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A B S T R A C T

This paper considers the multiarmed bandit (MAB) problem augmented with a critical real-world consideration:
the cost implications of switching decisions. Our work distinguishes itself by addressing the largely unexplored
domain of risk-averse MAB problems compounded by switching penalties. Such scenarios are not just
theoretical constructs but are reflective of numerous practical applications. Our contribution is threefold: firstly,
we explore how switching costs and risk aversion influence decision-making in MAB problems. Secondly, we
present novel theoretical results, including the development of the Risk-Averse Switching Index (RASI), which
addresses the dual challenges of risk aversion and switching costs, demonstrating its near-optimal efficacy. This
heuristic solution method is grounded in dynamic coherent risk measures, enabling a time-consistent evaluation
of risk and reward. Lastly, through rigorous numerical experiments, we validate our algorithm’s effectiveness
and practical applicability, providing decision-makers with valuable insights and tools for navigating the
multifaceted landscape of risk-averse environments with inherent switching costs.
1. Introduction

The multiarmed bandit (MAB) problem, originating in the seminal
works of Robbins (1952), stands as a cornerstone in decision theory and
operations research. It represents scenarios where an agent must choose
from several options, each with its own reward structure. Initially
devised to tackle sequential trials under uncertainty, the MAB problem
has since evolved, mirroring the complexities of decision-making across
diverse fields such as technology (Kumar & Saranga, 2010), health-
care (Villar et al., 2015), and finance (Bertsimas & Mersereau, 2007).
According to Powell (2019), ‘‘the principles of bandit problems, long
a niche community, should become a core dimension of mainstream
stochastic optimization’’. This perspective underscores the growing
importance and applicability of MAB frameworks in broader stochastic
optimization contexts.

In addressing computational challenges associated with the MAB
problem, particularly as the number of options – or ‘‘arms’’ – increases,
Gittins and Jones (1974) introduced an index-based strategy. This
method computes indices for each arm independently, using arm-
specific data, and selects the arm with the highest ‘‘Gittins index’’ value
at each step. The efficiency of this approach for large-scale MAB prob-
lems has been extensively discussed in the literature, including Weber
(1992) and Gittins (1979), highlighting its computational advantages
and limitations.

E-mail address: miladma@chalmers.se.

However, real-world scenarios often deviate from the idealized
conditions of classical MAB models. A significant deviation is the pres-
ence of switching penalties, encompassing monetary, reputational, or
operational costs incurred when changing from one option to another.
These penalties add a layer of complexity to the MAB problem, affecting
the performance of traditional bandit algorithms. Concurrently, the in-
tegration of risk considerations into decision-making, a concept rooted
in the foundational work of Markowitz (1952) on portfolio theory, has
prompted a shift from the traditional risk-neutral focus on maximizing
expected rewards to a more detailed approach that also considers
reward variability. This shift is particularly pertinent in domains like
finance and operations research, where the stakes of decision-making
under uncertainty are high.

Despite these advancements, the literature reveals a gap in models
that comprehensively address both switching penalties and risk aver-
sion within the MAB framework. This paper aims to bridge this gap
and offer a more realistic and applicable model for decision-making in
today’s increasingly complex and uncertain world.

1.1. Motivating examples

To further elucidate the practical significance of combining risk-
aversion and switching penalties in MAB problems, consider the fol-
lowing real-life examples:
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Portfolio management in finance: In financial portfolio manage-
ent, a risk-averse investor faces switching costs when reallocating

ssets within their portfolio. These costs include transaction fees and
otential tax implications. Additionally, the investor must consider the
isk associated with different asset classes. An optimal strategy would
alance the risk of asset volatility with the costs of reallocating assets
o maximize long-term returns.

Energy resource allocation: In energy resource allocation, the
ector is moving toward using renewable energy sources. A utility com-
any must decide how to distribute investments across various energy
ources, such as fossil fuels, solar, and wind. Switching investments
e.g., from fossil fuels to renewable sources) involves significant costs,
ncluding infrastructure changes and workforce retraining. Moreover,
he company must consider the risk factors associated with each energy
ource, such as regulatory changes or varying market demands. An
ffective strategy would minimize switching costs while managing
he risks associated with each energy source’s future viability and
rofitability.

E-commerce platform advertising: An e-commerce platform using
nline advertising must frequently decide which products to promote.
witching the focus from one product line to another incurs costs,
ncluding market research and new ad campaign development. Addi-
ionally, there is a risk associated with focusing on a new product line,
uch as uncertain consumer demand. The platform needs a strategy that
udiciously balances the frequency of switching ad focus with the risk
ssociated with new or untested products.

Clinical trials for new treatments: In clinical trials, particularly in
rug development, researchers must allocate resources across multiple
otential treatments. Each treatment represents an ‘‘arm’’ in the multi-
rmed bandit problem. Switching from one treatment to another incurs
ignificant penalties, including the logistical costs of setting up new
rials and ethical considerations. Concurrently, there is a high degree of
isk involved, as each treatment carries its own efficacy and side effect
rofiles. A risk-averse strategy is crucial due to the implications for
atient health and safety. The challenge lies in minimizing switching
etween treatments while managing the risks associated with each,
iming to identify the most promising treatment efficiently and safely.

These examples demonstrate the real-world relevance of studying
AB problems that incorporate both risk-aversion and switching penal-

ies. Our research aims to address the gap in current methodologies
y proposing strategies that consider both these factors, offering more
ealistic and applicable solutions for decision-makers in various fields.

.2. Related work

Our research lies in the Markovian MAB literature, which we ex-
lore from two distinct perspectives: MAB problems with switching
enalties and risk-averse MAB problems.

.2.1. MAB problem with switching penalties
The MAB problem with switching costs is a complex extension of the

lassical MAB framework, which traditionally did not account for this
ost. The literature on this problem evolved significantly, moving from
oundational theoretical work to more complex, application-driven re-
earch. This evolution reflects a growing recognition of the complexities
nherent in real-world decision-making scenarios and the need for
ophisticated, adaptable strategies. A comprehensive survey by Jun
2004) explores theoretical foundations, algorithmic advancements,
nd practical applications in MAB problems with switching costs. This
urvey provides an extensive resource for understanding the impact of
witching penalties and the strategies developed to address them.

The initial acknowledgment of switching costs in the MAB frame-
ork can be traced back to works that identified the limitations of

raditional approaches in practical scenarios. For instance, Whittle
1988) introduced the concept of ‘‘restless bandits’’, which laid the
roundwork for considering scenarios where the state of unchosen
161 
options (arms) could change, indirectly hinting at the potential costs
of not switching.

The seminal paper by Banks and Sundaram (1994) was among
the first to explicitly address the challenge of switching costs in MAB
problems. They demonstrated that the introduction of switching costs
renders traditional index policies, such as the Gittins index, suboptimal.
This work was crucial in steering the focus of MAB research towards
developing strategies that could incorporate these additional costs.
Following this work, several researchers explored the complexities
introduced by switching costs. For instance, Asawa and Teneketzis
(1994) examined optimal switching times in the presence of these costs,
proposing a modified Gittins index to account for them. Their work
highlighted the intricacies involved in calculating the optimal time
for transitioning between arms, especially when each switch incurs a
penalty.

Subsequent research has further developed computational meth-
ods for these indices. Niño-Mora (2008) introduced a faster index
algorithm, significantly improving the computational efficiency for
bandits with switching costs. Additionally, Niño-Mora (2010) presented
a comprehensive study on computing an index policy for such bandits,
offering valuable insights into the practical implementation of these
strategies.

The impact of switching costs has been examined across various
domains. For example, in queuing systems, Van Oyen et al. (1992) an-
alyzed optimal scheduling policies for parallel queues without arrivals,
a special case of MAB with switching costs. Washburn (2008) applied
MAB to sensor management, incorporating switching delays in mechan-
ically pointed sensors. Similarly, Caro and Gallien (2007) investigated
dynamic assortment optimization for seasonal consumer goods using
a finite horizon multiarmed bandit model. They addressed how retail
firms should modify product assortments over time to maximize profits,
while considering implementation delays, switching costs, and demand
substitution effects.

Recent advancements in the domains of regret minimization and
pure exploration have also incorporated switching costs into the MAB
framework. With regard to regret minimization, algorithms have been
designed to balance the trade-off between exploration and exploitation
while minimizing the cumulative regret and the costs associated with
switching between arms. For instance, Rouyer et al. (2021) and Amir
et al. (2022) propose novel strategies that effectively manage switching
costs in both stochastic and adversarial settings. In the domain of pure
exploration, recent work by Mwai et al. (2024) introduces a batched
bandit algorithm for fixed-confidence pure exploration with constraints
on the frequency of arm switching. Their algorithm demonstrates that
it is possible to achieve quick stopping times while respecting the strict
switching limits, providing an efficient approach for scenarios where
switching costs are a significant concern.

1.2.2. Risk-averse MAB problem
The integration of risk considerations into MAB problems, despite its

relevance in numerous applications, remains a relatively underexplored
area in the literature. Denardo et al. (2007) pioneered the incorporation
of risk in a Markovian context, utilizing concave utility functions.
They introduced a novel state ranking system and established its op-
timality in selecting the highest-ranking arm. Their comprehensive
study spans three distinct models: one with a risk-averse exponential
utility, another with a risk-seeking exponential utility, and a third
employing a linear utility. Further enhancements to this methodology
are discussed in Denardo et al. (2013)’s subsequent work. Chancelier
et al. (2007) tackled risk aversion in a Markovian setting by examining
the choice between a random and a safe route in various information
regimes, framing it as a one-armed bandit problem. Similar to Denardo
et al. (2007), their approach hinges on utility functions to integrate
risk preferences into the model. However, these methods, centered on
utility functions for risk incorporation, are limited by the necessity for

decision-makers to explicitly define suitable utility functions, which can
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be challenging and may lead to solutions that are difficult to interpret,
as noted by Shapiro et al. (2009).

In contrast, more recent methodologies employing coherent risk
measures overcome the complexities associated with utility functions
(Artzner et al., 1999; Grechuk & Zabarankin, 2016). In this vein, Cohen
and Treetanthiploet (2019) innovatively adapted the Gittins index into
a nonlinear operator using coherent risk measures. They revisited the
Gittins index theorem, known as the prevailing charge formulation
by Weber (1992), in a generic discrete-time framework, moving away
from the Markov assumption to embrace the approach of El Karoui
and Karatzas (1994). Their method, which finely balances exploration
and exploitation in decision-making, formulates an optimal stopping
problem under a nonlinear expectation. They also showed that Gittins
indices can provide optimal solutions in scenarios where arms are
strongly independent, albeit with a relaxed definition of optimality.

Building on these developments, Malekipirbazari and Çavuş (2021,
2024) designed a new MAB framework based on dynamic coherent risk
measures, inspired by the risk-averse discrete-time Markov models for
discounted infinite horizon problems by Ruszczyński (2010). Malekipir-
bazari and Çavuş (2021) used Lagrangian duality theory to decom-
pose the problem and introduced a priority-index heuristic. Malekipir-
bazari and Çavuş (2024) established a theoretical foundation based on
Whittle’s retirement problem (Whittle, 1980) and proposed a different
index-based policy.

As discussed, coherent risk measures provide a more robust frame-
work for risk-averse optimization compared to utility functions, partic-
ularly due to their desirable properties like coherence and convexity.
However, we acknowledge that specifying the parameters of these
risk measures, including the weighting parameter, can be challenging
for practitioners. This difficulty is due to the lack of straightforward
interpretation and the need for careful calibration based on the specific
decision-making context.

1.3. Our contributions

This paper pioneers the integration of switching penalties and risk
aversion within the MAB framework, marking a significant leap to-
wards more realistic decision-making models. Our contributions are
threefold, each addressing a critical gap in the existing literature and
offering both theoretical insights and practical solutions:

1. Qualitative analysis of decision-making strategies: We ex-
plore how switching costs and risk aversion influence decision-
making in MAB problems. Our work here discusses the limita-
tions of existing strategies under these conditions by highlighting
the complexities introduced by these factors.

2. Development of novel strategies – The RASI policy: We in-
troduce the RASI policy, a heuristic method based on dynamic
coherent risk measures. This strategy is specifically designed
to navigate the complexities introduced by risk aversion and
switching costs, offering a systematic approach to arm selection
that balances the dual considerations of risk and penalty for
switching.

3. Insights from numerical experiments: Through rigorous nu-
merical experiments, we validate the effectiveness of the RASI
policy, showcasing its superiority over existing strategies. Our
findings reveal that the RASI policy outperforms traditional risk-
neutral policies by achieving an average optimality percentage
close to 99% in environments characterized by high switching
costs and risk aversion. These insights underscore the practical
applicability of our approach, providing decision-makers with
a robust tool for enhancing resource allocation in risk-averse
settings.

1.4. Outline of paper

The paper is structured as follows: Section 1 introduces the MAB
problem, highlighting the integration of risk aversion and switching
162 
penalties. Section 2 details the problem formulation, presenting the
risk-averse MAB problem with switching costs as a Markov decision
process. Section 3 analyzes the impact of switching costs in a risk-
averse setting, including theoretical insights into model equivalence
and the non-existence of optimal index policies. Section 4 introduces
a novel index-based heuristic and discusses its application in various
MAB environments, along with computational aspects and behavior
in restricted settings. Section 5 presents computational experiments
to assess the efficiency of the proposed index-based policy, focusing
on suboptimality and optimality percentages. Section 6 concludes the
paper with a summary of key findings and future research directions.

2. Problem formulation

In this section, we study the intricate problem of formulating a
risk-averse multiarmed bandit framework that incorporates switching
penalties. We begin by describing the MAB problem as a Markov
decision process (MDP), highlighting the key aspects of our approach.
This section is structured to first lay the groundwork with a detailed
problem description, followed by an exploration of the fundamental
concepts of dynamic coherent risk measures. We then proceed with
a comprehensive formulation of the risk-averse MAB problem with
switching penalties. This formulation not only captures the complexity
of real-world decision-making scenarios but also sets the foundation
for developing practical, heuristic strategies that balance computational
feasibility with the intricate demands of risk-averse environments.

2.1. Problem description

The expected total discounted reward is targeted to be maximized
in the classical risk-neutral bandits. More specifically, we may describe
MAB as an MDP, in which a decision maker chooses which arm to
play from a pool of 𝐾 potential options at each decision step 𝑡 ∈

, with N = {1, 2, 3,…}. In this work, a risk-averse MAB problem
ith dynamic coherent risk measures is taken into consideration. We

onsider minimizing negative rewards, which may be interpreted as
osts, for the sake of mathematical convenience.

The following is a description of our problem setting:

(i) Let each arm 𝑖 forms a Markov chain with a finite state space  𝑖,
𝑖 ∈ , and  = {1, 2,… , 𝐾}. Also let  =

⨉𝐾
𝑖=1 

𝑖 be the state
space of the resultant MDP, with the assumption that there is no
shared state in different arms.

(ii) Let  be a finite action space and 𝑈 (𝑥) ⊆  a nonempty set
of admissible actions at each state 𝑥 ∈  . Given the current
state 𝑥𝑡 ∈  at each step 𝑡 ∈ N, we execute an action 𝑢𝑡 =
(𝑢1𝑡 , 𝑢

2
𝑡 ,… , 𝑢𝐾𝑡 ) ∈ 𝑈 (𝑥𝑡). Here 𝑢𝑖𝑡 is the action applied to arm 𝑖 ∈ ,

where, at step 𝑡, 𝑢𝑖𝑡 = 1 denotes the activation of arm 𝑖 and 𝑢𝑖𝑡 = 0
denotes the absence of arm 𝑖 from play. Actions that result in
exactly one element of 𝑢𝑡 equaling one are considered admissible
actions.

(iii) The state of an activated arm changes at each step in a Marko-
vian manner in accordance with the transition probabilities
𝑄𝑖(𝑥, 1, 𝑦) ∶= P(𝑥𝑖𝑡+1 = 𝑦 ∣ 𝑥𝑖𝑡 = 𝑥, 𝑢𝑖𝑡 = 1), 𝑖 ∈ , 𝑥, 𝑦 ∈  𝑖, 𝑡 ∈ N,
where 𝑥𝑖𝑡 represents the state of arm 𝑖 at step 𝑡. On the other
hand, the state of a non-play arm stays the same, therefore for
each 𝑖 ∈ , 𝑥, 𝑦 ∈  𝑖, 𝑡 ∈ N we have 𝑄𝑖(𝑥, 0, 𝑦) ∶= P(𝑥𝑖𝑡+1 = 𝑦 ∣
𝑥𝑖𝑡 = 𝑥, 𝑢𝑖𝑡 = 0) = 1 if 𝑦 = 𝑥, 0 otherwise.

(iv) The cost incurred by playing arm 𝑖 and its transition to the next
state is represented by the cost function 𝑔𝑖, which is specified
to be finite and non-positive for each arm 𝑖 ∈ . Let us denote
𝑐𝑖(𝑥𝑖, 𝑢𝑖, 𝑦𝑖) as the sum of the costs associated with playing arm 𝑖
and changing from the state 𝑥𝑖 ∈  𝑖 to state 𝑦𝑖 ∈  𝑖 under the
action 𝑢𝑖 ∈ {0, 1}. That is

𝑐𝑖(𝑥𝑖, 𝑢𝑖, 𝑦𝑖) ∶=

{

𝑔𝑖(𝑥𝑖, 𝑦𝑖) if 𝑢𝑖 = 1,
𝑖
0 if 𝑢 = 0.
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Also 𝑐(𝑥, 𝑢, 𝑦) =
∑

𝑖∈ 𝑐
𝑖(𝑥𝑖, 𝑢𝑖, 𝑦𝑖), 𝑥 = (𝑥1,… , 𝑥𝐾 ) ∈  , 𝑦 =

(𝑦1,… , 𝑦𝐾 ) ∈  , and 𝑢 = (𝑢1,… , 𝑢𝐾 ) ∈ 𝑈 (𝑥).
(v) The switching costs, incurred by switching from one option (or

arm) to another, are denoted as 𝑠 = (𝑠1, 𝑠2,… , 𝑠𝐾 ). Each 𝑠𝑖

represents the cost incurred when transitioning to arm 𝑖 ∈ .
These costs could be financial, time-based, or resource-oriented,
reflecting the real-world implications of changing strategies or
actions. In our model, these costs are finite and positive.

(vi) 𝛱 = (𝜋,… , 𝜋) denote a stationary Markov policy, with 𝜋 ∶  →
 as an action rule. Note that, we have 𝑢𝑡 = 𝜋(𝑥𝑡), which means
both represent the action to be conducted at state 𝑥𝑡 ∈  for
𝑡 ∈ N. We also define 𝜋𝑖 ∶  𝑖 → {0, 1} which indicates the
decision to be taken for arm 𝑖 in a given state.

In this work, the decision-maker must navigate not only the poten-
tial rewards and risks associated with each arm of the MAB problem
but also the frequency and financial implications of switching between
these options. These switching penalties are particularly pertinent in
dynamic environments where adaptability is key, yet they introduce
significant trade-offs. We model risk aversion through dynamic co-
herent risk measures and seek a stationary Markov policy that mini-
mizes the total risk-averse discounted costs over an infinite horizon.
As Ruszczyński (2010) have shown, such a policy exists for infinite
horizon stationary MDPs with dynamic coherent risk measures and
can be identified using value iteration or policy iteration algorithms.
However, these methods can be computationally intensive and imprac-
tical for complex problems, and the resulting policy structures can be
challenging to interpret in real-world scenarios. To overcome these
hurdles, our research is directed towards developing suitable index-
based heuristic strategies. These strategies aim to strike a balance
between computational feasibility and interpretability, effectively ad-
dressing the intertwined challenges of risk aversion and switching costs
in decision-making processes.

2.2. Preliminaries on dynamic coherent risk measures

We first describe dynamic risk measures and their characteristic
before introducing our model. Take into account a probability space
(𝛺, , 𝑃 ), a filtration {∅, 𝛺} = 1 ⊂ … ⊂ 𝑇+1 ⊂  , and an adapted
sequence of random variables 𝑍𝑡 = 𝑐(𝑥𝑡−1, 𝑢𝑡−1, 𝑥𝑡) ∈ 𝑡, 𝑡 ∈ {2,… , 𝑇 +
1}. Define the spaces 𝑡 of 𝑡-measurable random variables on 𝛺,
𝑡 ∈ {1,… , 𝑇 +1} and 1,𝑇+1 = 1×⋯×𝑇+1, where 1 = R. Given that
each 𝑡 in our case is finite, it is possible to specify the spaces 𝑡 with
finite dimensional vector spaces.

Before giving a formal explanation of dynamic risk measures, we
first define the one-step conditional risk measures that serve as its
building blocks: One-step conditional risk measure, 𝜌𝑡 ∶ 𝑡+1 → 𝑡,
𝑡 ∈ {1,… , 𝑇 }, meets the following axioms (for details see Riedel (2004)
and Ruszczyński and Shapiro (2006a)):

(A1) 𝜌𝑡(𝛿𝑍+(1−𝛿)𝑊 ) ≤ 𝛿𝜌𝑡(𝑍)+(1−𝛿)𝜌𝑡(𝑊 ), ∀𝛿 ∈ (0, 1), 𝑍,𝑊 ∈ 𝑡+1;
(A2) if 𝑍 ⪯ 𝑊 , then 𝜌𝑡(𝑍) ≤ 𝜌𝑡(𝑊 ), ∀𝑍,𝑊 ∈ 𝑡+1;
(A3) 𝜌𝑡(𝑍 +𝑊 ) = 𝑍 + 𝜌𝑡(𝑊 ), ∀𝑍 ∈ 𝑡, 𝑊 ∈ 𝑡+1;
(A4) 𝜌𝑡(𝛿𝑍) = 𝛿𝜌𝑡(𝑍), ∀𝑍 ∈ 𝑡+1, 𝛿 ≥ 0.

These axioms, known as convexity (A1), monotonicity (A2), transla-
tion invariance (A3), and positive homogeneity (A4), align with the
principles of coherent risk measures as proposed by Artzner et al.
(1999). Convexity, or Axiom (A1), upholds the diversification princi-
ple, suggesting that the risk of a mixed portfolio cannot exceed the
weighted average risk of its components. Monotonicity (A2) posits that
a portfolio consistently yielding better outcomes than another should
not be deemed riskier, ensuring that risk assessment is aligned with
intuitive expectations of portfolio performance. Translation invariance
(A3) states that adding a certain amount to all outcomes of a portfolio
uniformly adjusts its risk measure by the same amount, reflecting

the direct impact of guaranteed gains or losses on the portfolio’s risk
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profile. Lastly, positive homogeneity (A4) implies that scaling the out-
comes of a portfolio by a positive factor proportionally affects its risk
measure, emphasizing the direct correlation between the magnitude of
investment actions and associated risk levels.

One popular and frequently applied coherent risk measure is first-
order mean-semideviation. Here, we provide the conditional version
of this risk measure (Ogryczak & Ruszczyński, 1999, 2001, 2002;
Ruszczyński & Shapiro, 2006a, 2006b). The definition of the condi-
tional first-order mean-semideviation risk measure is

𝜌𝑡(𝑍𝑡+1) = E[𝑍𝑡+1|𝑡] + 𝜅E[(𝑍𝑡+1 − E[𝑍𝑡+1|𝑡])+|𝑡], (1)

where 𝜅 ∈ [0, 1] and (𝑎)+ ∶= max{𝑎, 0} for 𝑎 ∈ R.
A dynamic risk measure is defined as a sequence of one-step condi-

tional risk measures (Artzner et al., 2007; Calafiore & Dabbene, 2006;
Cheridito et al., 2006; Föllmer & Penner, 2006; Ruszczyński, 2010). The
dynamic risk measure 𝜚1,𝑇 ∶ 1,𝑇+1 ↦ 1 on the finite horizon with
length 𝑇 can be presented as:

𝜚1,𝑇 (𝑍2, 𝑍3,… , 𝑍𝑇+1) ∶= 𝜌1
(

𝑍2 + 𝜌2
(

𝑍3 + 𝜌3
(

𝑍4 +⋯ + 𝜌𝑇
(

𝑍𝑇+1
)

…
)))

(2)

and in the discounted scenario with discount factor 𝛽 ∈ (0, 1), it is given
as:
𝜚𝛽1,𝑇 (𝑍2,… , 𝑍𝑇+1) ∶= 𝜌1

(

𝑍2 + 𝜌2
(

𝛽𝑍3 + 𝜌3
(

𝛽2𝑍4 +…

+ 𝜌𝑇
(

𝛽𝑇−1𝑍𝑇+1
)

…
)))

(3)

Accordingly, the dynamic risk measure for an infinite horizon can be
described as:

𝜚(𝑍2, 𝑍3, 𝑍4,…) ∶= lim
𝑇→∞

𝜚1,𝑇 (𝑍2, 𝑍3,… , 𝑍𝑇+1) (4)

𝜚𝛽 (𝑍2, 𝑍3, 𝑍4,…) ∶= lim
𝑇→∞

𝜚𝛽1,𝑇 (𝑍2, 𝑍3,… , 𝑍𝑇+1) (5)

To clarify the concept of dynamic risk measures, the following ex-
ample demonstrates the application of the first-order
mean-semideviation as a dynamic risk measure over two periods. This
example is particularly instructive as it concretely illustrates how risk
assessments can evolve over time, capturing the essence of dynamic
risk management.

Example 1 (Malekipirbazari & Çavuş, 2024). For dynamic risk measure
of first-order mean-semideviation with two periods and a discount
factor of 𝛽, we obtain

𝜚𝛽1,2(𝑍2, 𝑍3) = 𝜌1(𝑍2 + 𝜌2(𝛽𝑍3))

= E
[

𝑍2 + 𝜌2(𝛽𝑍3)|1
]

+ 𝜅E
[(

𝑍2 + 𝜌2(𝛽𝑍3)

− E
[

𝑍2 + 𝜌2(𝛽𝑍3)|1
]

)

+

|

|

|

1

]

,

where 𝜌2(𝛽𝑍3) = E[𝛽𝑍3|2] + 𝜅E
[(

𝛽𝑍3 − E[𝛽𝑍3|2]
)

+|2
]

.

2.3. Problem formulation for risk-averse MAB with switching penalties

Now, we explore the mathematical formulation of the risk-averse
multiarmed bandit problem with switching penalties. Our focus is on
assessing the risk of cost sequences under a given policy 𝛱 and initial
state 𝑥1, incorporating the dynamic risk measures as outlined in (5).
The formulation is as follows:

𝑅𝛱 (𝑥1) = 𝜚𝛽
(

𝑐(𝑥1, 𝑢1, 𝑥2) + 𝑠𝑇 𝑢1, 𝑐(𝑥2, 𝑢2, 𝑥3) + 𝑠𝑇 𝑢21𝑢2≠𝑢1 , 𝑐(𝑥3, 𝑢3, 𝑥4)

+ 𝑠𝑇 𝑢31𝑢3≠𝑢2 ,…
)

.

(6)

The term 𝑠𝑇 𝑢𝑡 represents the inner product of two vectors, 𝑠 and 𝑢𝑡, and
is crucial for calculating the switching costs in our model. As previously

mentioned, the vector 𝑢𝑡 has a single non-zero element indicating
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the arm currently in play. Consequently, 𝑠𝑇 𝑢𝑡 effectively yields the
switching cost associated with the arm to which we are transitioning.
It is important to note that this switching cost becomes relevant only
when there is a change in the arm being played, as indicated by the
condition 1𝑢𝑡≠𝑢𝑡−1 = 1. In such cases, the cost 𝑠𝑇 𝑢𝑡 is incurred due to the
transition. This mechanism ensures that switching costs are accounted
for in the total risk-averse cost calculation only when a change in the
active arm occurs, aligning with the realistic scenarios where switching
decisions carry financial or operational implications.

Considering 𝑅(𝑥1) as the optimal risk-averse total discounted cost
with switching penalty starting from state 𝑥1, and denoting Π as the
class of stationary admissible policies for our problem, the objective is
formalized as follows:

𝑅(𝑥1) = min
𝛱∈Π

𝑅𝛱 (𝑥1). (7)

In the context of switching costs, the state of the problem at any
given time step 𝑡 cannot be adequately captured by the state vector
𝑥𝑡 alone, except at the initial step (𝑡 = 1). This is because the decision-
making process is influenced not just by the current state but also by the
history of actions, specifically which arm was last played. Therefore, to
accurately account for this aspect, we extend our formulation to include
the identity of the immediately played arm. Accordingly, the risk of cost
sequences for a policy 𝛱 at time 𝑡, considering arm 𝑖 ∈  as the last
played arm, is expressed as:

𝑅𝛱 (𝑥𝑡, 𝑖) = 𝜚𝛽
(

𝑐(𝑥𝑡, 𝑢𝑡, 𝑥𝑡+1) + 𝑠𝑇 𝑢𝑡1𝑢𝑖𝑡≠1, 𝑐(𝑥𝑡+1, 𝑢𝑡+1, 𝑥𝑡+2)

+ 𝑠𝑇 𝑢𝑡+11𝑢𝑡+1≠𝑢𝑡+2 ,…
)

.
(8)

In this extended formulation, 𝑅(𝑥𝑡, 𝑖) represents the optimal risk-averse
total discounted cost when starting from state 𝑥𝑡 with arm 𝑖 as the
last played arm, incorporating the positive switching penalty. The
optimization problem thus becomes:

𝑅(𝑥𝑡, 𝑖) = min
𝛱∈Π

𝑅𝛱 (𝑥𝑡, 𝑖). (9)

This formulation captures the essence of decision-making under
risk and switching penalties, reflecting scenarios where each deci-
sion’s consequences unfold over time. However, solving the optimiza-
tion problems represented by (7) and (9), using risk-averse dynamic
programming approaches introduced in Ruszczyński (2010), becomes
increasingly impractical for larger-scale problems. This impractical-
ity arises from the exponential growth in computational complexity.
Moreover, while index policies are commonly employed for optimizing
MAB problems, their effectiveness in certain contexts, including ours,
can be limited. As highlighted by Banks and Sundaram (1994), there
are scenarios in risk-neutral MAB problems with positive switching
costs where optimal solutions are not index-based. This realization
diminishes the incentive to seek optimal solutions, especially when
considering the interpretability and practical applicability of these
solutions in complex scenarios. In light of this, our approach aims to
develop index-based heuristic strategies. These strategies are designed
to offer a pragmatic balance, providing solutions that are not only
computationally feasible but also maintain a level of interpretability
and practical relevance. This involves creating a generalized form of the
problem and developing calibrating functions for each arm. By focusing
on one arm at a time and devising appropriate calibrating functions, we
aim to simplify the problem and develop a solution that balances the
need for practicality with the desire for theoretical rigor.

This study also contemplates a variant of the MAB problem that
incorporates switching delays, an aspect equally pivotal as switching
costs. The formulation and implications of MAB under switching delays
are explored in Section 4.7. This additional discussion complements our
primary focus on switching costs, providing a broader perspective on

the dynamics of decision-making in risk-averse environments.
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3. The dynamics of switching costs in risk-averse bandit models

Our analysis in this section is twofold: firstly, we aim to validate
whether our specific approach to modeling switching costs is suffi-
ciently general to encapsulate a broader range of scenarios. Secondly,
we endeavor to investigate the existence (or lack thereof) of optimal
index policies in such risk-averse MAB problems. This exploration is
crucial for understanding the limitations and potential of index-based
strategies in environments where both risk aversion and the costs of
switching strategies play important roles.

3.1. Generalization of switching costs in a risk-averse framework

In this section, we examine the impact of incorporating switching
costs within a risk-averse MAB setting. A key aspect of our analysis
involves simplifying the model to make it more tractable without losing
generality. Following the approach of Banks and Sundaram (1994),
we adopt the assumption that any bandit problem involving costs
for switching both ‘‘away from’’ and ‘‘to’’ an arm can be effectively
transformed into an equivalent problem with only the cost of switching
to an arm. This assumption is crucial for streamlining our analysis, and
it raises an important question: Is considering a bandit problem with
only a single type of switching cost comprehensive enough to capture
the effects of switching in our risk-averse model?

To address this, Banks and Sundaram (1994) demonstrated that
in the risk-neutral context, MAB problems with dual switching costs
(both ‘‘from’’ and ‘‘to’’ an arm) can be equivalently represented by
problems with only ‘‘to’’ switching costs. We extend this concept to the
risk-averse setting, hypothesizing that a similar equivalence holds. The
following theorem is critical in our discussion, asserting that every risk-
averse bandit problem with costs for both switching away from and to
an arm can be equivalently modeled as a problem with costs incurred
only for switching to an arm.

Theorem 1. Every risk-averse bandit problem in which switching away
from and switching to an arm incurs costs has an equivalent risk-averse
bandit problem in which only switching to an arm incurs costs.

Proof. Consider two different risk-averse bandits with switching costs
that possess the same state space and action space, thus the same policy
space. Let their transition probabilities also be the same, which means
in both problems, the same distribution is induced by a given policy
on infinite histories. In the first bandit, the change in play for arm 𝑖
includes both ‘‘switching to’’ cost 𝑠(1)𝑖 and ‘‘switching from’’ cost 𝑑(1)𝑖 ,
yet in the second bandit only ‘‘switching to’’ an arm is costly with the
cost of 𝑠(2)𝑖 = 𝑠(1)𝑖 + 𝑑(1)𝑖 . Moreover, let the cost of transition in arm 𝑖 at
time 𝑡 be 𝑐𝑖(𝑥𝑖𝑡, 1, 𝑥

𝑖
𝑡+1) and 𝑐𝑖(𝑥𝑖𝑡, 1, 𝑥

𝑖
𝑡+1) − (1− 𝛽)𝑑(1)𝑖 for the first and the

second bandits, respectively. The aim is to show that these two bandits
are equivalent. For that, let us consider a finite-horizon problem where
the switch to arm 𝑖 at step 𝑡𝑇 is the last arm switch in the play. First, we
show that the risk-adjusted total discounted cost for this arm during the
periods of its continuous usage is the same in both problems. Suppose
arm 𝑖 is played for 𝑘𝑇 consecutive steps prior to termination. The risk-
adjusted total discounted value of these 𝑘𝑇 periods for the first and the
second bandits respectively are:

𝑅(1)
𝛥𝑘𝑇

(𝑥𝑡𝑇 ) = 𝜚𝛽1,𝑘𝑇 +1
(

𝑠(1)𝑖 + 𝑐𝑖(𝑥𝑖𝑡𝑇 , 1, 𝑥
𝑖
𝑡𝑇 +1

), 𝑐(𝑥𝑖𝑡𝑇 +1, 1, 𝑥
𝑖
𝑡𝑇 +2

),… ,

𝑐(𝑥𝑖𝑡𝑇 +𝑘𝑇 −1, 1, 𝑥
𝑖
𝑡𝑇 +𝑘𝑇

), 𝑑(1)𝑖
)

= 𝑠(1)𝑖 + 𝛽𝑘𝑇 𝑑(1)𝑖 + 𝜚𝛽1,𝑘𝑇

(

𝑐𝑖(𝑥𝑖𝑡𝑇 , 1, 𝑥
𝑖
𝑡𝑇 +1

), 𝑐(𝑥𝑖𝑡𝑇 +1, 1, 𝑥
𝑖
𝑡𝑇 +2

),… ,

𝑐(𝑥𝑖𝑡𝑇 +𝑘𝑇 −1, 1, 𝑥
𝑖
𝑡𝑇 +𝑘𝑇

)
)

,

(2)
𝛥𝑘𝑇

(𝑥𝑡𝑇 ) = 𝜚𝛽1,𝑘𝑇

(

𝑠(1)𝑖 + 𝑑(1)𝑖 + 𝑐𝑖(𝑥𝑖𝑡𝑇 , 1, 𝑥
𝑖
𝑡𝑇 +1

) − (1 − 𝛽)𝑑(1)𝑖 ,

𝑖 𝑖 (1)
𝑐(𝑥𝑡𝑇 +1, 1, 𝑥𝑡𝑇 +2) − (1 − 𝛽)𝑑𝑖 ,
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… , 𝑐(𝑥𝑖𝑡𝑇 +𝑘𝑇 −1, 1, 𝑥
𝑖
𝑡𝑇 +𝑘𝑇

) − (1 − 𝛽)𝑑(1)𝑖
)

= 𝑠(1)𝑖 + 𝑑(1)𝑖 − (1 − 𝛽)𝑑(1)𝑖

𝑘𝑇 −1
∑

𝑡=0
𝛽𝑡 + 𝜚𝛽1,𝑘𝑇

(

𝑐𝑖(𝑥𝑖𝑡𝑇 , 1, 𝑥
𝑖
𝑡𝑇 +1

),… ,

𝑐(𝑥𝑖𝑡𝑇 +𝑘𝑇 −1, 1, 𝑥
𝑖
𝑡𝑇 +𝑘𝑇

)
)

= 𝑠(1)𝑖 + 𝛽𝑘𝑇 𝑑(1)𝑖 + 𝜚𝛽1,𝑘𝑇

(

𝑐𝑖(𝑥𝑖𝑡𝑇 , 1, 𝑥
𝑖
𝑡𝑇 +1

), 𝑐(𝑥𝑖𝑡𝑇 +1, 1, 𝑥
𝑖
𝑡𝑇 +2

),… ,

𝑐(𝑥𝑖𝑡𝑇 +𝑘𝑇 −1, 1, 𝑥
𝑖
𝑡𝑇 +𝑘𝑇

)
)

.

Thus, 𝑅(1)
𝛥𝑘𝑇

(𝑥𝑡𝑇 ) = 𝑅(2)
𝛥𝑘𝑇

(𝑥𝑡𝑇 ). Then, suppose at 𝑡𝑇−1 before the last
switch arm 𝑗 is played for 𝑘𝑇−1 consecutive steps. The risk-adjusted
total discounted value from step 𝑡𝑇−1 for the first and the second bandits
respectively are:

𝑅(1)
𝛥𝑘𝑇−1

(𝑥𝑡𝑇−1 )

= 𝜚𝛽1,𝑘𝑇−1+1
(

𝑠(1)𝑗 + 𝑐𝑗 (𝑥𝑗𝑡𝑇−1 , 1, 𝑥
𝑗
𝑡𝑇−1+1

),… , 𝑐(𝑥𝑗𝑡𝑇−1+𝑘𝑇−1−1, 1, 𝑥
𝑗
𝑡𝑇−1+𝑘𝑇−1

),

𝑑(1)𝑗 + 𝑅(1)
𝛥𝑘𝑇

(𝑥𝑡𝑇 )
)

= 𝑠(1)𝑗 + 𝛽𝑘𝑇−1𝑑(1)𝑗

+ 𝜚𝛽1,𝑘𝑇−1+1
(

𝑐𝑗 (𝑥𝑗𝑡𝑇 , 1, 𝑥
𝑗
𝑡𝑇 +1

),… , 𝑐(𝑥𝑗𝑡𝑇 +𝑘𝑇−1−1, 1, 𝑥
𝑗
𝑡𝑇 +𝑘𝑇−1

), 𝑅(1)
𝛥𝑘𝑇

(𝑥𝑡𝑇 )
)

,

𝑅(2)
𝛥𝑘𝑇−1

(𝑥𝑡𝑇−1 )

= 𝜚𝛽1,𝑘𝑇−1+1
(

𝑠(1)𝑗 + 𝑑(1)𝑗 + 𝑐𝑖(𝑥𝑗𝑡𝑇 , 1, 𝑥
𝑗
𝑡𝑇 +1

)

− (1 − 𝛽)𝑑(1)𝑗 , 𝑐(𝑥𝑗𝑡𝑇 +1, 1, 𝑥
𝑗
𝑡𝑇 +2

) − (1 − 𝛽)𝑑(1)𝑗 ,

… , 𝑐(𝑥𝑗𝑡𝑇 +𝑘𝑇−1−1, 1, 𝑥
𝑗
𝑡𝑇 +𝑘𝑇−1

) − (1 − 𝛽)𝑑(1)𝑗 , 𝑅(2)
𝛥𝑘𝑇

(𝑥𝑡𝑇 )
)

= 𝑠(1)𝑗 + 𝛽𝑘𝑇−1𝑑(1)𝑗

+ 𝜚𝛽1,𝑘𝑇−1+1
(

𝑐𝑖(𝑥𝑗𝑡𝑇 , 1, 𝑥
𝑗
𝑡𝑇 +1

),… , 𝑐(𝑥𝑗𝑡𝑇 +𝑘𝑇−1−1, 1, 𝑥
𝑗
𝑡𝑇 +𝑘𝑇−1

), 𝑅(2)
𝛥𝑘𝑇

(𝑥𝑡𝑇 )
)

,

implying 𝑅(1)
𝛥𝑘𝑇−1

(𝑥𝑡𝑇−1 ) = 𝑅(2)
𝛥𝑘𝑇−1

(𝑥𝑡𝑇−1 ). Iterating similarly down to the
beginning of the play, the equivalence of the two bandits follows.
Finally, when the horizon length goes to infinity, the assertion of the
theorem follows. □

The proof of Theorem 1 while conceptually extending the frame-
work established by Banks and Sundaram (1994), encounters unique
challenges due to the incorporation of risk aversion into the MAB
problem. Specifically, the nonlinear nature of the risk operator used
to model risk aversion introduces certain complexity. Unlike in the
risk-neutral setting, where costs are aggregated linearly, the risk-averse
setting requires careful consideration of how risk is compounded over
time and across decisions. This nonlinearity complicates the analysis, as
it affects the valuation of future costs and the decision-making process
itself.

This theorem not only simplifies our analytical framework but also
ensures that our conclusions are broadly applicable, encompassing a
wider range of real-world scenarios where switching costs are asym-
metric or involve different types of costs for entering and exiting
positions.

3.2. Non-existence of optimal index in risk-averse MAB with switching costs

Here, we discuss the feasibility of identifying an optimal index
policy in risk-averse bandits that incorporate switching costs. Our ob-
jective is to demonstrate that, contrary to certain risk-neutral scenarios,
an optimal index policy does not exist in this more complex risk-averse
context with switching costs.

Theorem 2. There is no optimal index for the risk-averse bandits with

switching costs.
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The proof of Theorem 2 extends the arguments presented by Banks
and Sundaram (1994) to the risk-averse setting, utilizing the first-order
mean-semideviation measure with parameter 𝜅 to account for risk. Due
to its foundational reliance on established results in the neutral case,
we omit the detailed proof here, noting that the adaptation follows
a similar logical structure with necessary modifications to incorporate
risk aversion.

4. Indexability and indices with switching costs

Index policies play an important role in solving MAB problems.
These policies, which rely on numerical indices to evaluate and select
arms, must be carefully tailored to effectively balance expected rewards
against the inherent uncertainties and costs of switching strategies.
This section delves into the details of index policies in the context
of risk-averse MAB problems, examining both their limitations and
potential enhancements to accommodate switching costs. We begin
by revisiting the traditional Gittins index and its recent extensions to
risk-averse scenarios, then propose a novel index policy that explicitly
incorporates switching costs, thereby offering a more comprehensive
framework for decision-making in these complex environments. Fur-
ther, we extend our discussion to encompass restricted environments,
including deterministic and stochastic settings, providing insights into
the optimal policy structures in these specific contexts. Lastly, we tackle
the computational aspects of the new indices, proposing a method that
synthesizes the algorithmic approaches used in both risk-neutral cases
with switching costs and risk-averse scenarios without switching costs.

4.1. Evolving index policies: Addressing switching costs in risk-averse sce-
narios

Traditional Gittins index policies do not account for the additional
complexities introduced by switching costs. Asawa and Teneketzis
(1996) addressed this by defining a ‘‘switching index’’ to handle switch-
ing penalties, including both costs and delays. Malekipirbazari and
Çavuş (2021) extended the Gittins index to incorporate risk aversion,
showing that in risk-averse MAB problems with dynamic coherent risk
measures, each arm is indexable. This adaptation allows for refined
decision-making where both expected rewards and associated risks are
considered. However, these advancements still do not fully address
the challenges posed by switching costs. Our proposed methodology
introduces a risk-averse switching index that integrates both potential
rewards and switching costs, considering the decision-maker’s risk
preferences. This development builds on Malekipirbazari and Çavuş
(2021), which introduced the ‘‘risk-averse allocation index’’ (RAI),
extending the conceptual and computational framework to scenarios
where both risk aversion and switching costs significantly influence
decision-making processes.

4.2. Decomposition and index heuristic development

In pursuit of devising an index heuristic for the problem outlined
in (9), we transition to an equivalent optimization challenge by broad-
ening the scope of Π to encompass Π′, a class of stationary policies
that permit unrestricted action selection. This modification allows for
the possibility of engaging no arm or multiple arms at any given step:

𝑅(𝑥1, 𝑗) = min
𝛱∈Π′

𝜚𝛽
(

𝑐(𝑥1, 𝑢1, 𝑥2) + 𝑠𝑇 𝑢11𝑢𝑗1≠1
, 𝑐(𝑥2, 𝑢2, 𝑥3) + 𝑠𝑇 𝑢21𝑢2≠𝑢1 ,

𝑐(𝑥3, 𝑢3, 𝑥4) + 𝑠𝑇 𝑢31𝑢3≠𝑢2 ,…
)

s.t.
∑

𝑖∈
𝑢𝑖𝑡 = 1, ∀𝑡 ∈ N, (10)

𝑢𝑖 ∈ {0, 1}, ∀𝑖 ∈ , 𝑡 ∈ N. (11)
𝑡
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The constraint (10) mandates the activation of precisely one arm at
each step. This constraint is subsequently relaxed to:

𝜚𝛽
(

∑

𝑖∈
𝑢𝑖1,

∑

𝑖∈
𝑢𝑖2,…

)

= 1
1 − 𝛽

. (12)

y substituting constraint (10) with (12) and applying a Lagrangian
elaxation, we derive the following Lagrangian dual function:

𝐷(𝜈, 𝑥1, 𝑗) = min
𝛱∈Π′

𝜚𝛽
(

𝑐(𝑥1, 𝑢1, 𝑥2)+𝑠𝑇 𝑢11𝑢𝑗1≠1
, 𝑐(𝑥2, 𝑢2, 𝑥3)+𝑠𝑇 𝑢21𝑢2≠𝑢1 ,

𝑐(𝑥3, 𝑢3, 𝑥4)+𝑠𝑇 𝑢31𝑢3≠𝑢2 ,…
)

+ 𝜈𝜚𝛽
(

∑

𝑖∈
𝑢𝑖1,

∑

𝑖∈
𝑢𝑖2,…

)

− 𝜈
(

1
1 − 𝛽

)

s.t. 𝑢𝑖𝑡 ∈ {0, 1}, ∀𝑖 ∈ , 𝑡 ∈ N. (13)

here 𝜈 ∈ R represents the Lagrangian multiplier. Given the duality
rinciple, 𝐷(𝜈, 𝑥1, 𝑗) ≤ 𝑅(𝑥1, 𝑗) holds true for any 𝜈 ∈ R. Utiliz-

ing the subadditivity property of dynamic risk measures, discussed
in Malekipirbazari and Çavuş (2021, Lemma III.1), we introduce a dual
function ′

𝐷(𝜈, 𝑥1, 𝑗) to approximate 𝑅(𝑥1, 𝑗):

′
𝐷(𝜈, 𝑥1, 𝑗) = min

𝛱∈Π′

∑

𝑖∈
𝜚𝛽
(

𝑐𝑖(𝑥𝑖1, 𝑢
𝑖
1, 𝑥

𝑖
2)+𝑠

𝑖𝑢𝑖11𝑖≠𝑗 , 𝑐
𝑖(𝑥𝑖2, 𝑢

𝑖
2, 𝑥

𝑖
3)+𝑠

𝑖𝑢𝑖21𝑢𝑖2≠𝑢𝑖1
,

𝑐𝑖(𝑥𝑖3, 𝑢
𝑖
3, 𝑥

𝑖
4) + 𝑠

𝑖𝑢𝑖31𝑢𝑖3≠𝑢𝑖2
,…

)

+𝜈
∑

𝑖∈
𝜚𝛽

(

𝑢𝑖1, 𝑢
𝑖
2,…

)

− 𝜈
(

1
1 − 𝛽

)

s.t. 𝑢𝑖𝑡 ∈ {0, 1}, ∀𝑖 ∈ , 𝑡 ∈ N. (14)

Although 𝐷(𝜈, 𝑥1, 𝑗) serves as a lower bound for 𝑅(𝑥1, 𝑗), ′
𝐷(𝜈, 𝑥1, 𝑗)

ay not necessarily be smaller than 𝑅(𝑥1, 𝑗). Nonetheless, problem (14)
acilitates an index-based policy, offering a feasible and interpretable
trategy for the problem (9). We proceed to decompose problem (14)
nto 𝐾 subproblems, each corresponding to individual arms, to de-
ive this index-based policy and demonstrate its proximity to an opti-
al solution for (9) through computational analysis. Each subproblem

or arm 𝑖, denoted as ′
𝐷𝑖(𝜈, 𝑥

𝑖
1, 𝑗), can be expressed and minimized

ndependently:

′
𝐷𝑖(𝜈, 𝑥

𝑖
1, 𝑗) = min

𝛱 𝑖∈Π′ 𝑖
𝜚𝛽

(

𝑐𝑖(𝑥𝑖1, 𝑢
𝑖
1, 𝑥

𝑖
2)

+ 𝑠𝑖𝑢𝑖11𝑖≠𝑗 , 𝑐
𝑖(𝑥𝑖2, 𝑢

𝑖
2, 𝑥

𝑖
3) + 𝑠

𝑖𝑢𝑖21𝑢𝑖2≠𝑢𝑖1
,…

)

+𝜈𝜚𝛽
(

𝑢𝑖1, 𝑢
𝑖
2,…

)

s.t. 𝑢𝑖𝑡 ∈ {0, 1}, ∀𝑡 ∈ N, (15)

where Π′𝑖 represents the set of all possible stationary policies for arm 𝑖,
without any constraints on the actions at each step. The term 𝜈∕(1 − 𝛽)
present in (14) is omitted in subproblem (15) without affecting the
optimal policies.

To elucidate the indexability of subproblem (15) and to outline
the structure of the indices, we introduce a calibrating function for
each arm. This function is pivotal for understanding the optimal policy
structure for each arm within the broader MAB problem.

Lemma 1. For arm 𝑖 ∈  and for all 𝑡 ∈ N, if the action ‘‘not play’’ is
optimal for state 𝑥𝑖𝑡 ∈  𝑖, then it remains optimal for state 𝑥𝑖𝑙 ∈  𝑖, for all
𝑙 ≥ 𝑡 + 1.

Proof. The optimality of the ‘‘not play’’ action for state 𝑥𝑖𝑡 implies that,
due to the stationary nature of the problem, the same action remains
optimal for state 𝑥𝑖𝑙, for all 𝑙 ≥ 𝑡 + 1. This stationary property ensures
consistency in the decision-making process across time steps. □

This lemma sets the stage for defining an optimal policy for subprob-
lem (15), focusing on the individual dynamics of each arm. Accord-
ingly, our analysis will focus on two distinct stationary policies: one
that opts never to play and another that plays the arm continuously
until a certain stopping time 𝜏 𝑖 is reached. We proceed to derive an
index-based policy that is not only interpretable but also closely ap-
proximates the optimal policy for the original problem (9). To achieve

this, it is necessary to identify appropriate calibration functions for each
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arm. The resulted indices for arm 𝑖 in state 𝑥𝑖 ∈  𝑖 are determined as
the values of 𝜈 at which the actions ‘‘play’’ and ‘‘not play’’ are deemed
equally preferable, tailored to whether arm 𝑖 was previously in play or
not, respectively.

4.3. Risk-averse switching index (RASI)

Building on the conceptual framework outlined earlier, we now
present the detailed mathematical formulation of the ‘‘risk-averse
switching index’’ (RASI). RASI is calculated based on two scenarios: one
where the arm is currently in play (denoted by 𝜇𝑖(𝑥𝑖1, 1)) and another
where the arm is not currently in play (denoted by 𝜇𝑖(𝑥𝑖1, 0)). The
ormulation of RASI is based on the concept of dynamic coherent risk
easures, which allows for a time-consistent evaluation of risk and

eward.

efinition 1. The RASI for each state of arm 𝑖 currently in play is
iven by:

𝑖(𝑥𝑖1, 1) ∶= sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1 (−1,−1,… ,−1)

.

(16)

Similarly, the RASI for each state of arm 𝑖 not currently in play is:

𝜇𝑖(𝑥𝑖1, 0) ∶= sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1 (−1,−1,… ,−1)

.

(17)

Building upon the mathematical foundation of the RASI, we intro-
duce a pragmatic and effective decision-making strategy, termed the
‘‘RASI policy’’. This policy is an index-based heuristic that leverages
the computed RASI values to guide arm selection in a risk-averse MAB
environment, particularly under conditions where switching costs are
significant. It operationalizes the concept of RASI by systematically
selecting the arm with the highest index value at each decision step.

For the indices 𝜇𝑖(𝑥𝑖1, 1) and 𝜇𝑖(𝑥𝑖1, 0) to effectively guide decision-
making, they must establish a consistent state ordering. Specifically, if
choosing not to play arm 𝑖 in state 𝑥𝑖1 is optimal for a given index value,
then not playing should remain optimal for any 𝜈 exceeding that index
value. To formalize this, we introduce 𝛩𝑖1(𝜈) and 𝛩𝑖0(𝜈) as the sets of
states for arm 𝑖 where the optimal action is ‘‘not play’’, given specific 𝜈
values. This distinction is made based on whether arm 𝑖 was previously
active (1) or inactive (0). As per Whittle’s indexability concept, arm
𝑖 is indexable if, for every 𝜈 ∈ R, there exists an optimal policy for
the subproblem (15) such that the size of 𝛩𝑖1(𝜈) and 𝛩𝑖0(𝜈) increases
monotonically with 𝜈. This criterion ensures a coherent policy structure
that adapts based on the arm’s current state of play. Accordingly, the
indices are defined as

𝜇𝑖(𝑥𝑖1, 1) = inf{𝜈 ∈ R ∶ 𝑥𝑖 ∈ 𝛩𝑖1(𝜈)}

for states where the arm was active, and

𝜇𝑖(𝑥𝑖1, 0) = inf{𝜈 ∈ R ∶ 𝑥𝑖 ∈ 𝛩𝑖0(𝜈)}

for states where the arm was inactive. This framework ensures that the
indices 𝜇𝑖(𝑥𝑖1, 1) and 𝜇𝑖(𝑥𝑖1, 0) provide a meaningful and actionable basis
for decision-making in the context of risk-averse MAB problems with
switching costs. Accordingly, for a given 𝜈 ∈ R, the stopping times
𝜏 𝑖1(𝑥

𝑖
1) and 𝜏 𝑖0(𝑥

𝑖
1) can be computed as:

𝜏 𝑖1(𝑥
𝑖
1) ∶= inf{𝑡 > 1 ∶ 𝑥𝑖𝑡 ∈ 𝛩𝑖1(𝜈)} (18)

𝑖 (𝑥𝑖 ) ∶= inf{𝑡 > 1 ∶ 𝑥𝑖 ∈ 𝛩𝑖 (𝜈)} (19)
0 1 𝑡 0
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Building on Lemma 1 and incorporating (18) and (19), it follows that
for all 𝑡 ≥ 𝜏 𝑖1(𝑥

𝑖
1), the state 𝑥𝑖𝑡 falls within 𝛩𝑖1(𝜈), and similarly, for all

𝑡 ≥ 𝜏𝑖0(𝑥
𝑖
1), 𝑥

𝑖
𝑡 is included in 𝛩𝑖0(𝜈). This observation simplifies the task

of identifying an optimal policy to determining appropriate stopping
times, as delineated by the indices introduced in Definition 1. For
the sake of clarity, and in reference to equation (6) in Ruszczyński
(2010), we adopt a notation where 𝜚𝛽1,𝜏−1(𝑍2, 𝑍3,… , 𝑍𝜏 ) is equated
to 𝜚𝛽 (𝑍2, 𝑍3,… , 𝑍𝜏 , 0, 0,…), albeit with a broader interpretation to
accommodate our context.

The following theorem asserts the indexability of each arm within
the framework of RASI, thereby establishing a direct link between
the RASI and the optimal solution strategy for (15). It demonstrates
that our approach aligns with the foundational principles of index-
based decision-making in the context of risk-averse multiarmed bandit
problems with switching costs.

Theorem 3. Each arm 𝑖 ∈  is indexable with respect to the RASI
introduced in Definition 1.

Proof. For arm 𝑖 ≠ 𝑗 and a given constant 𝜈 ∈ R, we examine the
subproblem (15), considering two distinct policy approaches: either
engaging the arm until a predetermined stopping time 𝜏 𝑖 or opting not
to engage it at all.

Engaging arm 𝑖 from its initial state 𝑥𝑖1 ∈  𝑖 up to the stopping time
𝜏 𝑖 yields the objective function value as follows:

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖𝜏𝑖−1, 1, 𝑥

𝑖
𝜏𝑖 )

)

+ 𝜈𝜚𝛽 (1,… , 1
⏟⏟⏟
𝜏𝑖−1

, 0, 0,…).

Conversely, if arm 𝑖 is not engaged from state 𝑥𝑖1, leveraging Lemma 1,
the objective function value is determined as zero. Thus, the action to
‘‘play’’ is unequivocally optimal for 𝑥𝑖1 when there exists a stopping
policy 𝜏𝑖 such that the above value is less than the objective value of
‘‘not play’’, specifically:

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖𝜏𝑖−1, 1, 𝑥

𝑖
𝜏𝑖 )

)

+ 𝜈𝜚𝛽
1,𝜏𝑖−1

(1,… , 1) < 0.

Reorganizing this inequality, we find:

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖𝜏𝑖−1, 1, 𝑥

𝑖
𝜏𝑖 )

)

< 𝜈𝜚𝛽
1,𝜏𝑖−1

(−1,… ,−1).

Therefore, the action ‘‘play’’ is optimal for arm 𝑖 ∈  at the initial state
𝑥𝑖1, whenever there exists 𝜏𝑖 such that

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1

(−1,… ,−1)
> 𝜈,

eading to 𝜇𝑖(𝑥𝑖1, 0) > 𝜈.
Similarly, the action ‘‘not play’’ is strictly optimal for 𝑥𝑖1 if for all

𝑖 > 1:

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1

(−1,… ,−1)
≤ 𝜇𝑖(𝑥𝑖1, 0) < 𝜈.

In essence, the action ‘‘play’’ is optimal in state 𝑥𝑖1 if and only if
𝜇𝑖(𝑥𝑖1, 0) ≥ 𝜈, and the action ‘‘not play’’ is optimal if and only if
𝜇𝑖(𝑥𝑖1, 0) ≤ 𝜈. This reasoning, along with a similar argument for the
case where 𝑖 = 𝑗, indicates the presence of a family of optimal policies
with associated inactive sets 𝛩𝑖1(𝜈) and 𝛩𝑖0(𝜈), 𝑖 ∈ , that expand
nondecreasingly with 𝜈. This establishes the indexability of each arm
𝑖 ∈  as per Definition 1. □

By decomposing the problem and focusing on the indexability of
individual arms, we provide a pathway towards developing efficient
and interpretable strategies that are both theoretically sound and prac-
tically viable. This approach not only enhances our understanding of
the optimal decision-making process in complex environments but also
offers a scalable solution to the challenges posed by risk aversion and
switching penalties in MAB problems.
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4.4. Analyzing the dynamics of RASI in MAB environments

The introduction of the RASI brings a new layer of complexity
and strategic depth to the decision-making process in our problem.
To understand the practical implications of RASI, we first recall the
stopping times 𝜏 𝑖1(𝑥

𝑖
1) and 𝜏𝑖0(𝑥

𝑖
1), which represent the points at which

the supremum values in (16) and (17) are achieved for a given state
𝑥𝑖1 ∈  𝑖. To simplify the notation, we often omit the dependence of
𝑖
1 and 𝜏 𝑖0 on 𝑥𝑖1 throughout this section. The following propositions
ffer insights into the behavior of these indices and their impact on
ecision-making.

roposition 1. For 𝑖 ∈ , for each state 𝑥𝑖1 ∈  𝑖, 𝜇𝑖(𝑥𝑖1, 1) − 𝜇
𝑖(𝑥𝑖1, 0) is

positive and increasing function with respect to the switching cost of arm
.

roof. According to (16) and (17) and the definitions of 𝜏 𝑖1 and 𝜏 𝑖0, we
ave

𝑖(𝑥𝑖1, 1) =
𝜚𝛽
1,𝜏𝑖1−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖1−1
, 1, 𝑥𝑖

𝜏𝑖1
)
)

𝜚𝛽
1,𝜏𝑖1−1

(−1,−1,… ,−1)

≥
𝜚𝛽
1,𝜏𝑖0−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖0−1
, 1, 𝑥𝑖

𝜏𝑖0
)
)

𝜚𝛽
1,𝜏𝑖0−1

(−1,−1,… ,−1)

>
𝜚𝛽
1,𝜏𝑖0−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖0−1
, 1, 𝑥𝑖

𝜏𝑖0
)
)

𝜚𝛽
1,𝜏𝑖0−1

(−1,−1,… ,−1)

= 𝜇𝑖(𝑥𝑖1, 0),

where the second inequality is due to the positivity of switching costs
along with axiom (A3). This establishes the positivity property.

Now assume to the contrary that for some switching costs 𝑠𝑖1 and 𝑠𝑖2
where 𝑠𝑖1 < 𝑠

𝑖
2, we have

𝜇𝑖(𝑥𝑖1, 1) − sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖1 + 𝑐
𝑖(𝑥𝑖1, 1, 𝑥

𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1 (−1,−1,… ,−1)

≥

𝜇𝑖(𝑥𝑖1, 1) − sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖2 + 𝑐
𝑖(𝑥𝑖1, 1, 𝑥

𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1 (−1,−1,… ,−1)

.

This implies that for any 𝜏 > 1, we have

𝜚𝛽1,𝜏−1
(

𝑠𝑖1 + 𝑐
𝑖(𝑥𝑖1, 1, 𝑥

𝑖
2),… , 𝑐𝑖(𝑥𝑖𝜏−1, 1, 𝑥

𝑖
𝜏 )
)

𝜚𝛽1,𝜏−1 (−1,−1,… ,−1)
≤

sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖2 + 𝑐
𝑖(𝑥𝑖1, 1, 𝑥

𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1 (−1,−1,… ,−1)

,

from which and by letting 𝜏 𝑖0 as the stopping time achieving the
supremum value on the right-hand side, we can write

𝜚𝛽
1,𝜏𝑖0−1

(

𝑠𝑖1 + 𝑐
𝑖(𝑥𝑖1, 1, 𝑥

𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖0−1
, 1, 𝑥𝑖

𝜏𝑖0
)
)

𝜚𝛽
1,𝜏𝑖0−1

(−1,−1,… ,−1)
≤

𝜚𝛽
1,𝜏𝑖0−1

(

𝑠𝑖2 + 𝑐
𝑖(𝑥𝑖1, 1, 𝑥

𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖0−1
, 1, 𝑥𝑖

𝜏𝑖0
)
)

𝜚𝛽
1,𝜏𝑖0−1

(−1,−1,… ,−1)
.

This implies that 𝑠𝑖1 ≥ 𝑠𝑖2 which contradicts our assumption that 𝑠𝑖1 < 𝑠
𝑖
2

and thus establishes the increasing property. □
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This proposition suggests that the decision to continue playing an
arm that is already active becomes increasingly favorable as the switch-
ing cost rises. This outcome aligns with intuitive expectations, as higher
switching costs naturally discourage frequent transitions between arms.

The computation of RASI, similar to the Gittins index, involves
optimization across a range of stopping times. The next proposition
explores the detailed relationship between these stopping times, re-
vealing how they impact the decision-making process within the RASI
framework.

Proposition 2. For 𝑖 ∈ , for each state 𝑥𝑖1 ∈  𝑖, we have 𝜏 𝑖1(𝑥
𝑖
1) ≤

𝑖
0(𝑥

𝑖
1).

roof. Assume to the contrary that for some state 𝑥𝑖1, we have 𝜏𝑖1(𝑥
𝑖
1) >

𝑖
0(𝑥

𝑖
1). According to the definition of RASI for states in the immediately

layed arm given in (16), we have

𝜚𝛽
1,𝜏𝑖1−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖1−1
, 1, 𝑥𝑖

𝜏𝑖1
)
)

𝜚𝛽
1,𝜏𝑖1−1

(−1,−1,… ,−1)
≥

𝜚𝛽
1,𝜏𝑖0−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖0−1
, 1, 𝑥𝑖

𝜏𝑖0
)
)

𝜚𝛽
1,𝜏𝑖0−1

(−1,−1,… ,−1)
.

ased on positivity of 𝑠𝑖 values and the assumption of 𝜏 𝑖1(𝑥
𝑖
1) > 𝜏𝑖0(𝑥

𝑖
1),

e also have
𝑠𝑖

𝜚𝛽
1,𝜏𝑖0−1

(−1,−1,… ,−1)
< 𝑠𝑖

𝜚𝛽
1,𝜏𝑖1−1

(−1,−1,… ,−1)
.

The above two inequalities imply that

𝜚𝛽
1,𝜏𝑖1−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖1−1
, 1, 𝑥𝑖

𝜏𝑖1
)
)

𝜚𝛽
1,𝜏𝑖1−1

(−1,−1,… ,−1)
>

𝜚𝛽
1,𝜏𝑖0−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖0−1
, 1, 𝑥𝑖

𝜏𝑖0
)
)

𝜚𝛽
1,𝜏𝑖0−1

(−1,−1,… ,−1)
,

which contradicts the definition of RASI for the states in the non-
immediately played arms given in (17) and thus completes the
proof. □

The forthcoming Proposition 3 will establish the boundedness of
the RASI, ensuring its practical applicability and theoretical soundness
within our framework.

Proposition 3. RASI is guaranteed to be a finite term for any arm 𝑖 ∈
, with specific bounds determined by the arm’s minimum and maximum
playing costs, 𝐶 𝑖𝐿 and 𝐶

𝑖
𝑈 , and the switching cost 𝑠

𝑖. Specifically, for each
state 𝑥𝑖1 ∈  𝑖, the RASI values are constrained within the following range:

−(1 − 𝛽)𝑠𝑖 − 𝐶 𝑖𝑈 ≤ 𝜇𝑖(𝑥𝑖1, 0) < 𝜇
𝑖(𝑥𝑖1, 1) ≤ −𝐶 𝑖𝐿

Proof. Let us consider any arm 𝑖 ∈ , such that for all 𝑥𝑖, 𝑦𝑖 ∈  𝑖, we
ave 𝐶 𝑖𝐿 ≤ 𝑐𝑖(𝑥𝑖, 1, 𝑦𝑖) ≤ 𝐶 𝑖𝑈 . First, by normalizing the RASI calculation

for the scenario where the arm is currently in play (16) against −𝐶 𝑖𝐿,
we derive:

𝜇𝑖(𝑥𝑖1, 1)

−𝐶 𝑖𝐿
= sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

−𝐶 𝑖𝐿 𝜚
𝛽
1,𝜏𝑖−1

(−1,−1,… ,−1)

= sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1

(𝐶 𝑖𝐿, 𝐶
𝑖
𝐿,… , 𝐶 𝑖𝐿)

≤ 1,
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where the equality follows from the positive homogeneity axiom 4, and
the inequality is justified by the monotonicity property (A2) of dynamic
risk measures.

Next, by normalizing the RASI calculation for the scenario where
the arm is not currently in play (17) against −𝐶 𝑖𝑈 , we find:

𝜇𝑖(𝑥𝑖1, 0)

−𝐶 𝑖𝑈
= sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

−𝐶 𝑖𝑈 𝜚𝛽
1,𝜏𝑖−1

(−1,−1,… ,−1)

= sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑠𝑖 + 𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2), 𝑐

𝑖(𝑥𝑖2, 1, 𝑥
𝑖
3),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1

(

𝐶 𝑖𝑈 , 𝐶
𝑖
𝑈 ,… , 𝐶 𝑖𝑈

)

≥ 1 + sup
𝜏𝑖>1

𝑠𝑖

𝜚𝛽
1,𝜏𝑖−1

(

𝐶 𝑖𝑈 , 𝐶
𝑖
𝑈 ,… , 𝐶 𝑖𝑈

)

= 1 + (1 − 𝛽)𝑠𝑖∕𝐶 𝑖𝑈 ,

where the addition of (1−𝛽)𝑠𝑖∕𝐶 𝑖𝑈 to 1 reflects the inclusion of switching
osts in the numerator.

Given the bounds above and in light of Proposition 1, along with the
ounded nature of costs in our model, we can guarantee the finiteness
f the index. □

RASI is thus assured to be finite, sharing a structural resemblance
nd interpretative parallel with the Gittins index. It can be viewed
s an extended version of the Gittins index, adeptly incorporating
ynamic risk aversion and the cost of switching between arms into
ts calculations. RASI demonstrates notable adaptability under varying
onditions. As risk aversion diminishes to zero, RASI aligns with the
witching index from Asawa and Teneketzis (1994), effectively transi-
ioning to a risk-neutral framework. Conversely, when switching costs
ecome negligible, RASI evolves into the RAI detailed in Malekipir-
azari and Çavuş (2021), emphasizing its foundation in dynamic risk
easures. These convergence properties highlight RASI’s robustness,

ridging risk-neutral and risk-averse strategies while accommodating
he complexities introduced by switching costs.

As we assess the complexities and potential of the RASI policy
n addressing the challenges of our MAB problem, it becomes clear
hat an accurate estimation of switching costs is essential. Switching
osts can vary significantly across different scenarios and environments,
nd any inaccuracies in their estimation can substantially reduce the
ffectiveness of the RASI policy. This underscores the importance of ro-
ust and context-sensitive methodologies in assessing and incorporating
witching costs into the RASI framework. Ensuring precise integration
f these costs is crucial for the policy to accurately reflect the real-world
rade-offs and benefits associated with switching decisions.

.5. RASI policy in restricted environments

In this section, we evaluate the efficacy of the RASI policy in ad-
ressing special bandit problems that entail switching costs. Our focus
s on environments with at least one single-state arm, as these scenarios
ffer insightful perspectives on the RASI values in a risk-averse MAB
roblem with switching costs. Given that, it can be informative to
xamine the RASI values associated with such arms in a risk-averse
AB problem that involves switching costs. We explore this in the

ubsequent lemma.

emma 2. The RASI values for a single-state arm 𝑥 are 𝜇(𝑥, 1) = −𝑐 and
𝜇(𝑥, 0) = −𝑐 − (1 − 𝛽)𝑠, where 𝑐 is the cost of playing the state of the arm,
nd 𝑠 is the switching cost to this arm.

roof. The RASI of a single state 𝑥 with respect to (16) is

(𝑥, 1) = sup
𝜏>1

𝜚𝛽1,𝜏−1 (𝑐, 𝑐,… , 𝑐)

𝜚𝛽1,𝜏−1 (−1,−1,… ,−1)

= sup
𝜏>1

−𝑐 𝜚𝛽1,𝜏−1 (−1,−1,… ,−1)
𝛽 = −𝑐,

𝜚1,𝜏−1 (−1,−1,… ,−1)



M. Malekipirbazari

𝜇

European Journal of Operational Research 321 (2025) 160–176 
where the second equality is due to axiom (A4). Similarly, the RASI of
single state 𝑥 with respect to (17) is

(𝑥, 0) = sup
𝜏>1

𝜚𝛽1,𝜏−1 (𝑠 + 𝑐, 𝑐,… , 𝑐)

𝜚𝛽1,𝜏−1 (−1,−1,… ,−1)

= −𝑐 − 𝑠(1 − 𝛽) inf
𝜏>1

1
1 − 𝛽𝜏−1

= −𝑐 − 𝑠(1 − 𝛽),

where the second equality is derived by applying axioms (A3) and
(A4). □

This lemma illustrates the implications of Proposition 1, where
𝜇(𝑥, 1) − 𝜇(𝑥, 0) = (1 − 𝛽)𝑠 is a positive and strictly monotone function
of the switching cost. Additionally, for a single-state arm 𝑥, we observe
that 𝜏1(𝑥) = 2 while 𝜏0(𝑥) = ∞, aligning with Proposition 2.

4.5.1. Single-state arms with switching costs.
Consider a MAB problem where each arm consists of a single state,

and playing a state in arm 𝑖 incurs a cost 𝑐𝑖, 𝑖 ∈ . Theorem 4 demon-
strates the optimality of the RASI policy for such bandits, highlighting
its adaptability and effectiveness in environments characterized by
single-state arms and switching costs.

Theorem 4. In risk-averse multiarmed bandits comprised of single-state
arms with switching costs, the RASI policy is optimal.

4.5.2. Risk-averse one-armed bandit problem with switching costs.
We also assess the optimal policy structure for a special case of

two-armed bandits with switching costs, where one arm has a single
state. This scenario, known as the one-armed bandit problem, features
one stochastic arm with a Markovian reward structure. The following
theorem asserts the optimality of the RASI policy in this context, further
reinforcing its utility in a broad range of risk-averse decision-making
scenarios.

Theorem 5. In risk-averse one-armed bandits with switching costs, the
RASI policy is optimal.

4.6. Applicability of RASI in deterministic and stochastic settings

Our exploration of the RASI policy’s performance extends to both
deterministic and stochastic MAB problems with switching costs, draw-
ing upon the seminal work of Asawa and Teneketzis (1996).

4.6.1. Deterministic two-armed bandit problem
Asawa and Teneketzis (1996) established a critical theorem for

deterministic two-armed bandits with switching costs, asserting that
optimal scheduling policies require decisions only at specific time
instants where an appropriate index is achieved. This finding is par-
ticularly relevant to our risk-averse scenario in deterministic cases, as
risk aversion aligns with the risk-neutral perspective in such settings.

4.6.2. Stochastic multiarmed bandit problem
Theorem 3.1 in Asawa and Teneketzis (1996) extends to stochastic

MAB problems with switching costs, suggesting that optimal scheduling
decisions are made at stopping times achieving an appropriate index.
This theorem implies that if the index policy in a risk-neutral case
advises continuing with the currently played arm, such action is op-
timal. However, it is crucial to note that the applicability of Asawa and
Teneketzis’s approach to risk-averse scenarios is limited. Their work
leverages the fact that the Gittins index provides an optimal policy
for risk-neutral cases without switching costs. In contrast, the risk-
averse case without switching costs does not exhibit this property, thus
precluding a direct application of their approach to general risk-averse
scenarios. Thus, while the RASI policy demonstrates effectiveness in
various settings as evidenced by our numerical experiments, a compre-
hensive analytical investigation of its application in general risk-averse
MAB problems remains a valuable direction for future research.
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4.7. Risk-averse MAB problems with switching delays

In addition to the scenario involving switching costs, we extend our
analysis to encompass the case of switching delays, which we consider
equally critical. The MAB problem with switching delays parallels the
problem with switching costs, with the primary distinction being the
nature of the incurred penalty when transitioning between arms. By
incorporating switching delays, we acknowledge the real-world sce-
nario where transitions between tasks or projects are not instantaneous
and carry inherent time-based costs. Specifically, for each arm 𝑖, a
switching (setup) delay 𝑑𝑖 is experienced when the decision-maker
moves from one arm to another. During this delay interval, no cost or
reward is accumulated. We assume that the delay 𝑑𝑖 is a nonnegative
integer-valued random variable with a known distribution, satisfying
0 < E[𝑑𝑖] < ∞, and is independent of the machine dynamics.

The objective in the MAB problem with switching delays is to
identify a policy 𝛱 that minimizes the following risk-adjusted cost
function:

𝑅′𝛱 (𝑥1) = 𝛽𝑑
𝑇𝑢1𝜌1

(

𝑐(𝑥1, 𝑢1, 𝑥2) + 𝛽1+𝑑
𝑇𝑢2𝟏𝑢2≠𝑢1𝜌2

(

𝑐(𝑥2, 𝑢2, 𝑥3)

+ 𝛽1+𝑑
𝑇𝑢3𝟏𝑢3≠𝑢2𝜌3

(

…
)

)) (20)

To address this variant, we introduce the Risk-Averse Switching
Delay Index (RASDI), defined as follows:

Definition 2. The RASDI for each state of arm 𝑖 currently in play is
given by:

𝜓 𝑖(𝑥𝑖1, 1) ∶= sup
𝜏𝑖>1

𝜚𝛽
1,𝜏𝑖−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖−1 (−1,−1,… ,−1)

. (21)

Similarly, the RASDI for each state of arm 𝑖 not currently in play is:

𝜓 𝑖(𝑥𝑖1, 0) ∶= sup
𝜏𝑖>1

𝛽𝑑𝑖𝜚𝛽
1,𝜏𝑖−1

(

𝑐𝑖(𝑥𝑖1, 1, 𝑥
𝑖
2),… , 𝑐𝑖(𝑥𝑖

𝜏𝑖−1
, 1, 𝑥𝑖

𝜏𝑖
)
)

𝜚𝛽
1,𝜏𝑖+𝑑𝑖−1 (−1,−1,… ,−1)

. (22)

Similar to the case with switching costs, the index rule is not
optimal for the problem with switching delays. However, analogous
results to those presented in the previous sections are applicable to
the delay scenario. Specifically, the RASDI provides a heuristic for
decision-making in the context of switching delays, balancing the trade-
off between immediate rewards and the potential long-term impact of
delays.

4.8. Computation of the RASI values

The computation of the RASI values presents unique challenges,
especially when compared to the computation of the Gittins index
in risk-neutral scenarios. In this subsection, we propose a method to
calculate RASI, inspired by Asawa and Teneketzis (1996)’s algorithm
for the risk-neutral case with switching costs and Malekipirbazari and
Çavuş (2021)’s approach for the risk-averse scenario without switching
costs.

The core of our proposed algorithm lies in solving single-arm op-
timal stopping problems, similar to the approach used for computing
Gittins indices. Given an arm 𝑖 in a risk-averse MAB problem, let 𝑥
denote a generic state of this arm. We consider the evolution of this
arm under the ‘‘play’’ action, starting from state 𝑥. For each arm 𝑖 and
state 𝑥, we define a stopping set 𝛷𝑖

𝑘. This stopping set 𝛷𝑖
𝑘 includes all

states of arm 𝑖, excluding the 𝑘− 1 states with the highest indices. The
stopping time 𝜏 𝑖𝑥(𝛷

𝑖
𝑘) is then the first time the state of arm 𝑖 enters the

set 𝛷𝑖
𝑘, starting from 𝑥. The indices for a state 𝑥 in arm 𝑖, given that it

has the 𝑘th highest index value, is computed as follows:

𝑁 𝑖
𝑥(𝛷

𝑖
𝑘) =

𝜚𝛽
1,𝜏𝑖𝑥(𝛷𝑖𝑘)−1

(

𝑐𝑖(𝑥, 1, 𝑥𝑖2),… , 𝑐𝑖(𝑥𝑖
𝜏𝑖𝑥(𝛷𝑖𝑘)−1

, 1, 𝑥𝑖
𝜏𝑖𝑥(𝛷𝑖𝑘)

)
)

𝜚𝛽 𝑖 (−1,… ,−1)
.

1,𝜏𝑥(𝛷𝑘)−1
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To adapt this algorithm for the computation of RASI, we construct a
new Markov chain with an expanded state space {1, 2,… ,𝑀, 1′, 2′,… ,
𝑀 ′}, where 𝑀 = | 𝑖

|. The transition probability matrix �̂�𝑖 and the
associated costs 𝑐𝑖 are defined as follows:

�̂�𝑖(𝑥, 1, 𝑦) = 𝑄𝑖(𝑥, 1, 𝑦) and 𝑐𝑖(𝑥, 1, 𝑦) = 𝑐𝑖(𝑥, 1, 𝑦), for 𝑥, 𝑦 ∈ {1, 2,… ,𝑀}

�̂�𝑖(𝑥, 1, 𝑦) = 0 and 𝑐𝑖(𝑥, 1, 𝑦) = 0, for 𝑥∈{1, 2,… ,𝑀}, 𝑦∈{1′, 2′,… ,𝑀 ′}

�̂�𝑖(𝑥, 1, 𝑦) = 𝑄𝑖(𝑥, 1, 𝑦) and 𝑐𝑖(𝑥, 1, 𝑦) = 𝑐𝑖(𝑥, 1, 𝑦) + 𝑠𝑖, for
𝑥 ∈ {1′, 2′,… ,𝑀 ′}, 𝑦 ∈ {1, 2,… ,𝑀}

�̂�𝑖(𝑥, 1, 𝑦) = 0 and 𝑐𝑖(𝑥, 1, 𝑦) = 0, for 𝑥, 𝑦 ∈ {1′, 2′,… ,𝑀 ′}

This expanded Markov chain and the associated cost structure en-
able the computation of RASI by considering both the risk measures
and the switching costs. The algorithm iteratively identifies the index
values for each state in a given arm, starting with the state with the
highest index and progressively recalculating the index values after ex-
cluding the highest index state from the previous iteration. This process
continues until all states are ranked according to their index values,
effectively integrating the complexities of risk aversion and switching
costs into the decision-making framework of the MAB problem.

It is important to note that the RASI values for each state are
determined based on their respective subsets in the expanded state
space. Specifically, 𝜇𝑖(𝑥, 1), the RASI value when the arm is currently
in play, will correspond to the computed index in the state subset
{1, 2,… ,𝑀}. Conversely, 𝜇𝑖(𝑥, 0), the RASI value when the arm is not
currently in play, will correspond to the computed index in the state
subset {1′, 2′,… ,𝑀 ′}. This distinction is crucial for accurately reflecting
the impact of switching costs in the computation of RASI values,
ensuring that the indices provide a comprehensive representation of
the strategic choices available in our MAB problem.

It is also worth noting that Malekipirbazari and Çavuş (2021) com-
pared the computational complexity of their index heuristic to solving
the corresponding MDP. They revealed that their heuristic is time-
efficient, with computation time growing linearly with the problem
size, whereas the risk-averse MDP computation time shows exponential
growth. Our proposed method to calculate RASI is inspired by their
approach for the risk-averse scenario without switching costs. The
difference is that our proposed method jointly computes the index of an
arm with 2𝑀 states, resulting in an increase in arithmetic operations
relative to those in Malekipirbazari and Çavuş (2021). Despite this in-
crease in arithmetic operations, the complexity of our method remains
manageable since it scales linearly with the number of arms, compared
to the exponential growth of solving the MDP. Therefore, while the
computation of RASI values involves additional complexity due to the
expanded state space, the linear scalability of our method ensures that
it remains practical for larger instances. This makes the RASI policy a
feasible and effective strategy for risk-averse decision-making in MAB
problems with switching costs.

5. Numerical experiments

This section is dedicated to assessing the efficiency of our pro-
posed index-based policy through a series of computational experi-
ments. Through these experiments, we aim to provide a comprehensive
evaluation of the proposed policy under varying conditions, offering
insights into their practical applicability and performance in risk-averse
settings.

5.1. Setup

We explore the following policy implementations for each test
scenario:

(1) The optimal policy via risk-averse value iteration algorithm,

detailed in Ruszczyński (2010).
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(2) The risk-neutral switching index policy (RN), proposed by Asawa
and Teneketzis (1996).

(3) The RAI policy, proposed by Malekipirbazari and Çavuş (2021).
(4) The RASI policy, introduced in this paper.

Our initial test bed comprises a bandit problem with three arms,
each containing four states, resulting in a total state space of 64. For
each test case, the transition probabilities under the play action for
each arm are randomly generated from a uniform distribution and
normalized to ensure row-wise probability summation to one. The costs
associated with state transitions are drawn from a truncated normal
distribution with mean values uniformly distributed between −6 and
−5, and standard deviations set at {0.01, 0.5, 1}. The switching costs
are sampled from a truncated normal distribution 𝑁(𝑠, 0.1𝑠), where
𝑠 varies over {0, 2, 4}. The experiments are conducted with discount
factors 𝛽 set at {0.50, 0.75, 0.90}, and the first-order mean-semideviation
risk measure is employed as defined in (1), with 𝜅 values ranging from
0 to 1 in increments of 0.25.

For each parameter combination, we generate 1000 random test
instances. In each instance, we compare the performance of the RN,
RAI, and RASI policies using two key metrics:

(1) the suboptimality percentage of policy 𝛱 ∈ {RN,RAI,RASI}
for each initial state 𝑥 ∈  . This percentage is computed as
100 × (𝑅(𝑥) − 𝑅𝛱 (𝑥))∕𝑅(𝑥), where 𝑅𝛱 (𝑥) denotes the value of
objective function in (6) under policy 𝛱 and switching cost 𝑠,

(2) optimality percentage of policy 𝛱 ∈ {RN,RAI,RASI}. It is
computed as 100 ×

∑

𝑥∈ 1subopt(𝑥)∕||, where 1subopt(𝑥) is an
indicator function that is equal to one if the suboptimality of
the decision at state 𝑥 under policy 𝛱 and switching cost of 𝑠 is
zero (that is, 𝑅𝛱 (𝑥) = 𝑅(𝑥)), and zero otherwise.

5.2. Discussion of the numerical results

In each of our generated instances, we calculated both the median
and maximum suboptimality percentages across all states. Figs. 1 and 4
showcase the average maximum suboptimality percentages for policies
RASI vs. RN and RASI vs. RAI, respectively. These figures aggregate
results from all sets of 1000 test instances for each discount factor:
0.50, 0.75, and 0.90. Similarly, Figs. 2 and 5 illustrate the average
median suboptimality percentages for the same policy comparisons and
discount factors, also averaged across 1000 test instances. Furthermore,
Figs. 3 and 6 present the average optimality percentage values for
policies RASI vs. RN and RASI vs. RAI across the mentioned discount
factors.

The experiments uncover fascinating patterns and trends, providing
significant insights into the performance of risk-neutral and risk-averse
policies under various conditions. Initially, we focus on examining
the dynamics between the policies of RASI and RN, highlighting their
behavior across different scenarios. Subsequently, our analysis shifts to
explore the performances of RASI versus RAI, delving into how these
interactions are influenced by varying levels of cost variability (𝜎),
switching costs (𝑠), and risk aversion parameters (𝜅).

5.2.1. Evaluating RASI against RN
In scenarios with low-cost variability (specifically, 𝜎 = 0.01), both

the RN and RASI policies demonstrate negligible suboptimality, with
maximum and median suboptimality percentages consistently close to
zero across all levels of 𝜅. This trend suggests that in environments
where costs are predictable, both policies are highly effective. How-
ever, as the cost variability increased, the RASI policy consistently
outperformed the RN policy in terms of both maximum and median
suboptimality percentages along with the average optimality percent-
ages. For instance, Fig. 3 exhibits that with 𝜎 = 0.50 and 𝛽 = 0.50,
the RASI policy outperformed the RN policy, particularly at higher risk
aversion levels (𝜅 = 1), showing an average optimality percentage
improvement from 91.91% to 96.98%. This trend was even more
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Fig. 1. Average of maximum suboptimality percentages for policies RN and RASI using first-order mean-semideviation risk measure.
Fig. 2. Average of median suboptimality percentages for policies RN and RASI using first-order mean-semideviation risk measure.
pronounced with 𝜎 = 1 and 𝛽 = 0.90, where the RASI policy’s average
optimality percentage was significantly higher than the RN’s (92.55%
vs. 79.08%), highlighting the RASI policy’s superior adaptability in
high variability and risk-averse settings. The maximum and median
suboptimality percentages also reflect this trend, with the RASI policy
maintaining lower values, indicating more consistent performance near
the optimal policy (see Figs. 1 and 2).
171 
The addition of switching costs introduces a significant layer of
complexity to the decision-making process, distinctly affecting the per-
formance of the two policies under consideration. Initially, let us
examine the scenario where the decision-maker exhibits no risk aver-
sion, indicated by 𝜅 = 0. In this case, both policies yield identical
results. However, as depicted in Figs. 1–3, particularly in situations of
high-cost variability, an interesting pattern emerges with the variation
in switching costs. When switching costs increase from none to a
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Fig. 3. Average optimality percentages for policies RN and RASI using first-order mean-semideviation risk measure.
Fig. 4. Average of maximum suboptimality percentages for policies RAI and RASI using first-order mean-semideviation risk measure.
moderate level (i.e., from 𝑠 = 0 to 𝑠 = 2), there is a noticeable impact:
the average maximum suboptimality rises by 0.45%, and the average
similarity to the optimal policy decreases by over 6%. Interestingly,
further elevating the switching costs from moderate to high (i.e., from
𝑠 = 2 to 𝑠 = 4) leads to an improvement in policy efficiency. This trend
suggests that while escalating switching costs initially diminish the
effectiveness of the index policy, this effect only persists up to a certain
threshold. Beyond this point, as the optimal policy increasingly favors
maintaining the current choice (due to higher costs of switching), the
172 
index policy regains its strength, closely approximating optimal perfor-
mance. This improvement in policy efficiency, especially in scenarios
with high switching costs, confirms the fact that the index policy is
particularly optimal in prescribing the action of staying.

Now, let us examine how both policies perform when a risk-averse
agent is involved, particularly in scenarios with switching costs. The
RASI policy consistently aligns more closely with the optimal policy at
higher levels of risk aversion. This alignment is evident in its higher
average optimality percentages and lower suboptimality percentages
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Fig. 5. Average of median suboptimality percentages for policies RAI and RASI using first-order mean-semideviation risk measure.
Fig. 6. Average optimality percentages for policies RAI and RASI using first-order mean-semideviation risk measure.
compared to the RN policy. For example, as depicted in Fig. 3, in a
scenario with 𝜎 = 1, 𝛽 = 0.90, and 𝜅 = 1, introducing a switching cost
of 𝑠 = 4 results in the RASI policy maintaining a high average optimality
percentage of 96.22%, while the RN policy shows a significant drop to
73.73%. The RASI policy’s robust performance in the face of switching
costs highlights its effectiveness in risk-averse environments where
switching decisions carry substantial financial weight.

Furthermore, when examining the effects of increasing switching
costs, particularly in scenarios with high-cost variability, we observe
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distinct responses from the RN and RASI policies to changes in risk
aversion levels. The RN policy demonstrates a heightened sensitivity
to these changes, whereas the RASI policy exhibits a diminishing sen-
sitivity. For example, consider a scenario with 𝛽 = 0.75 and 𝜎 = 1. As
we adjust the level of risk aversion from 0 to 1, the shift in switching
costs from none to moderate (i.e., from 𝑠 = 0 to 𝑠 = 2) leads to
a notable divergence in policy performance. The RN policy’s average
optimality shows an increase in the difference from around 5% to
7.3%. In contrast, the RASI policy’s average optimality experiences a
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Fig. 7. Average of maximum performance gap percentages for policy RN with respect to RASI policy using first-order mean-semideviation risk measure.
decrease in the difference, moving from approximately 5% to 3.4%.
This observation underscores the subtle differences in how each policy
responds to variations in risk aversion and switching costs.

In scenarios with high switching costs (i.e., 𝑠 = 4), particularly
in risk-averse settings, the RASI policy generally exhibits enhanced
performance compared to situations with lower switching costs. This is
evident in terms of both the average median suboptimality percentages
and the average optimality percentages. It is noteworthy that the RASI
policy’s least effective performance under high switching costs occurs
in conditions of maximum cost variability, discount factor, and risk
aversion level (specifically, 𝜎 = 1, 𝛽 = 0.90, and 𝜅 = 1). Even in
this challenging scenario, the RASI policy maintains a mere 0.04%
average in median suboptimality percentages, as illustrated in Fig. 2,
and achieves an impressive 96.22% average optimality percentage, as
shown in Fig. 3. These findings reinforce the notion that the RASI
policy not only excels in risk-averse environments but also tends to
recommend the optimal or near-optimal action of maintaining the
current choice, especially when faced with significant switching costs.

5.2.2. Evaluating RASI against RAI
In the context of our analysis, the performance of the RAI policy,

when compared to the more robust RN and RASI policies, is notably
weaker across various settings. This observation holds across different
levels of cost variability, switching costs, risk aversion parameters,
and discount factors. Specifically, the adaptability of the RAI policy to
fluctuating cost environments diminishes as cost variability increases,
a trend that is particularly pronounced when comparing low (𝜎 =
0.01) to moderate (𝜎 = 0.50) cost variability scenarios (see Fig. 4).
This issue of adaptability is further exacerbated by the introduction of
switching costs, where the RAI policy’s effectiveness in managing the
trade-offs between staying and switching actions under uncertainty is
significantly challenged.

Moreover, our analysis, as detailed in Figs. 4–6, reveals that the in-
fluence of risk aversion on the RAI policy’s performance is noteworthy.
With increasing 𝜅, indicating a higher aversion to risk, the RAI policy’s
performance tends to decline, suggesting that it struggles more than
the RN and RASI policies to balance the risk-return trade-off, especially
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in environments characterized by high-cost variability and switching
costs. Additionally, the discount factor plays a crucial role in shaping
the RAI policy’s performance dynamics. Higher discount factors, which
place greater emphasis on future rewards, tend to improve the RAI
policy’s performance.

In summary, while the RAI policy provides a baseline for risk-
averse decision-making, its performance is significantly outmatched
by the RN and RASI policies across a range of scenarios. The RAI
policy’s challenges in managing switching costs effectively highlight its
limitations as a strategy for risk-averse decision-making with noticeable
switching penalties.

5.2.3. Concluding remarks on rasi’s performance
Overall, our experiments highlight the RASI policy’s superior per-

formance in risk-averse MAB settings, especially under conditions of
high-cost variability and significant switching costs. The RASI policy’s
consistent outperformance of the RN and RAI policies in these chal-
lenging scenarios highlights its potential as a more effective strategy
for risk-averse decision-making in real-world applications.

5.3. Extended numerical experiments

To gain deeper insights into the practical applicability of our pro-
posed policies in larger state spaces, we conduct additional experiments
on MAB problems with increased complexity. In this extended setup,
we evaluate the RN, RAI, and RASI policies on MAB instances with the
range of one to five arms, each comprising four states. This results in
MDPs with the number of states ranging from 4 to 1024. Transition
probabilities, costs, and switching costs are generated as described
in Section 5.1. We maintain the same discount factors but fix the
risk aversion parameter 𝜅 to 1. Moreover, due to the impracticality
of computing the optimal policy for the larger instances, we use the
‘‘performance gap percentage’’ for a policy with respect to RASI policy.
This percentage evaluates how far a policy 𝛱 ∈ {RN,RAI} deviates
from the RASI policy as a reference point and is computed as 100 ×
(𝑅RASI(𝑥) − 𝑅𝛱 (𝑥))∕𝑅RASI(𝑥) for each initial state 𝑥 ∈  . Figs. 7 and 8
present the average maximum performance gap percentage for RN and
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Fig. 8. Average of maximum suboptimality percentages for policy RAI with respect to RASI policy using first-order mean-semideviation risk measure.
RAI policies with respect to RASI, respectively, for varying numbers
of arms and different discount factors. These figures aggregate results
from 200 test instances for each configuration.

From these results, we observe several key trends. In scenarios
with low-cost variability (𝜎 = 0.01), RN policy demonstrates minimal
performance gaps, suggesting that in environments where costs are
predictable, the benefit of risk-aversion is less notable. However, as the
cost variability increases, the RASI policy consistently outperforms the
RN policy, particularly for larger instance sizes. This is evident from
the increasing performance gap percentages as the number of arms
grows, indicating that the RASI policy’s consideration of risk provides
a substantial advantage in more volatile environments. Specifically, in
Fig. 7, the performance gap is more noticeable for higher levels of
cost variability and larger instance sizes. For example, with 𝜎 = 1,
𝛽 = 0.75, and 𝑠 = 2, the performance gap between RN and RASI
increases to 3% as the number of states increases to 1024. Conversely,
as shown in Fig. 8, the RAI policy shows a notable deviation from
the RASI policy, especially in scenarios with higher cost variability
and larger instance sizes. Higher switching costs (𝑠 = 2 and 𝑠 = 4)
show a more significant gap, highlighting the RAI policy’s difficulty in
managing these costs as effectively as the RASI policy. These findings
suggest that the relevance of risk-aversion remains significant even as
the instance size increases, particularly in high variability settings. The
extended experiments highlight the robustness and adaptability of the
RASI policy in the face of increasing complexity due to a larger number
of states.

6. Conclusions

This study explores the complexities of risk-averse MAB problems,
emphasizing the influence of switching penalties. By integrating risk
considerations and addressing the challenge of switching costs, we
provide a comprehensive framework that reflects the complexities of
real-world decision-making scenarios in diverse domains. We introduce
the RASI policy, which effectively addresses these dual challenges.
The RASI policy provides two sets of indices: one for arms that are
immediately played and another for the remaining arms, allowing for a
refined approach to decision-making. Despite the added complexity of
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computing these dual indices, the RASI policy remains computation-
ally efficient, leveraging dynamic risk measures to balance risk and
switching costs effectively.

Through extensive numerical experiments, the RASI policy demon-
strates superior performance, particularly in scenarios characterized by
high-cost variability and significant switching costs. The resilience of
the RASI policy in navigating these complexities highlights its potential
applicability in various real-world settings where switching decisions
carry substantial financial implications. Our experiments also reveal
that the relevance of risk aversion does not diminish with larger state
spaces; instead, it becomes more critical, especially in high variability
environments.

As future research, one promising direction is the development of
more sophisticated algorithms that further optimize decision-making
in risk-averse MAB problems with switching penalties. The other di-
rection would be to investigate different risk measures and their im-
pact on the performance of MAB algorithms. Additionally, an inter-
esting area for future exploration is the application of our method-
ologies to the general setting of restless bandits. By extending our
approach to restless bandits, one can uncover novel strategies and
insights for managing the dynamic complexities inherent in these envi-
ronments, thereby broadening the scope of risk-aware decision-making
in operations research.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2024.09.023.
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