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ABSTRACT

The quality of requirements specifications may impact subsequent,

dependent software engineering (SE) activities. However, empirical

evidence of this impact remains scarce and too often superficial as

studies abstract from the phenomena under investigation too much.

Two of these abstractions are caused by the lack of frameworks for

causal inference and frequentist methods which reduce complex

data to binary results. In this study, we aim to demonstrate (1) the

use of a causal framework and (2) contrast frequentist methods

with more sophisticated Bayesian statistics for causal inference.

To this end, we reanalyze the only known controlled experiment

investigating the impact of passive voice on the subsequent ac-

tivity of domain modeling. We follow a framework for statistical

causal inference and employ Bayesian data analysis methods to

re-investigate the hypotheses of the original study. Our results re-

veal that the effects observed by the original authors turned out

to be much less significant than previously assumed. This study

supports the recent call to action in SE research to adopt Bayesian

data analysis, including causal frameworks and Bayesian statistics,

for more sophisticated causal inference.
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1 INTRODUCTION

Requirements specifications serve as input to several subsequent

software engineering (SE) activities [36]. Consequently, the quality

of requirements specifications impacts the performance of these

dependent activities [26]. For example, ambiguous or incomplete

requirements specifications may result in incorrect or missing fea-

tures when implementing the requirements. Because the cost for

remediating these defects scales the longer they remain in the de-

velopment process [4], organizations are interested in detecting

and removing requirements quality defects as soon as possible.

The requirements quality research domain aims to meet this

need [29]. However, while requirements quality research abounds

with normative rules about requirements quality [15], it lacks em-

pirical evidence that supports the relevance of these rules [14, 29].

Moreover, the few studies contributing empirical evidence are of-

ten confounded, too abstract, and their inference reduces complex,

context-sensitive data to binary results, for example, through the

use of frequentist methods [24]. The insufficient quantity and qual-

ity of evidence impede the adoption of requirements quality re-

search in practice [13].

With this study, we aim to demonstrate how more sophisticated

inference methods than frequentist approaches derive deeper in-

sights from an empirical study and may even revise frequentist

claims. This paper makes the following contributions:

(1) A recovery of the analysis of one of the only controlled

experiments on requirements quality known to us [12].

(2) A reanalysis of the hypothesis of this experiment using more

sophisticated statistical methods.

Data Availability

We disclose all supplementary material, including the data, figures,

and analysis scripts, in our replication package.1

2 RELATEDWORK

2.1 Requirements Quality

Requirements quality research is a sub-domain within requirements

engineering (RE) research dedicated to the assessment and improve-

ment of requirements artifacts and processes [29]. Given the im-

portance of RE to the software development life cycle, the quality

of its artifacts and processes plays a major role in project success

1https://zenodo.org/doi/10.5281/zenodo.10283010
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or failure [26, 36]. For requirements artifacts like (systematic) re-

quirements specifications, use cases, user stories, and others [27], a

popular concept to identify quality defects is the requirements qual-

ity factor [15]. A requirements quality factor is a normative metric

that maps a requirements artifact onto some level of quality based

on defined criteria [15]. One commonly researched requirements

quality factor is passive voice [12, 22], which associates the use of

passive voice in a natural language (NL) requirements sentence

with bad quality since it potentially omits the semantic agent of the

sentence [12]. For example, the requirements specification “If the

settings are changed, ...” obscures the agent of the requirement. An

active formulation of this specification, “If an administrator changes

the settings, ...” makes the agent explicit.

Recent research has identified a major shortcoming of require-

ments quality factors, namely their relevance [14]. The require-

ments quality research domain abounds with publications propos-

ing new quality factors and tools to detect violations against them

but lacks empirical evidence for the implied causal relationship,

i.e., that the violation causes an actual impact on subsequent SE

activities [1]. A previous literature survey has revealed that among

57 primary studies proposing requirements quality factors, only 40

discuss their impact at all, and of these, only 11 provide some sort

of empirical evidence [14]. Without empirical evidence of the im-

pact of a requirements quality factor on subsequent activities, these

factors do not reliably identify requirements quality defects that

matter. Practitioners rightfully harbor skepticism toward require-

ments quality research given this lack of evidence which impedes

research adoption in practice [10, 13, 31].

For example, while several sources advise against the use of pas-

sive voice as described above [11, 20, 22, 32] only two publications

known to the authors investigate its actual impact on subsequent

activities. Krisch et al. conducted a document study in which do-

main experts classified active and passive requirements sentences

as either problematic or unproblematic [23]. The results indicate

that passive voice is generally unproblematic as adjacent text often

compensates for the information omitted due to the passive voice.

Femmer et al. conducted a controlled experiment with university

students to assess how passive voice in requirements sentences

impacts the domain modeling activity [12]. The authors conclude

that passive voice requirements increase the number of missing

associations with statistical significance but not the number of

missing actors or domain objects.

2.2 Inferential Statistics

Most statistical methods applied in SE beyond descriptive statistics

are limited to frequentist inferential statistics. These usually take

the form of null hypothesis significance testing (NHST), which

stratifies the distribution of a dependent response variable by one or

more independent variables and compares their mean. We assume

that the popularity of these methods stems from the established

guidelines [39], the availability of tools to perform them, and their

acceptance in the community.

However, frequentist methods like NHST have several short-

comings. From a research design perspective, they overemphasize

the variables involved in an alleged, causal relationship without a

systematic approach for addressing confounders [30]. From a data

analysis perspective, common issues like the multiple-hypothesis

problem [3] and the unscientific practice of fishing for significant

test results below an arbitrary significance level [2] are well-known,

yet still occur in practice [28]. Moreover, NHST reduces complex,

context-sensitive data down to binary answers (i.e., whether there

is a significant difference in the distributions’ mean or not), which

leads to superficial and overly abstracted research results that are

void of any uncertainty that the data originally encoded [17].

The recent rise of Bayesian data analysis (BDA) aims to miti-

gate these shortcomings [24, 25] by (1) embedding inferential sta-

tistics in causal reasoning frameworks [30, 33] and (2) applying

Bayesian statistics, i.e., encoding the uncertainty of the impact that

independent variables have on dependent variables in probability

distributions [25]. Prior to any data analysis, involved variables and

their causal relationship are made explicit. During the data analy-

sis, explicit prior assumptions are updated in light of the observed

data using Bayes’ Theorem. As a result, BDA produces uncertainty-

preserving statistical inferences with explicit causal assumptions.

Recently, SE researchers have started to advocate for the adoption

of BDA methods [17, 18, 34] but they still remain to be niche [33].

3 METHOD

In this study, we aim to demonstrate how frameworks for causal

inference and Bayesian statistics provide more sophisticated in-

sights which reduce issues of drawing inappropriate conclusions

from empirical studies. To this end, we reanalyzed the data of a

previous controlled experiment using BDA. Section 3.1.1 presents

the design of the original experiment and Section 3.1.2 elaborates

on the issues with the experiment. Section 3.2 then presents the

reanalysis performed in the scope of this study.

3.1 Original Experiment

The original experiment by Femmer et al. aims to understand the

impact of passive voice in requirements on domain modeling [12]

by asking the following research questions:

• RQ1.1: Is the use of passive sentences in requirements harm-

ful for finding actors?

• RQ1.2: Is the use of passive sentences in requirements harm-

ful for identifying domain objects?

• RQ1.3: Is the use of passive sentences in requirements harm-

ful for identifying associations?

3.1.1 Design. The experimental task was to create a domain model

based on a single-sentence NL requirements specification. The

domain model consisted of the following three types of elements:

actors, which represent human participants in the requirement,

domain objects, which represent any non-human entities in the

requirement, and associations, which connect elements that have

a relationship according to the requirement. Figure 1 visualizes a

domain model for the requirements specification “The system shall

be capable of returning the search results latest 30 seconds after

the user has entered the search criteria.” [12]

The authors of the original study conducted a controlled experi-

ment with independent measures, i.e., every participant is assigned

to only one treatment [39]. The authors recruited 𝑛𝑝 = 15 par-

ticipants for the experiment. The participants consisted of two

Bachelor students, eight Master students, four Ph.D. students, and
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Figure 1: Domain model example

Table 1: Results of the original study [12]. P-values indicating

a statistically significant difference with 𝛼 = 0.05 are prefixed
with an asterisk (*)
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Actors 0.43 1.00 0 1 0.10 (0; ∞) 0.39

Objects 1.29 2.00 1 1 0.25 (-1; ∞) 0.25

Associations 4.14 7.88 3 8 *0.02 (1;∞) 0.75

one student with an unknown background. In addition to the par-

ticipants’ study program, the authors also recorded their age group

as well as their industrial and academic experience in SE, RE, and

programming on an ordinal scale.

To enable independent measures, seven participants were as-

signed to the control group (A) and eight to the treatment group

(P). The control group received the requirements specifications in

active formulation. The treatment group received semantically simi-

lar requirements specifications in passive formulation. For example,

the authors transformed the aforementioned active requirements

sentence to the following passive formulation for the treatment

group: “The search results shall be returned no later 30 seconds

after the user has entered the search criteria.” [12].

After assessing the general SE and RE knowledge in a quiz, the

participants conducted the experimental task. Every participant re-

ceived 𝑛𝑟 = 7 requirements specifications, such that the experiment

produced 𝑛𝑝 × 𝑛𝑟 = 105 observations. The authors then compared

the 105 domain models with the sample solution and counted the

number of missing actors, domain objects, and associations. To eval-

uate the hypotheses implied by the research questions, the authors

summed up these numbers for all seven requirements sentences of

each participant. Each participant was associated with a total num-

ber of missed actors, domain objects, and associations throughout

all seven requirements. Then, the authors calculated the mean and

median number of missing elements for the control and treatment

groups and conducted a Mann-Whitney test with a 95% confidence

interval to determine whether there was a statistically significant

difference between the two groups.

Table 1 shows the results of the original study [12]. With a signif-

icance level of 𝛼 = 0.05, the NHST rejects only the null hypothesis

implied by RQ1.3 (𝑝 = 0.02 < 𝛼). The authors conclude that the
use of passive voice does not have a statistically significant impact

on the number of actors and domain objects missing from result-

ing domain models, but it does have an impact on the number of

missing associations.

3.1.2 Issues. The original experiment by Femmer et al. [12] suffers

from at least the following issues.

Issues with reproduction. The authors originally disclosed their

experiment data at http://goo.gl/WlTPE5, which was forwarded

to https://www.in.tum.de/i04/~femmer/data/passives_experiment.

zip. However, this link does no longer resolve given that institu-

tional websites commonly discontinue hosting resources of mem-

bers that change their affiliation [19, 38]. Thankfully, the authors

of the original paper were able to recover the lost replication pack-

age [16] and archived it via Zenodo.2 Still, the replication package

contains only the study protocol and obtained data, but not the

script to reproduce the evaluation. The lack of reproducibility im-

pedes our goal of comparing methods of statistical inference.

Issues with drawing appropriate conclusions. The employed re-

search design and analysis risks drawing inappropriate conclusions

in two regards. Firstly, the significance test investigates the isolated

impact of passive voice on the three dependent variables. Possible

confounders, like the experience of participants, were recorded but

not considered in the evaluation. Secondly, frequentist NHSTs re-

duce the data to single, binary results, omitting any uncertainty [17]

and comparing point estimates, which are unreasonably precise.

Issues selecting an appropriate study design. The selected experi-

mental design introduced one more potential confounder. Because

the authors of the original study used an independent measures

design [39] the evaluation does not account for between-subject

variance [35]. In other words: the evaluation does not consider that

the observed differences in the dependent variables are caused by

the treatment or by other factors like the individual skill of each

participant.

3.2 Reanalysis

We address the first of the three issues by reproducing the orig-

inal evaluation and disclosing it for future replication. For this,

we extracted the experimental results from the original study and

performed the evaluation according to the information in the man-

uscript [12]. The reproduced evaluation script is contained in our

replication package.

To address the second and third issue, we reanalyze the data

generated by the experiment using an established framework for

causal inference and Bayesian instead of frequentist methods. The

framework allows us to (1) revise and extend the causal assumptions

of the original experiment and (2) consider potential confounders

in the analysis, while the use of BDA allows us to (3) generate more

sophisticated inferences that preserve the uncertainty of the causal

influences.

We employ the framework for statistical causal inference that

was developed by Siebert [33]. This framework is based on Pearl’s

original model of causal inference [30] and consists of the three

major steps modeling, identification, and estimation. The following

paragraphs briefly summarize each of these steps and are further

elaborated in our replication package. For a gentler introduction to

frameworks for statistical causal inference, we refer the interested

reader to appropriate literature [30, 33]. For a gentler introduction to

2Now available at https://zenodo.org/records/7499290

29



WSESE ’24, April 16, 2024, Lisbon, Portugal Frattini, et al.

BDA, we refer the interested reader to appropriate textbooks [25]

or descriptive demonstrations of the application of BDA in SE

research [9, 17, 18, 34].

3.2.1 Modeling. In the first step, we make our causal assumptions

of the phenomenon under investigation explicit [33]. These causal

assumptions are specified in a directed acyclic graph (DAG), in

which nodes represent variables and directed edges between them

represent assumed causal effects of one variable on another [8]. In

our reanalysis, the eligible variables are limited to the variables

collected during the original experiment [12].

3.2.2 Identification. In the second step, we select all variables that

form the so-called adjustment set. Four causal criteria inform this

selection and prevent variable bias like colliders or backdoors [25],

mitigating that non-causal correlations do not influence the causal

relation of interest. The selection of the adjustment set mitigates

the second issue mentioned in Section 3.1.2.

3.2.3 Estimation. In the third and final step, we derive a regres-

sion model from the adjustment set of eligible variables. We first

select an appropriate probability distribution type to represent each

of the three response variables based on the maximum entropy

criterion [21] and ontological assumptions. All three variables are

whole numbers bounded by the number of expected actors, domain

objects, and associations. Consequently, we model all response

variables with Binomial distributions.

We model the parameter 𝑝—which defines the shape of the Bino-

mial distribution—in dependency of all eligible independent vari-

ables, called the predictors. Each predictor is multiplied with a

coefficient that represents the strength and direction of the influ-

ence that the predictor has on the response variable. To begin, we

assign an uninformative prior distribution to each of these coef-

ficients, i.e., a normal distribution centered around 𝜇 = 0 with a

standard deviation of 𝜎 = 1. This represents our prior belief of the

causal relationship between the predictors and response variables,

which are yet unknown. We confirm the appropriateness of the

selected priors via prior predictive checks [37].

The predictors of each response variable consist of the indepen-

dent variables selected during the identification step. Further, we

include the following variables as predictors:

• Intercept: The global average of missing any element of the

domain model. This represents the general challenge of cre-

ating a domain model from an NL requirements specification,

independent of any predictor values.

• Participant-specific intercept: The participant-specific av-

erage of missing any element of the domain model. This

represents the general skill of a participant.

• Requirement-specific intercept: The requirement-specific

average of missing any element of the domain model. This

represents the general complexity of a requirement.

While involving a global intercept is a general best practice [25],

the two group-specific intercepts retain local variance in themodel [9].

The resulting hierarchical model makes use of partial pooling,

which is understood to outperform purely global or local mod-

els [9, 25]. The inclusion of a participant-specific intercept miti-

gates the third issue mentioned in Section 3.1.2, as it represents

between-subject variance in the statistical evaluation.

Table 2: Results of the strict reproduction

Element
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)
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(A
)

M
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n
(P
)

P
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e

C
o
n
f.
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t.

C
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ff
’s
𝛿

Actors 0.43 1.00 0 1 0.19 (0; 1) 0.38

Objects 1.29 2.00 1 1 0.50 (-1; 3) 0.22

Associations 4.14 7.88 3 8 *0.03 (1; 7) 0.68

Given the selected probability distribution and predictors, we

train one Bayesian model for each of the three response variables

with the experimental data gathered during the original experi-

ment [12]. We conduct this step using the brms library [6] in R.

During the training process, Hamiltonian Monte Carlo Markov

Chains update the prior distributions of the predictor coefficients

to better reflect the impact of the predictors in light of the observed

data [5]. This produces the posterior distributions of the predictor

coefficients, which then represent the updated belief of the model

about the strength and direction of the influence with which a pre-

dictor impacts a response variable. The standard deviation of each

coefficient reflects the uncertainty of the impact of its associated

predictor. This further mitigates the second issue mentioned in

Section 3.1.2 by retaining the uncertainty of each impact.

We confirm that the model was trained appropriately by inspect-

ing the Markov Chains [25] and by performing posterior predictive

checks [37]. Finally, we evaluate the trained models by plotting the

marginal effects of relevant predictors, mainly the use of passive

voice. The marginal plots show the distribution of the response

variable for all levels of the selected predictor while keeping all

other predictors at representative levels. The resulting mean pre-

dictions and confidence intervals visualize the difference that the

chosen predictor has on the response variable. This visualization

represents the isolated effect of that predictor on the outcome.

4 RESULTS

4.1 Reproduction of the original evaluation

Table 2 shows the strict reproduction of the experimental results

using the same frequentist methods as the original study [12]. The

mean and median values match exactly. The calculated p-values

differ (0.10 vs. 0.19, 0.25 vs. 0.50, 0.02 vs. 0.03), but using the same

significance level 𝛼 = 0.05 would result in the same hypotheses

being rejected (i.e., only the hypothesis implied by RQ1.3). Similarly,

the effect size calculated via Cliff’s 𝛿 matches with a margin of 0.07.

Only one extreme end of every confidence interval could not be

reproduced. We assume this to be due to incorrect calculation or

reporting in the original study.

4.2 Reanalysis of the data using BDA

Figure 2 visualizes the DAG that makes the causal assumptions of

the phenomenon under investigation explicit. TheDAG is populated

with all variables recorded during the original experiment [12] and

connected with all causal relationships that we assume based on our

prior knowledge. The causal relationships between the main factor

(red node) and the three dependent response variables (turquoise
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Age

Academic experience in Programming

Industrial experience in Programming

Academic experience in RE
Industrial experience in RE

Academic experience in SE
Industrial experience in SE

Program

Performance in RE Quiz

Number of missing actors

Number of missing associations

Number of missing domain objects
Passive Voice

Figure 2: Full DAG visualizing the causal assumptions (red: exposure/main factor, turquoise: response/dependent variables)

nodes) were already assumed in the original study [12] and are the

main relationships of interest. We assume additional relationships,

for example:

• Age→ Program: The older a participant, the more likely it

is that they have progressed further in their studies.

• Program→ Academic experience in RE: The more advanced

the study program, the higher the academic experience that

a student has collected in RE.

• Academic/industrial experience in RE → number of missing

actors/domain objects/associations: The higher the expe-

rience in RE, the fewer mistakes a student makes during

domain modeling.

• Number of missing actors/domain objects → Number of

missing associations: Missing an actor or domain object leads

to missing an association, as one of the two nodes connected

through an expected association is unavailable.

All other causal assumptions and their justification can be found

in our replication package. Figure 3 visualizes the reduced DAG

resulting from the identification step. This DAG contains only vari-

ables included in the adjustment set, i.e., all variables relevant for

the causal analysis. The causal effect of all excluded variables passes

through these remaining variables. Hence, they suffice to model

the causal influence on the response variables.

Figure 4 visualizes themarginal effects of themain factor (passive

voice) on the three response variables. All plots show that the use

of passive voice slightly raises the mean of the response variable

distribution, i.e., the use of passive voice increases the likelihood of

missing more actors, domain objects, and associations. However,

the confidence intervals of the main factor overlap in all three cases,

meaning that this difference is not significant. The chance that the

use of passive voice results in equal or even fewer missing actors,

domain objects, and even associations remains.

Figure 5 shows the marginal effects of the number of missing

actors and missing domain objects on the likelihood of missing an

Academic experience in RE

Industrial experience in RE

Number of missing actors

Number of missing associations

Number of missing domain objects
Passive Voice

Figure 3: Reduced DAG including all variables eligible for

the regression model

ac
to

rs
ob

je
ct

s
as

so
c.

0.0 0.2 0.4 0.6 0.8
Average likelihood of missing one

passive
FALSE

TRUE

Figure 4: Isolated impact of passive voice on the likelihood

of missing an actor, object, or association (“assoc.”)

association. The plot shows that missing an actor or domain model

increases the likelihood of missing an association, which confirms

the causal assumption represented in our DAG. The average and

confidence interval for the number ofmissing actors (red in Figure 5)

is only defined for 0 and 1 because the experiment data did not
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Figure 5: Impact of the number of missing actors and objects

on the likelihood of missing an association

contain any observation with more than one missing actor per

domain model.

5 DISCUSSION

Finally, we discuss the implications of the results in Section 5.1 and

address remaining threats to validity in Section 5.2.

5.1 Implications

Issues of reproduction can be overcome as long as the authors of the

original work preserve their replication package. This encounter

supports the observation by Gabelica et al. [19] and Winter et

al. [38] that replication packages hosted on institutional websites

are prone to become inaccessible over time. We strongly advise

hosting replication packages via services that committed to a long-

term retention policy, like Zenodo3 or figshare.4

More importantly, the reanalysis presented in this study shows

that the lack of a framework for causal inference as well as frequen-

tist methods may cause issues with drawing appropriate conclu-

sions. The results of the reanalysis revealed that the use of passive

voice does not have a significant impact on the number of missing

associations in resulting domain models as claimed in the original

study [12]. Instead, the use of a framework for causal inference

showed that this impact is confounded by the number of missing

actors and domain objects, which also do not experience a signifi-

cant impact by the main factor of interest. Additionally, the use of

Bayesian statistics highlighted that the remaining difference in the

response variables is uncertain and not significantly different.

These insights imply two recommendations for future research.

For research design, the use of an explicit framework for causal

inference provides a systematic approach for dealing with potential

confounders [18, 30]. For data analysis, the use of Bayesian sta-

tistics retains uncertainty and allows transparent inferences from

empirical data [17, 25, 34].

5.2 Threats to validity

The reanalysis continues to suffer from threats to validity. We dis-

cuss these according to the classification by Cook et al. [7].

3https://zenodo.org/
4https://figshare.com/

Construct validity. The construct validity suffers from inadequate

preoperational explication of constructs for all variables concerning

experience [7]. In the experiment, industrial and academic expe-

rience in RE—two of the predictors with an impact on the three

response variables—are measured on an ordinal scale with four

levels: no experience, up to 6 months, 6 to 12 months, and more

than 12 months [12]. Whether these variables adequately reflect

experience remains questionable.

Internal validity. The internal validity suffers from potential con-

founders. The reanalysis could only involve the variables recorded

during the original study and was, therefore, constrained to the

variables listed in Figure 2. Other variables with a potential causal

impact on the response variables—like domain knowledge or prior

training in domain modeling—were not available. The internal va-

lidity further suffers from an unknown interaction with selection due

to the design of the experiment. Given the independent measures

design, each participant was exposed to only one treatment [35, 39].

This produced the risk of an interaction effect between the partici-

pant and the treatment, i.e., participants of one group could excel

with their respective treatment for unknown reasons.

External validity. The external validity suffers from an interac-

tion of selection and treatment, i.e., the experiment participants are

potentially not a representative sample of the intended target pop-

ulation. The study only involved university students of different

programs. Hence, there is no evidence that the conclusions are

generalizable to SE practitioners.

6 CONCLUSION

This study reanalyses the only controlled experiment investigating

the impact of passive voice in requirements specifications [12]

by employing a framework for statistical causal inference [33] and

using Bayesian in contrast to frequentist data analysis methods [17].

We could show that the results of the original study are much less

significant than suggested by the frequentist analysis and that

passive voice has, in consequence, a much smaller impact in the

studied context than the original study had assumed.

Needless to say, our aim is not to criticize the original study [12]

itself. In fact, we would like to acknowledge the authors’ contri-

butions to the requirements quality research domain, especially as

controlled experiments were, and still are, rare in this domain [14].

Instead, our intention is to critically reflect upon frequentist analysis

that still constitutes the prevalent choice in the empirical software

engineering community with little to no attention to its limitations.

Our reanalysis continues to suffer from several threats to validity.

For example, the experimental design made it impossible to identify

whether some participants performed particularly well or badly

given their assignment to the control or treatment group. Using a

crossover design in which all treatments are applied to all subjects

could mitigate this threat [35].

One hope that we associate with our study is to raise awareness

of the shortcomings of frequentist analyses, especially when ap-

plied as a universal tool. We especially hope that our short demon-

stration, as well as our replication package, will caution fellow

SE researchers to use out-of-the-box frequentist approaches and,
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instead, encourage them to consider Bayesian data analysis ap-

proaches [25], which include (1) proper frameworks for statistical

causal inference [30, 33] and (2) Bayesian statistics [17, 18]. These

approaches ensure that experimental designs are informed by ex-

plicit causal assumptions, and their execution produces more so-

phisticated inferences preserving uncertainty, in turn enriching

scientific contributions to be more reflected and insightful.

ACKNOWLEDGMENTS

This workwas supported by the KKS foundation through the S.E.R.T.

Research Profile project at Blekinge Institute of Technology. We

particularly thank Henning Femmer, representing the authors of

the original study, for his support and the recovery of the data,

which made this reanalysis possible in the first place.

REFERENCES
[1] Muneera Bano. 2015. Addressing the challenges of requirements ambiguity:

A review of empirical literature. In 2015 IEEE Fifth International Workshop on
Empirical Requirements Engineering (EmpiRE). IEEE, 21–24.

[2] JC Barnes and Shannon J Linning. 2021. Statistical Power, P-Values, and the
Positive Predictive Value. The Encyclopedia of Research Methods in Criminology
and Criminal Justice 1 (2021), 337–343.

[3] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal statistical
society: series B (Methodological) 57, 1 (1995), 289–300.

[4] Barry W Boehm and Philip N. Papaccio. 1988. Understanding and controlling
software costs. IEEE transactions on software engineering 14, 10 (1988), 1462–1477.

[5] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. 2011. Handbook
of markov chain monte carlo. CRC press.

[6] Paul-Christian Bürkner. 2017. brms: An R package for Bayesian multilevel models
using Stan. Journal of statistical software 80 (2017), 1–28.

[7] Thomas D Cook, Donald Thomas Campbell, and Arles Day. 1979. Quasi-
experimentation: Design & analysis issues for field settings. Vol. 351. Houghton
Mifflin Boston.

[8] Felix Elwert. 2013. Graphical causal models. In Handbook of causal analysis for
social research. Springer, 245–273.

[9] Neil A Ernst. 2018. Bayesian hierarchical modelling for tailoringmetric thresholds.
In Proceedings of the 15th international conference on mining software repositories.
587–591.

[10] Henning Femmer. 2018. Requirements Quality Defect Detectionwith theQualicen
Requirements Scout.. In REFSQ Workshops.

[11] Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian Eder.
2017. Rapid quality assurance with requirements smells. Journal of Systems and
Software 123 (2017), 190–213.

[12] Henning Femmer, Jan Kučera, and Antonio Vetrò. 2014. On the impact of passive
voice requirements on domain modelling. In Proceedings of the 8th ACM/IEEE
international symposium on empirical software engineering and measurement. 1–4.

[13] Xavier Franch, Daniel Mendez, Andreas Vogelsang, Rogardt Heldal, Eric Knauss,
Marc Oriol, Guilherme Travassos, Jeffrey Clark Carver, and Thomas Zimmermann.
2020. How do Practitioners Perceive the Relevance of Requirements Engineering
Research? IEEE Transactions on Software Engineering (2020).

[14] Julian Frattini, Lloyd Montgomery, Jannik Fischbach, Daniel Mendez, Davide
Fucci, and Michael Unterkalmsteiner. 2023. Requirements Quality Research: a
harmonized Theory, Evaluation, and Roadmap. Requirements engineering (2023).

[15] Julian Frattini, Lloyd Montgomery, Jannik Fischbach, Michael Unterkalmsteiner,
Daniel Mendez, and Davide Fucci. 2022. A live extensible ontology of quality
factors for textual requirements. In 2022 IEEE 30th International Requirements
Engineering Conference (RE). IEEE, 274–280.

[16] Julian Frattini, Lloyd Montgomery, Davide Fucci, Jannik Fischbach, Michael
Unterkalmsteiner, and Daniel Mendez. 2023. Let’s Stop Building at the Feet of
Giants: Recovering unavailable Requirements Quality Artifacts. arXiv preprint
arXiv:2304.04670 (2023).

[17] Carlo A Furia, Robert Feldt, and Richard Torkar. 2019. Bayesian data analy-
sis in empirical software engineering research. IEEE Transactions on Software
Engineering 47, 9 (2019), 1786–1810.

[18] Carlo A Furia, Richard Torkar, and Robert Feldt. 2022. Applying Bayesian analysis
guidelines to empirical software engineering data: The case of programming
languages and code quality. ACM Transactions on Software Engineering and
Methodology (TOSEM) 31, 3 (2022), 1–38.

[19] Mirko Gabelica, Ružica Bojčić, and Livia Puljak. 2022. Many researchers were
not compliant with their published data sharing statement: mixed-methods study.

Journal of Clinical Epidemiology (2022).
[20] Gonzalo Génova, José M Fuentes, Juan Llorens, Omar Hurtado, and Valentín

Moreno. 2013. A framework to measure and improve the quality of textual
requirements. Requirements engineering 18 (2013), 25–41.

[21] E. T. Jaynes. 2003. Probability theory: The logic of science. Cambridge University
Press, Cambridge.

[22] Leonid Kof. 2007. Treatment of passive voice and conjunctions in use case docu-
ments. In Natural Language Processing and Information Systems: 12th International
Conference on Applications of Natural Language to Information Systems, NLDB
2007, Paris, France, June 27-29, 2007. Proceedings 12. Springer, 181–192.

[23] Jennifer Krisch and Frank Houdek. 2015. The myth of bad passive voice and
weak words an empirical investigation in the automotive industry. In 2015 IEEE
23rd International Requirements Engineering Conference (RE). IEEE, 344–351.

[24] J Jack Lee. 2011. Demystify statistical significance—time to move on from the p
value to Bayesian analysis. , 2–3 pages.

[25] Richard McElreath. 2020. Statistical rethinking: A Bayesian course with examples
in R and Stan. CRC press.

[26] Daniel Méndez, Stefan Wagner, Marcos Kalinowski, Michael Felderer, Priscilla
Mafra, Antonio Vetrò, Tayana Conte, M-T Christiansson, Des Greer, Casper Lasse-
nius, et al. 2017. Naming the pain in requirements engineering: Contemporary
problems, causes, and effects in practice. Empirical software engineering 22 (2017),
2298–2338.

[27] Daniel Méndez Fernández and Birgit Penzenstadler. 2015. Artefact-based require-
ments engineering: the AMDiRE approach. Requirements Engineering 20 (2015),
405–434.

[28] Tim Menzies and Martin Shepperd. 2019. “Bad smells” in software analytics
papers. Information and software technology 112 (2019), 35–47.

[29] Lloyd Montgomery, Davide Fucci, Abir Bouraffa, Lisa Scholz, and Walid Maalej.
2022. Empirical research on requirements quality: a systematic mapping study.
Requirements Engineering 27, 2 (2022), 183–209.

[30] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. 2016. Causal inference in
statistics: A primer. John Wiley & Sons.

[31] Keith Thomas Phalp, Jonathan Vincent, and Karl Cox. 2007. Assessing the quality
of use case descriptions. Software Quality Journal 15, 1 (2007), 69–97.

[32] Klaus Pohl. 2016. Requirements engineering fundamentals: a study guide for the
certified professional for requirements engineering exam-foundation level-IREB
compliant. Rocky Nook, Inc.

[33] Julien Siebert. 2023. Applications of statistical causal inference in software
engineering. Information and Software Technology (2023), 107198.

[34] Richard Torkar, Robert Feldt, and Carlo A Furia. 2020. Bayesian data analysis
in empirical software engineering: The case of missing data. Contemporary
Empirical Methods in Software Engineering (2020), 289–324.

[35] Sira Vegas, Cecilia Apa, and Natalia Juristo. 2015. Crossover designs in software
engineering experiments: Benefits and perils. IEEE Transactions on Software
Engineering 42, 2 (2015), 120–135.

[36] Stefan Wagner, Daniel Méndez Fernández, Michael Felderer, Antonio Vetrò, Mar-
cos Kalinowski, Roel Wieringa, Dietmar Pfahl, Tayana Conte, Marie-Therese
Christiansson, Desmond Greer, et al. 2019. Status quo in requirements engineer-
ing: A theory and a global family of surveys. ACM Transactions on Software
Engineering and Methodology (TOSEM) 28, 2 (2019), 1–48.

[37] Jeff S Wesner and Justin PF Pomeranz. 2021. Choosing priors in Bayesian ecolog-
ical models by simulating from the prior predictive distribution. Ecosphere 12, 9
(2021), e03739.

[38] Stefan Winter, Christopher S Timperley, Ben Hermann, Jürgen Cito, Jonathan
Bell, Michael Hilton, and Dirk Beyer. 2022. A retrospective study of one decade
of artifact evaluations. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
145–156.

[39] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

33


