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Abstract 
Road crashes are a major cause of deaths and serious injuries worldwide. New technologies 
offer the opportunity to reduce road crashes by supporting drivers with advanced driver 
assistance systems (ADASs), and by taking over the entire driving task—at least under certain 
conditions—with automated driving systems (ADSs). Methods are in place to assess how safe 
these systems are. One of these methods employs virtual simulations to predict the impact on 
safety that the systems would have once released on public roads. However, the process for 
ensuring that a virtual simulation provides an effective, relevant, and fair assessment of ADASs 
and ADSs is not always straightforward. This thesis contributes to the development of virtual 
safety assessment methods by investigating the impact of different data and models on the 
resulting simulations. 

Specifically, the first objective of the thesis is to measure the impact of data selection 
on the outcomes of virtual safety assessment. Crashes were artificially generated from near-
crashes and everyday driving data, using a model of an unresponsive driver. The generated 
crashes were compared to real-world reconstructed crashes. Automated emergency braking 
(AEB) systems were then applied to the crashes, to study the impact different data sources have 
on crash avoidance and mitigation. The results show that those artificially generated crashes 
are very different from real-world crashes, with lower severity outcomes and criticality.  

The second objective of this thesis is to understand if existing reference driver models 
represent a competent and careful human driver. These models are intended to be benchmarks 
for ADS safety performance. The models studied in this thesis—from the UN Regulation No. 
157—did not perform as the competent and careful drivers they are intended to represent when 
applied on near-crash cut-ins through counterfactual simulations. Specifically, one model 
generally showed delayed responses to critical scenarios, compared to humans. The other model 
instead showed non-human-like behavior, reacting substantially earlier than humans. 

The impact of the findings is twofold. First, they can help the development of virtual 
safety assessment methods by discouraging the use of everyday driving data and near-crash 
data in counterfactual crash generation. Second, the findings on reference driver models make 
it clear that models used in regulations must be validated using a range of data types. To 
continue the work on reference driving models, future work aims at studying how urgency in 
traffic scenarios impacts drivers’ behaviors. The concept of comfort zone boundaries (CZBs) 
will be used to study the limits that drivers are able and willing to tolerate in routine driving, 
and the inclusion of CZBs in the models will be investigated. This research has the potential to 
contribute to the improvement of reference driver models and virtual safety assessment 
methods. 

 
Keywords: virtual safety assessment, reference driver model, counterfactual simulations, 
crash surrogates, conflict and crash avoidance.  
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1 Introduction 
Traffic safety plays a major role in the development of the mobility of the future. Road crashes 
are historically among the most common causes of death; it is estimated that in 2021 1.19 
million people died in traffic crashes worldwide (WHO, 2023). The risk of road users being 
involved in a crash, incurring serious injuries or death, drives the development of safer mobility 
solutions; a variety of stakeholders (e.g., governments, academia, institutes, and private 
companies) are steadily working on improving vehicles and infrastructure. Solutions for safer 
passenger cars address the in-crash phase (while a crash is occurring) or the pre-crash phase 
(typically a few seconds before the crash). In-crash solutions improve the vehicle’s ability to 
absorb the energy of a crash as well as the restraint systems’ ability to protect the occupants. 
Pre-crash solutions, on the other hand, improve the vehicle’s ability to avoid the crash in the 
first place. Advanced driver assistance systems (ADASs) and, more recently, automated driving 
systems (ADSs), are two examples of the latter. The pre-crash phase covers a wide range of 
driving situations, from low-risk to high-risk (imminent crashes). This range, however, can be 
divided into two levels of system intervention, crash avoidance (high-risk) and conflict 
avoidance (low-risk). Crash avoidance is the ability of the subject vehicle’s system to perform 
an immediate action (e.g., braking or steering) to avoid an imminent crash when the vehicle is 
on a collision path with another vehicle, obstacle, or vulnerable road user (VRU). Conflict 
avoidance is the combination of actions intended to avoid situations that could, if not treated 
early enough, increase the probability of a crash. However, the border between these two levels 
is not well-defined.  

Automated emergency braking (AEB) is an example of an ADAS that acts in the pre-
crash phase when safety criticality is high—thus it is referred to as a crash avoidance system. 
However, as their development continues, ADASs are increasingly able to handle driving tasks 
even in low-criticality situations (Antony & Whenish, 2021; Nidamanuri et al., 2021). Unlike 
ADASs, ADSs promise to take responsibility for the whole driving task, at all levels of safety 
criticality, at least within a specific operational design domain (ODD; ISO 2022a). ADSs 
consequently include both conflict and crash avoidance systems. 

The development of ADASs and ADSs is regulated by standards and regulations that 
define their safe operation, a task requiring well-defined procedures for testing hardware and 
implementing software. The international standard that defines functional safety for electrical 
and electronic systems installed in vehicles is ISO 26262 (ISO 2018). It covers, for example, 
random system failures, and defines “functional safety” as the “absence of unreasonable risk 
due to hazards caused by malfunctioning behaviour”. The standard ISO 21448 defines a 
complementary concept, the safety of the intended functionality (SOTIF), which is “the absence 
of unreasonable risk due to a hazard caused by functional insufficiencies” (ISO 2022a). The 
standard ISO 34502 leverages on the SOTIF concept to define a scenario-based safety 
evaluation process for ADSs (ISO 2022b). The standard categorizes the infinite possible 
interactions that ADSs can encounter into a finite number of scenarios. The result is a scenario-
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based approach that divides the driving task into three aspects: perception, judgement and 
control. Each aspect is associated with the physics principles that ADSs utilize or are influenced 
by: wave propagation for sensor detection of the environment—perception; kinematics for path 
planning—judgment; and vehicle dynamics for executing the driving commands—control. The 
scenario categories can be used to obtain quantitative results from ADS testing. An example of 
scenario-based ADS testing is described in the UN Regulation No. 157 (R157; UNECE, 2023). 
This regulation contains provisions for the approval of automated lane-keeping systems 
(ALKSs) using scenario-based testing, as part of EU Regulation (Regulation 1143/2014). 
UNECE stands for United Nations Economic Commission for Europe. 

The performance of systems such as ADASs and ADSs must be tested to ensure their 
safe operation. However, it typically takes years for these systems to reach deep enough market 
penetration to enable valid retrospective safety evaluations (Gulino et al., 2022; Smit et al., 
2019; Wimmer et al., 2019). Consequently, to aid in their development and regulation, the 
assessment method must be prospective (carried out prior to the system’s release on the market). 
These methods, often performed in virtual environments, predict the impact of a system if it 
were available in traffic (Alvarez et al., 2017) and thus play a fundamental role in the 
development of ADASs and ADSs. Moreover, they are also becoming an important component 
in ADS approval processes (UNECE, 2023), and the inclusion of pre-crash virtual simulations 
in consumer rating programs of ADASs (Euro NCAP 2023) is currently being considered. 

Reaching an exhaustive assessment of the safety of a system based on virtual 
simulations is, however, not straightforward (Wimmer et al., 2019). When quantifying the 
safety impact of a system a comparison between the treatment (i.e., the use of the system) and 
some baseline (i.e., the non-use of the system) must be made. Traffic safety research borrows 
the terms baseline and treatment from the medical field. Systems applied to reduce or avoid 
crashes are considered analog to medicines for treating a disease. Therefore, a traffic scenario 
without the safety system in assessment is considered a baseline scenario, and one in which the 
system is applied is a treatment scenario. The baseline should, at least in theory, represent the 
real-world traffic situations considered important for safety (and that the systems aim to 
address) as accurately as possible. That is, the choice must be based on the evaluation scope—
what should be assessed and what the purpose is. Fahrenkrog et al. (2024) define the evaluation 
scope as a combination of evaluation questions which should “take current scientific knowledge 
and state-of-the-art in road traffic safety” into account, and should also “point out the gap that 
is addressed by the evaluation” (p. 25; Fahrenkrog et al., 2024). 

Wimmer et al. (2023) and Fahrenkrog et al. (2024) define three fundamentally different 
approaches to baseline generation for prospective safety assessments. The first uses unmodified 
real-world events as the baseline (A in Fig. 1). The second approach (B) consists of increasing 
the number of available scenarios by modifying individual real-world scenarios. The third 
approach (C) has two sub-approaches: in one, statistical data are aggregated to a few 
representative cases, and the other uses stochastic models to increase the coverage (create more 
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cases) for the baseline. The illustration in Fig. 1 shows the three approaches described in 
Wimmer et al. (2023). 

 
Fig. 1 Approaches for creating baseline data for virtual safety assessments from Wimmer et al. (2023; reproduced with 
permission from the authors). In the column “Initial real-world scenario(s)” approaches  A and B have individual original 
scenarios as a starting point, while approach C uses distributions of parameters that describe the scenarios. The processing 
for approach A consists in digital representation of the unmodified original scenarios (the second and third column). Approach 
B is similar to A, with the difference that here the processing can include parameter variations for part of the scenario, resulting 
in more scenarios than what was initially available. For approach C, the first sub-approach (C1) aggregates parameter sets 
to generate a few representative scenarios; sub-approach C2 typically uses sampling techniques and models of road users to 
obtain large datasets of interactions. 

While baselines are all in some way derived from the real world—either directly via 
statistical models, or indirectly via behavior models—the data they use can differ greatly. 
Complex and often expensive data collection is typically required to capture relevant 
interactions (James et al., 2015; Liers, 2018; Pelella et al., 2023). For example, in-depth crash 
databases are commonly used (Chen & Dai, 2018; Cuerden & McCarthy, 2016; Otte et al., 
2003; Rameshkrishnan et al., 2013; Zhang et al., 2019). These databases provide relatively 
high-fidelity data, and they are commonly used as baseline when assessing crash avoidance 
systems (Erbsmehl, 2009). Some of them capture the characteristics of real-world crashes in 
detail, including pre-crash time-series data of the individual events (Schubert et al., 2013). They 
can include trajectories of the agents (e.g., vehicles and VRUs) from (typically) five seconds 
prior to the crash up to the moment of the crash, as well as a relatively detailed description of 
the event (Schubert et al., 2013). However, in-depth crash databases can only describe a 
relatively small part of the complexity of the driving task—and the time-series reconstructions 
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typically include several assumptions which limit how they can be used (James et al., 2015; 
Kiuchi, 2020; Liers, 2018). 

Naturalistic driving studies (NDSs) collect data during drivers’ everyday driving. They 
can complement in-depth crash databases by providing much more complete coverage of all 
safety criticalities (Bärgman, 2016; Hankey et al., 2016), albeit at the expense of capturing few 
(if any) crashes, and very few high-severity crashes (Ehsani et al., 2021). As crashes are rare in 
NDSs, near-crashes are commonly used as surrogates of crashes (Guo et al., 2010; Hydén, 1987; 
Laureshyn & Várhelyi, 2018; Victor et al., 2015; Wu & Jovanis, 2012). A near-crash is a driving 
instance in which a crash was imminent but the involved road users managed to avoid it. Near-
crashes have been used to generate crashes (Bärgman et al., 2015; Davis et al., 2011) by 
modifying the real-world driving kinematics which successfully avoided the crash. This method 
of obtaining relevant safety-critical scenarios is, however, not always straightforward and is 
therefore an active research field  (see, e.g., Fahrenkrog et al., 2024; Wimmer et al., 2023). 

One safety assessment method that uses modifications of safety-critical situations from 
real-world driving is counterfactual simulations (Davis et al., 2011). Counterfactual simulations 
typically use crashes (baseline scenarios) and compare them to the simulated driving situations 
(treatment scenarios). More specifically, in counterfactual simulations, ADASs and ADSs are 
used to complement or replace the road users of the baseline scenario to answer the question: 
What if, in this safety-critical situation, the vehicle(s) had been equipped with the system? If 
the outcome is better than what happened in the real world (the baseline), the system is 
considered to improve safety for that specific driving situation. Of course, what is meant with 
the terms “outcome” and “better” needs to be defined, and they are often defined differently for 
different safety assessments. Typical analyses of counterfactual simulations include assessing 
the outcomes in terms of crash avoidance and mitigation. If the application of a system turns a 
crash into a non-crash, the benefit of the system with respect to avoiding crashes is evident. If 
the system only mitigates the crash, the safety benefits of the system must be quantified in a 
different way. For example, delta-vs can be obtained from the impact speeds (Kullgren et al., 
2003), or the risk of injuries can be predicted (Gennarelli & Wodzin, 2006; Kullgren, 2008)—
either metric can be compared between baseline and treatment. 

Some virtual safety assessment methods also need driver behavior models (ISO 2021). 
A driver behavior model is here defined as a mathematical representation of driver behavior. In 
virtual safety assessment methods, such mathematical driver models are used to represent the 
behavior of drivers in traffic. This may include everyday driving (e.g., car-following), models 
of crash causation (e.g., off-road glance behavior), and driver responses to critical events (e.g., 
hard braking to a lead-vehicle braking hard).  A combination of these models can then be used 
to virtually generate crashes, although it must be made sure that it represents what it is supposed 
to represent (i.e., that the generated crashes aligns with the evaluation scope, Fahrenkrog et al. 
(2024), and are validated, (Bärgman et al., 2024)). For treatment simulations, there are also 
models that describe how drivers would respond to a system, for example a forward collision 
warning (FCW). For counterfactual simulations specifically, part of the trajectory can be 
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replaced by behavior models, generating alternatives of what actually happened. Note that, 
driver models can be used in two of Wimmer et al.’s approaches (B and C2; see Fig. 1), as part 
of the baseline generation process (Wimmer et al., 2023). Many different driver behavior 
models can be found in the literature (see Chapter 2 for a more detailed description). One type 
of driver model that has recently received attention is the one-driver reference driver model 
(Rothoff et al., 2019); a model type that also is included in regulations (UNECE, 2023). The 
term “reference driver model” refers to a mathematical representation of one human driver or 
a population (distribution) of human drivers; the model is considered a benchmark (or a 
reference) for safe driving. With this definition, reference driver models represent the level of 
safety performance that a human can reasonably achieve. A one-driver reference driver model 
describes how one driver with some specific skill set drives, rather than describing how a 
population  of drivers drives (Markkula et al., 2016; Pelella et al., 2023; Svärd, Bärgman, et al., 
2021)—the latter can also be called a population reference driver model.   

As ADSs will be expected to take control of the driving task without supervision, they 
will in essence replace humans—at least under specific conditions. ADSs developers could, 
therefore, use reference driver models as part of their virtual safety assessment chain in order 
to compare the safety performance of ADSs against what they aim to replace: humans. The 
reference model’s performance should be the target to reach and preferably exceed (ISO 2020; 
Wood et al., 2019). 

At the time of writing this thesis, although the use of reference driver models in 
regulations is still being debated, models are already being incorporated into regulations. As an 
example, one-driver reference driver models have been proposed in R157 (see Section 2.3.3 for 
a more detailed description of the models). The models in R157 are stated to be mathematical 
representations of a competent and careful human driver, and they are used to provide guidance 
to define avoidable and unavoidable crashes in three types of scenarios (UNECE, 2023). The 
first is a deceleration (rear-end) scenario, in which the ego vehicle (the vehicle downstream in 
traffic, controlled by the driver model) and the principal other vehicle (POV) are traveling in 
the same lane and the ego vehicle needs to brake to avoid crashing into the POV. The second is 
a cut-in scenario, in which the POV moves into the ego vehicle’s lane from an adjacent lane, 
and the third is a cut-out scenario, in which the POV moves out of the ego vehicle’s lane, 
revealing a slower vehicle ahead of the ego vehicle. Whether these models represent the 
behavior of a competent and careful driver in these scenarios has not, however, been confirmed. 
Mattas et al. (2022) applied these models to highD (Krajewski et al., 2018) safety-critical 
scenarios, finding, among other things, that one of the models often reacted to the lateral 
perturbations of surrounding vehicles, even when they were not changing lanes. These 
scenarios, however, may not be high-risk enough to be useful for a thorough validation of 
reference driver models. 
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1.1 Aims and objectives 

The overall aim of this PhD project is to assess reference driver models and contribute to their 
development for use in virtual safety assessments, which in turn can be used in the development 
of ADASs and ADSs and in the approval of ADSs. The aims of this licentiate are to investigate 
the importance of data choice for accurate safety assessment and modeling and to assess 
reference driver model validity. 

To achieve the aims of this licentiate work, two objectives were set: 

• To quantify the influence of the choice of data in pre-crash virtual safety 
assessment, comparing the simulation outcomes of a simple scenario generation 
process across crashes, near-crashes, and everyday driving data. 

• To determine whether the reference driver models defined in the R157 represent 
a competent and careful driver, by applying them to near-crashes from an NDS. 

Further work will look into the design of reference driver models in more detail. New 
strategies for answering the question: What is a reference driver? will be explored. Specifically, 
comfort zone boundaries (CZBs) will be investigated as a way to set limits for what drivers feel 
comfortable while driving—to define the moment at which a competent and careful reference 
model would act to an evolving traffic situation. This has the potential to be improve future 
reference driver models.  
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2 Data, methods, and driver models 

This section describes the data, methods, and driver models typically used in virtual safety 
assessments, and specifically in this work. First, an overview of some commonly used data for 
virtual assessment and modeling is presented, accompanied by a detailed description of the data 
used in Papers I and II. Second, the crash generation process and counterfactual simulations—
the safety assessment method used in this work—are described in more detail. Finally, driver 
models, particularly the reference driver models used in Paper II, are described. 

2.1 Data 

The type of data used in virtual safety assessments plays a major role in the evaluation of 
systems and driver models. Two different types were used in this licentiate work: in-depth crash 
databases and NDSs. This section presents the key elements of both dataset types, emphasizing 
those that determine their suitability for use in virtual safety assessments. 

2.1.1 In-depth crash databases 

Data from in-depth crash databases are often used to virtually assess the crash-avoidance 
capabilities of systems and driver models. These databases consist of collections of detailed 
crashes, meticulously analyzed and reconstructed (estimated) to generate a digital version of 
the events leading to the crash, and of the crash itself (Bakker et al., 2017). Examples of in-
depth crash databases are GIDAS in Germany (Otte et al., 2003), RAIDS in the UK (Cuerden 
& McCarthy, 2016), RASSI in India (Rameshkrishnan et al., 2013), CIDAS in China (Chen & 
Dai, 2018), and CISS in the USA (Zhang et al., 2019). Rather than confining itself to one 
country, IGLAD (Bakker et al., 2017) is a database that aims at harmonizing the crash databases 
from various countries. Data from in-depth crash databases are commonly used for virtual 
safety assessment, both as input data (Bjorvatn et al., 2021) and as validation data (Bärgman et 
al., 2024). 

The in-depth reconstructed crashes used in this study come from GIDAS. In GIDAS, 
the crash kinematics and impact speed are reconstructed for each crash. For a subset of the 
GIDAS reconstructed crashes, a pre-crash matrix (PCM) is created. The PCM includes detailed 
pre-crash kinematics for up to five seconds prior to each crash (Schubert et al., 2013). The 
GIDAS rear-end crashes (i.e., when the ego and the POV are in the same lane for some time 
before the crash) were divided into two subsets: the first consisted of 134 crashes for which 
PCM data were available and the second consisted of 46 crashes without PCM data, in which 
the ego vehicle did not show signs of an evasive braking maneuver. The latter were extracted 
as those were the concrete scenarios that are the most similar to modeling of unresponsive 
drivers. 
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2.1.2 Naturalistic driving studies 

NDSs are another common data source for virtual safety assessment. They can be divided into 
on-site and in-vehicle NDSs. On-site NDSs consist of location-based data collections, typically 
using a camera at a fixed location or on a drone and recording vehicles’ trajectories (Bock et 
al., 2020; Krajewski et al., 2018; Krajewski et al., 2020; Laureshyn, 2010; Smith et al., 2009). 
On the other hand, in-vehicle NDSs are typically collected from vehicles equipped with 
additional sensors (e.g. cameras, radars, additional accelerometers; Blatt et al., 2015; Dingus et 
al., 2006) and driven by volunteers. Data are continuously recorded during the driving task, so 
all the driving situations that occur can be captured, regardless of the physical location.  

NDSs can contain crashes, albeit rarely (van Nes et al., 2013). Further, there is less 
information for some crash aspects (e.g., injury outcomes and forces exchanged during the 
crash) than is available for in-depth reconstructed crashes. However, unlike in-depth 
reconstructed crashes, NDSs include recordings that can be used to extract time-series data of 
the kinematics of  the instrumented vehicle and other road users (Hankey et al., 2016; Krajewski 
et al., 2018). These data provide more accurate descriptions of the vehicle trajectories than those 
obtained from crashes reconstructed from in-depth crash data, which are mostly based on 
assumptions rather than recordings. NDSs also include other safety-critical driving situations, 
such as near-crashes. These situations need to be identified and separated from the many hours 
of uneventful driving typically collected by NDSs. This work is usually done by automatic 
kinematic triggers (Hankey et al., 2016), which  activate when harsh braking is detected or 
when surrounding vehicles get unusually close to the instrumented vehicle (to name two 
examples). Additionally, drivers can manually flag events they consider relevant with a button 
press. Expert annotators also play a role in identifying and classifying safety-critical events. 
NDSs also include non-safety-critical driving, which can be used to study false activations of 
systems—but that is beyond the scope of this work. 

This work uses data from two different NDSs. The first is the Strategic Highway 
Research Program 2 (SHRP2), a large NDS collected over two years in the USA (Blatt et al., 
2015; VTTI, 2024). The dataset includes trips made by more than 3000 volunteers, whose 
vehicles were equipped with cameras, radars, and other sensors (e.g., accelerometers and 
gyroscopes). Additionally, data from the GPS and the CAN bus were also available. The data, 
collected between 2010 and 2013, are still widely used in research (e.g., Chen et al., 2022; Das 
et al., 2023; Hozhabr Pour et al., 2022; Markkula et al., 2016). The study for Paper I used a 
subset of SHRP2 consisting of 211 rear-end near-crash events. For the study in Paper II, 38 cut-
in near-crash events from SHRP2 were used.  

The second NDS used in this work is the highD dataset (Krajewski et al., 2018). The 
highD data, collected between 2017 and 2018, consist of recordings made by drones over 
sections of German highways. There were 60 recordings with an average duration of 17 minutes 
each. The trajectories of 110,000 vehicles were extracted from the recordings. 
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2.2 Methods 

2.2.1 Generation of crashes from non-crash data 

As mentioned, the type of data used in virtual safety assessment depends on the type of 
assessment to be made. For instance, the baseline for the virtual safety assessment of crash 
avoidance systems (e.g., AEB) is typically a set of crashes to which the system is then virtually 
applied. As described in the Introduction, the crashes can be generated by a variety of methods 
(Wimmer et al., 2023). In general, the main objective of several of these methods is to increase 
the number of baseline cases in order to overcome the scarcity of relevant original data; 
critically, the generated cases must be relevant and realistic. There are two main approaches 
that use statistical modeling methods to increase the number of baseline crashes: traffic-
simulation-based and in-depth-database-based. The former uses extensive simulations that aim 
to use road users’ behavior models to recreate their interactions in traffic scenarios. These 
simulated interactions sometimes (albeit rarely) result in crashes. In this approach, the road-
users’ behaviors are usually based on stochastic behavior models derived from NDSs (Feng et 
al., 2021; Li et al., 2019). In the second approach, in-dept crash databases are used to generate 
the baseline (Bärgman et al., 2017; Scanlon et al., 2021). Distributions of pre-crash kinematics 
from the real crashes are sampled and used to generate new crashes. (There are actually different 
ways new crashes can be generated—behavior-model-based or purely stochastic—but the latter 
is beyond the scope of this work; see Wimmer et al. (2023) for details.) 

Both of these statistical approaches have limitations. The traffic-simulation-based 
approach requires lengthy, resource-intensive simulations to generate enough crashes across the 
relevant severities. As a result, safety surrogate measures are often used instead of traffic 
simulations (Åsljung et al., 2021; Westhofen et al., 2023).  

The second approach, in-depth-database-based assessment, on the other hand, is limited 
by the scarcity of crashes in the databases for use in scenario generation. Additionally, crash 
databases tend to be biased towards higher-severity crashes (Elvik & Mysen, 1999; Yamamoto 
et al., 2008), due mainly to selection biases in the data collection (e.g., crashes in GIDAS are 
only reconstructed if at least one person was injured in the crash; Liers, 2018). This bias could 
affect the validity of a safety assessment (or other type of traffic safety analysis) that uses these 
data (Bärgman et al., 2024; Leledakis et al., 2021; Wang et al., 2022), in particular when used 
for validating the generation of additional cases. To overcome the limitations of this approach, 
(Wu, 2024) proposed a method that combines data from NDSs with pre-crash data, creating a 
set of models that generate crashes representative of real-world crashes across all levels of 
severity. 

Paper I investigates the challenges associated with increasing the number of baseline 
cases by using counterfactual simulations to generate rear-end crashes from SHRP2 and highD 
car-following near-crash scenarios. When generating baseline crashes using behavior models 
through counterfactual simulations, any evasive maneuver by the original driver would need to 
be removed, to have a “clean slate” for applying the driver model. Using the same 
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computational behavior models for the baseline generation and the treatment ensures that any 
positive or negative effect of the system is due exclusively by the system. At the same time, 
however, the conditions that lead to the critical event must be maintained, so that the criticality 
of the scenario is preserved. To truly replace the evasive behavior of the driver, the problem 
here is deciding at what point the original driver’s evasive actions are to be replaced by those 
of the model: too soon, and the modified event may differ greatly from what originally 
happened—the link to a real-world case gets weaker; too late, and the model may start 
intervening after the original evasive maneuver onset—the baseline is not a “clean slate” 
anymore. Typically, to avoid this problem the onset of the original driver’s evasive maneuver 
is identified, and the following trajectory is removed (Bärgman et al., 2017; Bärgman et al., 
2015; Scanlon et al., 2021). It is replaced with a new trajectory—the result of assumptions and 
simulation design choices. One example of an evasive maneuver is the driver’s braking reaction 
(see Fig. 2A). Eliminating the original trajectory after its onset (Fig. 2B) means that the ego 
vehicle in the simulation typically keeps the speed constant instead of slowing down harshly 
(actually, typically with constant speed—without any deceleration); the original driver is 
effectively replaced with an unresponsive one. This procedure was used for Papers I and II.  

 
Fig. 2 Counterfactual modifications of rear-end traffic scenarios by removing the evasive maneuver and replacing the original 
maneuver of the ego vehicle with a model (of a system or reference model), but keeping the kinematics of the POV. 

2.2.2 Counterfactual simulations for ADAS and ADS assessment 

This licentiate work categorizes the methods for virtual safety assessment following the work 
by Wimmer et al. (2023), as briefly outlined in the Introduction. Even though the three 
approaches can be distinguished, they also share similarities. Approaches A and B both use 
counterfactual simulations for the prospective safety evaluation of systems. That is, they apply 
a system to modify the kinematics in a set of concrete baseline scenarios, and evaluate the 
system’s safety benefits by comparing scenarios with and without the system. However, unlike 
approach A, approach B also uses counterfactual simulations when generating the baseline. 
That is, some sets of original scenarios are modified to create counterfactual versions. The 
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system under assessment is then (counterfactually) applied. Fig. 2 conceptually illustrates 
counterfactual simulations applied to concrete rear-end crash scenarios. As mentioned in the 
Introduction, the system or model that replaces the behavior of the ego vehicle modifies its 
kinematics, while leaving the kinematics of the POV unmodified. 

Counterfactual simulations have been used to assess ADASs (Erbsmehl, 2009) and 
ADSs (Bjorvatn et al., 2021; Scanlon et al., 2021). However, counterfactual simulations can 
also be used to evaluate driver behaviors (Bärgman et al., 2017; Bärgman et al., 2015; Lee et 
al., 2018). The studies that are part of this licentiate thesis used counterfactual simulations with 
baseline approach B from Wimmer et al. (2023): using data from crashes, near-crashes and 
everyday driving, systems and driver models were applied to the modified scenarios. 

Fig. 2C illustrates the application of a system or a driver model that initiates a braking 
maneuver, creating counterfactual versions of the original traffic scenarios. In these modified 
scenarios, the system or driver model can brake earlier or later than a human driver in the real 
world. (In the figure, only the case in which the reaction happens later is shown.) This change 
in timing of the evasive maneuver exposes one of the main challenges of counterfactual 
simulations: choosing a moment to apply the system under assessment (treatment) that does not 
fundamentally change the configuration of the safety-relevant event. That is, the application of 
a system, if not carefully thought through, can undermine the validity of the simulations, and 
consequently the safety assessment. As an example, imagine that a system including adaptive 
cruise control (ACC) is applied to the pre-crash kinematics of rear-end crashes—which only 
include data for a few seconds (typically five) before the crash. The ACC function is designed 
to keep the desired speed in traffic unless the vehicles ahead are slower or stopped. Applying 
the ACC function to those few seconds of available pre-crash kinematics may not give the ACC 
enough time to reach its steady-state condition (the desired speed). In other words, a vehicle 
equipped with ACC would have never ended up in a traffic scenario described by the few 
seconds of pre-crash kinematics typically available for analysis, but instead it would have 
started slowing down earlier and a conflict could have been completely avoided, without 
emergency actions (e.g., by an AEB system).  

2.3 Reference driver models for ADS safety assessment 

This licentiate thesis is part of a project which aims to contribute to the development of 
reference driver models. As a first step in that direction, the study in Paper II evaluated the 
validity of two existing computational reference driver models available in R157. This section 
briefly introduces computational driver models (with particular attention to reference driver 
models) and describes their role in ADS safety assessment. More details about the two reference 
driver models assessed in Paper II are also provided. 

2.3.1 Computational driver models 

As described earlier, computational driver models are mathematical representations of human 
drivers. These models often aim to simulate a human driver’s ability to avoid conflicts and 
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crashes (see Introduction for the definitions of conflict and crash avoidance). The models can 
include reactive actions (e.g., evasive braking or steering—crash avoidance) and proactive 
actions (e.g., predicting possible conflicts in the near future and adjusting the vehicle’s controls 
accordingly—conflict avoidance). Over the last few decades, many of these models have been 
developed (Boda et al., 2020; Engström et al., 2018; Kiefer et al., 2005; Lee & Jang, 2019; 
Maddox & Kiefer, 2012; Markkula, 2014; Markkula et al., 2016; Svärd, Markkula, et al., 2021; 
Svärd et al., 2017; Xue et al., 2018; Zgonnikov et al., 2024). Driver models may either be 
intended to represent a single driver (e.g., an average driver or a competent and careful driver) 
or to capture driver variability (i.e., represent some group of drivers; Svärd, Bärgman, et al., 
2021; Webb et al., 2020). The latter is often done through the use of distributions of model 
parameters (Markkula et al., 2016; Rasch & Dozza, 2020).  

2.3.2 General description of reference driver models for ADSs 

Driver models can generate a human benchmark for comparison with ADSs (Rothoff et al., 
2019; Webb et al., 2020). This comparison supports one of the key concepts of ADS safety 
assessment: achieving a positive risk balance (PRB; Di Fabio et al., 2017). A PRB is achieved 
by ensuring that ADSs “decrease, or at least do not increase, the amount of harm” compared to 
a benchmark (p. 25; European Commission 2020). Certainly, an ADS should cause fewer 
crashes than the average human driver (ISO 2020; Wood et al., 2019); the average driver’s 
performance may not be considered good enough for ADSs safety assurance. Instead, it has 
been proposed that human benchmark models should be representative of “attentive, skilled 
[sic] experienced” (p. 6; Rothoff et al., 2019) or “competent and careful” (p. 8; UNECE, 2023) 
drivers. However, it is not obvious how to construct such models, and the results from Paper II 
indicate that more research is needed to create (and validate) valid reference driver models that 
are competent and careful (or equivalent).  

A different approach to ADS safety assessment is using rule-based models that are not 
specifically based on human behavior, such as the responsibility-sensitive safety (RSS) model. 
RSS defines a set of rules (described by mathematical equations) to ensure that the ego vehicle 
is always in an objectively safe position with respect to the other road users; that is, in a safe 
position, the ego vehicle can always avoid causing a collision. If all the vehicles respected these 
rules, there would be zero crashes. The RSS, however, is not grounded in human behavior. It is 
therefore problematic to use the RSS rules directly in the algorithms for reference driver 
models.  

In summary, the safety assessment of ADSs includes many components, one of which 
is the comparison of the ADSs’ safety performance against human reference models. The key 
concept here is the use of humans as a reference—rather than what is objectively safe. 
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2.3.3 The UNECE reference driver models 

The two reference driver models used in Paper II are in R157 named “Performance model 1” 
and “Performance model 2”. In this work they are referred to as the competent and careful 
driver model (CCDM) and the fuzzy safety model (FSM), respectively.  

The CCDM is a threshold-based model that reacts to three traffic scenarios: 
decelerations (rear-end), cut-ins, and cut-outs (JAMA, 2022). The model observes the 
kinematics of the surrounding vehicles, using time to collision (TTC) and lateral position of the 
POV as metrics for the assessment of possible threats, and (if needed) reacts by braking. For a 
cut-in scenario (the only scenario considered in Paper II), the CCDM defines a “wandering 
zone”. This zone is centered in the POV’s lane; its width is the width of the POV plus an 
additional 0.375 m on both sides of the POV. The extra width allows for small lateral 
corrections, which are to be expected in normal lane-keeping. If the POV remains inside this 
zone, the driver of the ego vehicle is assumed to ignore the POV’s actions (i.e., no cut-in is 
detected). The CCDM detects an imminent cut-in only when the POV exits the wandering zone 
and the longitudinal time to collision is less than 2 s. The reaction time of the CCDM is divided 
into perception time (0.4 s), which starts when the cut-in is detected, and a subsequent braking 
delay of 0.75 s. At the end of the reaction time, the deceleration increases gradually with a jerk 
of 12.65 m/s3, until a deceleration of 7.6 m/s2 is reached. 

The FSM predicts the possibility of a collision based on lateral and longitudinal safety 
checks. When it is predicted that the trajectories will overlap, the FSM applies the brakes. The 
braking reaction of the FSM does not always reach the maximum braking capability of the 
driver. That is, the model is capable of braking with any deceleration value between 0 and the 
maximum reachable deceleration (set to 6 m/s2). The actual value is determined using two 
metrics computed during the safety checks: the predictive fuzzy surrogate metric (PFS) and the 
critical fuzzy surrogate metric (CFS). The default value of both metrics is 0. For low-criticality 
scenarios, only the PFS changes value, increasing (up to 1) based on the criticality of the 
scenario. The required deceleration increases gradually with the PFS, from 0 m/s2 when PFS = 
0 to 6 m/s2 when PFS = 1. If the situation is critical and a collision is imminent, the CFS 
increases and the maximum required deceleration is reached with a jerk of 12.65 m/s3. 
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3 Summary of papers 
This section presents a summary of the included papers. 

3.1 Paper I 
Can non-crash naturalistic driving data be an alternative to crash data for use in virtual 
assessment of the safety performance of automated emergency braking systems? 
Olleja, P., Bärgman, J., & Lubbe, N. (2022) 
 
Introduction 
ADASs can help reduce the number of crashes worldwide. However, it is not easy to quantify 
the safety of ADASs that are not yet on the market, as a considerable amount of data from real-
world crashes is required. Previously, the use of crashes artificially generated from NDS has 
been proposed to meet this need, as NDS can typically provide much more data than in-depth 
crash databases. However, these artificial crashes should be validated against real crashes.  
 
Method 
Crashes were generated from two non-crash NDS datasets, SHRP2 and highD, by replacing the 
original driver at the time of the evasive maneuver with an unresponsive (sleeping) driver, 
resulting in a rear-end crash. Then, AEB systems were applied to the real and generated crashes. 
 
Results 
There were substantial differences between the real and the generated crashes. SHRP2-
generated crashes and GIDAS crashes showed similar levels of criticality, while highD-
generated crashes were less critical. Crashes generated from the NDS datasets did not match 
the level of severity of real crashes, since the AEB application avoided a higher percentage of 
generated crashes than real crashes. 
 
Conclusions 
This work studied the validity of crashes generated from non-crash NDS datasets for use in the 
virtual safety assessment of ADASs. The results show that the crashes generated from highD 
were both less severe and less critical than the real crashes, so this process is not a viable option 
for increasing the data in virtual safety assessments. On the other hand, crashes generated from 
SHRP2 showed levels of criticality similar to that of real crashes. This result means that SHRP2 
is more suitable for generating crashes than highD, even though more research is still needed 
in order to make the crashes more realistic. 
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3.2 Paper II 
Validation of human benchmark models for Automated Driving System approval: How 
competent and careful are they really? 
Olleja, P., Markkula, G., & Bärgman, J. (submitted) 
 
Introduction 
As ADSs are being developed, virtual safety assessment methods are being adapted to 
accommodate the shift from ADASs to ADSs assessment. One aspect of ADS safety assessment 
that has been proposed involves the use of reference driver models as a safety benchmark for 
ADS performance. That is, one of the requirements for ADS approval would be that the system 
is at least as safe as a competent and careful human. This work investigates the validity of the 
two reference models described in the UNECE Regulation No. 157 by evaluating their safety 
performance when applied counterfactually to near-crash traffic scenarios. 
 
Method 
The models were applied using counterfactual simulations to 38 near-crash cut-ins from 
SHRP2. First, videos of the near-crashes were manually annotated to extract the vehicles’ 
trajectories. Then, the original braking evasive maneuver performed by the SHRP2 drivers was 
removed. The models were then counterfactually applied to the modified SHRP2 events. 
 
Results 
The first model reacted 0.5 s later, on average, than the SHRP2 drivers. This delay resulted in 
a crash for three of the cut-ins. The second model’s reaction preceded the original onset of the 
evasive maneuver by 0.7 s on average. Noticeable differences between the models and the 
SHRP2 drivers were also found by analyzing the lateral position of the POV in the lane: the 
first model reacted well after the start of the POV’s lateral motion to change lanes—the POV 
was closer to the lane mark than it was when the second model reacted. 
 
Conclusions 
This study evaluated the validity of two reference driver models described in R157. The first 
model was not careful enough, as it caused crashes that had not happened in the original real-
world scenarios. The second model, on the other hand, was found to be overly careful at times, 
and consequently not very competent. As the models’ performance differed substantially from 
that of humans, their use in ADS virtual safety assessment may be problematic. Main takeaways 
from this work include that more work is needed in the development of reference driver models 
for ADS assessment, and that, once developed, these models need to be validated on data that 
ranges across all levels of criticality, from everyday driving data to high-severity crashes.   
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4 Discussion 
This PhD project aims to evaluate and develop reference driver models for virtual safety 
assessments, aiding ADAS and ADS development and approval. This licentiate focuses on the 
impact of data choice on safety assessments and the validity of reference driver models. Section 
4.1 discusses the specific challenges presented by different data sources in creating a virtual 
assessment baseline, given how different types of data can impact the relevance of the virtual 
assessment results. Section 4.2 discusses the components that are relevant for the development 
of reference driver models and reflects on possible improvements to the models currently used 
in ADS safety assessments. Finally, Section 4.3 describes the limitations and future directions 
of this research. 

4.1 The importance of data choice in virtual safety assessment 

Virtual safety assessment methods for ADASs and ADSs are considered key for the systems’ 
development and release on the market. These systems are intended to operate on public roads, 
so the assessment needs to be based on data from real-world traffic. However, the specific real-
world traffic scenarios must be relevant for the type of assessment performed. For ADASs, the 
baseline situations selected are typically highly safety-critical. On the other hand, all 
criticalities—from everyday driving to critical situations—are relevant in the baseline for 
ADSs, which are responsible for the complete driving task. This section focuses on one of the 
aims of this licentiate work: quantifying the impact of the choice of data on the safety impact 
assessment of pre-crash safety systems. In practice, this means that I studied the impact of data 
of different levels of criticality (i.e., everyday driving, near-crashes, and crashes) on baseline 
scenario generation, and on the subsequent virtual safety assessment of an ADAS system. This 
section starts with a discussion of the need for generating crashes from non-crash data, as an 
alternative to data from in-depth crash databases. Second, the approach to generating crashes 
used in this work is discussed. Third, and finally, the validity of crash-generation approaches in 
general is discussed. 

4.1.1 Crash generation in Paper I 

Part of the aim of this licentiate work is to quantify the influence of using non-crash data in 
baseline generation. Specifically, data from everyday driving and near-crashes were used to 
generate crashes, and the characteristics of the resulting crashes were analyzed. Near-crashes 
have often been proposed as surrogates for crashes (Guo et al., 2010; Hydén, 1987; Laureshyn 
& Várhelyi, 2018; Victor et al., 2015; Wu & Jovanis, 2012). However, they can be used as 
surrogates only if appropriate sampling and validation methods are employed, and then only 
within a scenario type (Knipling, 2015). Everyday driving data, on the other hand, captures a 
much broader set of traffic scenarios, most of which are less relevant for safety than near-
crashes and crashes, particularly when assessing an ADAS. Naturally, when assessing an ADS, 



18 
 

which should be able to perform everyday driving in a safe way, less critical scenarios should 
be included in the assessment. 

 In an attempt to better understand the relevance for traffic safety of different types of 
data, the study in Paper I used traffic scenarios from SHRP2 and highD to generate crashes. 
The crashes were then compared to reconstructed real-world crashes from the GIDAS database 
(Otte et al., 2003). Paper I used the assumption of an unresponsive driver to generate worst-
case scenario crashes from rear-end near-crashes (from SHRP2) and (more or less) normal 
driving data (from highD). The unresponsive driver replaced the driver of the following vehicle 
in the original scenario, who had reacted and avoided a collision by braking. An unresponsive 
driver who fails to react can be considered the worst-case scenario, even though theoretically 
the resulting crashes could be even more severe if the driver accelerates, because the probability 
of that situation occurring in the real world is low, as shown by Wu et al. (2024). The results of 
the comparison between crashes artificially generated from non-crash events and real crashes 
indicate that they are profoundly different in their outcome severity. In the real-world crashes, 
the vehicles had much larger speed differences, and the POV performed a stronger braking 
maneuver. Crashes generated from highD data, which at most contained very minor conflicts, 
were different from the real-world crashes not only in terms of severity, but also in terms of 
criticality. Specifically, the time that it would have taken for an unresponsive driver to crash 
into the POV after the POV initiated braking was substantially higher in the highD-generated 
crashes than in the SHRP2-generated crashes. One reason for this difference is, as previously 
mentioned, likely to be found in the deceleration values reached by the POVs in the highD data, 
which were much lower (less harsh braking) than the ones reported in the real SHRP2 crashes. 

However, it is not only the low deceleration of the POV that differs between the real-
crashes and the crashes generated from the highD data. The study in Paper I used only rear-end 
scenarios in which the POV had braked with more than 2 m/s2 of deceleration. That is, only 
car-following crashes were considered, not catch-up crashes. In a catch-up crash—also called 
a closure-from-long-range crash (Woodrooffe et al., 2012)—the POV is driving substantially 
more slowly than the ego vehicle (or even standing still); the ego vehicle does not react early 
enough to the presence of the POV. The insufficient reaction may be due to, for example, 
sleepiness/drowsiness, sudden sickness, or very long off-road glances/distractions. According 
to the GIDAS POV deceleration data in Paper I (Fig. 5a), more than 50% of the crashes were 
catch-up crashes, since the POVs did not decelerate at all. 

It is clearly an intrinsic limitation of the method in Paper I that catch-up crashes cannot 
be created, as only the situations with the POV decelerating harder than 2 m/s2 were used for 
crash generation. However, it is not obvious how to generate catch-up crashes from everyday 
driving data such as highD, especially if the data consist of mainly dense traffic, where almost 
all vehicles are just following one another. The vehicles tend to travel at similar speeds and with 
relatively short “car following” time headway (THW); therefore, the severity of any generated 
catch-up crashes tends to be low. An exception to this tendency is the “end of traffic jam” 
scenario, that consists of a catch-up crash in which, for example, a vehicle encounters a traffic 
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jam after having been driving at free-flow speeds. This scenario can, however, be hard to 
capture for drone-based datasets such as highD, as it would require that the drone be flying 
exactly over the end of a traffic jam. Such data would be valuable for future studies. 

In Paper I, the validity of the generated crashes was assessed through the application of 
AEB systems. The AEBs’ performance, measured in terms of crash avoidance and mitigation, 
showed substantial differences across different crash datasets. These differences were part of 
the argument against using that particular set of generated crashes. However, the research field 
of scenario validation is certainly larger than what is within the scope of Paper I. Accordingly, 
the next section considers the results of Paper I from the broader perspective of the scenario 
validation research field. 

4.1.2 Implications for virtual safety assessment: Are the generated crashes valid? 

As mentioned, one challenge of using crashes generated from near-crashes (and even lower-
severity conflicts) in virtual safety assessments is that the generated crashes do not capture the 
criticality of real crashes. This in turn means that the systems (like AEB in Paper I) avoid the 
generated crashes more easily, since they have more time to assess the threat and react to it. 
These results raise the questions: Are counterfactually generated crashes valid for virtual safety 
assessment of crash avoidance systems? and What makes the generated crashes valid (or not)? 
Bärgman et al. (2024) address scenario-generation validation for rear-end crashes, including a 
more realistic approach for crash generation than the one used in Paper I: combining sleepiness 
with crashes generated by considering distributions of off-road glances and with crashes 
generated by the ego drivers not braking as hard as they could (given the physical limitations 
of the situation).  

 Generating crashes without assuming the drivers are unresponsive means that the 
crashes will be less severe. For example, crashes generated using a distribution of off-road 
glances would have drivers that react more quickly to a critical situation than crashes using a 
model of an unresponsive driver. Thus, the crashes generated using off-road glances (as in 
Bärgman et al., 2024) would be less frequent and severe than unresponsive-driver-generated 
crashes. Actually, Fig. 4 in Bärgman et al. (2024) shows that the crashes generated with the 
more complex crash-causation model have about half the delta-v of the crashes with the 
unresponsive drivers. This means that if a more realistic crash generation model had been used 
in Paper I, those generated crashes would have been even more different from the real-world 
crashes. It should also be noted that Victor et al. (2015), followed by Kusano and Victor (2022), 
leveraged the concept of an unresponsive driver in counterfactual simulations to define the 
metric of “maximum injury potential” of a traffic scenario—a metric that in its simplest form 
is derived by assuming an unresponsive driver. This metric enables comparisons of scenarios’ 
potential severity, so that the relevance of various databases in virtual safety assessment can be 
demonstrated. Overall, the results from Paper I suggest that crashes generated from everyday 
driving—even in the worst case (counterfactual simulations with an unresponsive driver)—lack 
the severity and criticality of real crashes.  



20 
 

So far, this discussion has considered the fact that crashes generated counterfactually 
from everyday driving data do not seem to be realistic. However, as mentioned, other methods 
can be used to generate crashes based on everyday driving data, for example by using traffic 
simulations with behavior models based on everyday driving (Feng et al., 2021; Li et al., 2019). 
Can such methods generate realistic crashes? Although this work does not address that specific 
question, it is possible to speculate based on the results of Paper I. Consider Fig. 1 in Paper I, 
showing the distribution of the minimum acceleration of the POV and THW, when the ego 
vehicle is behind the POV in the same lane. The figure shows that in the great majority of cases, 
the POV barely applies the brakes as the two vehicles drive undisturbed along the highway. The 
amount of harsh deceleration maneuvers appears to be quite low—even though the highD 
dataset used in Paper I included trajectories from as many as 110,000 vehicles. If behavior 
models for traffic simulations are based on deceleration distributions such as from highD, it is 
hard to see how the simulations could generate realistic crashes (and whether they would 
generate crashes at all).  

Regardless of the method used to generate crashes, what is truly important here is 
determining which metrics the generated crashes are valid for (and validated on). In Paper I we 
compared the generated and real-world crashes in terms of criticality (maximum deceleration 
of the POV and duration of the distraction needed to generate a crash) and severity (relative 
speed at impact). I have not found any studies using the traffic-simulation-based approach that 
validated their results with respect to outcome severity that is truly related to safety (i.e., delta-
v and injury risk). One of the most prominent works on traffic-simulation-based scenario 
generation is Feng et al. (2021; published in Nature Communications), but even they did not 
validate their method on severity outcome; it was validated only on crash frequency. Before 
traffic simulations are used for virtual safety assessment, they need to be validated on scenarios 
ranging from everyday driving, via near-crashes, to severe crashes—not least because of the 
issues of using everyday driving and near-crash data for scenario generation identified in Paper 
I. Do they really generate representative crashes across all levels of outcome severity? This 
question is important as the World Health Organization and the Vision Zero concept consider 
severe injury and fatalities to be what is important when addressing traffic safety (Tingvall et 
al., 2020; p. 9; WHO, 2021).  

If everyday driving data cannot be used to generate realistic crashes across all levels of 
severities—and today we do not know whether they can when it comes to traffic-simulation-
based scenario generation—what is to be done? Either more studies generating crashes across 
all severities from multiple data sources, such as the one by (Wu et al., 2024), are needed, or 
some way to “get from” low-severity scenarios to higher-severity scenarios is needed. This is 
where extreme value theory (EVT) may come in. In the traffic safety context, EVT can be used 
to find the tails of distributions of safety-related metrics, such as levels of deceleration, TTC, 
post-encroachment time (PET), and brake threat number (BTN), but also delta-v and injury 
risk. For example, EVT was applied to estimate the safety of intersection traffic scenarios using 
PET (Songchitruksa & Tarko, 2006) and injury severity (Arun et al., 2021). More generally, it 
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was also used to assess the relevance of surrogate measures when predicting the frequency of 
collisions (Åsljung et al., 2017). However, these studies did not use EVT to generate the pre-
crash time-series of crashes, instead they extrapolated the frequency and characteristics (e.g., 
TTC, delta-v) of crashes from near-crashes. More research is required to determine how to use 
EVT to generate crashes for virtual safety assessment, at which point the crashes will need to 
be validated on crash outcome severity. 

4.2 The role of reference driver models in ADS development and 

deployment 

This section discusses the components of reference driver models, and more generally the role 
of such models in the development and safe deployment of ADSs. When discussing reference 
driver models, a question that naturally arises is: What should a reference driver model 
represent? It was defined in this work as a mathematical representation of a human driver that 
is considered a benchmark for safe driving. However, this definition is far from a practical 
formulation of a model, which requires parameters and conditions that describe its behavior. To 
implement a model that is to represent human drivers, human driving behavior needs to be 
studied and described with mathematical equations. The discussion in this section aims to relate 
design choices in computational modeling of driver behavior to characteristics that are typical 
of human responses in real traffic. The section starts with a discussion of the results of Paper 
II. The findings are then linked to Paper I and contextualized within the wider scope of ADS 
safety assurance. 

4.2.1 The UNECE models’ performance 

Paper II analyzed two driver models described in the R157, which is part of the approval process 
for ADSs in Europe. At the time of writing, these models are the only reference driver models 
cited in a regulation, at least in Europe. The models in R157 are to be used as “guidance” for 
defining preventable and unpreventable crashes in specified traffic scenarios. It is not clear what 
“guidance” means here; there is a danger that implementers of ADSs could use these models as 
the actual target: “If our systems perform better than the models, we are good”—which, as we 
argue in Paper II, is a highly problematic approach. 

In Paper II, the models were counterfactually applied to near-crash cut-ins from SHRP2 
to evaluate their performance compared to the SHRP2 driver. The CCDM did not manage to 
avoid a crash in all the near-crashes—it even generated new crashes, and generally reacted later 
than the SHRP2 drivers. The FSM avoided a crash in all the scenarios, generally reacting 
considerably sooner than the SHRP2 driver, to the point that in some of the scenarios the timing 
was considered unrealistic and arguably not human-like. The results from Paper II raise 
questions about the capability of such models to accurately capture human behavior. First, a 
reference driver model should avoid basically all the crashes that were avoided by humans that 
the model is supposed to represent, such as a competent and careful driver. Second, the driver 
models should also behave in a predictable and non-erratic manner. A driver model that reacts 
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to any risk of collision, even if far in the future, may not be representative of realistic human 
driving behavior—even a competent and careful one. Actually, there is a risk that such a model 
may avoid crashes normally unavoidable by humans, by reacting early in the scenario to some 
“cue” that a human would ignore. That is, the model could be acting on some benign, in-lane 
lateral perturbations by the POV, resulting in it missing the cues that actually cause reactions in 
human drivers (as it is already avoiding the crash at this time). Note that when Mattas et al. 
(2022) applied the FSM to highD data, they found that the model often reacted to the lateral 
motion of surrounding vehicles, even when they were not changing lanes. While this behavior 
on the one hand easily avoids most potential conflicts, it is, on the other hand, not very human-
like. Because this model is part of the regulations, it could potentially influence the way that 
ADSs are developed. Specifically, the FSM could set unrealistic requirements for ADSs and 
perhaps even impact ADS deployment (i.e., a system that is actually good enough might not be 
released).  

4.2.2 Urgency, surprise, and comfort zones 

The response of the UNECE models, and of crash avoidance-related driver models in general, 
to specific traffic situations is characterized by two main components. One is the situation 
criticality, referred to in this work as “urgency”—which dictates the type and intensity of the 
response to an unexpected event. The other component defines the start of the unexpected event, 
which is the moment in time when the model notices that something is not right, and is referred 
to in this work as “surprise”. 

As previously mentioned, there are numerous examples of easily computed urgency 
metrics that have historically been used to define scenario criticality: TTC (Hayward, 1972; 
Hydén, 1987; Sayed et al., 1994), BTN (Brannstrom et al., 2008), deceleration rate (Allen et 
al., 1978; Darzentas et al., 1980), and PET (Allen et al., 1978). These metrics can be calculated 
using the kinematics of the involved road users. Driver actions (e.g., braking or steering) are 
often based on threshold values of these metric. These thresholds can be defined to distinguish 
between critical and non-critical driving scenarios. However, defining these thresholds is not 
straightforward. It should be noted that although just applying thresholds to the basic metrics is 
done, there are often more elaborate modeling approaches to better computationally describe 
human behaviors. One such approach for driver model development is evidence accumulation. 
In this approach, models integrate information—such as some visual cue metric—over time, to 
predict the future behavior of another road user, for example. The onset of the reaction is 
dictated by the accumulation of visual evidence (what the road user observes). When the 
difference between prediction and reality becomes large enough, the reaction is initiated 
(Markkula, 2014; Markkula et al., 2018). Evidence accumulation models have been shown to 
be more human-like than simple threshold-based models (Markkula, 2014; Svärd et al., 2017).  

One promising approach to defining urgency metrics thresholds uses the concept of 
comfort zones and their boundaries. The concept of comfort zones was introduced by Näätänen 
and Summala (1974), whose study was based on the theory of “field of safe travel” proposed 
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by Gibson and Crooks (1938). Comfort zones and their boundaries define maneuvers that 
drivers feel comfortable doing: for example, braking to avoid a collision with an acceptable 
level of deceleration, or steering to avoid a collision with an acceptable level of lateral 
acceleration (Brännström et al., 2010, 2014; Sander, 2017; Yang et al., 2024). The boundaries 
of the comfort zones, the limits of what the driver may consider acceptable without feeling 
discomfort, can be used to define thresholds in engineering-based metrics. For example, if a 
collision in a rear-end situation can be avoided with a slight deceleration—below the limit of 
comfortable braking—the situation would not be considered urgent. In both Paper I and in Yang 
et al. (2024), CZBs were used to tune and assess the ADAS AEB. In Paper I, CZBs in the AEB 
algorithm determined the urgency of a rear-end scenario by assessing the possibility that the 
driver could avoid the collision with comfortable steering. Yang et al. (2024) dug deeper into 
how CZBs can be used in AEB algorithms. The CZBs in both Paper I and in Yang et al. (2024) 
were partially derived from Brännström et al. (2014), who define 5 m/s2 as the comfortable 
limit for deceleration in their CZB-based AEB algorithm, although it is not stated how the 
threshold was selected. It is worth noting that this level of deceleration is an unusually harsh 
braking maneuver: Fitch et al. (2010) found that the mean deceleration reached by 
nonprofessional drivers during emergency braking maneuvers was close to 5 m/s2—and those 
are clearly not comfortable situations, at least for most drivers. In Paper I, Fig. 5a shows that in 
about 50% of the SHRP2 events (near-crashes) the POV exceeded this rate, indicating that as 
the ego vehicle was approaching at a high speed and with a relatively low THW, the driver of 
the ego vehicle probably had to exceed 5 m/s2 of deceleration to avoid a collision in many of 
the events. Although the deceleration values for the ego vehicle are not reported in the results 
of Paper I, the harsh braking maneuvers by the POV and the relatively low THW highlight the 
urgency of the SHRP2 near-crashes. On the other hand, the scenarios extracted from the highD 
database, which mostly contains everyday driving data, were generally not urgent at all: the 
POV almost never reached a deceleration of 5 m/s2, and the THW (Fig. 1 of Paper I) was rarely 
short enough to be considered unsafe.  

Urgency, in Paper I, can be discussed not only in terms of AEB tuning, but also from 
the perspective of crash generation. The clear relation between the nature of the datasets 
analyzed and their intrinsic urgency, from both closeness-to-crash (i.e., engineering), and 
human (i.e., CZB) perspectives, has already been demonstrated. All crashes are urgent by 
definition: at some point in time the driving situation becomes critical, and the driver is not able 
to avoid a collision even by braking well beyond the levels of comfortable crash avoidance. In 
Paper I, the SHRP2 near-crashes showed high levels of urgency. 

In Paper II, urgency is also key in the assessment of the UNECE models when applied 
to cut-in scenarios. However, the two models implement the concept differently, and, based on 
the results of Paper II, not in the way that human drivers consider urgency. The CCDM uses 
TTC in the longitudinal direction to define the criticality of a situation, while urgency in the 
lateral direction is not considered. That is, the model does not assess urgency-based metrics 
such as lateral TTC or lateral speed of the cut-in vehicle. Instead, the CCDM assumes that a 
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situation is critical as soon as a vehicle exceeds the wandering zone (see Sect 2.3.3). In one way 
this can be seen as the ego driver feeling comfortable as long as the POV does not leave the 
zone. The use of this wandering zone can be interpreted here as a form of driver satisficing 
(Summala, 2007): the ego driver does not need to optimize the vehicle’s lateral positioning to 
stay in the comfort zone. The FSM, on the other hand, assesses the need for a braking reaction 
based on the projected paths of the vehicles. If a collision is predicted, even far in the future, 
the FSM triggers a braking reaction. In the analysis in Paper II, it was observed that this design 
approach did not adequately account for non-urgent situations (when a collision was not 
immediately predicted), since the FSM does not consider urgency in the timing. However, it 
uses urgency in the braking reaction itself: the level of deceleration is modulated based on the 
criticality of the scenario, performing slight decelerations when the scenario is not very critical. 

The second component that characterizes the response of driver models in critical 
situations, surprise, could also lead to a reaction if the situation is urgent enough. The two 
UNECE models consider this component differently as well. The CCDM perceives a potentially 
dangerous cut-in situation by determining whether the cut-in vehicle has left the wandering 
zone: it only assesses the vehicle’s lateral position using that fixed threshold and disregards 
other metrics, such as the POV’s lateral speed. This model’s implementation of surprise could 
be the cause of some of its delayed reactions (relative to the SHRP2 driver). In contrast, the 
FSM bases its determination on whether the cut-in vehicle is moving laterally towards the ego 
vehicle, causing the future paths of both vehicles to encroach. Note that due to the way that the 
FSM is modeled, the situation does not need to be critical or unexpected for the model to start 
braking. This also means that maybe this is not necessarily a surprising situation. For example, 
for most drivers it would not be unexpected that a POV two lanes over changes lanes into the 
adjacent lane. Therefore you could even say that the FSM does not implement “surprise” as 
defined in this work. The FSM is more sensitive to the lateral movements of the POV, reacting 
to any possible encroachment onto the future path of the ego vehicle (regardless of how far in 
the future it is). The result is a model that reacts rather early (albeit applying the brake pedal 
gradually when the situation is not very critical). 

The “non-impaired road user with their eyes on the conflict” (NIEON) model, based 
entirely on the concept of surprise, was introduced by (Engström et al., 2024). ‘Surprise’ in 
their work, based on information theory (Shannon, 1948) and Bayesian surprise (Itti & Baldi, 
2009), is defined as an observation that is not explained or predicted by the prior belief of how 
a driving scenario can unfold. This model is fundamentally different from the UNECE models, 
as “the prior belief is both context-dependent and determined by the road user’s prior 
experience”. The dependency on context makes NIEON particularly interesting for the issue of 
“when to start the clock” of the reaction time. One aspect that is not covered in NIEON (at least 
the way it is described in the literature), however, is how the reaction can change based on the 
level of urgency of the situation—if it is not urgent there may not even be any reaction. This 
means that an obvious question is: What level of urgency is the ego driver willing to 
comfortably tolerate before an action has to be taken? Studies that test the boundaries of comfort 
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zone in relation to scenarios with different levels of urgency could help fill this gap, and could 
be considered as a complement to surprise. Olleja et al. (2023), for example, used a percentile-
based approach as a first step towards defining components for driver models based on CZBs.  

4.3 Limitations and future work 

This section explains the main limitations of the studies in this licentiate work. The first focus 
is on the limitations in the conceptualizations and actuation of the methods and the second on 
the limitations that affect the data. Finally, this section also discusses opportunities for future 
development related to this work. 

The crash-generation process of Paper I relies on the assumption that the ego driver is 
completely unresponsive to the braking maneuver of the POV (basically sleeping). It is not 
realistic to assume that all drivers are sleeping (unless  the object of study is the worst-case 
scenario of human driving behavior (Kusano & Victor, 2022). Adding additional crash 
causation components, such as distributions of glance behavior and limited brake responses to 
the driver model (Bärgman et al., 2017; Bärgman et al., 2015; Lee et al., 2018; Morando et al., 
2019), would improve the validity of the crash-generation process (Bärgman et al., 2024). 
However, Paper I demonstrates that, even in the worst-case scenario (unresponsive drivers), 
the lower-severity datasets do not show the high level of criticality and severity seen in the 
crash datasets. This is partially due to the more benign situation, but it should be noted that it 
is probably to a large extent due to the censoring of low-severity crashes in the crash data. That 
is, property-damage-only crashes are completely missing in GIDAS, and low-severity injuries 
are underreported. Future studies should investigate the contribution of benign situations (e.g., 
slight lateral movement within a lane, without the intent to change lane) and of the censoring 
(e.g., the effect of censoring of data for both modeling and validation) with respect to the 
difference in urgency and outcome severity. One option would be to apply a “transformation” 
to the generated crashes to account for the censoring of GIDAS—making the crashes 
comparable (Bärgman et al., 2024).   

Papers I and II are limited to one type of driving scenario each. Paper I focused on rear-
end scenarios only, primarily because the AEB functions applied to the crashes were designed 
to work in those scenarios. Future work could focus on other scenarios, such as cut-ins and cut-
outs.  

Paper II focused on assessing the UNECE models for cut-in scenarios only. This was a 
deliberate choice to assess the UNECE models for that particular scenario, as it is much more 
demanding from a modeling perspective than pure rear-end crashes. Further, poor data quality 
and issues with the annotations were limiting the number of cases extracted. The SHRP2 subset 
composed of cut-in near-crashes had been gathered and annotated in a previous study (Chau & 
Liu, 2021). They were annotated using a tool developed by Shams El Din (2020). For Paper II, 
the annotation tool was refined and the annotation process was partially repeated in order to 
increase the data quality. The annotation process combined the ego vehicle’s video footage from 
the front-facing camera with radar and speed data into a digital reconstruction of the near-crash. 
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Unfortunately, the poor quality of the videos (related to resolution, light conditions, blooming, 
and compression) at times made it difficult to determine the exact position of the POV. When 
that was the case, additional annotation points were added to smooth inaccuracies. Further, the 
signal from the radar was of low quality; its use was limited to the cases in which it was reliable 
enough to refine the position of the POV. Future work could further improve the video 
annotation tools to increase the quantity and quality of data or use new, better datasets. The 
sheer scale of SHRP2 makes it unlikely that a similar study will be conducted again soon—but 
maybe data from event data recorders with video can be used in the future (Piccinini et al., 
2017). Further, as the reference driver models described in R157 are intended to work not only 
for cut-in scenarios, but also for deceleration (rear-end) and cut-out scenarios, future studies 
could apply methods similar to the ones in Paper II to those traffic scenarios.  

Future PhD work will focus on studying the component of urgency in human behavior, 
to support the development of reference driver models. The next studies will aim specifically 
at quantifying CZBs as a way to define thresholds for satisficing behavior in driver models. 
specifically at quantifying CZBs as a way to define thresholds for satisficing behavior in driver 
models. Practical examples include the use of data from driver monitoring systems to determine 
how off-road glance behavior (and therefore inattention to driving) changes as a function of 
context (e.g., time-gap to the car ahead and traffic density). It is expected that driving with short 
time-gaps or in highly dense traffic incurs a higher percentage of on-road glances compared to 
driving with large time-gaps in low density traffic. The shift in glance behavior may be 
modeled, and the model could define the transition from a more attentive to a less attentive 
driver. The transition is here considered as a boundary that defines when drivers feel 
comfortable looking away from the road.   

Overall, the continuation of this PhD work will investigate new ways to operationalize 
urgency for one-driver reference driver models. Operationalizing urgency entails defining 
quantitative values describing the level of urgency that have been extracted from the traffic 
scenario—and in turn define actions taken by the driver model. The work on urgency will also 
include a review of the substantial body of research quantifying perceived safety (e.g., He et 
al., 2024; He et al., 2022; Kolekar et al., 2020; Prasetio & Nurliyana, 2023), as it is a research 
domain closely related to CZBs. 
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5 Conclusions 
The research work presented in this licentiate thesis contributes to the field of traffic safety by 
supporting the development of virtual assessment methods for ADASs and ADSs. The thesis 
discusses the relevance of various types of data typically available for virtual safety 
assessments. It then focuses on the role that reference driver models have in the safety 
assessment of ADSs, assessing existing models and projecting the results into future work 
planned for the PhD project. This work strengthens the understanding of how different design 
choices can impact virtual safety assessments. One key takeaway is the importance of using 
relevant, valid practices. Specifically, it was found that crashes generated from everyday driving 
data are quite different from real-world crashes, and therefore they should be used with care in 
virtual safety assessments. It was also found that reference driver models should be properly 
validated across the full severity range of traffic scenarios before they can be considered for 
use in regulations. 

The results of Paper I highlight the difficulties of generating crashes from non-crash 
data in NDSs. Increasing the amount of data available for the virtual assessment—at least with 
the methods used in this work—comes with the risk of generating a baseline that does not reflect 
the severity or criticality of real-world crashes. Such a baseline is problematic, since it 
potentially results in erroneous conclusions. 

Paper II focuses on the assessment of two existing reference driver models, described 
in UNECE Regulation No. 157. One model reacted to safety-critical cut-ins later than humans, 
and even caused some crashes. The other model typically reacted earlier than humans, avoiding 
crashes but also resulting at times in behavior that was overly careful and not human-like. The 
results constitute a first step towards understanding what components are relevant to this type 
of driver model, to be used specifically as a benchmark for ADSs. 

Future developments of this work will continue to pursue the overarching goal of 
improving virtual safety assessment methods. Specifically, future work will investigate if and 
how the use of CZBs can be used to define quantitative values of the urgency of a traffic 
scenario. This has the potential to contribute to the development of reference driver models. 
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