Dij, while the second term represents labor cost tied to
arrival time. cd stands for energy consumption cost per unit of distance
traveled, while ct represents the unit driver salary per unit of time used.
Without loss of generality, the following equality and inequality con-
straints are defined.

(I) Profit threshold constraints

In practice, collaboration can be highly motivated by a win–win sit-
uation, which in this context, means an increase in profit for both com-
panies. Therefore, to make the results meaningful and practical, we
introduce a profit-sharing threshold as a necessary condition of collab-
oration. Each company possesses the autonomy to set its own threshold
Pmin
k . In this study, we designate the profit of non-collaboration as Pmin

k ,
serving as the benchmark. The collaboration will only take place if the
profit Φk surpasses the threshold Pmin

k for both companies, a condition
that can be formulated as

Φk � Pmin
k ;8k 2 K (2)

where

Φk ¼
X
j2Rk

pjykj þ
X
m2M

X
j2Rk

pjαm
j ϵm
�
1� ykj

�
þ
X
m2M

X
j2RnRk

pj
�
1� αm

j

�
ϵmykj

�
X
i2N

X
j2N

cdDijxkij � ctTk (3)

αm
j ¼ Dokm

Dokm þ Dmj
; 8j 2 Rk; k 2 K;m 2 M (4)

The profit of a company Φk is naturally defined as the net income
(income deducting cost) in Eq. (3), with the service fee of customer j
represented as pj. The income comes from providing service to the three
categories of customers, as corresponding to the first three terms in the
equation, respectively. Specifically, the first term denotes income from
customers entirely served by the responsible company; the second term
represents income from customers partially served by the responsible
company; and the third term accounts for the income from shared cus-
tomers of the other company. Clearly, there is a need for a profit-sharing
mechanism to split the income from shared customers.

The profit ratio αmj in Eq. (4) serves as the core of our profit-sharing
mechanism, which is a distance-based approach. With the defined
ratio, we provide more insights into ratio penalized terms of income
function in Eq. (3). If the two companies jointly serve customer j, the
profits of the responsible company (serving from depot to meet point)
and the collaborative company (serving frommeet point to customer) are

pjαmj and pj
�
1� αmj

�
, respectively. While enabling the split of income, the
5

profit-sharing mechanism introduces the complex interplay between the
selection of meet points and shared customers (i.e., the multiplication of
εm and ykj in Eq. (3)). This interplay makes the optimization model
nonlinear and thus computationally intensive (Section 3.2). Last but not
least, the remaining two terms in Eq. (3) are the energy consumption and
labor cost, respectively.

(II) Charging and capacity constraints

We now ensure that the delivery vehicles are running under practical
capacity and favorable battery levels. In existing studies, it has been
found that a high depth of discharge exacerbates battery degradation
(Schoch et al., 2018). Thus, it is beneficial for companies to regulate the
battery level of EVs and charge it en route. To this end, we constrain the
EV battery energy within a lower and upper bound [L, B], as follows, and
enable charge:

L � bki � B; 8i 2 N; k 2 K (5)

while visiting customers, the battery state is updated by Eq. (6), and
opportunity charging is regulated in Eq. (7). Notably, energy consump-
tion is directly linked to travel distance, with ϵ denoting the unit energy
consumption per distance.

bkj � bki þ δki � ϵDij þ B
�
1� xkij

�
; 8i 2 N; j 2 N; k 2 K (6)

δki �
�
B� bki

�
zki ;8i 2 N; k 2 K (7)

Equation (8) further ensures that the overall demands of the cus-
tomers to be visited (where qj denotes the demand of customer j),
encompassing both own and other customers’ demands, do not exceed
the capacity Qk of vehicle k.X
i2N

X
j2R

qjxkij � Qk ;8k 2 K (8)

(III) Time window constraints

Exchanging goods at the meet point, the fundamental enabler of
collaboration, entails space and time synchronization between the two
vehicles in terms of their arrival time at the meet point. In our study, a
maximum waiting time window WTmax is predetermined to ensure the
vehicles can meet each other:��s1m � s2m

�� � WTmax; 8m 2 M (9)

In the time domain, the following constraints are further defined to
ensure the vehicles deliver goods within the desired time windows of
customers:

skm � Γ
�
1� ykj

�
� skj ; 8j 2 Rs � Rs

k; k 2 K;m 2 M (10)

ski þ STk
i þ ttkij � Γ

�
1� xkij

�
� skj ; 8i 2 N; j 2 N; k 2 K (11)

STk
i ¼ sti þ 60δki

�
ri;8i 2 N; k 2 K (12)

Tk ¼ ski ; 8i 2 O�; k 2 K (13)

where Eq. (10) guarantees that the exchanged goods must be delivered
after the meet point, and arrival time and dwell time (including charging
time and service time sti) at each customer are updated and regulated in
Eqs. (11) and (12). The travel time ttkij and dwell time STk

i are utilized to
compute the arrival time. Charging time at node i is computed based on
the amount of battery charged δki and charging rate ri. Eq. (13) ensures
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that the arrival time of vehicle k equals the start service time at the end
depot. Customer time windows

�
ej; lj

	
are ensured by

ej � skj � lj; 8j 2 R; k 2 K: (14)

(IV) Route constraints

The route constraints make sure that each and every customer will be
served only once, and the two vehicles will meet one time at the same
meet point:X
k2K

X
i2N

xkij ¼ 1; 8j 2 R (15)

X
i2N

X
m2M

xkim ¼ 1; 8k 2 K (16)

X
i2N

x1im �
X
i2N

x2im ¼ 0;8m 2 M (17)

X
j2R[M

xkoþk j
¼ 1;8k 2 K (18)

X
i2R[M

xkio�k ¼ 1;8k 2 K (19)

X
j2N

xkij ¼ 1;8i 2 Rr
k ; k 2 K (20)

where Eq. (15) guarantees that all customers will be visited exactly once,
Eq. (16) ensures that each vehicle visits only one meet point, and Eq. (17)
guarantees that both vehicles will visit the same meet point. Equations
(18) and (19) ensure that vehicle k must start from and return to the
depot ok. Equation (20) guarantees that reserved customers will be served
by the responsive company.

(V) Flow conservation constraints

ϵm ¼
X
i2N

xkim;8k 2 K;m 2 M (21)

ykj ¼
X
i2N

xkij; 8j 2 R; k 2 K (22)

X
i2N

xkij �
X
i2N

xkji ¼ 0; 8j 2 R [M; k 2 K (23)

where Eq. (21) ensures if meet pointm is chosen, then vehicles must visit
m, Eq. (22) indicates whether request j is served by vehicle k through the
link i � j, and the conservation of the arriving and the departing vehicle
at each node is ensured by the Eq. (23).

(VI) Decision variables and their domains

xkij; y
k
j ; z

k
i 2 f0; 1g;8i 2 N; j 2 N; k 2 K (24)

ski ; b
k
i ; δ

k
i ; ST

k
i � 0; 8i 2 N; k 2 K (25)

ϵm 2 f0; 1g;8m 2 M (26)

Φk � 0 (27)

Lastly, the decision variables are injected via Eqs. (24)–(27). Even
though the cost function is linear in the decision variables, the proposed
CoEVRPMP is nonlinear due to Eqs. (2), (3), (7), and (9). Finally, a
mixture of real-valued and integer-valued decision variables is used.
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3.2. Solution approach

The formulated MINLP is computationally intensive owing to the
nonlinearity, integer variables, and a large set of decision variables and
hard constraints. We first develop an exact approach that could theo-
retically achieve global optimality through linearization techniques.
However, for large-scale problems (50 customers and up), the exact
method may be computationally intractable with computer capacity
nowadays (Section 4). Therefore, we develop a matheuristic method to
facilitate real-world implementation.

3.2.1. Exact algorithm via branching
Although the MINLP problem is generally undecidable (Jeroslow,

1973), we notice that the nonlinearity of our problem is mainly due to Eq.
(3). The structure paves the way to reduce the numerical complexity from
undecidable to sequentially NP-hard. The nonlinearity in Eq. (3) arises
from the term ϵmykj . One approach to linearize the term is by introducing

an additional decision variable, denoted asΛ ¼ ϵmykj . Since both decision

variables, εm and ykj , are binary, the introduction of the new binary de-
cision variable, Λ, must adhere to the following constraints: (1) Λ � εm;

(2) Λ � ykj , and (3) Λ � ϵm þ ykj � 1. However, this method increases
computational complexity due to the involvement of extra 2�U � C
decision variables and additional constraints mentioned, rendering it
computationally intensive. This is one of the key disadvantages as
compared to the method to be introduced in the following and is there-
fore abandoned.

Inspired by the branch and bound concept, our method is to freeze
one variable (constraint linearization). If ykj is branched, 2C

s
sub-

problems will be created, the number of which grows exponentially
with the number of shared customers. If εm is branched, only U (number
of potential meet points) sub-problems are created, which scales obvi-
ously much better. Therefore, we choose to branch on the finite set of
meet points. More intuitively, by fixing the meet point m, we convert the
original MINLP to a parametrized (m) MILP. The meet point locations
hence create m independent branches. By sequentially iterating over
them, the global optimum of the original MINLP problem can be found,
provided a MILP exact solver is being used. Note that each and every
subproblem is still NP-hard to solve. With the adopted branch approach,
each sub-problem is a collaborative electric vehicle routing problem with
a fixed meet point (m-CoEVRP). Fig. 2 demonstrates the parallel
computing process of the solution approach. In each subproblem, εm is no
longer a decision variable, so that can be removed, and the profit-sharing
ratio will be αm0

j . The branched subproblem simplified all the meet-point-
related constraints due to the fixed meet point. The subproblem can then
be reformulated as follows:

min
X
k2K

X
i2N

X
j2N

cdDijxkij þ
X
k2K

ctTk

subject to

Φk ¼
P
j2Rk

pjykj þ
P
j2Rk

pjα
m0
j

�
1� ykj

�
þ P

j2RnRk
pj
�
1� αm0

j

�
ykj

�
X
i2N

X
j2N

cdDijxkij � ctTk
(29)

δki � B� bki ;8i 2 N; k 2 K (30)

δki � Bzki ; 8i 2 N; k 2 K (31)

�WTmax � s1m0
� s2m0

� WTmax (32)

skm0
� Γ

�
1� yki

� � ski ; 8i 2 Rk; k 2 K (33)



Fig. 2. Flowchart of parallel computing of the solution approach.
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X
i2N

xkim0
¼ 1; 8k 2 K (34)

X
i2N

x1im0
�
X
i2N

x2im0
¼ 0 (35)

and Eqs. (2), (5), (6), (8), (11)–(15), (18)–(20), (22)–(25), and (27)
remain the same.

Specifically, the nonlinear term in Eq. (3) is linearized to Eq. (29); the
nonlinear constraint in Eq. (7) can be easily dealt with by dividing them
into two linear constraints in Eq. (30) and Eq. (31). The absolute term in
Eq. (9) is linearized to Eq. (32). With a fixed meet point, Eq. (10), Eq.
(16), and Eq. (17) can also be simplified to Eq. (33), Eq. (34), and Eq.
(35), respectively.

As shown in Fig. 2, the sub-problems are independent, enabling them
to be solved in parallel. Through the utilization of parallel computing
techniques, the computation time can be significantly reduced, even
when dealing with a considerable number of potential meet points. This
facilitates real-world implementation, given the fact that the number of
meet points is usually rather limited due to requirements such as parking
space and regulatory permissions in reality. Thanks to the simplified
constraints related to meeting points in the subproblem and the utiliza-
tion of parallel computing, the developed approach holds great potential.

3.2.2. Matheuristic with linear programming
Despite the linearization method introduced above, the MILP sub-

problems (NP-hard) may necessitate heuristics to address scalability is-
sues. This section presents an approximate approach that integrates
heuristics with linear programming to solve the subproblems in Fig. 2.
We integrate mathematical programming with a heuristic framework,
which has been successfully applied for solving various VRP variants
(Archetti and Speranza, 2014; D€onmez et al., 2022; Seyfi et al., 2022). In
this paper, we design a search-based heuristic for route optimization and
a linear programming (LP) model for charging schedules. To be specific,
given an initial solution, the algorithm includes three interactive mod-
ules: (1) an Adaptive Large Neighborhood Search (ALNS) module for
route planning, (2) an LPmodule for charging schedule optimization, and
(3) a local search module for further route improvements.

Before elaborating on the details of the three modules, we first
explain the logic of the algorithm framework as illustrated in Fig. 3. The
modules are utilized in three different layers of loops, namely the
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“iteration” layer, the “segment” layer, and the “run” layer. Each subse-
quent layer embeds the previous one, establishing a hierarchical rela-
tionship among them. More specifically, each run consists of several
segments, with each segment comprising multiple iterations.

With an initial solution, the algorithm starts from the bottom layer
(iterations) by applying the first part of the ALNS module, i.e., route
mutation, which seeks to merely improve EV routes and temporally
disregard charging (thus an incomplete solution). Thereafter, within the
same loop layer, the LP module is applied to plan the charging schedule,
thereby completing the solution. The second part of the ALNS module
then evaluates the complete solution and updates operator weights in
each segment loop (second layer), where a rewarding mechanism is
designed to incentivize better operators. In the outermost layer, the local
search module is applied in the run loop to further improve the EV routes,
which again needs the LP module to complete the solution. In a nutshell,
the CoEVRPMP involves intertwined decision-making in both spatial and
temporal domains. The spatial decisions are the sequences of visiting
customers and meet points, while the temporal decisions concern the
timing and duration of visits to these locations (e.g., charging time).
Following this logic, our algorithm divides the solution-finding proced-
ure into the same two domains, with ALNS and local search focusing only
on vehicle routes enhancement and the LP module addressing the
charging time optimization. Therefore, as shown in Fig. 3, whenever a
new route is found (either by ALNS or local search), the LP is imple-
mented to complete the solution. In many cases, we can bypass the LP
process; however, this necessitates double-calculating the objective
function in the remaining scenarios. The three modules, called in
different layers, are designed to iteratively improve the solution in a
harmonized and feasibility-guaranteed fashion, which are described as
follows.

(I) ALNS module

The ALNS module serves as the core of the solving algorithm. ALNS
has been widely used and has shown high performance in various VRP
variants. We select the ALNS algorithm for its competing performance
and flexibility. As demonstrated in recent studies, ALNS could often
result in high-quality solutions with acceptable computational run times
(D€onmez et al., 2022; Keskin and Çatay, 2016; Pelletier et al., 2019),
which is also the case in our problem (Section 4.1). The flexibility enables
us to tailor it to the CoEVRPMP. The original ALNS algorithm was pro-
posed by Ropke and Pisinger (2006), which adopts the principle of
removal first and then insertion to find new routes. A set of different
removal and insertion operators are used and assigned
performance-based weights to adaptively improve the solution. More
details regarding the standard ALNS algorithm can be found in Ropke
and Pisinger (2006).

We improve the original ALNS algorithm to guarantee solution
feasibility, which can be intractable in our problem due to two sets of
constraints. First of all, the charging constraints (Eqs. (5)–(7)) signifi-
cantly reduce feasible solution space. Secondly, exchanging goods at the
meet point puts extra constraints on serving shared and reserved cus-
tomers, making it even harder to find feasible solutions. To cope with
those difficulties, we change the original ALNS algorithm of Ropke and
Pisinger (2006) in two aspects accordingly. We embed the LP module
into the ALNS loops, as shown in Fig. 3, so that route finding and
charging are handled sequentially, making it easier to find feasible so-
lutions. To resolve the meet-point synchronization, new rules are
applied: (1) exchanged goods must be delivered after the meet point,
corresponding to Eq. (10); (2) to ensure synchronization at the meet
point, we converted the Eq. (9) into a penalty function and added it to the
objective function.

Moreover, the details of our ALNS are elaborated below. Our ALNS
integrates four removal operators (Shaw, random, worst, and time win-
dow) along with two insertion operators (basic greedy and regret).
Except for being inspired by Ropke and Pisinger (2006), we introduced



Fig. 3. Flowchart of the proposed matheuristic.
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the time window operator, which prioritizes the removal of customers
with significant time window-related connections. The relationship be-
tween customers i and j in terms of time window is quantified by RTWði;
jÞ ¼ ��ei � ej

��þ ��li � lj
��. The insertion process requires special handling

because of meet points and reserved customers. The rules are: (1)
reserved customers must be inserted into the company’s own vehicle
routes; (2) shared customers can be inserted into either the company’s
own vehicle routes or the routes after meet points of other company’s
vehicles. We utilize adaptive weight adjustment to monitor the perfor-
mance of each operator and employ the roulette wheel selection principle
to decide which operator to use. It is important to note that the selection
of the removal operator and insertion operator is done independently.
The selected removal operator removes ⌈ρ ⋅ C⌉ customers (where ρ 2 ½0;
1� represents the removal fraction, and C is the total number of cus-
tomers), who are subsequently reintegrated by selected insertion
operators.

(II) LP module

As shown in Fig. 3, a linear programming (LP) module is applied to
optimize charging time whenever a new route solution is obtained. It is
worth noting that once the service sequence is determined, for each

route, we will be able to calculate the remaining energy at each node ðb̂iÞ
prior to any charging service being performed. Therefore, with the ser-

vice route (X) and battery level ðb̂iÞ information available, the LP module
seeks to find optimal charging strategies (δℓ) that would minimize the
total task time (si). Note that the i here represents the service sequence
instead of the node index, i 2 [1, ζ], where ζ represents the number of
nodes in the route.

After the routing of each vehicle is obtained, the first term of Eq. (1),
the energy consumption cost, is determined. Therefore, the charging
battery at each node needs to be optimized to minimize the labor cost,
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considering the battery and time constraints. The LP model for a single
route can thus be formulated as Eqs. (36)–(41):

min ctT (36)

subject to

L� b̂i �
Xi

ℓ¼1

δℓ � B� b̂i;8i 2 f1; 2;…; ζg (37)

δi þ si � siþ1 � �ttXiXiþ1 � stXi ; 8i 2 f1; 2;…; ζ � 1g (38)

T ¼ si; i ¼ ζ (39)

eXi � si � lXi ; 8i 2 f1; 2;…; ζg (40)

δi � 0; 8i 2 f1; 2;…; ζg (41)

In the above model, the objective function Eq. (36) is a concise
version of the original objective function Eq. (1) since the first term is
deterministic given a route sequence. The original battery constraints
(Eqs. (5) and (7)) are simplified as Eq. (37). The original service time
constraints Eq. (11) can be converted to Eq. (38). The developed LP
model has a much lower computational complexity compared to the
original MINLP and can be solved by any commercial solver in poly-
nomial time. Without loss of generality, we assume that there are
charging facilities at all customer and meet point locations, which also
represents the most complex scenario of the studied problem. If charging
facilities are not available at some stops, we can easily adapt the model to
such simpler cases by restricting charging opportunities defined in Eq.
(37).

(III) Local search module



Table 2
Computational results for instances.

Instances SE (SEK) SM (SEK) ImpE–M (%) CPUE (s) CPUM (s)

9-0-5-0-4 611.2a 611.2a 0 13.4 3.7
10-0-5-0-5 512.6a 512.6a 0 157.0 5.3
10-2-3-2-3 585.7a 585.7a 0 38.2 7.2
10-4-1-4-1 609.5a 609.5a 0 16.5 10.9
15-0-7-0-8 656.0 656.0 0 5,400 16.1
15-2-5-2-6 666.7 667.9 �0.2 5,400 18.9
15-3-4-4-4 690.3 691.6 �0.2 5,400 32.2
20-0-7-0-13 720.2 707.6 1.8 10,800 19.7
20-2-5-5-8 781.7 742.5 5.3 10,800 46.1
20-6-1-11-2 835.3 778.79 7.3 10,800 84.7
30-0-15-0-15 1,008.0 1,007.6 0.0 14,400 34.6
30-8-7-8-7 1,333.8 1,207.9 10.4 14,400 77.9
40-0-20-0-20 1,232.6 1,228.6 0.3 36,000 108.3
40-10-10-10-10 1,626.7 1,591.0 2.2 36,000 305.4
50-0-25-0-25 — 1,403.4 — 43,200 160.2
60-0-30-0-30 — 1,354.6 — 54,000 227.8
60-20-10-20-10 — 1,539.5 — 54,000 261.5
80-0-40-0-40 — 1,559.4 — 72,000 389.1
80-20-20-20-20 — 1,901.0 — 72,000 456.3
100-0-50-0-50 — 1,747.3 — 108,000 529.2
100-25-25-25-25 — 1,964.8 — 108,000 731.9
200-0-100-0-100 — 2,706.2 — 216,000 1,137.8
500-0-250-0-250 — 5,150.0 — 360,000 2,898.6

Note: – indicates no feasible solution found within the specified time limit.
a indicates proven optimal solutions.
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The local search module aims to further optimize vehicle routing (and
only routes), with the understanding that heuristic algorithms can often
benefit from extra randomness and disturbances. Through extensive ex-
periments, we discover that the following three operators exhibit the best
results: 2-opt (Croes, 1958), relocate (Savelsbergh, 1992), and neighbor
move. 2-opt and relocate are standard operators, and the neighbor move
is specially designed for the studied problem, inspired by the recursive
granular algorithm in Moshref-Javadi and Lee (2016). Specifically, the
neighbor move is applied to each customer and its pre-determined
neighbor customers. Among those customers, one will be selected and
relocated as the immediate successor of the ego customer. Note that if an
insertion operation is used, it should be guaranteed that shared cus-
tomers should be inserted in their own vehicle'’s routing or others’
routing after the meet point. In contrast, reserved customers can only be
inserted in their own vehicle’s routing. The local search will accept better
new solutions and discard worse solutions.

4. Numerical experiments

In this section, both exact and heuristic-based methods are tested to
investigate their viability in various scenarios. We examine the compu-
tational performance of the proposed solution algorithms through a se-
ries of numerical experiments. The problem size ranges from 9 to 500
customers, representing different use cases. To demonstrate the benefits
of collaboration, we showcase both small-medium-sized real-world ex-
amples and also large-scale problems, using non-collaborative results as
benchmarks.

4.1. Computational performance

The experiments are conducted on a standard PC with a six-core
Inter(R) Core(TM) i7-8750H CPU at 2.2 GHz and 16 GB of RAM. The
exact method is coded in MATLAB R2021b by using Gurobi 9.5.2 for
solving the subproblems. For practical concerns, we impose a limit on the
algorithm’s runtime, which varies from 0.5 to 100 h, depending on the
problem size. The heuristic algorithm is also coded in MATLAB R2021b.

In this subsection, we examine the computational performance of the
two solution approaches. Based on our experiments, the removal fraction
ρ of 0.3 renders the best performance, and other parameters are tuned
based on the method proposed in Ropke and Pisinger (2006). We use the
following naming format R–Rr

1–R
s
1–R

r
2–R

s
2 to denote different instances.

Taking instance 9-0-5-0-4 as an example, there are 9 customers in total,
including 0 reserved and 5 shared customers of company 1, 0 reserved
and 4 shared customers of company 2 as well. The key performance
metrics are defined and explained in Table 1. Table 2 compares the
performance of the proposed matheuristic algorithm with the exact
method.

Given the specific time limit, Gurobi can achieve the optimal solution
in problems with less than 15 customers. However, when the number of
customers is from 15 to 40, only feasible solutions can be obtained
instead of the optimal. Furthermore, when the number of customers rises
to 50, the solver cannot find a feasible solution within the time limit,
which aligns with findings from many existing studies (Ma et al., 2023;
Xia et al., 2023). Thus, the heuristic-based approach is the only viable
Table 1
Abbreviation of experiment indicators and definition.

Abbreviation Definition

SE The best feasible objective value found by the Gurobi solver in a
preset running time

SM The best feasible objective value found by the matheuristic after a
preset number of iterations

ImpE–M The improvement of SM compared to SE, which is calculated by (SE �
SM)/SE

CPUM The computation duration of the matheuristic
CPUE CPU time for solving the MILP model by Gurobi
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option for practical implementation.
In comparison to the exact approach (utilizing Gurobi), the math-

euristic algorithm demonstrates superior performance in terms of
computational time, as evident from the last two columns in Table 2.
Across the majority of instances, as highlighted by the ImpE–M column,
the matheuristic approach yields enhancements in solutions. Exceptions
to this trend are observed in cases labeled “15-2-5-2-6” and “15-3-4-4-4”.
In particular, the matheuristic reveals a modest gap at most, by a mar-
ginal 0.2% from the exact method. Yet, in more cases, it leads to
improved solutions, outperforming the exact method by a significant
margin of up to 10.4%.

4.2. Real-world case

In this section, we use a real-world case to demonstrate the merits of
collaboration. To cover the vast spectrum of real-world situations, we
present comprehensive results with varying vehicle types (EVs or con-
ventional vehicles), time windows, profit thresholds, and numbers of
shared customers.

4.2.1. Case description
The case studies are created based on the real locations of large

grocery stores from two companies (namely, ICA andWillys) operating in
the city of Gothenburg, Sweden. Both companies routinely deliver goods
from depots to their local stores scattered in the city. Fig. 4 shows the
map of interest. Each company has one depot, as marked by the squares.
The circles represent local store locations: 9 stores of ICA (red, marked by
R) and 8 stores of Willys (blue, marked by B). In our problem, those local
stores are the “customers” for the company vehicles to visit.

For the meet points, we consider places with vacant spaces that can be
used for vehicles to meet each other. We assume that the two campuses of
the Chalmers University of Technology (Johanneberg and Lindholmen)
are optional meet points as marked by the stars in Fig. 4. The asymmetric
origin-destination distance matrix was obtained from Google Maps API
(accessed on 20 April 2022). In addition, the shortest path between any
two interest spots is used for distance/time estimation in this study. The
distance between nodes is shown in Appendix C (Table C1). The time
windows related to each store are assumed as those in Table 3.

Values of other context parameters are determined based on our local
survey. Specifically, the amount of service fee (pj) paid by each customer j



Fig. 4. Locations of all nodes.
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is 150 in the currency of Swedish Kronor (SEK for short). The unit energy
consumption costs (cd) for conventional and electric vehicles are 3 and 6
SEK/km, respectively. And the unit driver salary (ct) is 2.05 SEK/min.
The average speed (v) of both companies’ vehicles is assumed to be 40
km/h. The travel time ðttkijÞ from node i to node j of vehicle k can is

calculated as ttkij ¼ Dij=v. The service time (sti) at customer i is 2 min; the
total unloading and loading time (service time) at meet points is 10 min;
the maximumwaiting time (WTmax) for the other vehicle at meet points is
5 min. The large positive number (Γ) is set as 100. For the electric ve-
hicles, we assume total battery capacity B ¼ 60 kWh, the minimum
battery is L ¼ 12 kWh (the 20% of the full battery), unit energy con-
sumption ϵ ¼ 1 Wh/m, and charging rate ri ¼ 60 kW.

4.2.2. Collaboration vs. non-collaboration
We note that the proposed methods can easily adapt to conventional

internal combustion engine vehicles, which are still prevailing in the
market. In scenarios where conventional vehicles are used, Eqs. (5)–(7)
and (12) can be removed. Moreover, the term STk

i in Eq. (11) will be
changed to term sti since there is no charging time. In practice, time
windows are sometimes not enforced, in which case we can further
remove Eq. (14).

Due to different problem setups, we solve a few variants of the non-
collaborative routing problem: the basic VRP, VRPTW, EVRP, and
EVRPTWmodels. Accordingly, we solve their collaborative counterparts:
CoVRPMP, CoVRPMP-TW, CoEVRPMP, and CoEVRPMP-TW. In
Table 3
Time windows of customers (Unit: min).

RR 1 2 3 4 5�
ej; lj

	
[0,90] [30,60] [0,90] [30,120] [

RB 10 11 12 13 1�
ej; lj

	
[0,90] [0,90] [30,120] [60,90] [

Table 4
Results of collaboration and non-collaboration scenario.

Non-collaboration Collaboration

Without profit t

k Model TC (SEK) Φ (SEK) Model TC (SEK)

R
VRP 1,223.1

720.5
CoVRPMP 1,095.5

B 606.4
R

VRPTW 1,663.9
381.0

CoVRPMP-TW 1,267.5
B 505.2
R

EVRP 905.6
880.9

CoEVRPMP 719.2
B 763.5
R

EVRPTW 1,277.7
577.9

CoEVRPMP-TW 818.8
B 694.4
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collaborative cases, it is assumed that all customers can be shared. We use
the non-collaboration scenarios as the baselines, where each company’s
costs and profits are calculated separately. The results are summarized in
Table 4.

As shown in Table 4, collaboration reduced the total cost by 8%–36%
compared to non-collaboration scenarios. These benefits were more
pronounced when time windows (24%–36%) and electric vehicles (19%–

36%) were taken into account. The difference is the largest when electric
vehicles are bound by timewindows, resulting in a cost reduction of 36%.
We now focus on the impacts of profit thresholds, the number of shared
customers, and the length of time windows on the results.

4.2.2.1. Profit threshold. In Table 4, it could also be found that, without
restricting the profit threshold, one companymay lose profit as a sacrifice
for lower total costs for the two companies. This will, of course,
compromise collaboration in real life. For example, in the comparison
between VRP and CoVRPMP, the usage of profit thresholds increases
total cost but ensures a win–win situation. As shown in the last column of
Table 4, the profits of companies increase by 7%–58%, which can lead to
a higher willingness to collaborate.

4.2.2.2. Shared customers. For the CoEVRPMP problem, different
numbers of shared customers are considered. Here, three scenarios are
studied: (1) 2 shared customers, where only customers 2 and 13 (3 and
12) could be shared, Rs ¼ f2; 13g ðRs ¼ f3;12gÞ; (2) 4 shared customers,
where customers 2, 3, 12, and 13 could be shared, Rs ¼ f2; 3; 12; 13g; (3)
all customers shared, Rs ¼ R, and there are no reserved customers, Rr ¼
∅. Taking the result of EVRPTW of non-collaboration as the baseline, the
results of different numbers of shared customers are shown in Table 5.

In Table 5, it could be found that, generally, the more shared cus-
tomers, the better the results in terms of the total cost. With all customers
shared, Rs ¼ R, the best solution is achieved. However, collaboration
may be worse than non-collaboration if only a few customers are shared
(see the case Rs ¼ f3;12g). This is because the meet point introduces
additional travel distances that cannot be compensated by the profits of
limited shared customers. In this case, we cannot even find a solution
when profit thresholds are applied.

4.2.2.3. Time windows. Last but not least, the impact of time windows is
studied. Without losing generality, we examine different combinations of
earliest service time ei, length of time windows τi, and the total range of
time windows of all customers (τ ¼ max li

i
� min ei

i
, where li denotes the
6 7 8 9
30,120] [60,150] [60,150] [90,180] [90,180]

4 15 16 17
30,120] [60,150] [60,150] [90,180]

hresholds With profit thresholds

↓ (%) Φ (SEK) ↑ (%) TC (SEK) ↓ (%) Φ (SEK) ↑ (%)

10.4
903.3 25.4

1,124.7 8.0
769.9 6.9

551.3 �9.1 655.4 8.1

23.8
484.1 27.1

1,267.5 23.8
484.1 27.1

798.5 58.1 798.5 58.1

20.6
1,112.1 26.2

736.8 18.6
978.7 11.1

718.7 �5.9 834.5 9.3

35.9
716.6 24.0

818.8 35.9
716.6 24.0

1,014.6 46.1 1,014.6 46.1



Table 5
Results with different numbers of shared customers.

Non-collaboration Collaboration

Without profit thresholds With profit thresholds

k Shared customers Rs TC (SEK) Φ (SEK) TC (SEK) ↓ (%) Φ (SEK) ↑ (%) TC (SEK) ↓ (%) Φ (SEK) ↑ (%)

R
Rs ¼ f2;13g

1,277.7

577.9
1,158.7

9.3 700.0 21.1
1245.6 2.51

600.3 3.9
B 694.4 691.3 �0.4 704.1 1.4
R

Rs ¼ f3;12g 577.9
1,330.9

�4.2 554.9 �4.0
— —

— —

B 694.4 664.2 �4.4 — —

R
Rs ¼ f2;3;12; 13g 577.9

1,058.4
17.2 779.9 35.0

1,058.4 17.2
779.9 35.0

B 694.4 711.7 2.5 711.7 2.5
R

Rs ¼ R
577.9

818.8
35.9 716.6 24.0

818.8 35.9
716.6 24.0

B 694.4 1,014.6 46.1 1,014.6 46.1

Note: – indicates no feasible solutions.

Table 6
Results with different time window lengths.

Non-collaboration Collaboration

Instances TC ΦA (SEK) ΦB (SEK) TC (SEK) ↓ (%) ΦA (SEK) ↑ (%) ΦB (SEK) ↑ (%)

r1-60-180 — — 638.4 940.7 N/A 876.6 N/A 732.7 14.8
r1-90-210 1,225.8 672.9 651.3 929.6 24.2 771.0 14.6 849.4 30.4
r1-120-240 1,136.9 759.7 653.4 929.6 18.2 771.0 1.5 894.4 30.0
r2-60-180 1,109.0 733.1 707.9 878.1 20.8 929.1 26.7 742.8 4.9
r2-90-210 1,067.7 763.0 719.3 868.7 18.6 957.5 25.5 723.8 0.6
r2-120-240 1,067.7 763.0 719.3 868.7 18.6 957.5 25.5 723.8 0.6
r3-60-180 — — 687.9 949.6 N/A 830.6 N/A 769.8 11.9
r3-90-210 1,145.3 716.0 688.7 925.8 19.2 830.6 16.0 793.6 15.2
r3-120-240 1,064.7 796.6 688.7 919.2 13.7 889.7 11.7 741.1 7.6
r4-60-180 — — 670.0 924.5 N/A 916.0 N/A 709.5 5.9
r4-90-210 1,225.8 630.3 693.9 922.1 24.8 904.4 43.5 723.5 4.3
r4-120-240 1,100.3 755.9 693.9 922.1 16.2 904.4 19.7 723.5 4.3
r5-60-180 — — 618.5 1,092.2 N/A 712.1 N/A 745.7 20.6
r5-90-210 1,188.7 729.8 631.5 937.4 21.1 850.3 16.5 762.3 20.7
r5-120-240 1,116.8 801.7 631.5 893.3 20.0 978.6 22.1 678.0 7.4

Note: – indicates no feasible solutions. N/A indicates the comparison is not applicable as non-collaboration fails to find a solution.

F. Zhou et al. Communications in Transportation Research 4 (2024) 100135
latest service time and τi ¼ li � ei). For each instance, we randomly
generate the earliest service time ei for each customer, and r* describes
the set of ei for all customers, r* ¼ : fe1; e2; …; e17g. We can thereby
characterize instances as r* � τi � τ. Taking r1-60-180 as an example, all
customers have the same length of time windows (60 min) in this
instance, but each has a different ei, and the companies must complete
their tasks in 180 min. For each combination of τi and τ, we reshuffle r*
for five times, and hence r* 2 fr1; r2; r3; r4; r5g. This results in 15
different instances, as shown in Table 6.

Table 6 demonstrates that collaboration is especially advantageous in
narrow customer time windows. Collaboration offers viable solutions
even when non-collaborative approaches fail due to short time frames (τi
¼ 60). Notably, the advantages of collaboration, as evidenced by total
cost, decline as time windows become longer. By offering strictly narrow
time windows, customer satisfaction can be significantly enhanced. This
underscores the potential of collaboration to facilitate more accurate and
efficient delivery schedules, thereby boosting service reliability and
customer satisfaction.
2 The length of TWs depends on the number of customers, 4, 7, and 14 h for
100, 200, and 500 customers, respectively.
4.3. Large-scale case studies

In this section, we focus on large-scale problems that can only be
addressed by the matheuristic method in practice. We once again
consider two companies: red (R) and blue (B). Fig. 5 illustrates the lo-
cations of customers, depots, and meet points with three different
problem sizes. Following the same symbolic system as in Fig. 4, depots
are denoted as squares; diamonds represent meet points, and customers
are circles. We locate the depots at polar positions and randomly generate
meet points in central zones. Locations of customers are randomly
generated, with 100 customers (50 customers for each company), 200
11
customers (100 customers for each), and 500 customers (250 customers
for each) in a 25 km� 25 km region. We retain the problem setups as the
real-world case, except for (1) the service fee (pj) paid by customer j is 50
SEK, (2) the total battery capacity is B¼ 200 kWh, and (iii) the minimum
battery is 20% of the entire battery, L ¼ 12 kWh. To fully examine the
impact of collaboration, we solve the problems considering both without
TWs and with TWs in those cases. To uphold transparency and facilitate
clear communication, we adhere to one vehicle per company. For in-
formation on utilizing multiple vehicles, please refer to Appendix A. We
recognize that utilizing only two vehicles to serve 500 customers may not
be feasible in many instances, except in some extreme situations. The aim
is to evaluate the performance of the matheuristic method under large-
scale conditions.

4.3.1. Scenarios with time windows
In the context of urban logistics, it is often the companies that give

optional serving times for customers to choose from (such as DHL and
Amazon) instead of the other way around. However, time windows can
still vary significantly from case to case, with enormous variants, espe-
cially when the number of customers is large. It is thus not practical to
examine all possibilities in one study. In this section, we only investigate
a non-overlapping two-slot TW2 set up to showcase the benefits of
collaboration in large-scale problems. In the real world, this can repre-
sent, for example, a choice of morning vs. afternoon delivery or daytime
vs. nighttime delivery.

The results are shown in Table 7. It is evident that collaboration re-
sults in significant reductions in the total costs, ranging from 16% to



Fig. 5. Location map of large-scale cases.

Table 7
Results for virtual cases with TWs.

Non-collaboration Collaboration

No. customers k Model TC (SEK) Φ (SEK) Model TC (SEK) ↓ (%) Φ (SEK) ↑ (%)

100
R

EVRP-TW 3,168.5
939.8

CoEVRPMP-TW 2,440.5 23.0
1,023.7 8.9

B 891.7 1,535.8 72.2

200
R

EVRP-TW 5,042.5
2,448.9

CoEVRPMP-TW 3,983.2 21.0
2,865.0 17.0

B 2,508.6 3,151.9 25.6

500
R

EVRP-TW 9,158.6
7,750.0

CoEVRPMP-TW 7,691.1 16.0
9,103.0 16.2

B 8,012.8 8,205.9 2.4
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23%. This leads to profit increases for both companies that could
incentivize them to collaborate. We could also notice that as the density
of customers increases, the benefit of collaboration vanishes. One
possible explanation is that it is more rewarding for a company to serve
alone if the average energy cost (pure distance-based) between customers
is relatively small. In this case, the company can constantly collect profits
without traveling too much. On the contrary, if customers are distant
from each other, it is advantageous to re-assign the tasks through
collaboration so that each company can serve condensed customer areas.
This can also be reflected by the routes of vehicles, as shown in Appendix
D.

Another interesting observation is that, in non-collaboration, vehicle
routes often intersect with each other. This means that a vehicle is often
bypassing the other company’s customers even if they are close and
desire the same service time window. In collaborative cases, this issue is
resolved by strategically sharing customers based on our models.

4.3.2. Scenarios without time windows
In some scenarios, time windows are not binding or too large to come

into effect. We present the results of such cases, as shown in Table 8. The
vehicle routes are illustrated in Figs. 6–8. Compared to cases with TWs,
the profits of both companies increase in every scenario since they are
freer to plan vehicle routes. In addition, collaboration leads to a clearer
separation of service zones without binding time windows.

In Table 8, it is obvious that the implementation of collaboration
results in approximately 20% savings in the total costs. It can be clearly
seen from Figs. 6–8 that the service areas of each company shrink and the
travel distance decreases significantly with collaboration. With collabo-
ration, the company vehicles only need to serve about half of the areas
each instead of the entire area. More specifically, when serving 100
customers (Fig. 6), the red vehicle company serves the upper area, while
the blue company vehicle serves the lower area. When serving 200 cus-
tomers (Fig. 7), the red vehicle serves the left top area while the blue
vehicle serves the right bottom area in the collaboration scenario. With
the increase of the number of customers to 500 (Fig. 8), we receive
12
similar to the 100- customers case pattern.

4.4. Goods exchange at meet points vs. depots

To demonstrate the significance of meet points, we further present
another benchmark group employing a different collaborative
approach—goods exchange between depots. As previously mentioned,
this type of collaborative routing problem is typically formulated as
MDVRP, with transportation costs between depots included, as outlined
in Wang et al. (2017). This subsection details the comparative analysis
between MDVRP and CoVRPMP, as well as between MDEVRP and
CoEVRPMP. Furthermore, the management of partial charging in
MEDVRP aligns with that of CoEVRPMP when utilizing electric vehicles.
In models with meet points (CoVRPMP and CoEVRPMP), we maintain
profit thresholds. In the case of exchanging goods between depots, ve-
hicles are not required to return to their depots. As the profits of both
companies cannot be determined in the latter scenario, our comparison
centers exclusively on total costs.

In summary, as shown in Table 9, opting for the exchange of goods at
meet points proves to be more cost-effective, resulting in greater total
savings compared to exchanging goods at depots. In these two scenarios,
one features relatively close depots (Fig. 4), while the other involves
depots situated at a considerable distance from each other (Fig. 5).
Indeed, we view meet points as flexible depots, offering increased op-
portunities for optimizing routing. Note, the rendez-vous at meet points
requires the satisfaction of (tight) time-windows.

5. Discussion

This section elaborates on intriguing results from Section 4, high-
lighting the main findings and insights revealed. It delves into the ne-
cessity of collaboration, underscores the importance of profit thresholds,
analyzes the impact of collaboration on time windows, and clarifies the
reason behind using meet points.

The computational results convincingly support a conclusion:



Table 8
Results of for virtual cases without TWs.

Non-collaboration Collaboration

No. customers k Model TC (SEK) Φ (SEK) Model TC (SEK) ↓ (%) Φ (SEK) ↑ (%)

100
R

EVRP 2.121.2
1,477.0

CoEVRPMP 1,719.3 18.9
1,665.2 12.7

B 1,401.8 1,615.5 15.3

200
R

EVRP 3,361.0
3,287.8

CoEVRPMP 2,674.8 20.4
3,428.5 4.3

B 3,351.3 3,896.6 16.3

500
R

EVRP 6,281.1
9,308.2

CoEVRPMP 5,092.6 18.9
9,931.6 6.7

B 9,410.8 9,975.8 6.0

Fig. 6. Results of 100 customers without TWs.

Fig. 7. Results of 200 customers without TWs.

Fig. 8. Results of 500 customers without TWs.
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Collaborative routing shows the potential to outperform non-
collaborative approaches across nearly all cases and scenarios, regard-
less of whether the vehicle is conventional or electric. Notably, the ad-
vantages are particularly accentuated when electric vehicles are being
used. The limited EV range underscores the importance of promoting
13
collaboration among logistics companies.
The incorporation of meeting points in collaborative scenarios

generally results in superior performance compared to non-collaborative
approaches. An exception can be seen in the cases where only a few
customers are shared (see case Rs ¼ f3;12g in Table 5). This is because
meet points introduce additional travel distance with extra cost that
surpasses the gain from customer sharing. In such instances, utilizing
profit thresholds undoubtedly fails to produce a viable solution, thus
rendering collaboration unnecessary. Certainly, collaboration may not be
considered economically profitable when both companies plan to share a
small number of customers. However, the benefit increases as the com-
panies share more customers. This indicates a significant potential for the
application in real-world scenarios involving larger customer bases.

Note that incorporating profit thresholds may lead to a rise in overall
costs. Nevertheless, this strategy plays a crucial role in ensuring the
satisfaction of both companies by adhering to mutually agreed profit
targets. In Assumption A3 (Section 3), we highlighted that each company
is responsible for setting its own profit thresholds. For the purposes of
this paper, we proposed a non-collaborative profit margin as our
threshold. If a company raises this threshold, it will likely reduce the
space for collaboration. On the other hand, by lowering the threshold,
there might be more opportunities for collaboration. However, this could
come at the expense of individual company profits. We believe setting
thresholds is based on the company’s policy (corporate identity, privi-
leged customers, dense customer areas, etc.).

The results of our experiments also indicate that collaboration
significantly outperforms non-collaborative solutions in scenarios with
tighter time windows. Here, the profit-saving mechanism was found
more important with tighter delivery time windows. This hints that the
duration of the time window may significantly impact the collaborative
scenarios, which would, in turn, enhance customer satisfaction. In this
way, collaborating companies may be able to offer a more reliable and
prompt delivery service.

Regarding the choice between exchanging goods at meet points and
depots, practical decisions can be tailored to real-world situations. If the
depots are close to each other, a direct exchange at the depots is a viable
option. However, when depots are located at a distance, a more flexible
approach could involve meeting and exchanging goods at some points in
the middle for the exchange of goods. We can also propose a method that
uses the combination of depots and meet points goods exchange. In
essence, depots have fixed locations, while meet points are temporary
and can be adapted on a case-by-case basis, offering greater flexibility
and potential benefits.

6. Conclusions and future work

This paper introduced and analyzed a CoEVRPMP. We integrated
profit sharing into routing planning with explicit considerations of
practical constraints such as charging, time windows, vehicle capacity,
and meet-point synchronization. Two solving methods are developed for
the formulated CoEVRPMP, i.e., an exact method and a matheuristic al-
gorithm. The computational performance of the proposed solution
methods is examined. Numerical experiments based on real-world cases
and large-scale cases are conducted to demonstrate the benefits of



Table 9
Results of exchanging goods at meet points or depots.

Cases No. customers Model TC (SEK) Model TC (SEK) ↓ (%)

Real-world 17
MDVRP 1,140.5 CoVRPMP 1,124.7 1.4
MDEVRP 794.8 CoEVRPMP 736.8 7.3

Large-scale
100

MDVRP 2,691.5 CoVRPMP 2,345.6 12.9
MDEVRP 1,931.4 CoEVRPMP 1,719.3 11.0

200
MDVRP 3,834.0 CoVRPMP 3,566.1 7.0
MDEVRP 2,841.0 CoEVRPMP 2,674.8 5.8
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collaboration and examine the impacts of profit threshold, the proportion
of shared customers, and time windows.

To sum up, collaborative routing shows considerable promise in
surpassing non-collaborative approaches across diverse cases and sce-
narios. The incorporation of thresholds into the model is anticipated to
have a moderate impact on the overall objective. Nevertheless, this
adjustment is purposefully crafted to align with and fulfill the re-
quirements of companies willing to engage in collaborative efforts.
Collaborative efforts among companies hold the potential to deliver with
more reliable and precise time windows, ultimately enhancing the
overall customer service experience.

Exchanging goods at meet points along the route provides several
benefits, such as avoiding the necessity to disclose specific goods infor-
mation and conducting pre-storage at depots owned by other companies.
The success of collaboration also relies on the quantity and locations of
available meet points. The meet point, needed only temporarily, can
flexibly chosen among various locations like parking lots and charging
stations. Flexible meet point choices with multiple options allow for
better accommodation of dynamic needs. In addition, our experiments
indicate that the proposed method is most effective in service areas
characterized by low demand density. In essence, when customers are
dispersed, collaboration can yield greater cost reductions. This observa-
tion underscores the need for future research to thoroughly examine the
relationship between customer network topology and the benefits
derived from collaboration.

Our concept of meet points extends beyond horizontal collaboration
among companies, encompassing vertical collaboration within a single
company or scenarios involving a multimodal system. This versatility
allows for the exchange of goods among various companies and within
different modes of transportation. For instance, collaboration could occur
between electric vehicles and cargo bikes or between trucks and drones.
It is crucial to note that when the goods are transferred unidirectionally
from one vehicle or mode to another without an exchange, the point of
encounter is termed a transshipment node. This highlights the adapt-
ability of our meet point concept in facilitating collaborative scenarios
across diverse modes and operational structures.

We only consider two companies in the study, each with one vehicle
to focus on the core problem of collaboration. The model presented in
this paper has robust scalability that can be extended in several different
ways. First, we present the potential extension to multiple vehicles in
Appendix A. Subsequent research can encompass multiple companies
with multiple vehicles in collaborative routing problems involving meet
points. In such scenarios, goods can be exchanged at customers’ pre-
mises, which can be further examined and discussed within the routing
models. Second, the parallel branching structure we proposed can be
used for not only exact algorithms but also matheuristics so that
computational time can be saved significantly by utilizing parallel
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computing. Besides, in order to achieve more precise estimations, more
comprehensive and complex energy consumption estimation methods
could be considered in EVRPs and CoEVRPs rather than distance-based
ones.

Moreover, the profit increases of the collaborating companies are, at
times, uneven in our numerical experiments. Although thresholds ensure
a win–win situation, one of the companies may still decline collaboration
if the profit increase of the other company is significantly larger. To this
end, future research can investigate the balance of profits for the com-
panies to make them more willing to collaborate. Last but not least, the
problem we studied entails a central authority to coordinate the collab-
oration. Despite the minimal information shared—limited to the loca-
tions of shared customers—it still influences the willingness to
collaborate. Further exploration is needed to investigate methods for
enabling collaboration without relying on such a trusted consolidator.

Replication and data sharing

The data and codes used in this study are available at https://doi.o
rg/10.26599/ETSD.2024.9190029.
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Appendix A

Here, we extend the developed model in Section 3 to multiple vehicle scenarios. For company k, vk vehicles are present, with vk belonging to the set
Vk ¼ fV1;V2g, which is a subset of the overall vehicle set V. The number of vehicles can vary among companies. We assume that exchanges occur
exclusively between distinct companies, negating the requirement for all vehicles to visit meet points. Comparedwith the original model, two additional
decisions should be added and considered: (1) pairing two vehicles and determining the meet point for their rendezvous, and (2) determining if a

https://doi.org/10.26599/ETSD.2024.9190029
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customer transfer is necessary at the meet point and identifying the appropriate location for it.
To accommodate multiple delivery vehicles, we slightly modify the model outlined in Section 3.1. Firstly, we introduce two new decision variables.

Secondly, we update the existing decision variables associated with vehicle k to refer to vehicle vk. Thirdly, some variables are removed, while others are
retained. Specifically, the decision variable χv1v2m signifies whether vehicles v1 and v2 meet at meet point m, where v1 and v2 are part of the vehicle set V,
and m belongs to the meet point set M. The decision variable ϵmj indicates whether customer j is transferred at meet point m. The original decision

variables xkij, z
k
i , s

k
i , b

k
i , δ

k
i , and STk

i are updated to xvkij , z
vk
i , s

vk
i , b

vk
i , δ

vk
i , and STvk

i , respectively. Furthermore, we retain decision variables αmj and remove ykj
and εm.

Undoubtedly, some equations need slight adjustments due to replacing k with vk. For Eqs. (1), (5)–(8), (11)–(15), (18)–(20), and (23), apart from
changing k to vk, the equations stay the same. Equations (2) and (4) remain unchanged. Additionally, we present equations that underwent significant
modifications below.
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For the constraints, we update them as follows. Equation (A1) replaces Eq. (3) to represent the profit of company k. Equation (A2) ensures that each
customer can be transferred at most once. Equations (A3)–(A5) ensure that each vehicle visits at most one meet point. Among them, Eq. (A3) is to
instead Eq. (16). Equation (A6) guarantees that vehicles v1 and v2 will meet at the same meet point m if they are designated to exchange goods, which
has a similar meaning to Eq. (17). Equation (A7) ensures that if customer j requires a transfer at a meet point, the other company should handle the
service; if no transfer is needed, the customer should be served by the original company. Equation (A8) ensures that when vehicles v1 and v2 converge at
meet points, at least one customer transfer occurs; otherwise, vehicles do not meet there. Equations (A9) and (A10) ensure that if vehicles meet at a meet
point, then the goods in both vehicles can only be transferred at this point if needed. The waiting time at the meet point needs to be guaranteed within
WTmax by Eq. (A11), which replaces Eq. (9). Equation (A12) replaces Eq. (10), ensuring the service sequence that the exchanged goods must be served
after the meet points.

xvkij ; z
vk
i 2 f0; 1g;8i 2 N; j 2 N; vk 2 Vk ; k 2 K (A13)

svki ; b
vk
i ; δ

vk
i ; ST

vk
i � 0;8i 2 N; vk 2 Vk; k 2 K (A14)

ϵmj ; χ
v1v2
m 2 f0; 1g;8j 2 R; v1 2 V1; v2 2 V2;m 2 M (A15)

Moreover, Eqs. (27) and (A13)–(A15) are the decision variable domains.
15
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Appendix B

Table B1 with all notations used in this paper are presented below, including abbreviations, sets, parameters, and decision variables.
Table B1

Mathematical notation.

Abbreviation

VRP
 Vehicle routing problem

EVRP
 Electric vehicle routing problem

TW
 Time windows

EVRPTW
 Electric vehicle routing problem with time windows

CoVRP
 Collaborative vehicle routing problem

CoVRPMP
 Collaborative vehicle routing problem with meet points

CoVRPMP-TW
 Collaborative vehicle routing problem with meet points and time windows

CoEVRPMP
 Collaborative electric vehicle routing problem with meet points

CoEVRPMP-TW
 Collaborative electric vehicle routing problem with meet points and time windows

m-CoEVRP
 Collaborative electric vehicle routing problem with a fixed meet point

MDVRP
 Multi-depot vehicle routing problem

PD
 Pickup and delivery

PDP
 Pickup and delivery problem

MILP
 Mixed-integer linear programming

MINLP
 Mixed-integer nonlinear programming

ALNS
 Adaptive Large Neighborhood Search

LP
 Linear programming

TC
 Total cost

SEK
 Swedish Kronor
Set
Rr
k
 The reserved customers of company k
Rs
k
 The shared customers of company k
Rk
 The customers of company k, Rr
k [ Rs

k ¼ Rk
R
 All the customers

K
 Vehicles and companies, k 2 K, in which k is the index of companies/vehicles, K ¼ f1; 2g

M
 The meet points, m 2M, in which m is the index of meet points

O
 The depots of companies, ok2O, Oþ and O� are the start and end depots, Oþ [ O�¼O

N
 All nodes, N ¼ R [ M [ O
Parameter
cd
 Unit energy consumption cost (SEK/km)

ct
 Unit driver salary (SEK/min)

Dij
 Distance from node i to node j (km)

pj
 The service fee customer j pays for the delivery service (SEK)

Pmin
k
 Minimum profit threshold of company k (SEK)
qj
 Demand of customer j

αmj
 Profit ratio of customer j exchange goods at meet point m
Qk
 Capacity of vehicle k

ttkij
 Travel time from node i to node j for vehicle k (min)
sti
 Service time of goods at node i (min)

½ei ; li �
 Time window within which the vehicle should begin to serve node i (min)

WTmax
 Maximum time of the first arrival vehicle at the meet point waiting for another (min)

B
 Total battery capacity (Wh)

L
 Minimum battery (Wh)

ϵ
 Unit energy consumption per distance (W/km)

ri
 Charging rate of charging node i (W)

U
 Number of potential meet points

C
 Number of customers

Cs
 The number of shared customers

Cr
 The number of reserved customers

Γ
 A large positive number

X
 The service sequence of a single route
bbi
 Remaining battery at service sequence position i before any charging performed (Wh)
ttXiXiþ1
 Travel time from node Xi to node Xiþ1 (min)

stXi
 Service time of goods at node Xi (min)

½eXi ; lXi �
 Time window within which the vehicle should begin to serve node Xi (min)
Decision variable
xkij
 1 if vehicle k delivers from node i to node j; otherwise 0
ykj
 1 if customer j is served by vehicle k; otherwise 0
zki
 1 if vehicle k charges at node i, otherwise 0

εm
 1 if vehicles choose to meet at meet point m
bki
 The remaining energy in the battery of vehicle k when arriving at node i (Wh)
δki
 The charging battery of vehicle k at node i (Wh)
STk
i

Time for serving goods and charging of vehicle k at node i (min)
ski
 Time at which vehicle k begins service at node i (min)

Tk
 Arrival time of vehicle k at the end depot (min)
(continued on next column)
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Table B1 (continued )
Φk
 Total profit of company k (SEK)

δℓ
 The charging battery at service sequence position ℓ

si
 Start service time at service sequence position i (min)

T
 Arrival time at the end depot (min)
Appendix C

Table C1 shows the actual distance between nodes in the case study, including customer nodes, meet points, and depots. Among them, 1–17 are
customer points, 1–9 are customers of company R, and the rest are company B’s customers; m1 and m2 are meet points; D1 and D2 are the depots of
company R and B, respectively.
Table C1

Actual distance between nodes. (Unit: km)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 m1 m2 D1 D2
17
1
 0
 10.2
 15.8
 11.4
 14.6
 3.8
 10.9
 4.5
 7.9
 7.7
 7.7
 16.3
 10.3
 2.3
 4.8
 6.4
 7.0
 8.4
 3.9
 12.0
 3.9

2
 9.1
 0
 20.8
 17.7
 23.2
 13.0
 15.1
 7.8
 12.0
 13.6
 11.9
 20.6
 1.1
 11.3
 11.4
 15.4
 8.7
 12.6
 12.1
 20.6
 11.1

3
 15.7
 21.0
 0
 3.9
 17.6
 12.5
 5.1
 13.3
 8.1
 9.2
 8.8
 1.6
 21.1
 13.3
 7.9
 10.3
 16.2
 6.9
 13.4
 14.0
 18.2

4
 11.3
 17.2
 3.9
 0
 13.2
 8.1
 8.3
 10.6
 8.3
 6.5
 8.1
 4.8
 17.3
 8.9
 6.1
 5.9
 12.9
 4.6
 9.0
 9.6
 13.8

5
 14.8
 23.0
 17.6
 13.2
 0
 11.4
 23
 19.4
 22.8
 17.9
 22.6
 18.2
 23.2
 12.2
 15.8
 9.2
 19.8
 16.8
 12.3
 6.3
 18.1

6
 4.5
 12.7
 12.6
 8.3
 11.5
 0
 14.8
 8.5
 11.8
 8.3
 11.7
 13.3
 12.9
 2.6
 5.8
 3.0
 8.9
 8.1
 0.8
 8.0
 7.9

7
 10.0
 15.2
 5.2
 8.3
 23.1
 13.9
 0
 8.7
 3.5
 5.2
 4.1
 5.5
 15.5
 12.3
 7.9
 15.2
 11.5
 5.8
 12.8
 18.9
 12.5

8
 5.1
 7.9
 10.7
 10.4
 19.2
 9.0
 8.2
 0
 5.2
 4.1
 4.8
 13.7
 8.0
 7.4
 3.5
 10.5
 4.1
 4.8
 6.4
 16.6
 7.6

9
 6.7
 12.0
 8.3
 8.6
 20.8
 10.6
 3.5
 4.8
 0
 2.6
 0.9
 8.6
 11.9
 8.9
 4.9
 13.0
 8.2
 3.6
 9.8
 18.2
 9.2

10
 6.1
 11.3
 9.2
 7.2
 19.1
 10.0
 5.2
 4.4
 2.3
 0
 2.1
 9.5
 11.4
 7.8
 2.9
 11.5
 7.6
 1.5
 7.7
 15.4
 8.6

11
 6.8
 11.8
 8.3
 8.6
 20.9
 10.7
 3.5
 5.4
 0.3
 2.7
 0
 8.6
 12.0
 9.1
 4.9
 13.2
 8.3
 3.6
 9.6
 18.3
 9.4

12
 15.0
 20.3
 1.7
 4.8
 18.5
 13.4
 5.5
 13.6
 8.6
 9.6
 9.2
 0
 20.4
 14.5
 8.8
 11.2
 16.5
 7.8
 14.3
 14.8
 17.5

13
 9.7
 1.5
 21.6
 18.5
 23.9
 13.8
 15.8
 8.6
 12.8
 13.2
 12.6
 21.3
 0
 12.1
 12.2
 15.1
 9.5
 13.4
 12.3
 21.4
 11.7

14
 3.4
 11.6
 13.2
 8.8
 12.0
 2.6
 12.3
 5.9
 9.3
 7.1
 9.1
 13.8
 11.8
 0
 4.6
 3.1
 8.4
 6.9
 2.5
 9.2
 6.8

15
 5.0
 11.3
 8.4
 5.6
 15.9
 6.5
 9.0
 4.6
 4.3
 2.9
 4.0
 9.0
 11.4
 4.7
 0
 7.6
 7.5
 2.7
 5.2
 12.3
 8.0

16
 7.2
 15.4
 10.3
 5.9
 9.1
 2.9
 14.7
 8.4
 11.7
 11.5
 11.5
 10.9
 14.2
 3.3
 7.1
 0
 10.8
 9.4
 3.8
 6.3
 10.5

17
 4.4
 8.7
 16.2
 13.4
 18.5
 8.3
 11.0
 3.5
 8.2
 7.9
 7.8
 16.5
 8.1
 6.6
 6.8
 10.3
 0
 8.5
 8.6
 15.9
 6.4

m1
 6.6
 11.9
 7.6
 4.9
 17.0
 10.5
 5.9
 4.6
 3.3
 1.6
 3.3
 8.9
 12.0
 5.8
 2.0
 9.7
 8.1
 0
 —
 13.3
 9.1

m2
 3.9
 12.4
 14.4
 8.9
 12.2
 0.9
 13.4
 8.5
 10.1
 9.4
 10.2
 14.5
 13.2
 3.0
 6.0
 3.7
 7.7
 —
 0
 8.7
 7.5

D1
 11.7
 19.9
 13.8
 9.4
 6.7
 7.9
 19.3
 14.2
 17.6
 14.1
 17.4
 14.4
 20.1
 9.1
 12.0
 6.2
 16.7
 13.0
 8.7
 0
 —
D2
 3.6
 10.9
 17.8
 13.8
 18.0
 7.7
 12.0
 5.7
 9.0
 10.6
 8.9
 17.5
 11.1
 6.1
 7.2
 9.8
 7.1
 9.6
 7.2
 —
 0
Appendix D

The depictions of the routing with time windows of large-scale cases are shown in Figs. D1–D3. The paired images on either side combine to form a
comprehensive route diagram due to the two-slot time windows considered. Filled dots indicate customers opting for the initial time window, while
empty circles represent those preferring the later slot. Vehicle routes in Figs. D1–D3 indicate that the collaboration tends to separate the pool of
customers into two relatively separated clusters for the two companies so that each could focus on a smaller service zone. It is important to note that the
exchange of goods at meeting points is strictly limited to the first time window. Consequently, this minimizes vehicle intersections in service areas,
leading to shorter travel distances and ultimately enhancing overall benefits.

Fig. D1. Results of 100 customers with TWs.
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Fig. D2. Results of 200 customers with TWs.
Fig. D3. Results of 500 customers with TWs.
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