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ABSTRACT

The quality of requirements specifications may impact subsequent,
dependent software engineering (SE) activities. However, empirical
evidence of this impact remains scarce and too often superficial as
studies abstract from the phenomena under investigation too much.
Two of these abstractions are caused by the lack of frameworks for
causal inference and frequentist methods which reduce complex
data to binary results. In this study, we aim to demonstrate (1) the
use of a causal framework and (2) contrast frequentist methods
with more sophisticated Bayesian statistics for causal inference.
To this end, we reanalyze the only known controlled experiment
investigating the impact of passive voice on the subsequent ac-
tivity of domain modeling. We follow a framework for statistical
causal inference and employ Bayesian data analysis methods to
re-investigate the hypotheses of the original study. Our results re-
veal that the effects observed by the original authors turned out
to be much less significant than previously assumed. This study
supports the recent call to action in SE research to adopt Bayesian
data analysis, including causal frameworks and Bayesian statistics,
for more sophisticated causal inference.
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1 INTRODUCTION

Requirements specifications serve as input to several subsequent
software engineering (SE) activities [36]. Consequently, the quality
of requirements specifications impacts the performance of these
dependent activities [26]. For example, ambiguous or incomplete
requirements specifications may result in incorrect or missing fea-
tures when implementing the requirements. Because the cost for
remediating these defects scales the longer they remain in the de-
velopment process [4], organizations are interested in detecting
and removing requirements quality defects as soon as possible.

The requirements quality research domain aims to meet this
need [29]. However, while requirements quality research abounds
with normative rules about requirements quality [15], it lacks em-
pirical evidence that supports the relevance of these rules [14, 29].
Moreover, the few studies contributing empirical evidence are of-
ten confounded, too abstract, and their inference reduces complex,
context-sensitive data to binary results, for example, through the
use of frequentist methods [24]. The insufficient quantity and qual-
ity of evidence impede the adoption of requirements quality re-
search in practice [13].

With this study, we aim to demonstrate how more sophisticated
inference methods than frequentist approaches derive deeper in-
sights from an empirical study and may even revise frequentist
claims. This paper makes the following contributions:

(1) A recovery of the analysis of one of the only controlled

experiments on requirements quality known to us [12].

(2) Areanalysis of the hypothesis of this experiment using more

sophisticated statistical methods.

Data Availability

We disclose all supplementary material, including the data, figures,
and analysis scripts, in our replication package.!

2 RELATED WORK
2.1 Requirements Quality

Requirements quality research is a sub-domain within requirements
engineering (RE) research dedicated to the assessment and improve-
ment of requirements artifacts and processes [29]. Given the im-
portance of RE to the software development life cycle, the quality
of its artifacts and processes plays a major role in project success

!https://zenodo.org/doi/10.5281/zenodo.10283010
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or failure [26, 36]. For requirements artifacts like (systematic) re-
quirements specifications, use cases, user stories, and others [27], a
popular concept to identify quality defects is the requirements qual-
ity factor [15]. A requirements quality factor is a normative metric
that maps a requirements artifact onto some level of quality based
on defined criteria [15]. One commonly researched requirements
quality factor is passive voice [12, 22], which associates the use of
passive voice in a natural language (NL) requirements sentence
with bad quality since it potentially omits the semantic agent of the
sentence [12]. For example, the requirements specification “If the
settings are changed, ..” obscures the agent of the requirement. An
active formulation of this specification, “If an administrator changes
the settings, ..” makes the agent explicit.

Recent research has identified a major shortcoming of require-
ments quality factors, namely their relevance [14]. The require-
ments quality research domain abounds with publications propos-
ing new quality factors and tools to detect violations against them
but lacks empirical evidence for the implied causal relationship,
i.e., that the violation causes an actual impact on subsequent SE
activities [1]. A previous literature survey has revealed that among
57 primary studies proposing requirements quality factors, only 40
discuss their impact at all, and of these, only 11 provide some sort
of empirical evidence [14]. Without empirical evidence of the im-
pact of a requirements quality factor on subsequent activities, these
factors do not reliably identify requirements quality defects that
matter. Practitioners rightfully harbor skepticism toward require-
ments quality research given this lack of evidence which impedes
research adoption in practice [10, 13, 31].

For example, while several sources advise against the use of pas-
sive voice as described above [11, 20, 22, 32] only two publications
known to the authors investigate its actual impact on subsequent
activities. Krisch et al. conducted a document study in which do-
main experts classified active and passive requirements sentences
as either problematic or unproblematic [23]. The results indicate
that passive voice is generally unproblematic as adjacent text often
compensates for the information omitted due to the passive voice.
Femmer et al. conducted a controlled experiment with university
students to assess how passive voice in requirements sentences
impacts the domain modeling activity [12]. The authors conclude
that passive voice requirements increase the number of missing
associations with statistical significance but not the number of
missing actors or domain objects.

2.2 Inferential Statistics

Most statistical methods applied in SE beyond descriptive statistics
are limited to frequentist inferential statistics. These usually take
the form of null hypothesis significance testing (NHST), which
stratifies the distribution of a dependent response variable by one or
more independent variables and compares their mean. We assume
that the popularity of these methods stems from the established
guidelines [39], the availability of tools to perform them, and their
acceptance in the community.

However, frequentist methods like NHST have several short-
comings. From a research design perspective, they overemphasize
the variables involved in an alleged, causal relationship without a
systematic approach for addressing confounders [30]. From a data
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analysis perspective, common issues like the multiple-hypothesis
problem [3] and the unscientific practice of fishing for significant
test results below an arbitrary significance level [2] are well-known,
yet still occur in practice [28]. Moreover, NHST reduces complex,
context-sensitive data down to binary answers (i.e., whether there
is a significant difference in the distributions’ mean or not), which
leads to superficial and overly abstracted research results that are
void of any uncertainty that the data originally encoded [17].

The recent rise of Bayesian data analysis (BDA) aims to miti-
gate these shortcomings [24, 25] by (1) embedding inferential sta-
tistics in causal reasoning frameworks [30, 33] and (2) applying
Bayesian statistics, i.e., encoding the uncertainty of the impact that
independent variables have on dependent variables in probability
distributions [25]. Prior to any data analysis, involved variables and
their causal relationship are made explicit. During the data analy-
sis, explicit prior assumptions are updated in light of the observed
data using Bayes’ Theorem. As a result, BDA produces uncertainty-
preserving statistical inferences with explicit causal assumptions.
Recently, SE researchers have started to advocate for the adoption
of BDA methods [17, 18, 34] but they still remain to be niche [33].

3 METHOD

In this study, we aim to demonstrate how frameworks for causal
inference and Bayesian statistics provide more sophisticated in-
sights which reduce issues of drawing inappropriate conclusions
from empirical studies. To this end, we reanalyzed the data of a
previous controlled experiment using BDA. Section 3.1.1 presents
the design of the original experiment and Section 3.1.2 elaborates
on the issues with the experiment. Section 3.2 then presents the
reanalysis performed in the scope of this study.

3.1 Original Experiment

The original experiment by Femmer et al. aims to understand the
impact of passive voice in requirements on domain modeling [12]
by asking the following research questions:

e RQ1.1: Is the use of passive sentences in requirements harm-
ful for finding actors?

e RQ1.2: Is the use of passive sentences in requirements harm-
ful for identifying domain objects?

e RQ1.3: Is the use of passive sentences in requirements harm-
ful for identifying associations?

3.1.1 Design. The experimental task was to create a domain model
based on a single-sentence NL requirements specification. The
domain model consisted of the following three types of elements:
actors, which represent human participants in the requirement,
domain objects, which represent any non-human entities in the
requirement, and associations, which connect elements that have
a relationship according to the requirement. Figure 1 visualizes a
domain model for the requirements specification “The system shall
be capable of returning the search results latest 30 seconds after
the user has entered the search criteria.” [12]

The authors of the original study conducted a controlled experi-
ment with independent measures, i.e., every participant is assigned
to only one treatment [39]. The authors recruited n, = 15 par-
ticipants for the experiment. The participants consisted of two
Bachelor students, eight Master students, four Ph.D. students, and
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Figure 1: Domain model example

Table 1: Results of the original study [12]. P-values indicating
a statistically significant difference with & = 0.05 are prefixed
with an asterisk (%)

X 5|2 & g E <
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Element | ¢ S |8 = g o =
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= = %’ = O o

Actors | 0.43 1.00 | 0 1 0.10 (0; 0)  0.39
Objects | 1.29 2.00 | 1 1 0.25 (-1;00) 0.25
Associations | 4.14 788 | 3 8 | *0.02 (1;00) 0.75

one student with an unknown background. In addition to the par-
ticipants’ study program, the authors also recorded their age group
as well as their industrial and academic experience in SE, RE, and
programming on an ordinal scale.

To enable independent measures, seven participants were as-
signed to the control group (A) and eight to the treatment group
(P). The control group received the requirements specifications in
active formulation. The treatment group received semantically simi-
lar requirements specifications in passive formulation. For example,
the authors transformed the aforementioned active requirements
sentence to the following passive formulation for the treatment
group: “The search results shall be returned no later 30 seconds
after the user has entered the search criteria” [12].

After assessing the general SE and RE knowledge in a quiz, the
participants conducted the experimental task. Every participant re-
ceived n, = 7 requirements specifications, such that the experiment
produced n, X ny = 105 observations. The authors then compared
the 105 domain models with the sample solution and counted the
number of missing actors, domain objects, and associations. To eval-
uate the hypotheses implied by the research questions, the authors
summed up these numbers for all seven requirements sentences of
each participant. Each participant was associated with a total num-
ber of missed actors, domain objects, and associations throughout
all seven requirements. Then, the authors calculated the mean and
median number of missing elements for the control and treatment
groups and conducted a Mann-Whitney test with a 95% confidence
interval to determine whether there was a statistically significant
difference between the two groups.

Table 1 shows the results of the original study [12]. With a signif-
icance level of @ = 0.05, the NHST rejects only the null hypothesis
implied by RQ1.3 (p = 0.02 < ). The authors conclude that the
use of passive voice does not have a statistically significant impact
on the number of actors and domain objects missing from result-
ing domain models, but it does have an impact on the number of
missing associations.
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3.1.2  Issues. The original experiment by Femmer et al. [12] suffers
from at least the following issues.

Issues with reproduction. The authors originally disclosed their
experiment data at http://goo.gl/WITPE5, which was forwarded
to https://www.in.tum.de/i04/~femmer/data/passives_experiment.
zip. However, this link does no longer resolve given that institu-
tional websites commonly discontinue hosting resources of mem-
bers that change their affiliation [19, 38]. Thankfully, the authors
of the original paper were able to recover the lost replication pack-
age [16] and archived it via Zenodo.? Still, the replication package
contains only the study protocol and obtained data, but not the
script to reproduce the evaluation. The lack of reproducibility im-
pedes our goal of comparing methods of statistical inference.

Issues with drawing appropriate conclusions. The employed re-
search design and analysis risks drawing inappropriate conclusions
in two regards. Firstly, the significance test investigates the isolated
impact of passive voice on the three dependent variables. Possible
confounders, like the experience of participants, were recorded but
not considered in the evaluation. Secondly, frequentist NHSTs re-
duce the data to single, binary results, omitting any uncertainty [17]
and comparing point estimates, which are unreasonably precise.

Issues selecting an appropriate study design. The selected experi-
mental design introduced one more potential confounder. Because
the authors of the original study used an independent measures
design [39] the evaluation does not account for between-subject
variance [35]. In other words: the evaluation does not consider that
the observed differences in the dependent variables are caused by
the treatment or by other factors like the individual skill of each
participant.

3.2 Reanalysis

We address the first of the three issues by reproducing the orig-
inal evaluation and disclosing it for future replication. For this,
we extracted the experimental results from the original study and
performed the evaluation according to the information in the man-
uscript [12]. The reproduced evaluation script is contained in our
replication package.

To address the second and third issue, we reanalyze the data
generated by the experiment using an established framework for
causal inference and Bayesian instead of frequentist methods. The
framework allows us to (1) revise and extend the causal assumptions
of the original experiment and (2) consider potential confounders
in the analysis, while the use of BDA allows us to (3) generate more
sophisticated inferences that preserve the uncertainty of the causal
influences.

We employ the framework for statistical causal inference that
was developed by Siebert [33]. This framework is based on Pearl’s
original model of causal inference [30] and consists of the three
major steps modeling, identification, and estimation. The following
paragraphs briefly summarize each of these steps and are further
elaborated in our replication package. For a gentler introduction to
frameworks for statistical causal inference, we refer the interested
reader to appropriate literature [30, 33]. For a gentler introduction to

2Now available at https://zenodo.org/records/7499290
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BDA, we refer the interested reader to appropriate textbooks [25]
or descriptive demonstrations of the application of BDA in SE
research [9, 17, 18, 34].

3.2.1 Modeling. In the first step, we make our causal assumptions
of the phenomenon under investigation explicit [33]. These causal
assumptions are specified in a directed acyclic graph (DAG), in
which nodes represent variables and directed edges between them
represent assumed causal effects of one variable on another [8]. In
our reanalysis, the eligible variables are limited to the variables
collected during the original experiment [12].

3.2.2  Identification. In the second step, we select all variables that
form the so-called adjustment set. Four causal criteria inform this
selection and prevent variable bias like colliders or backdoors [25],
mitigating that non-causal correlations do not influence the causal
relation of interest. The selection of the adjustment set mitigates
the second issue mentioned in Section 3.1.2.

3.2.3 Estimation. In the third and final step, we derive a regres-
sion model from the adjustment set of eligible variables. We first
select an appropriate probability distribution type to represent each
of the three response variables based on the maximum entropy
criterion [21] and ontological assumptions. All three variables are
whole numbers bounded by the number of expected actors, domain
objects, and associations. Consequently, we model all response
variables with Binomial distributions.

We model the parameter p—which defines the shape of the Bino-
mial distribution—in dependency of all eligible independent vari-
ables, called the predictors. Each predictor is multiplied with a
coeflicient that represents the strength and direction of the influ-
ence that the predictor has on the response variable. To begin, we
assign an uninformative prior distribution to each of these coef-
ficients, i.e., a normal distribution centered around y = 0 with a
standard deviation of o = 1. This represents our prior belief of the
causal relationship between the predictors and response variables,
which are yet unknown. We confirm the appropriateness of the
selected priors via prior predictive checks [37].

The predictors of each response variable consist of the indepen-
dent variables selected during the identification step. Further, we
include the following variables as predictors:

o Intercept: The global average of missing any element of the
domain model. This represents the general challenge of cre-
ating a domain model from an NL requirements specification,
independent of any predictor values.

e Participant-specific intercept: The participant-specific av-
erage of missing any element of the domain model. This
represents the general skill of a participant.

e Requirement-specific intercept: The requirement-specific
average of missing any element of the domain model. This
represents the general complexity of a requirement.

While involving a global intercept is a general best practice [25],
the two group-specific intercepts retain local variance in the model [9].
The resulting hierarchical model makes use of partial pooling,
which is understood to outperform purely global or local mod-
els [9, 25]. The inclusion of a participant-specific intercept miti-
gates the third issue mentioned in Section 3.1.2, as it represents
between-subject variance in the statistical evaluation.

Frattini, et al.

Table 2: Results of the strict reproduction

T 2| &y S
- = = o = — »
Element | ¢ g |8 = g = B
o o s 3 a I} 6‘

= = %’ = @)
Actors | 043 1.00 | 0 1 0.19 (0;1) 0.38
Objects | 129 200 | 1 1 | 050 (-133) 0.22
Associations | 4.14 788 | 3 8 | *0.03 (1;7) 0.68

Given the selected probability distribution and predictors, we
train one Bayesian model for each of the three response variables
with the experimental data gathered during the original experi-
ment [12]. We conduct this step using the brms library [6] in R.
During the training process, Hamiltonian Monte Carlo Markov
Chains update the prior distributions of the predictor coefficients
to better reflect the impact of the predictors in light of the observed
data [5]. This produces the posterior distributions of the predictor
coefficients, which then represent the updated belief of the model
about the strength and direction of the influence with which a pre-
dictor impacts a response variable. The standard deviation of each
coeflicient reflects the uncertainty of the impact of its associated
predictor. This further mitigates the second issue mentioned in
Section 3.1.2 by retaining the uncertainty of each impact.

We confirm that the model was trained appropriately by inspect-
ing the Markov Chains [25] and by performing posterior predictive
checks [37]. Finally, we evaluate the trained models by plotting the
marginal effects of relevant predictors, mainly the use of passive
voice. The marginal plots show the distribution of the response
variable for all levels of the selected predictor while keeping all
other predictors at representative levels. The resulting mean pre-
dictions and confidence intervals visualize the difference that the
chosen predictor has on the response variable. This visualization
represents the isolated effect of that predictor on the outcome.

4 RESULTS
4.1 Reproduction of the original evaluation

Table 2 shows the strict reproduction of the experimental results
using the same frequentist methods as the original study [12]. The
mean and median values match exactly. The calculated p-values
differ (0.10 vs. 0.19, 0.25 vs. 0.50, 0.02 vs. 0.03), but using the same
significance level @ = 0.05 would result in the same hypotheses
being rejected (i.e., only the hypothesis implied by RQ1.3). Similarly,
the effect size calculated via Cliff’s 6 matches with a margin of 0.07.
Only one extreme end of every confidence interval could not be
reproduced. We assume this to be due to incorrect calculation or
reporting in the original study.

4.2 Reanalysis of the data using BDA

Figure 2 visualizes the DAG that makes the causal assumptions of
the phenomenon under investigation explicit. The DAG is populated
with all variables recorded during the original experiment [12] and
connected with all causal relationships that we assume based on our
prior knowledge. The causal relationships between the main factor
(red node) and the three dependent response variables (turquoise
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Figure 2: Full DAG visualizing the causal assumptions (red: exposure/main factor, turquoise: response/dependent variables)

nodes) were already assumed in the original study [12] and are the
main relationships of interest. We assume additional relationships,
for example:

e Age — Program: The older a participant, the more likely it
is that they have progressed further in their studies.

e Program — Academic experience in RE: The more advanced
the study program, the higher the academic experience that
a student has collected in RE.

e Academic/industrial experience in RE — number of missing
actors/domain objects/associations: The higher the expe-
rience in RE, the fewer mistakes a student makes during
domain modeling.

e Number of missing actors/domain objects — Number of
missing associations: Missing an actor or domain object leads
to missing an association, as one of the two nodes connected
through an expected association is unavailable.

All other causal assumptions and their justification can be found
in our replication package. Figure 3 visualizes the reduced DAG
resulting from the identification step. This DAG contains only vari-
ables included in the adjustment set, i.e., all variables relevant for
the causal analysis. The causal effect of all excluded variables passes
through these remaining variables. Hence, they suffice to model
the causal influence on the response variables.

Figure 4 visualizes the marginal effects of the main factor (passive
voice) on the three response variables. All plots show that the use
of passive voice slightly raises the mean of the response variable
distribution, i.e., the use of passive voice increases the likelihood of
missing more actors, domain objects, and associations. However,
the confidence intervals of the main factor overlap in all three cases,
meaning that this difference is not significant. The chance that the
use of passive voice results in equal or even fewer missing actors,
domain objects, and even associations remains.

Figure 5 shows the marginal effects of the number of missing
actors and missing domain objects on the likelihood of missing an
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Figure 3: Reduced DAG including all variables eligible for
the regression model
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Figure 4: Isolated impact of passive voice on the likelihood
of missing an actor, object, or association (“assoc.”)

association. The plot shows that missing an actor or domain model
increases the likelihood of missing an association, which confirms
the causal assumption represented in our DAG. The average and
confidence interval for the number of missing actors (red in Figure 5)
is only defined for 0 and 1 because the experiment data did not
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Figure 5: Impact of the number of missing actors and objects
on the likelihood of missing an association

contain any observation with more than one missing actor per
domain model.

5 DISCUSSION

Finally, we discuss the implications of the results in Section 5.1 and
address remaining threats to validity in Section 5.2.

5.1 Implications

Issues of reproduction can be overcome as long as the authors of the
original work preserve their replication package. This encounter
supports the observation by Gabelica et al. [19] and Winter et
al. [38] that replication packages hosted on institutional websites
are prone to become inaccessible over time. We strongly advise
hosting replication packages via services that committed to a long-
term retention policy, like Zenodo® or figshare.*

More importantly, the reanalysis presented in this study shows
that the lack of a framework for causal inference as well as frequen-
tist methods may cause issues with drawing appropriate conclu-
sions. The results of the reanalysis revealed that the use of passive
voice does not have a significant impact on the number of missing
associations in resulting domain models as claimed in the original
study [12]. Instead, the use of a framework for causal inference
showed that this impact is confounded by the number of missing
actors and domain objects, which also do not experience a signifi-
cant impact by the main factor of interest. Additionally, the use of
Bayesian statistics highlighted that the remaining difference in the
response variables is uncertain and not significantly different.

These insights imply two recommendations for future research.
For research design, the use of an explicit framework for causal
inference provides a systematic approach for dealing with potential
confounders [18, 30]. For data analysis, the use of Bayesian sta-
tistics retains uncertainty and allows transparent inferences from
empirical data [17, 25, 34].

5.2 Threats to validity

The reanalysis continues to suffer from threats to validity. We dis-
cuss these according to the classification by Cook et al. [7].

3https://zenodo.org/
“https://figshare.com/
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Construct validity. The construct validity suffers from inadequate
preoperational explication of constructs for all variables concerning
experience [7]. In the experiment, industrial and academic expe-
rience in RE—two of the predictors with an impact on the three
response variables—are measured on an ordinal scale with four
levels: no experience, up to 6 months, 6 to 12 months, and more
than 12 months [12]. Whether these variables adequately reflect
experience remains questionable.

Internal validity. The internal validity suffers from potential con-
founders. The reanalysis could only involve the variables recorded
during the original study and was, therefore, constrained to the
variables listed in Figure 2. Other variables with a potential causal
impact on the response variables—like domain knowledge or prior
training in domain modeling—were not available. The internal va-
lidity further suffers from an unknown interaction with selection due
to the design of the experiment. Given the independent measures
design, each participant was exposed to only one treatment [35, 39].
This produced the risk of an interaction effect between the partici-
pant and the treatment, i.e., participants of one group could excel
with their respective treatment for unknown reasons.

External validity. The external validity suffers from an interac-
tion of selection and treatment, i.e., the experiment participants are
potentially not a representative sample of the intended target pop-
ulation. The study only involved university students of different
programs. Hence, there is no evidence that the conclusions are
generalizable to SE practitioners.

6 CONCLUSION

This study reanalyses the only controlled experiment investigating
the impact of passive voice in requirements specifications [12]
by employing a framework for statistical causal inference [33] and
using Bayesian in contrast to frequentist data analysis methods [17].
We could show that the results of the original study are much less
significant than suggested by the frequentist analysis and that
passive voice has, in consequence, a much smaller impact in the
studied context than the original study had assumed.

Needless to say, our aim is not to criticize the original study [12]
itself. In fact, we would like to acknowledge the authors’ contri-
butions to the requirements quality research domain, especially as
controlled experiments were, and still are, rare in this domain [14].
Instead, our intention is to critically reflect upon frequentist analysis
that still constitutes the prevalent choice in the empirical software
engineering community with little to no attention to its limitations.

Our reanalysis continues to suffer from several threats to validity.
For example, the experimental design made it impossible to identify
whether some participants performed particularly well or badly
given their assignment to the control or treatment group. Using a
crossover design in which all treatments are applied to all subjects
could mitigate this threat [35].

One hope that we associate with our study is to raise awareness
of the shortcomings of frequentist analyses, especially when ap-
plied as a universal tool. We especially hope that our short demon-
stration, as well as our replication package, will caution fellow
SE researchers to use out-of-the-box frequentist approaches and,
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instead, encourage them to consider Bayesian data analysis ap-
proaches [25], which include (1) proper frameworks for statistical
causal inference [30, 33] and (2) Bayesian statistics [17, 18]. These
approaches ensure that experimental designs are informed by ex-
plicit causal assumptions, and their execution produces more so-
phisticated inferences preserving uncertainty, in turn enriching
scientific contributions to be more reflected and insightful.
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