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Technical Note

Distribution-Theoretic Basis for Hidden Deltas in
Frequency-Domain Structural Modeling

Arion Pons1

Abstract: Frequency-domain modeling is a core tool for the analysis of linear time-invariant structures. In a process that has been
unclear, additional Dirac delta distributions can arise in the frequency-domain transfer functions of certain structures, beyond those
seemingly given by the structural model—e.g., in the mechanical impedance of a linear spring. Previous analyses have manually
appended these “hidden deltas” to the relevant transfer functions in to ensure that they remain causal, but questions remain as to their
exact origin and behavior in in noncausal models. Here, we demonstrate that these hidden deltas arise from the theory of distributions and
the solution of the distributional division equation. We demonstrate a rigorous and reliable method for deriving these hidden deltas in
which the role of causality constraints are made clear. Furthermore, we demonstrate that the appropriate frequency-domain conditions for
causality in such systems are generalized—not classical—Hilbert transform relations, and that the process of appending delta
distributions is related to the analysis of causality via these generalized relations. DOI: 10.1061/JENMDT.EMENG-7898. This work
is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/
by/4.0/.

Introduction

Several decades of research (Titchmarsh 1948;Makris and Efthymiou
2020) have shed significant light on the relationship between
frequency-domain models of structural phenomena, and the causal-
ity of these phenomena: their relationship to the directional nature
of time, and whether they respect it. The constraints of causality
provide insight into the behavior of viscoelastic constitutive models—
including in exact or approximate rate-independent damping models
(Keivan et al. 2017; Makris 1997a; Pons 2023), fractional-order
models (Enelund and Olsson 1999; Makris and Efthymiou 2020),
and power-law media (Gulgowski and Stefański 2021; Kelly and
McGough 2009). They also allow the identification of viscoelastic
loss moduli based only on storage moduli behavior (Madsen et al.
2008). Analyses of structural model causality are relevant to seis-
mology (Meza-Fajardo and Lai 2007; Deng and Morozov 2018),
seismic analysis (Keivan et al. 2017), rheology (Shanbhag and
Joshi 2022; Makris and Efthymiou 2020), biomechanics (Kelly and
McGough 2009; Madsen et al. 2008; Pons 2023), hydrodynamic
wave-energy conversion (Faedo et al. 2017), aeroelasticity (Park
et al. 2014), and the study of metamaterials (Srivastava 2021).

It has also been known for several decades (Crandall 1991;
Makris 1997b) that under certain conditions, an unusual phenome-
non can arise within these lines of analysis. In certain simple, causal,
models, the well-established derivation of frequency-domain trans-
fer functions leads to model formulations that are noncausal—a
contradiction with the known behavior of the model, and an appar-
ent error in established derivations. The widespread conventional
approach (Crandall 1991; Falnes 1995; Makris 1997b, 2017, 2018;

Faedo et al. 2017) is to manually append Dirac delta distributions to
these transfer functions so as to ensure causality—the “hidden
deltas” (Makris 1997b). This process resolves the causality violation,
but it raises several questions. Why is manual correction required?
What is missing in the analysis such that these deltas do not arise
naturally? Will similar hidden deltas arise in more complex transfer
functions?

Here, we use the theory of distributions (Schwartz 1957) to re-
solve these questions. We demonstrate that the hidden deltas arise
from the solution of the distributional division equation: a rigorous
basis for these terms that predicts their presence in general transfer
functions. Distribution division connects these hidden deltas in
causal structural models with the nonunique deltas that are ob-
served in noncausal models (Makris 1997b); both arise from the
nonuniqueness of distributional division, with causality a constraint
forcing uniqueness. In addition, we show how distributional divi-
sion is closely connected to frequency-domain causality analysis.
Distributional analogues of Titchmarsh’s theorem and the Kramers–
Kronig relations allow causality analysis in the frequency domain,
for a restricted space of distributional transfer functions, but we
identify that the generalization of this theorem due to Beltrami and
Wohlers (1966) significantly extends the space—including, to the
case of constant or improper transfer functions that typically present
challenges for frequency-domain causality analysis (Carcione et al.
2019; Makris 2018; Waters et al. 2000). In this way, distribution-
theoretic principles not only elucidate aspects of frequency-domain
structural analysis that have previously been opaque, but also pro-
vide new analysis routes for the study of causality in frequency-
domain structural systems.

Transfer Functions and Hidden Deltas

Following Makris (1997b, 2017), consider one of the simplest
conceivable structures—a linear spring, in the time (t) domain

FðtÞ ¼ kxðtÞ ð1Þ
with force output F proportional to displacement input x via stiff-
ness k. Note that if we redefined the input variable x to be velocity
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or acceleration, we would have a linear damper or inerter, respec-
tively (Makris 2017); these structures can all be analyzed along the
same lines. Taking the Fourier transform Ff·g—that is

FffðtÞg ¼ f̂ðωÞ ¼
Z ∞
−∞

fðtÞe−iωtdt;

F−1ff̂ðωÞg ¼ 1

2π

Z ∞
−∞

f̂ðωÞeiωtdω ð2Þ

—of Eq. (1), we obtain the transfer function (TF) between force and
displacement:

F̂ðωÞ ¼ kx̂ðωÞ ð3Þ

Eq. (3) defines the dynamic stiffness of the spring as
Q̂0ðωÞ ¼ F̂=x̂ ¼ k. Note that certain works, notably Nussenzveig
(1972), reverse the sign of ω in the Fourier transform, and so are
sign-flipped with respect to this analysis. Based on Eqs. (1)–(3), we
pose a pair of apparently simple questions. What is the mechanical
impedance of the spring—the TF between force and velocity?
(Findeisen 2000). And, the TF between force and acceleration?
To define these TFs, we have the following well-established Fourier
transform of a derivative:

FfẋðtÞg ¼ iωx̂ðωÞ ð4Þ

Applying this relation to Eq. (3) in a normal manner leads to the
TFs in:

force=velocity∶ Q̂1ðωÞ ¼
F̂
iωx̂

¼ − ik
ω
;

force=acceleration∶ Q̂2ðωÞ ¼
F̂

−ω2x̂
¼ − k

ω2
ð5Þ

in which we observe a problem, in that Q̂1ðωÞ and Q̂2ðωÞ are ap-
parently noncausal—they do not respect the directionality of time,
and the principle that effect should follow cause.

This noncausality can be observed directly in their inverse
Fourier transforms, which represent the structure’s time-domain re-
sponse to an impulse in the associated variable. Representing an
impulse input with a Dirac delta distribution at t ¼ 0, δðtÞ (which
we use without, as of yet, considering any deeper properties of
distributions), then FfδðtÞg ¼ 1, and via the inverse Fourier
transform, we compute the time-domain responses, QðtÞ, to the
following:

a velocity impulse∶ Q1ðtÞ ¼
1

2
ksgnðtÞ;

an acceleration impulse∶ Q2ðtÞ ¼
1

2
ktsgnðtÞ ð6Þ

where sgnðtÞ is the signum function. Per Makris (1997b, 2017,
2018), these responses are noncausal: the impulse occurs at
t ¼ 0; whereas nonzero response occurs back to t → −∞.

Where did the well-established analysis of Eqs. (1)–(5) go
wrong? Previous studies have not addressed this question directly,
but instead have manually modified the TFs of Eq. (1) to maintain
causality (Crandall 1991; Falnes 1995; Makris 1997b, 2017, 2018;
Faedo et al. 2017). With the arguments that one can add an impulse,
δðtÞ, into the singularity of the TF without “an observer noticing”
(Crandall 1991), and a motivation based on the derivative of the
logarithm (Makris 1997b), these studies append additional distri-
butional terms:

Q̂1;modðωÞ ¼ − ik
ω
þ πkδðωÞ;

Q̂2;modðωÞ ¼ − k
ω2

þ iπkδð1ÞðωÞ ð7Þ

where δð1ÞðωÞ is the distributional first derivative of the Dirac delta.
These appended terms are the “hidden deltas” (Makris 1997b),
specifically formulated to solve causality violation:

Q1;modðtÞ ¼ kHðtÞ;
Q2;modðtÞ ¼ ktHðtÞ ð8Þ

for Heaviside step function HðtÞ. In practical terms, this modifica-
tion restores causality—although it does not elucidate the error over
Eqs. (1)–(5), nor does it indicate whether these hidden deltas might
appear in other transfer functions. Interestingly, in the case of
Eq. (7), these deltas may also be derived from a loose application
of Titchmarsh’s theorem (the Kramers–Kronig relations) (Makris
1997b; Nussenzveig 1972), which expresses conditions for causality
in a square-integrable TF in terms of the Hilbert transform. How-
ever, as Beltrami and Wohlers (1966) allude to, TFs such as Eq. (7)
are neither square integrable (1=ω) nor ordinary functions (δ, δð1Þ),
and thus are not admissible to a classical analysis, despite its correct
results. The prevalence of distributions (δ, H, sgn) throughout this
process suggests that distribution-theoretic principles are at work–
to these we now turn.

Hidden Deltas and the Distributional Division
Equation

Properties and Spaces of Distributions

In Eqs. (6) and (7), when we introduced the delta distribution, δðtÞ,
we did so blithely. Distributions, in the sense of Schwartz (1957),
do not map values in the sense of an ordinary function (e.g.,R → R).
Instead, they approximate this mapping via an integral on a space of
test functions—in the manner of a weak formulation. For details,
see Pandey (2011) and Friedlander and Joshi (1998). By conven-
tion, we write distributions as functions, e.g., δðxÞ, but they do not
inherit all properties of ordinary functions—notably, in distributional
differentiation (Dn), which can be applied to singular functions; and
in multiplication and division, which are not always defined, and
may produce nonunique results. Various well-behaved functions,
such as x, x2, etc., themselves define equivalent distributions,
but the space of distributions also involves objects that do not
correspond to any function—notably, δðxÞ and DnδðxÞ ¼ δðnÞðxÞ.
Various singular or discontinuous functions can be given greater
utility via distributional formulation: HðxÞ, sgnðxÞ, and 1=x; the
latter, with integration defined via Cauchy principal value, defines
the distribution denoted p:v:ð1=xÞ. To analyze the causality of
distributional TFs, we must define several spaces of distributions.
• The space of all distributions—D 0 (Nussenzveig 1972) or D 0

(Beltrami and Wohlers 1966).
• The space of tempered distributions—L 0 ⊂ D 0 (Nussenzveig

1972), or S 0 (Beltrami and Wohlers 1966; Pfaffelhuber 1971).
Tempered distributions are continuous in a distributional sense,
which permits certain singularities; grow no faster than polyno-
mial as x → ∞; and are the natural domain of the Fourier trans-
form: F maps a tempered distribution to another tempered
distribution. Within L 0 are: δðxÞ, HðxÞ, p:v:ð1=xnÞ for all n,
all polynomials, and all Lp-integrable functions with p ≥ 1
(King 2009).

© ASCE 06024004-2 J. Eng. Mech.
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• The space of summable distributions—D 0
L1 ⊂ L 0 (Beltrami and

Wohlers 1966; Pandey 2011), or D 0
L (Nussenzveig 1972), D�

L1
0

(Ishikawa 1987). Summable distributions can be expressed as a
finite sum of the distributional derivatives of ordinary integrable
(L1) functions—in analogy with the Sobolev space Wn;1 for
some n. They can also be defined in other Lp norms: We follow
Nussenzveig’s (1972) treatment of L1; but Beltrami and
Wohlers (1966) and Ishikawa (1987) provide generalizations.
D 0

L1 contains δðxÞ and any continuous function that decays at
least as fast as Oðx−2Þ. It does not contain p:v:ð1=xÞ, HðxÞ,
or a constant (c).

• A set of spaces—D 0ðnþ1Þ
L1 ⊂ L 0 for integer n ≥ 0 (Nussenzveig

1972), containing any distribution gðxÞ that satisfies

gðxÞð1þ x2Þ−nþ1
2 ∈ D 0

L1 ð9Þ

It follows that gðxÞ is now allowed to show growth of OðxαÞ,
α < n. Distributions within D 0ð1Þ

L1 (i.e., n ¼ 0) can always be
convolved with p:v:ð1=xÞ, and so always have a well-defined
Hilbert transform (Nussenzveig 1972), although generalizations
outside this space are possible (Pandey 2011). Practically, n can
be assessed for a given gðxÞ by incrementally testing whether
gðxÞð1þ x2Þ−nþ1

2 is integrable. As structurally-relevant exam-
ples, cf. Faedo et al. (2017) and Keivan et al. (2017): at mini-
mum n, p:v:ð1=xÞ is inD 0ð1Þ

L1 ,HðxÞ; sgnðxÞ and a constant (c) are
in D 0ð2Þ

L1 ; and a polynomial of order m is in D 0ðmþ2Þ
L1 .

Distributional Transfer Functions

Consider then a distributional representation of Eqs. (1)–(5), within
which we may identify the role of delta distributions. If xðtÞ ∈ L 0,
with the only practical restriction being polynomial growth as
t → ∞, then FðtÞ ∈ L 0. Under the Fourier transform, x̂ðωÞ, F̂ðωÞ,
and the TF Q̂0 ¼ F̂=x̂ ¼ k are all in L 0. Eq. (4), the Fourier
transform of a derivative, is identical—but the final operation,
the division by iω, is not. Division can only be defined for distri-
butions in restricted cases, and may lead to nonunique solutions
(Friedlander and Joshi 1998). In the case of division of k by
ðiωÞN , to determine the TF with respect to the Nth derivative

of x, we can guarantee that the quotient Q̂NðωÞ ≜ k=ðiωÞN exists,
and we can compute it by solving the following distributional di-
vision equation (Beltrami and Wohlers 1966, 1967; Nussenzveig
1972):

ðiωÞNQ̂NðωÞ ¼ k ð10Þ

That is, to define division, we seek distributions that recover k
under multiplication. Eq. (10) has a well-established nonunique
solution (Beltrami and Wohlers 1966, 1967; Nussenzveig 1972),
as follows:

Q̂NðωÞ ¼
�

k
ðiωÞN

�
þ
XN−1

m¼1

bmδðmÞðωÞ

¼ k
iN

p:v:

�
1

ωN

�
þ
XN−1

m¼1

cmδðmÞðωÞ ð11Þ

where bm and cm are arbitrary complex-valued constants, represent-
ing the fact that ωmδðm−1ÞðωÞ ¼ 0; and thus, adding any delta deriva-
tive up to δN−1ðωÞ to Q̂NðωÞwill still lead to k being recovered under
multiplication [Eq. (10)]. The term ½k=ðiωÞN � denotes the particular
solution to the division equation, which we are here free to express
as a factor of p:v:ð1=ωNÞ.

The cmδðmÞðωÞ of Eq. (11) are the hidden deltas of Makris
(1997b), and the distributional division equation is the mechanism
by which they arise. Distributional division formalizes the intuition
of Crandall (1991), that the δðωÞ is not “noticed” in p:v:ð1=ωÞ,
although it also qualifies this intuition. These deltas are not specifi-
cally connected to the presence of a singularity in the quotient (they
arise in any distributional division by ωN), but rather by the fact that
this division is uniquely determined only up to δðN−1ÞðωÞ. Makris
(1997b) made a distinction between the causally motivated hidden
deltas and the presence of a nonunique delta term in a noncausal
rate-independent damping model, but both arise from the same
source: distributional division. However, there is an additional
connection between these delta terms and causality.

Causality in Distributions

Causality Constraints on the Division Equation

Per ordinary TFs, the response of a distributional TF to an impulse
DNxðtÞ ¼ δðtÞ is QNðtÞ ¼ F−1fQ̂NðωÞg, because FfδðtÞg ¼ 1.
For causality to be respected, QNðtÞ cannot represent a response
prior to the impulse at t ¼ 0. Because a distribution acts on test
functions rather than values, we require that its support
(suppf·g)—the set of points around which the distribution maps
any test function to a nonzero value (Nussenzveig 1972)—be
located in ½0;∞Þ, as in

suppfQNðtÞg ⊆ ½0;∞Þ; for causality ð12Þ

In a certain limited sense, the coefficients, cm, of the hidden
deltas in Eq. (11) determine whether QNðtÞ is causal: the terms
δðmÞðωÞ transform to factors of tm in the time domain. However,
by the uniqueness results of Beltrami and Wohlers (1966)
(Theorem 1.37), we know that if the original TF Q̂0ðωÞ is causal,
then, for any Q̂NðωÞ, the set fcmg ensuring causality necessarily
exists; whereas if Q̂0ðωÞ is not causal, then no such set exists.

Assessing causality can proceed in one of two ways. In cases
such as the linear spring, we can use time-domain analysis directly.
The inverse Fourier transform of Eq. (11) (Kammler 2008) is

QNðtÞ ¼
k
2

tN−1
ðN − 1Þ! sgnðtÞ þ

1

2π

XN−1

m¼1

cm
tm

im
ð13Þ

From Eq. (13), we make the following determinations.
(1) To ensure QNðtÞ is real-valued, then if m is even, cm must be
purely real, and if m is odd, cm must be purely imaginary. We may
conveniently define real-valued coefficients dm as imdm ¼ cm to
satisfy this condition. (2) To satisfy causality, only the highest-
order term tN−1 can be nonzero. Setting all coefficients to zero other
than cN−1, we can compute this remaining coefficient as cN−1 ¼
iN−1πk=ðN − 1Þ!, and confirm that

Q̂NðωÞ ¼
k
iN

p:v:

�
1

ωN

�
þ iN−1πk
ðN − 1Þ! δ

ðN−1ÞðωÞ;

QNðtÞ ¼ k
tN−1

ðN − 1Þ!HðtÞ ð14Þ

which is causal. This is the solution for the hidden delta in any TF
of the linear spring. For N ¼ 1 we recover πkδðωÞ, and for N ¼ 2,
iπkδð1ÞðωÞ, per Eq. (7). Time-domain causality analysis of this
form is useful for assessing the causality of TFs defined a priori.
However, in cases where we wish to identify TF properties or

© ASCE 06024004-3 J. Eng. Mech.
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parameters that proceed from causality—e.g., loss moduli from
storage moduli (Madsen et al. 2008), or casual approximations
of hysteretic damping (Makris 1997a)—then causality analysis
directly in the frequency domain can be preferable.

Causality Analysis by Distributional Hilbert Transform

Frequency-domain causality analysis for distributional TFs rests
on the finer spaces of distribution we have outlined previously.

Initially, let us assume that Q̂NðωÞ ∈ D 0ð1Þ
L1 , which is true for N ≥ 1

in the linear spring, but not for the original Q̂0ðωÞ ¼ k. Distribu-

tions in D 0ð1Þ
L1 can always be convolved (∗) with p:v:ð1=xÞ, and

following Theorem 1.8.5 of Nussenzveig (1972), we can construct
the following relation:

F−1
�
Q̂NðωÞ �

�
p:v:

�
1

ω

�
þ iπδðωÞ

��
¼ 2πiHðtÞQNðtÞ ð15Þ

Per Eq. (12), HðtÞQNðtÞ is causal, and when QNðtÞ itself is
causal, HðtÞQNðtÞ ¼ QNðtÞ. Using this in Eq. (15) yields the
fundamental theorem for causality in distributions [Beltrami and
Wohlers (1965), Theorem 2; (Nussenzveig 1972), Theorem 1.8.6]:

Q̂NðωÞ ¼
1

iπ
Q̂NðωÞ � p:v:

�
1

ω

�
¼ 1

i
HfQ̂NðωÞg; for causality

ð16Þ
where Hf·g is the distributional Hilbert transform, defined via the
convolution in Eq. (16). Hilbert transforms can be evaluated via
tabulated results (King 2009) or by the Fourier transform of a con-
volution (Pandey 2011). Splitting Q̂NðωÞ into real and imaginary
parts reveals that these parts must be Hilbert transforms pairs, but
we will operate directly on Q̂NðωÞ. Applying Eq. (16) to Eq. (14),
we confirm causality of the hidden delta solution. Given King
(2009), we have

H
�
p:v:

�
1

ωN

��
¼ ð−1ÞNπ

ðN − 1Þ! δ
ðN−1ÞðωÞ;

HfδðN−1ÞðωÞg ¼ ð−1ÞN−1ðN − 1Þ!
π

p:v:

�
1

ωN

�
ð17Þ

Then

HfQ̂NðωÞg ¼ k
iN

H
�
p:v:

�
1

ωN

��
þ iN−1πk
ðN − 1Þ!HfδðN−1ÞðωÞg

¼ iNπk
ðN − 1Þ! δ

ðN−1ÞðωÞ þ k
iN−1 p:v:

�
1

ωN

�

¼ iQ̂NðωÞ ∴ causal ð18Þ

As noted by Beltrami and Wohlers (1966), Eq. (16), which is
valid for distributions in D 0

L1 and thus ordinary functions in L1,
is equivalent to Titchmarsh’s theorem for ordinary functions in L2.
The distributional formulation thus extends the validity of an
ordinary-function analysis to L1, provided that certain statements
are interpreted in a distributional sense.

Causality Analysis by Generalized Hilbert Transform

Nevertheless, the restriction toD 0ð1Þ
L1 , including L1 and L2, excludes

a range of relevant structural models. Constant transfer functions,
such as the dynamic stiffness of the spring, Q̂0ðωÞ ¼ k, are one
immediate case (Carcione et al. 2019). As an ordinary function,

k ∈= L2; as a distribution, k ∈= D 0ð1Þ
L1 ; and we may confirm violation

of Eq. (16): Hfkg=i ¼ 0 ≠ k. Other more complex inadmissible
transfer functions can be found in viscoelastic power-law media
(Szabo 1994; Gulgowski and Stefański 2021; Waters et al.
2000). There is, however, an extension of the causality condition
of Eq. (16) to a wider space of distributions, as derived by Beltrami

and Wohlers (1966). For any distribution Q̂NðωÞ ∈ D 0ðnþ1Þ
L1 , we

may define a generalized Hilbert transform as follows:

HðnÞfQ̂NðωÞg ¼ ω nH
��

Q̂NðωÞ
ωn

��
¼ ω n

π

��
Q̂NðωÞ
ωn

�
� p:v:

�
1

ω

��

ð19Þ
Then, per Beltrami and Wohlers (1966), Theorem 3.13, and
Nussenzveig (1972), Eq. 1.8.40, we have

Q̂NðωÞ ¼
1

i
HðnÞfQ̂NðωÞg þ Pn−1ðωÞ; for causality ð20Þ

½Q̂NðωÞ=ω n� again represents the particular solution of this distri-
butional quotient, and Pn−1ðωÞ represents an arbitrary polynomial
of order n − 1 in ω, accounting for delta distributions introduced by
division [Eq. (11)]: these deltas become polynomial under convo-
lution and multiplication by ωn. If Eq. (20) is satisfied for some
Pn−1ðωÞ, then Q̂NðωÞ is causal.

Using Eq. (20), if we know that a distributional TF is in some

D 0ðnþ1Þ
L1 , then we may rapidly assess its causality by computing

HðnÞf·g=i and observing whether this differs from the original
TF by more than Pn−1ðωÞ. This allows a direct causality analysis
of any improper or not strictly proper TF, with a numerator of order
greater than or equal to that of the denominator. For instance, for

the dynamic stiffness of a spring, Q̂0ðωÞ ¼ k ∈ D 0ð2Þ
L1 (i.e., n ¼ 1),

we have

1

i
H1fkg ¼ ω

iπ

��
k
ω

�
� p:v:

�
1

ω

��
¼ kω

iπ
p:v:

�
1

ω

�
� p:v:

�
1

ω

�

¼ kiωδðωÞ ¼ 0

¼ kþ P0 ∴ causal ð21Þ
The same approach is applicable to the dynamic stiffnesses

of linear dampers [Makris (1997b) and inerters Q̂0ðωÞ ¼ −mω2,
Makris (2018)], which are improper TFs. Indeed, several represen-
tation theorems—including Theorem 2 of Ishikawa (1987),
Theorem 1.28 of Beltrami and Wohlers (1966), and Theorem 2
of Pfaffelhuber (1971)—indicate that any TF in L 0 can be analyzed
via this method. For instance, we can directly confirm the non-
causality of the classical rate-independent damper, with dynamic
stiffness Q̂0ðωÞ ¼ isgnðωÞ ∈ D 0ð2Þ

L1 . Computing the convolution via
Fourier transform (ω to Ω), and denoting the Euler–Mascheroni
constant by γ, gives

1

i
Hð1ÞfisgnðωÞg ¼ ω

πi
p:v:

�
i
jωj

�
� p:v:

�
1

ω

�

¼ ω
π
F−1

�
F
�
p:v:

�
1

jωj
��

F
�
p:v:

�
1

ω

���

¼ 2iωF−1fln jΩjsgnðΩÞ þ γsgnðΩÞg

¼ 2

π
ln jωj ≠ isgnðωÞ þ P0ðωÞ ∴ non–causal

ð22Þ
We may verify with a few further steps that the addition of this

residual term (2=π ln jωj) to the rate-independent damping model
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causes it to become causal, per Makris (1997a). Indeed, Eq. (22)
elucidates one final paradoxical causality result in the literature.
Makris (1997a) derived the following causal rate-independent
damping model with dynamic stiffness:

Q̂0ðωÞ ¼ isgn

�
ω
ε

�
þ 2

π
ln

����ωε
���� ð23Þ

where ε is an arbitrary positive constant. The real and imaginary
parts of Eq. (23) are an exact generalized Hilbert transform pair
[Eq. (22)], and thus the model is causal for all ε. However, while
sgnðω=εÞ ¼ sgnðωÞ always, sgnðωÞ and 2=π ln jω=εj are not exact
generalized Hilbert transform pairs. The difference is, indeed, a
polynomial P0, as ln jω=εj ¼ ln jωj − ln ε, and thus for any ε, a pol-
ynomial residual P0 will exist in Eq. (22), satisfying causality.
In this way, the hidden deltas allow us to derive the following
equivalent simplified model:

Q̂0ðωÞ ¼ isgnðωÞ þ 2

π
ln

����ωε
���� ¼ isgnðωÞ þ 2

π
ln jωj þ c ð24Þ

and confirm that it is causal for all ε and all c.
Eq. (20) is a powerful condition to assess causality in linear

systems, but it also has a key physical connection. The generalized
Hilbert transform involves dividing a transfer function Q̂ðωÞ by ωn,
convolving it, and then multiplying again by ωn. This is equivalent
to integrating the impulse response QðtÞn times, multiplying by a
step function to force causality, and then differentiating n times
back again. This causality assessment works because, if a system
is causal with respect to any kinematic variable, then it is causal
with respect to any derivative or integral of this variable. It is
not possible via differentiation or integration to propagate casual
signals to before t ¼ 0, and thus we are free to choose the
differential/integral order (n) at which to perform the causality

analysis—we have only to choose n to reach D 0ð1Þ
L1 . This process

underpins the implicit choice of Makris (1997b, 2017) to analyze
the spring’s causality in mechanical impedance (n ¼ 1) rather than

dynamic stiffness (n ¼ 0); it is here that we reach D 0ð1Þ
L1 , and the

fundamental theorem [Eq. (16)] is applicable. The representation
theorems of Ishikawa (1987) and others further support this choice
by indicating that a suitable n exists for any distribution in L 0,
including any slowly growing function.

Concluding Remarks

Distribution-theoretic principles not only provide the basis for the
presence of the hidden deltas, but also justification for choices made
by current studies to analyze causality in specific higher-derivative
transfer functions, such as mechanical impedance. Distributional
analysis predicts exactly which higher derivative is required for con-
ventional causality analysis to be valid, providing a direct method
for assessing causality at any initial derivative order that does not
require computation of hidden deltas.

Data Availability Statement

No data, models, or code were generated or used during the study.
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