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ABSTRACT  

Promoting sustainable mobility and urban development hinges on understanding and 

forecasting pedestrian movement. While empirical studies, not least in Space Syntax research, 

have used explanatory statistical models to identify spatial parameters influencing pedestrian 

movement, these models face limitations in forecasting pedestrian flows in future or data-scarce 

areas. Thus, they are not as useful for scenario analysis, assessment and decision making in 

urban design and planning. Pedestrian route-choice models are equally challenging as they are 

highly data demanding and depend on predictors too detailed for early design and planning 

stages. Instead of complex models, this study proposes a parsimonious predictive model based 

on street network modelling and a few spatial predictors that can be easily defined and 

calculated during early project stages.  

The paper outlines the methodology and results of the model, which employs LASSO regression 

in machine learning to predict numbers of pedestrians at the street segment level. The model is 

trained using data gathered in Stockholm and is first tested by predicting full-day pedestrian 

counts at street segments of central Gothenburg. The model is evaluated both in relation to 

predicting the absolute number of pedestrians and their relative distribution within the area. 

This concise yet effective model shows promising results for early forecast of pedestrian flows in 

development plans and infrastructural changes and can offer a valuable tool for planners and 

designers to influence and optimise the distribution of pedestrian flows in various urban 

contexts. 
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1 INTRODUCTION1 

Pedestrian movement has always been a primary focus for urban design and planning, but its 

significance increased in the context of the Sustainable Development research agenda (UN 

Agenda 2030), particularly Goal 11 'Sustainable cities and communities'. The agenda advocates 

for sustainable mobility and transport (e.g., public transport, walking, cycling) emphasising its 

benefits for climate and health. The reduction of private car usage contributes to mitigating 

greenhouse gas emissions (e.g., Litman 2020), while the promotion of active modes of transport 

also enhances public health and well-being (e.g., Roe et al. 2020, Bird et al. 2018). Moreover, 

walking fosters co-presence in public spaces supporting social inclusion and cohesion (e.g., 

Legeby et al. 2015, Legeby 2013) and pedestrian flows stimulate local economies (e.g., Hillier et 

al. 1993, Hillier 1996a, Litman 2020).  

 

Understanding how pedestrians move in the city is key in supporting sustainable urban 

development with urban design and planning. Appropriate methods are needed to model 

pedestrian flows, both to explain and predict them2. There is a specific demand for predictive 

models that can be directly applicable to urban design and planning practice, facilitating 

scenario analysis and early impact assessment of development plans and infrastructural 

changes, thereby guiding decision-making (Stavroulaki 2022). Early estimation of pedestrian 

movement is crucial as it is during the initial phases of a design and planning process when the 

fundamental structural decisions are made, such as designing street networks. It is 

acknowledged that the ability to influence the cost and performance of a development plan is 

greater in the early project phases and diminishes as planning and design progress (CURT 2004).  

 

Methods to predict pedestrian movement are notably lacking in transport and traffic modelling 

which remain predominantly car oriented. Pedestrians are occasionally included in traffic 

modelling as 'vulnerable users' in simulations of vehicle-pedestrian interactions aimed at 

improving safety (e.g. Rinke et al. 2016, Pascucci et al. 2015, Obeid et al. 2017). While some 

route-choice models (Prato 2009) have adopted traffic-modelling methodologies to simulate 

 
1 This work is part of the Digital Twin Cities Centre supported by Sweden’s Innovation Agency 
Vinnova under Grant No. 2019-00041 
2 In simple words, explanatory models explain what has already happened, and identify the relation between an 
outcome and given variables. Predictive models predict what has not happened yet and find the combination of 
factors that best forecast a future outcome (response variable). 
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pedestrian trajectories from origins to destinations (e.g., Basu and Sevtsuk 2022, Sevtsuk et al. 

2021), they require extensive data and rely on numerous predictors that are too detailed to 

specify during the early design and planning stages (e.g., specific attractions, sidewalk width, 

street lighting, precise land-use mix), or include socioeconomic predictors not predefined in 

development plans (e.g., income, age). Hence, they cannot be directly applied in early design 

and planning phases of an urban development project, when the need for scenario analysis and 

decision support is higher.  

 

Within the urban design and planning research, there is a wealth of empirical studies, not least 

within the Space Syntax field (e.g. Stavroulaki et al. 2019, Berghauser Pont et al. 2019a, Bolin et 

al. 2021, Osbil et al. 2011, 2015, Dhanani and Vaughan 2016, Netto et al. 2012; Peponis et al. 

1997, 2008; Hillier et al.1993; Penn et al. 1998, Berghauser Pont and Marcus 2015), employing 

explanatory statistical models to identify the spatial parameters that significantly impact how 

pedestrians move3. These studies aim to understand both individual route choices (e.g. Hiller 

and Iida 2005, Turner and Penn 2002, Hanna 2021, Conroy Dalton 2003) and aggregated flows of 

movement in the city. Their main objective is to test the significance of specific parameters, 

primarily of the street network (e.g. network centrality, connectivity, reach) for pedestrian 

movement, as well as their combined effect with other spatial variables, for instance, built 

density, land use and accessibility to attractions (e.g. Stavroulaki et al. 2019, Berghauser Pont et 

al. 2019a, Bolin et al. 2021, Dhanani and Vaughan 2016, Ozbil et al. 2011, 2015). However 

insightful, these explanatory models are not directly applicable in predicting pedestrian flows in 

future areas or in existing areas lacking real-world data for model validation. Thus, they are not 

as useful for scenario analysis and impact assessment in urban design and planning.  

 

Real-world data on pedestrian movement in urban environments are scarce and usually coarse 

in spatial and time resolution. Various methods exist (Dong et al. 2020), such as video recording 

with image recognition or tracking wi-fi mobile phone signals, but they are limited due to the 

general data protection regulations (GDPR), national restrictions, high post-processing demands 

for anonymisation and calibration and high financial cost. Even taking these limitations aside, 

these measurement techniques cannot be used in planned or newly designed places.  

 

Considering the identified need for predictive models suitable for the initial design phases of an 

urban development project, alongside the highlighted constrains of current methodologies, this 

paper presents a predictive model that builds on the findings of previous empirical studies (e.g. 

 
3 Examples of empirical studies outside the Space Syntax field are Sealens et al. 2003, Moudon et al. 2019, 
2007.  
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Stavroulaki et al 2019, Berghauser Pont et al. 2019a, Bolin et al. 2021) and the explanatory 

models that were developed.  

 

The paper outlines the methodology and results of the model, which employs LASSO regression 

in machine learning to predict numbers of pedestrians (i.e. pedestrian counts) on the street 

segment level. The predictive model is based on street network modelling and relies on a few 

spatial predictors that can be easily defined and calculated during early design and planning 

stages. The aim was to, instead of a complex model, build a parsimonious model, that is  a model 

that accomplishes a desired level of prediction with as few predictor variables as possible. To 

assess the generalization of the model, we fitted the model on data collected in Stockholm and 

tested it by predicting pedestrian counts in Gothenburg. This way we could test if the ‘learned’ 

parameters from the built environment features on one city could be transferred and applied on 

another. 

 

The structure of the paper is as follows: Chapter 2 details the study's setup, the methodology of 

model construction, the response variable and the predictors, and the evaluation method. 

Chapter 3 presents the results, including the model's performance, the distribution of errors, 

the model equations and coefficients, and further tests. Chapter 4 concludes the study and 

discusses the implications, potential uses, and further improvements. 

2 DATASETS AND METHODS 

2.1 Overall methodology. Model set-up.  

 

First, the model was fitted using data gathered in 19 different areas  (224 street segments) in 

Stockholm, Sweden, including real-world data on full-day pedestrian counts collected in October 

2017 (see section 2.3.). Then the model was tested by predicting full -day pedestrian counts on 

75 street segments in central Gothenburg. The model was validated against real -world 

observations collected on 75 street segments of Gothenburg in November 2018 (see section 

2.4.2). Since the Gothenburg real-world data contained only observations on street segments 

from the central part of the city, we trained two different models for comparison; one was 

trained in all 224 street segments distributed in 19 neighbourhoods in Stockholm and one was 

trained in 121 street segments of 6 central neighbourhoods (areas 9-14) (Figure 1).  This way, 

we test if by controlling for the general area type (i.e. city centre) we can improve the predictive 

performance of the model. Previous studies have shown that, for instance, the built density 
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type of an area (e.g. compact high-rise, spacious low-rise) is a defining factor for the number 

pedestrians found on its streets (Berghauser Pont et al. 2019a).   

In the following sections a detailed description of the model and the training and validation data 

(predictor variables, response variable) is provided.  

 

 

  

Figure 1: Neighbourhoods included in the training data from Stockholm (a), Street segments included in the 

model validation in Gothenburg (b). 

 

2.2 Network model.   

All variables were calculated for line-segment maps (Stavroulaki et al. 2017) of the non-

motorised street networks of Stockholm and Gothenburg. The non-motorised street network 

includes all streets and paths that are accessible for pedestrians, including those shared with 

vehicles and bicycles. Streets where walking is forbidden, such as motorways or high-speed 

tunnels, were not included. The line-segment maps were produced based on road-centre-line 

maps. The same editing procedures4, were used for creating the line-segment maps for 

Stockholm and Gothenburg to ensure comparability and consistency. Place Syntax Tool (PST) 

was used for all editing5. The network datasets, including documentation, are accessible via the 

Swedish National Database (SND) (Stavroulaki et al. 2020a, 2020b).  

 

 
4 This process, before the segmentation of the road-centre-lines to line-segments, included removing duplicate 
and isolated lines, snapping and generalizing. 
5 PST is an open-source plugin for QGIS. PST documentation (Stavroulaki et al. 2023) is available at 
https://www.smog.chalmers.se/pst. The code is available at GitHub (https://github.com/SMoG-Chalmers/PST) 

https://www.smog.chalmers.se/pst
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2.3 Training data. Stockholm 

 2.3.1. Predictors  

43 spatial variables were initially included in the training data. The aim was to provide a large 

sample of relevant variables that can be calculated during the early urban design and planning 

phases, from which the final predictors would be selected. Among them are variables which have 

shown significant correlations to pedestrian flows in earlier studies, such as Angular Betweenness 

centrality and Angular Integration (e.g. Stavroulaki et al. 2019, Dhanani and Vaughan 2016, Hillier 

and Iida 2005), built density and accessibility to attractions as local markets and public transport 

stops (Berghauser Pont et al. 2019a, Stavroulaki et al. 2019). Besides continuous variables, 

categorical variables were also included, such as official road classifications used in transport 

planning and non-motorised multiscalar centrality types (Berghauser Pont et al 2019a). 

Place Syntax Tool (PST) was used for all calculations. Below is a detailed description of all the 

variables, with the abbreviation in brackets:    

 

2.3.1.a. Angular Betweenness Centrality (Bet500-5000) 

Angular Betweenness centrality (Hillier et al. 2012, Hillier and Iida 2005, Turner 2007) was 

calculated in 10 radii, ranging from 500m to 5000m walking distance with intervals of 500m. The 

radii were chosen to align with the more local scales of pedestrian movement6, whereas the 

small interval of 500m ensures a consistent, uniform, and continuous sampling of centrality. The 

following equation is used: 

 

𝐵(𝑥)  = ∑
𝜎𝑠𝑡 (𝑥)

𝜎𝑠𝑡
𝑠≠𝑥≠𝑡    (1) 

 
where s and t are all nodes (i.e. street segments) in the network different from x  

σst = the number of shortest paths from s to t.  

σst(x) = the number of shortest paths from s to t that pass-through x 

The shortest path from s to t is defined as the shortest angular distance (i.e. accumulated degrees 

turned).   

2.3.1.b. Angular Integration (Int500-5000) 

Angular Integration (Hillier and Iida 2005) was calculated for the same 10 radii as Angular 

Betweenness centrality. The definition of shortest path is again based on the shortest angular 

distance. The following equation was used:  

 
6 To reduce the possible “boundary effect” the area which was analysed was at least 5km larger than the area of 
the study in all directions. 
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𝐴𝐼𝑁𝐴𝐼𝑁(𝑥) =
𝑁2

1+∑ 𝐷(𝑥,𝑖)𝑖≠𝑥

     (2) 

where 

N = node count or number of reached nodes (including origin node) 

D(x, i) = angular depth of i in relation to x. Angular depth is defined as the accumulated degrees turned 

divided by 90.  

 

2.3.1.c. Accessibility to Local markets (LMarkets_500, LMarkets_Str) and Public transport stops 

(PubTr_500, PubTr_Str)  

To capture both the number of individual attractions on the street that could potentially make it 

a destination point for pedestrian movement, but also the general number of attractions on 

each street’s immediate local context, which could make it a potential thoroughfare between 

further destinations, we included two measures for each attraction: first, the number of 

attractions on each segment and second, the number of attractions accessible within walking 

distance 500m from each street segment. The list of attraction variables is thus as follows: 

Accessible Local markets7  within 500m walking distance from each line-segment 

(LMarkets_500), Number of Local Markets on each line-segment (LMarkets_Str), Accessible 

Public transport stops within 500m from each line-segment (PubTr_500) and Number of Public 

transport nodes on each line-segment (PubTr_Str).  

To calculate Accessibility within 500m, the cumulative-opportunities accessibility measure 

(Heyman et al. 2019) is used, following the Place Syntax methodology (Ståhle et al. 2005). The 

distance threshold of 500m is used as it is commonly recognized to be one that most people are 

willing to walk (Gehl 2010). The following equation was used8:   

𝐴𝑅(𝑜) = ∑  (𝑓(𝑎)𝑤(𝐷(𝑜, 𝑎)))𝑎∈𝐴   (3) 

       
where 

A = the set of reachable attractions (i.e. local markets, plots) within given radius, 

f(a) = attractions value associated with attraction a, or 1 if not attraction value. No attraction value f(a) is 

used in this case as we aim to count the actual number of points.  

D(o,a) = shortest walking distance from origin o to attraction a, 

w(x) = attenuation function (no attenuation function is used in this case) 

No attraction value f(a) is used in this case as we aim to count the actual number of points.  

 

 
7 i.e. all ground floor retail shops, services, restaurants, and cafes 
8 ‘Attraction Reach’ function in PST 
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The datasets of attractions are extracted from the Points of Interest datasets (POI) of Open Street 

Maps9. 

2.3.1.d. Built density (FSI_500, GSI_500)  

Built density is often used as a measure of attraction that can generate movement due to its 

concentration of both people and uses that can act as origins and destinations of movement. 

Following the work of Berghauser Pont and Marcus (2014), built density is calculated using the 

cumulative-opportunities accessibility measure (Heyman et al. 2019). Thus, density is not 

considered as an individual property of each building, but as the amount of built -up space that 

is accessible from every street, producing a measure of ‘accessible’ or ‘perceived density’ from 

the pedestrian’s point of view. Accessible built density is described as the Accessible FSI (Floor 

Space Index)10 and Accessible GSI (Ground Space Index) in 500m.  

Equation 3 was used for the calculation with the following additions. When calculating FSI(o) 

the attraction value f(a) is the building’s GFA (Gross Floor Area) and when calculating GSI(o) the 

f(a) is the building’s Footprint. D(o,a) is defined as 500m walking distance from the origin (i.e. 

midpoints of line-segments).  

Accessible FSI(o) is then calculated as follows: 

FSI(o) = AR(o, GFA) / Area(o)      (4) 

Accessible GSI(o) is then calculated as follows: 

FSI(o) = AR(o, Footprint) / Area(o)      (5) 

 

where Area (o) is calculated as the area of the convex hull, defined by the end -points of all reachable line-

segments within 500m from the origin. 

 

The dataset of building polygons including information of building heights, GFA and Footprint 

was available on request from the Spatial Morphology Group (SMoG)11.   

 

2.3.1.e. Land division (Plot_500). 

Land division is described as the Accessible number of plots in 500m walking distance (Bobkova 

et al 2017, Bobkova 2019). As in the case of built density, we describe land division not as an 

 
9 Point of interest (POIs), codes23, 27 (retail, services, food and drinks) https://www.openstreetmap.org 
10 Built density is described, following the work of Berghauser Pont and Haupt (2023), by two measures: FSI 
(Floor space index) and GSI (Ground space index).  
11 Spatial Morphology Group, Chalmers University of Technology (smog.chalmers.se). The dataset was created 
in 2016 based on the geodataset ‘Översiktskartan’ (i.e., General map) accessible via the Swedish Land Survey 
Authority (Lantmateriet, https://zeus.slu.se/get/ ). For more information on the creation of the datasets refer to 
Berghauser Pont et al. (2017a,b; 2019b) 

https://zeus.slu.se/get/
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individual property of each block, but as an area-based measure and a street property. The 

measure is directly related to the size of the plots and the grain of the land division  that has 

been associated with a higher concentration of pedestrian-oriented activities, active frontages 

and local markets (Bobkova et al 2019, Bobkova 2019, Scoppa et al. 2015). Equation 3 was used 

for the calculation. 

The dataset of plots used was available on request by the Spatial Morphology Group (SMoG)12.  

 

2.3.1. f.  Attraction betweenness for local markets (ATm_500-2000) and built density (ATd_500-

2000) 

Attraction Betweenness is a weighted Betweenness centrality measure (see Equation 1), 

assigning weights to the street network line-segments from a table of attractions. Each 

attraction point is assigned to the closest line segment and selected data is transferred from the 

point to the line segment. The collected scores on each line segment are then used as weight.  

Two weights (i.e. attractions) are used in this study, local markets and FSI (Floor Space Index) 

(i.e. built density, see 2.3.1.d). Two radii are used: 500m, which is a typical walking radius used 

in accessibility analysis (see 2.3.1.c) and 2km, which is a representative radius for local 

betweenness centrality analysis. Attraction betweenness has been associated with goal-

oriented and attraction-oriented pedestrian movement (Stavroulaki et al. 2020c, Berghauser 

Pont and Marcus 2015).  

2.3.1. g Accessible Population density  

Following the Place Syntax methodology (Ståhle et al. 2005) population density was calculated 

as accessible population reached within walking distance from each line segment, again using 

the cumulative-opportunities accessibility measure (Heyman et al. 2019) The walking distance 

threshold used is again 500m. Three measures of accessible population density were calculated: 

Total Accessible Population (Pop_500), Accessible Residential population (NPop_500) and 

Accessible Working population (WPop_500). 

The population datasets (100x100 grid) used were created by the SCB (Swedish Statistics 

Agency)13. 

 

 

 

 
12 The dataset was created in 2017 by Bobkova (2019) based on the official property geodataset included in 
‘Översiktskartan’ (i.e., General map) accessible via the Swedish Land Survey Authority (Lantmateriet, 
https://zeus.slu.se/get/ ). For more information about the processing of the property dataset see (Bobkova, 
2019).   
13 The datasets were accessed via Swedish Land Survey Authority (Lantmateriet, https://zeus.slu.se/get/ ). 

https://zeus.slu.se/get/
https://zeus.slu.se/get/
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2.3.1. h. Street characteristics  

The following variables were retrieved from the official road datasets of the Swedish Transport 

authority (NVDB, Nationell Vägdatabas, Sweden)14, 

• Number of lanes including car and public transport (tram, bus lanes) (TotLanes) 

• Number of public transport lanes (TranspLanes) 

• Number of car lanes (CarLanes) 

• Speed Limit (SpeedLim)  

• Segment length (SegLength) that is the metric length of the street segment, from street 

junction to street junction. Note that a street segment can include many line segments 

in the line-segment map that is used for all other calculations (i.e. network centrality, 

accessibility). Street length was calculated in QGIS. 

 

2.3.1.i Street types and road classifications 

Various street types and official road classifications were tested as potential predictors.  

• Multiscalar centrality types (CenType_): 4 types of streets were identified by 

Berghauser Pont et al. (2019a) based on their multiscalar angular betweenness 

centrality profile15. The types refer to the non-motorised street network. The City type 

(CenType_3) includes the most central streets (high streets, main streets) whose 

centrality increases in higher scales; the Neighbourhood type (CenType_2) includes 

streets with consistently high centrality on most scales, but dropping clearly on the 

lowest and highest scales, acting primarily as connectors of neighbourhoods; the Local 

type (CenType_4) includes street segments with high betweenness centrality only on 

the very local scale, that are the thoroughfares within each neighbourhood; and the 

Background type (CenType_1) includes streets that have low centrality in all scales.  

Berghauser Pont et al. (2019a) found that the street types define the distribution of 

pedestrians within each neighbourhood, where the Built Density profile of the area 

define their total volume, a finding that was based on a large empirical study in 53 

neighbourhoods in Stockholm, Amsterdam and London. The datasets of street types for 

Stockholm (Berghauser Pont et al. 2019a) were available on request by the Spatial 

Morphology Group.  

• Funkvagclass: 9 functional road classes are defined by the Swedish Transport 

authority16. Using a hierarchy from Classes 0-3 (primary road network) to Classes 4-5 

 
14 accessible via https://lastkajen.trafikverket.se  
15 For the detailed methodology of the generation of street types, please refer to the original paper 
16 Dataset: Funktionell vägklass, NVDB, Nationell Vägdatabas (source: Trafikverket, 
https://lastkajen.trafikverket.se) 

https://lastkajen.trafikverket.se/
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(secondary road network) to Classes 7- 9 (very local network, pedestrianized streets), 

roads are classified based on their importance in the connectivity of the network and 

their functional capacity. Given that the networks used in this study are non-motorised 

the higher classes 0-3 (National, International motorways) are not represented in the 

datasets.  

• Vag typ:  7 descriptive types of urban streets are defined by the Swedish Transport 

authority, such as Main streets, Small Local Streets, Neighbourhood streets, Motorised 

thoroughfares, Parking streets17. Only types 2 to 5 are found in the neighbourhoods 

included in this study, namely Main streets, Big Local streets, Small Local Streets, 

Neighbourhood streets and Motorised thoroughfares.  

2.3.1.j. Built density types. 

6 types of built density were identified by Berghauser Pont et al. (2019a, b) based on a 

multivariate density profile (i.e. Accessible FSI and Accessible GSI18) that can be used to 

characterize neighbourhoods (Berghauser Pont and Haupt 2023). The types range from the 

spacious low-rise type (DenType_1) with low FSI and low GSI identifying villa areas, to the dense 

mid-rise (DenType_3) and Compact mid-rise (DenType_5) identifying city centres with high FSI 

and high GSI, to Spacious high-rise (DenType_6) with high FSI but low GSI identifying 

modernistic estates with slabs and point buildings19.  

Berghauser Pont et al. (2019a) found that the density type of a neighbourhood is highly 

correlated to the general volume of pedestrians found there, while the multiscalar street 

centrality type (see 2.3.1.i.) accounted for the distribution of that volume between the streets 

of each neighbourhood.  

The dataset of density types for Stockholm (Berghauser Pont et al. 2019a, b) was available on 

request by the Spatial Morphology Group.  

2.3.2. Real-world observations on pedestrian flows in Stockholm 

The real-world observations of pedestrian flows included in the training data were collected by 

Berghauser Pont et al. (2019a). 53 neighbourhoods in Stockholm, Amsterdam and London of 

different density type (from high-dense urban grids to low-dense suburban areas) with varied 

street types (from high streets to side streets and small alleys) in areas of diverse land use mix 

and socioeconomic profile (from business districts and mixed-use neighbourhoods to villa areas) 

 
17 Dataset: Vagtyp, Categories are translated from Swedish (source: Trafikverket, downloaded at 
https://lastkajen.trafikverket.se) 
18 See section 2.3.1.d for the measures 
19 For the detailed methodology of the generation of street types, please refer to the original paper 
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were selected. In Stockholm 19 areas were observed including 227 street segments20. The 

observations include measured pedestrian counts for one day, from 7am to 10pm. The survey 

for Stockholm was conducted on weekdays in October 2017. The areas were not all measured in 

the same day but were split from Monday to Friday. 

The method used was capturing anonymised Wi-Fi signals from mobile phones. Samples of Wi-Fi 

signals were collected when devices were searching for wi-fi networks (so called wi-fi probe 

requests). Each sample included a timestamp, a RSSI (Received Signal Strength Indication) and 

an anonymized indicator.  

The Wi-Fi-signals were monitored at street junctions and were transferred in an Origin-

Destination matrix, consisting of Start and End nodes. When a phone-anonymised id was 

captured in two adjacent street junctions then a count was added to the respective segment 

between this pair of junctions21 (Start and End nodes). Both movement directions were added.  

The dataset for Stockholm was available on request by the Spatial Morphology Group.  

2.4 Test data. Gothenburg 

2.4.1. Predictors  

The same spatial variables used in the model training with Stockholm data (section 2.3) were 

tested as predictors for Gothenburg pedestrian counts. The editing and analysis procedure, 

equations and settings are the same to ensure consistency and comparability. 

2.4.2. Response variable. Real-world observations of pedestrian counts 

To validate the model, we used real-world observations collected in Gothenburg by the traffic 

office of Gothenburg municipality (Trafikkontoret 2019) in November 2018.  The same method 

of capturing anonymised Wi-Fi signals from mobile phones was used, as in the case of 

Stockholm. Also, the same processing procedures were used to ensure consistency between the 

training and validating data22. Monitoring devices were placed in 50 locations in the city centre, 

including street junctions and bridges. The monitoring took place continuously from Wednesday 

6am to Monday 12pm.  Since the Stockholm real-world data included day counts from 7am to 

10pm, we filtered the same time frames from the Gothenburg dataset. Also, while the 

Stockholm areas were each monitored for one weekday day ranging from Monday to Friday, 

Gothenburg centre was monitored for both Wednesday and Thursday. When testing the 

correlation of pedestrian counts recorded on Wednesday and Thursday, we found a Pearson 

 
20 For the method of selection, please refer to the original paper. The company used for collection and post-
processing was Bumbee Labs, Stockholm. 
21 For the full documentation of processing please refer to the original paper.  
22 The same company, collecting and processing method were used (Bumbee labs, Stockholm).  
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correlation of 0,989 (p<0.001) which made the choice between days trivial. Finally, we included 

pedestrian counts from Wednesday from 6 am to 10 pm, as the response variable for the model 

validation.  

Apart from following the processing methodology as described in Berghauser Pont et al. 

(2019a), for the purpose of this study we took one further step. Since in the case of bridges, the 

monitoring device was placed at the midpoint of the bridge, the pedestrian counts of that 

device were directly transferred to the respective street segment.  

The datasets, after the final processing, included pedestrian counts for 75 street segments.  

2.5 Structuring the datasets 

As described in section 2.2 and 2.3, all network centrality measures were calculated for the non-

motorised line-segment maps of Stockholm and Gothenburg using Angular Segment Analysis 

(ASA). The same line-segments were used as the origin points23 to Equation (3) to calculate 

Accessible FSI and GSI, Accessible number of Plots, and Accessibility to Attractions (public 

transport and local markets). As a result, the datasets with the predictor variables were 

structured per line segment.  

As described in sections 2.3.2 and 2.4.2 the datasets containing observed pedestrian were 

structured per street segment, meaning the street section between a pair of adjacent street 

junctions. These street segments often include more than one line-segments, especially in 

curvilinear streets. To deal with that, all values of the predictor variables were transferred from 

the line-segments to their respective street segments, using a proportion average function24. 

2.6 Machine learning model 

The machine learning model is a LASSO regression model (Least Absolute Shrinkage and Selection 

Operator) that identifies a subset of predictor variables that are most strongly associated with 

the response variable. LASSO is a regularized regression method that constrains the sum of the 

absolute values of the model coefficients (i.e. penalization of coefficients). This results in a sparse 

model where some of the coefficients are exactly zero, indicating that they do not contribute to 

the prediction of the response variable. 

43 predictor variables were initially used for fitting the model, as described in section 2.3. Some 

additional processing steps were needed before including them in the model. Some continuous 

variables have a highly skewed distribution (e.g. angular betweenness centrality), and they were 

 
23 Segment midpoints were use as the actual origin point. 
24 Proportion average takes into account the length of each line-segment. 
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log transformed to normalize their distribution. Furthermore, the categorical variables (CenType 

(1-4), DenType (1-6), FunkKlass (4-9), VagTypNo(2-5)) were one-hot encoded25.  

Since the response variable of full-day pedestrian counts is strictly positive and its distribution is 

right skewed, a log transformation was applied before fitting the model. Further, an inverse 

transformation before computing any performance statistics was done to compute the error 

measures in the original scale and avoid negative predictions.  

The code is written in Python and is published in GitHub (https://github.com/SMoG-

Chalmers/crowd-movement). 

2.6.1. Hyperparameter optimization 

To select the optimal set of predictor variables, we used a cross-validation approach where in 

each iteration one neighbourhood area from the training data was left out. Since the pedestrian 

counts of street segments within each neighbourhood are highly correlated, by leaving out a 

whole area and not just a set of random streets, we made sure that the model isn’t overfitting 

to the training data (see Figure 2).  

The optimal set of predictors was defined by the amount of regularization applied. A grid search 

was performed for a range of values for the regularization strength and MAPE (Mean Absolute 

Percentage Error) was used as the evaluation metric for the cross-validation. The value of the 

regularization strength was chosen based on the minimum cross-validated MAPE. 

Figure 2: Method of hyperparameter optimization and cross-validation 

2.6.2. Performance Evaluation metrics 

Three performance metrics are used to evaluate the models: Mean Absolute Error (MAE), 

Median Absolute Error (Median AE) and R². The Absolute Error is calculated per street segment 

 
25 One-Hot Encoding is a common way of processing categorical variables for machine learning models. It 
creates a binary variable (0-1) for each category and then each feature (i.e. here each line segment) gets 1 if it 
falls within each category and 0 if it doesn’t.    

https://github.com/SMoG-Chalmers/crowd-movement
https://github.com/SMoG-Chalmers/crowd-movement
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as the difference between the predicted and observed pedestrian counts. The Mean and 

Median26 of the Absolute errors give an indication of the average magnitude of error in the 

predictions overall. The R² (Coefficient of determination) is computed using Equation 6. As a 

rule of thumb, when R2 reaches 1 the error of the model is lower. When R2 gets a negative 

score, the model performs worse than the intercept-only-model. 

𝑅2 = 1 −
𝑀𝑆𝐸 (𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸 (𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡−𝑜𝑛𝑙𝑦)
   (6) 

where, MSE (model) is the mean squared error of the model   

MSE (intercept-only) is the mean squared error of a model using only the intercept.  

3 RESULTS 

3.1. Model performance 

As described in section 2.1. two models were tested; one was trained in 224 street segments 

distributed in 19 different areas in Stockholm and will be further called STHLM All, and one was 

trained in 121 street segments of 6 central areas and will be further called STHLM Central. The 

results are shown in the plots of Figure 3. 

 

Figure 3: Plots of Observed (y axis) vs Predicted values (x axis) for the two models a. trained in 6 central 

areas of Stockholm, b. trained in all 19 areas in Stockholm. The values represent daily count of pedestrians, 

and the dots represent each of the 75 street segments tested. The results show R 2, Mean Absolute Error 

(MAE), Median Absolute Error (Median AE). 

 

 
26 Mean is the average. Median is the value in the middle of a data set, meaning that 50% of data points have a 
value smaller or equal to the median and 50% of data points have a value higher or equal to the median. 
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STHLM Central has an R2 of 0.52 and STHLM All an R2 of 0.50. Predicting around 50% of the 

response variable can be considered sufficient for the early-stage estimations of pedestrian 

counts that the models aim for. Such estimations, albeit rough, can be very useful to guide the 

initial design phases in an urban development plan, compare different design scenarios and 

strategies, highlight missteps or potentials, and identify the best ways forward. The Mean and 

Median Absolute Errors (MAE and MedianAE) are shown in Table 1. To evaluate the magnitude  

of absolute error in predicting the observed pedestrian counts, we should also consider the 

range of the observed values. The observed full-day pedestrian counts have Range= 46493 

pedestrians, Median=5653 pedestrians and Mean=8344 pedestrians.  

 

Table 1: Performance evaluation metrics 

Model MeanAE MedianAE R² 

STHLM Central 4889.11 2793.81 0.52 

STHLM All 5093.32 3535.59 0.50 

 

 

To fully evaluate the model performance in a manner that is relevant to urban design and 

planning, we should not only consider the absolute predictions, that is the absolute number of 

pedestrians predicted for each street, but also the prediction of the relative distribution of 

pedestrians in the area. In other words, do we predict accurately which streets have the highest 

numbers of pedestrians and which the lowest? This qualitative evaluation is very useful to inform 

the design process, for example to guide the allocation of pedestrian-oriented uses and active 

frontages, decide on the relative distribution of built densities and sketch building typologies. 

Figure 4 shows the relative distribution of observed pedestrian counts versus the relative 

distribution of predicted pedestrian counts in both models. The thicker lines indicate street 

segments with higher pedestrian counts and the thinner lines segments with lower counts.    
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Figure 4: Relative distribution of observed counts (left) vs relative distribution of predicted counts for the 

STHLM Central (right, top) and STHLM All (right, bottom). The legend ranges show number of pedestrians. 

In brackets is the number of street segments per range.  

 

While the performance of absolute predictions can be considered as average (R2=0.50-0.52), the 

prediction of the relative distribution of pedestrians on the streets is overall quite accurate for 

both models, however with exceptions.  

In the next section, we will shed some light on the streets where the absolute predictions are 

highly imprecise, as well as the streets that are inaccurately predicted as to their place in the 

street hierarchy in relation to pedestrian flows.  

3.2. Distribution of errors.  

It is useful to identify which street segments are better predicted by the model and which are 

not. Figure 5 shows the 75 street segments coloured by the magnitude of the absolute 

prediction error. In black are the segments where the predictions are relatively good. The red 

and dark segments are the ones for which the model underpredicts (negative errors) and in blue 

are the segments for which the model overpredicts the pedestrian counts (positive errors).  

The dark red and red segments correspond to the dots with the very high observed values in 

Figure 3, with higher than 25.000 observed pedestrians. These are primarily the segments 

clustered around the most commercial location in the city centre (i.e. Brunnsparken) with 

observed pedestrian counts exceptionally higher than the average (top dotted circle). Another 
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highly underpredicted segment is the last section of Kungsgatan, the most commercialised 

pedestrian street in the city centre, that is outside the Brunnsparken area. The same pattern is 

seen in both in the STHLM_Central and STHLM_All model. This finding is not surprising as Space 

Syntax research has shown that streets and locations with high commercial activity, where the 

‘multiplier effect’ has taken place, are not well explained by spatial variables such as the space 

syntax centrality measures (Hillier et al. 1993). Even the models of the current study which 

include a larger variety of predictors, including Accessibility to Local markets, albeit all still 

spatial variables, fail to improve the predictions of pedestrian counts on these highly 

commercially activated locations. However, another potential reason could be that the OSM 

‘Points of interest’ dataset that was used to locate the commercial activities is incomplete. A 

test with more accurate data on these activities is needed. 

 

Figure 5: Mapping of the absolute errors (predicted minus observed numbers) for the STHLM Central (left) 

and the STHLM All (right) models. Negative values show overprediction and positive values show 

underprediction of pedestrian flows. 

Another case worth mentioning is Kungsportsplatsen, a central square with caffes, restaurants 

and retail. It is surrounded by streets with strikingly different absolute prediction errors, ranging 

from street segments that are well predicted to highly overpredicted ones (lower dotted circle 

in Figure 5). Given the complex situation in this public space with a lot of different inflows of 

pedestrians, this inconsistency may be a result of the placement of sensors. As we see in Figure 

4, the observed values show a significant drop on the lower street segments of 

Kungsportsplatsen (Östra Hamngatan), suggesting that the placement of sensors might have 

failed to capture the full number of pedestrians. The models on the contrary predict more 

stable values along the whole Östra Hamngatan from north to south.  

The other relatively high prediction errors are harder to interpret. They may be a result of low 

precision of some of the spatial variables used, as will be discussed further in Chapter 4.   
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A central conclusion drawn from the spatial distribution of errors is that the spatial variables fail 

to predict the extreme observed values of pedestrians in highly activated areas (i.e. commercial 

centres). Future test of the models’ performance would be needed in different types of areas 

with less commercial activities and lower pedestrian flows.   

3.3. Predictors and coefficients 

Apart from a sufficient predictive performance, a central aim of the models was to include a 

small number of predictors that could be calculated during the early stages of the design 

process. Figure 6 shows the optimal set of predictor variables that are included in the final 

models, from the initial list of 43. These predictors are followed by a blue bar showing a positive 

or negative association to pedestrian counts. Figures 7 and 8 show the Model equations and the 

different coefficients for each model.      

We see that for both models local Angular Betweenness centrality (radius 2km) is a significant 

predictor. This is in line with previous empirical studies in the space syntax literature that have 

shown strong correlations of local Angular Betweenness centrality to pedestrian counts (e.g. 

Stavroulaki et al. 2019, Dhanani and Vaughan 2016, Hillier and Iida 2005).  

 

Figure 6: Initial list of variables and in blue the significant predictors included in the final models (left: model 

trained in 6 areas in central Stockholm, right: model trained in 19 areas in all Stockholm) 
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Figure 7: Model equation for the STHLM (Central) model 

 

Figure 8: Model equation for the STHLM (All) model 

Accessibility to Local Markets is also a predictor in both models, a positive association that has 

been reported in previous studies (Stavroulaki et al. 2019). However, in the STHLM_All model 

also Attraction Betweenness of Local markets (ATm_2000) is added to the significant predictors. 

This weighted Betweenness centrality measure identifies the very central shopping streets, 

since these not only have a high betweenness centrality overall, but also connect a high number 

of local market points. These are the most central and activated streets in both cities, as Figure 

9 shows. 
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Figure 9: Attraction Betweenness centrality weighted for Local markets in the 6 central areas in Stockholm 

training data (left) and in the observed streets in Gothenburg (right)   

The Speed limit (SpeedLim) is the third common predictor with positive association to 

pedestrian counts. Although there is a low variation of speed limits within the training and test 

data, there is a big distinction between suburban residential streets (30km/hour) or pedestrian 

only streets (5km/hour) and the typical multimodal central streets (50km/hour). The multimodal 

central streets are associated with higher pedestrian counts. This finding is connected to the 

positive association of the Total number of lanes, including cars and public transport (TotLanes) 

to pedestrian counts found in the STHLM All model. The number of Car lanes (CarLanes) or 

Public Transport Lanes (TrnspLanes) separately are not significant predictors, but their 

combination is. The total number of lanes is again an indication of the multimodality that 

characterises the main streets, that apart from attracting the highest pedestrian flows are also 

the main multimodal transport corridors. 

 

The street’s Segment length shows a negative association to observed pedestrian counts in both 

models. The segment length is also an indication of the block size, meaning that larger blocks 

are associated with lower pedestrian counts. Accessibility to Plots, an indicator of the degree of 

land division and of plot size, has a close to zero negative association for both models.  

 

A significant predictor that is added to the STHLM_All model compared to the STHM-Central 

models is Accessible Working population (WPop_500). A main reason seems to be that working 

population is the key variable that separates the 6 central areas of Stockholm to the rest of the 

city as Figure 10 shows, and it captures the common area profile of central areas in Stockholm 
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and Gothenburg. Looking at the values, Gothenburg streets have a minimum of 3500 people, 

whereas in Stockholm all peripheral areas, except one, fall below that threshold (55 to 2500 

people). In the STHLM_Central model this distinction between centre and periphery is already 

built in the model, as only the 6 central areas of Stockholm are included in the training data. It is 

interesting to consider this in relation to the findings of Berghauser Pont et al. (2019a), where it 

was the Built Density type of each area that explained the higher pedestrian volumes in the 

central neighbourhoods in relation to the low density more peripheral ones. In that empirical 

study however Working Population density was not included in the explanatory variables. It is 

worth mentioning that Accessible FSI and Accessible Working Population are often highly 

correlated. For instance, in the training dataset of Stockholm used in this study, the Pearson 

correlation between the two variables is 0.959. This is important because in case an urban 

development plan does not follow a land use plan or a specific program regarding the addition 

of number of offices or workplaces, making the rough estimation of working population hard, 

then the Accessible FSI which is much easier to calculate with precision can be used instead.  

 

 

Figure 10: Accessible Working population for the streets included in the training data of the STHLM_All 

model 

3.4. Further tests to improve model performance. 

Throughout the training and evaluation process of the models several limitations were 

identified that are important to mention. In general, these models are very sensitive to changes. 
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Modifying certain steps in the pre-processing phase can significantly impact their performance. 

One notable example is the attempt to apply standardization, which led to models with 

increased error rates and a tendency to select mostly binary variables. Standardization is 

typically recommended for LASSO regression, as regularization imposes constraints on the 

coefficients associated to each variable, which can be influenced by their magnitude. However, 

most variables were already log transformed prior to modelling, so the negative effects of not 

using standardisation were partially addressed.  

 

Since one central aim of the study was to test the ability to generalize these types of models to 

other cities, a test was also conducted by adding data points from the test dataset (Gothenburg) 

to the training data (Stockholm). The hypothesis was that cities, even within a single country, 

have different general characteristics and that adding a small set of data points from the city 

that we aimed to predict, would improve the model performance. This was performed by using 

two different strategies, one with random selection of data points and another with 

intentionally selecting streets of different street types. Also, different attempts at weighing 

transferred data points were evaluated. Unexpectedly, all methods failed to consistently 

enhance the model performance and instead led to a decay in performance as more data points 

were included to the training data. However, further tests also showed that a model trained on 

only data from Gothenburg using a nested Leave-one-out cross validation method doesn’t 

perform as well as a model trained on Stockholm data. Although this seems counterintuitive, it 

is an interesting finding that requires further testing. It indicates that a street segment from the 

Gothenburg data is more likely to share similar characteristics with a street segment in the 

Stockholm data, than in the Gothenburg data. This can be related to the fact that the training 

dataset is larger and has a larger variation of street profiles and suggests that more training 

data could have improved the model performance further.   

4 CONCLUSIONS AND DISCUSSION 

The paper presents the methodology and results of a predictive model, which employs LASSO 

regression in machine learning to predict numbers of pedestrian at the street segment level. 

The model is trained using data gathered in Stockholm and tested by predicting full -day 

pedestrian counts at street segments of central Gothenburg. Two model variations are 

presented, one trained in 19 areas of different profiles distributed across the whole 

metropolitan area in Stockholm and one trained in 6 central areas. The models were evaluated 

for their performance both in predicting the absolute numbers of pedestrians on each street 

and their relative distribution within the area. While their performance of absolute predictions 

can be considered as average (R2=0.50-0.52), the prediction of the relative distribution of 
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pedestrians on the streets is overall quite accurate for both models, however with exceptions.  

Both models rely on a very small number of spatial predictors which can be easily calculated in 

the early design phases of an urban development project. To build a concise yet effective model 

was a central aim of this study.  

The results of the spatial distribution of absolute errors, as well as the results regarding the 

significant predictors for both models led to further interesting findings, which will be 

summarised and discussed below.  

The spatial distribution of absolute errors showed that both models largely underpredict streets 

with extremely high observed pedestrian counts, which are the highly commercialised streets of 

the central Gothenburg area. This finding supports earlier empirical studies, not least by Hillier 

et al. 1993, which concluded that the spatial variables alone, particularly the network centrality 

measures, do not succeed in explaining the peaks in pedestrian volumes observed in highly 

commercial streets and locations. More studies are needed to test whether our models’ 

performance would increase in areas with less commercial activation. 

An earlier finding that is confirmed by our study is the significance of local Angular Betweenness 

for pedestrian counts (e.g. Stavroulaki et al. 2019, Dhanani and Vaughan 2016, Hillier and Iida 

2005). Significant predictors are also the number of total lanes (cars and public transport) as 

well as the speed limit, in this context indicating the positive association of street multimodality 

to higher pedestrian flows. This is an important finding that needs to be followed up with more 

studies, as it has implications for both urban design and transport planning decisions.  The 

significance of Accessibility to Local markets confirmed earlier studies (Stavroulaki et al. 2019, 

Bolin et al. 2021), however the significance of Accessibility to Public transport, also an earlier 

finding, was not corroborated. Finally, the Segment length showed a negative association to 

pedestrian counts, suggesting that streets around larger blocks attract fewer pedestrians, a 

finding that needs further testing.  

 

The comparison of the significant predictors included the STHLM Central and STHLM All model 

led to further noteworthy observations. Accessible Working Population in 500m and Attraction 

Betweenness weighted with Local Markets are the two predictors that are added to the STHLM 

All model in comparison to the STHLM Central one. On the one hand, the weighted 

Betweenness centrality variable captured the common profile of the most central and 

commercially activated streets in both Stockholm and Gothenburg. On the other hand, 

Accessible Working Population is the definite variable that distinguished between the central 

and peripheral areas in the STHLM All model and, thus, captured the general area type of the 

Gothenburg streets. In the STHLM Central we had already controlled for the area type by 

including only the central areas of Stockholm in the training data. Earlier empirical studies 
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(Berghauser Pont et al. 2019a, Berghauser Pont and Marcus 2015) have also argued for the 

importance of controlling for the neighbourhood type (i.e. central commercial centre vs 

peripheral residential neighbourhoods) to achieve better explanations of the amount and 

distribution of pedestrians. While in the study of Berghauser Pont et al. (2019a) it was the Built 

density type of the neighbourhood that defined the area type, in this study the Accessible 

Working population seems to play a similar role. This is not unexpected as the two measures 

prove to be highly correlated and could potentially be used interchangeably as predictors. For 

instance, in the case of the 19 Stockholm areas their Pearson correlation is 0.959.   

  

Further investigations are needed to increase the model performance and usefulness for urban 

design and planning. To start with, the model evaluation showed that adding more training data 

with diverse street characteristics can improve the model performance. More tests are needed 

regarding the underprediction of the highly commercialised streets using more accurate data on 

the location of commercial activities. Adding more precise data also on public transport, 

including the number of lines and frequencies, can give a more accurate account of its 

significance for attracting pedestrian movement (i.e. walk to transit) that now seems 

unrecognised.  

 

Another direction for future research is to test predicting the pedestrian volume and 

distribution in more diverse areas, such as peripheral and suburban areas. Even further, the 

model should be tested in cities of different countries or cities with greater differences in 

morphology, population density, and geographical location, given that cities like Stockholm and 

Gothenburg, share many similarities in these aspects.  

 

While this study presents a model that predicts full-day pedestrian counts, hourly observations 

are also available for the same areas in Stockholm and Gothenburg, that can be used to develop 

a model for hourly predictions in the future.  

 

To enhance the use of predictive models of pedestrian flows in urban design and planning, a 

methodology to combine network-based models predicting aggregated flows, as the ones 

presented in this paper, to Agent Based Models (ABMs) predicting microscale ind ividual 

trajectories in public spaces is being developed, that can assist in quantitative scenario analysis 

in various design scales and phases (Berghauser Pont et al. 2023, Ullrich et al., manuscript in 

review).  
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