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A B S T R A C T

This study proposes a novel physics-guided metamodel to predict vertical bending-induced fatigue damage in a
2800TEU container vessel navigating the North Atlantic, based on data from the vessel’s hull monitoring system.
The metamodel combines two XGBoost-based base learners: a black-box model utilizing ship heave and pitch
motion measurements, and a gray-box model using spectral moments from numerical analysis. Predictions from
both models are refined through a meta learner Gaussian process regression to enhance accuracy. The metamodel
was evaluated against black-box and gray-box models across various training data volumes. The proposed model
adapts to varying data volumes, from months to over 2 years, effectively integrating the strengths of both base
learners to provide reliable predictions in both seen and unseen scenarios. The model consistently demonstrated
superior performance, enhancing fatigue damage accumulation accuracy by up to 35% over traditional machine
learning methods. This advancement can aid the maritime industry in effectively monitoring ship fatigue and
implementing predictive maintenance strategies, marking a significant step forward in applying data-driven
techniques in shipping.

1. Introduction

The accumulated fatigue damage in maritime vessels during sailing
presents a significant challenge to their safety. Various methods for
predicting fatigue have been developed and are continuously evolving to
offer reliable estimates of the fatigue life for ships. The ship structures
are subjected to fatigue loads that are random and uncertain; the
development of fatigue prediction methods is mainly performed in two
directions: using the fatigue accumulation method or random fatigue
load modeling (Mao, 2010).
When structural stress data is readily available, fatigue damage

evaluation can be efficiently conducted using the rainflow counting
method, which adheres Palmgren-Miner’s rule (Miner, 1945; Palmgren,
1924). However, obtaining time series data on stresses for ship fatigue
assessment is challenging since very few ships are installed with the
requisite sensors to measure structural responses, and these are usually
installed only during short monitoring campaigns. Using theoretical
methods to simulate stress time series across a broad spectrum of sea
states requires substantial computational costs. As a result, fatigue
prediction is often carried out in the frequency domain by assuming

Gaussian processes, a process referred to as the narrow-band approach
(Rychlik, 1987). Given that the real fatigue loads are not typically
narrow-banded or Gaussian for ships, various methods have been
developed to refine these approximations. Notably, Dirlik (1985), Zhao
and Baker (1990), and Tovo (2002) explored simulations or models for
stress range probability distributions. Winterstein (1985, 1988) also
suggested models that include the 3rd and 4th stress spectral moments.
Fig. 1 illustrates a DNV GL (2018) recommended approach to direct
fatigue prediction under frequency domain, noting the uncertainties at
each assessment stage.
These uncertainties persist across various components in current

fatigue prediction methods, as evidenced by ongoing research
(Friedman et al., 2000; Lang et al., 2021; ISSC, 2018; Dong et al., 2022).
This includes calculations of wave loads and structural stresses (Li et al.,
2014; Yosri et al., 2022; Yang et al., 2021), wave modeling (Olsen et al.,
2006; Mao et al., 2010), and structural analysis (Yamamoto, 2017;
Friedman et al., 2000; Thompson, 2018; Gaidai et al., 2020). Generally,
these methodologies—which were founded based on physical princi-
ples—are known as white-box models (WBMs). Although these do not
require actual sailing measurements, their accuracy is contingent upon
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the assumptions and simplifications employed in the physical modeling
process.
With the booming of digitalization in the present maritime industry,

an extensive amount of data has been measured to monitor ship per-
formance, including stress signals pertinent to fatigue accumulation
(Storhaug et al., 2007; Mao, 2014). Machine learning techniques have
been extensively utilized in the analysis of fatigue and the prediction of
structural lifespan (Lang et al., 2023; Masoudi Nejad et al., 2022; Bao
et al., 2021; He et al., 2021; Yan et al., 2019). These pure data-driven
approaches necessitate the use of substantial datasets and do not
require physical knowledge; therefore, they are designated as black-box
models (BBMs). However, as in the case of ship fatigue prediction, where
ships are typically installed with sensors to measure strain/stress over
relatively short periods (compared to lifecycle service), BBMs may yield
significantly erroneous results for unseen scenarios. This limitation
arises because their interpretation and extrapolation capabilities are
poor. A third model category, known as the gray-box model (GBM), was
delineated by Haranen et al. (2016). GBMs are developed by leveraging
physical principles to guide data-driven methods with the aim of
reducing the required volume of data while enhancing the accuracy of
predictions and avoiding unreasonable results for unseen scenarios.
While these methods have been applied to ship speed and motion pre-
dictions (Lang et al., 2024; Schirmann et al., 2023), their application in
ship fatigue prediction remains unexplored. Notably, when an abun-
dance of full-scale data is available, the predictive capability of BBMs
can surpass that of GBMs.
To effectively monitor the fatigue damage of vessels throughout their

operational lifecycle, it is imperative to establish a robust predictive
model. This model should be adept at accurately forecasting fatigue
damage based on data readily acquired in the future, such as ship motion
and wave condition data collected under various navigational scenarios.
Additionally, given the variability in the duration of structural stress
measurement campaigns for different vessels, this model must maintain
accuracy across scenarios ranging from limited data samples to those
with abundant data. Furthermore, it should ensure that predictions
remain reasonable under unseen conditions, thus preventing any un-
reasonable forecasts. This research proposes a pioneering physics-
guided metamodel to predict fatigue damage induced by vertical
bending in the midsection of a 2800 TEU container ship. Mao et al.
(2010) have demonstrated that fatigue damage in the deck region be-
tween midships is governed by vertical bending across all operational
profiles of the heading angle. The proposed metamodel synthesizes a
BBM predicated on ship heave and pitch motion, with a GBM guided by

numerical analysis. This fusion yields a model with enhanced robustness
that is capable of effective predictions based on datasets of varying sizes,
ranging from a few months to over two years. It capitalizes on the
strength of the GBM to avoid improbable predictions in unseen scenarios
while also retaining the BBM’s ability to accurately capture more pro-
found and intricate patterns and relationships when substantial
full-scale data are available. The proposed method is demonstrated
using a data set collected from the case study container vessel during
three years of actual sailing. The following content is structured as:
Section 2 presents the physical ship fatigue estimation methods. Section
3 introduces the method and architecture of the proposed
physics-guided metamodel. The data acquisition and processing for
model establishment are presented in Section 4. Section 5 compares the
proposed metamodel to the conventional BBM and physics-guided GBM.
Conclusions are drawn in Section 6.

2. Physics-based ship fatigue calculation approach

2.1. Ship fatigue and the S-N method

2.1.1. Measured stress responses
Ship fatigue is commonly assumed to be a high-cycle accumulation

process, often addressed through the S-N approach. Fatigue damage can
be quantified using the linear Palmgren-Miner’s rule, which relies on
designated S-N curves (IACS, 2006; DNV, 2018). This method is math-
ematically represented in Eq. (1):

dRFC
(t) =

∑

i

niSm
i

α , (1)

where α and m are parameters of the S-N curve, t is the duration of a sea
state. The quantity of stress cycle ranges Si, represented by ni, is
approximated using the rainflow counting provided that stress data is
accessible. The rainflow cycle was first defined by Matsuishi and Endo
(1968). An alternative, non-recursive definition, provided by Rychlik
(1987), was used in this study.

2.1.2. Numerical estimated stress responses
Acquiring ship stress signals for such analytical purposes is pre-

dominantly constrained. This is because a relatively small proportion of
vessels are equipped with strain/stress measurement sensors, most
typically installed during specific measurement campaigns. Further-
more, the duration of data collection by these sensors seldom extends

Fig. 1. Typical procedure for direct ship fatigue prediction as per the classification guidelines and inherent uncertainties in each assessment step.
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beyond a few years, thus not encompassing the entire lifecycle of the
vessel. Given that cyclic stresses induced by waves are a primary cause
of ship fatigue, an alternative methodology for fatigue calculation can be
employed when measured stress data are unavailable. In this approach,
stress responses are numerically calculated in the frequency domain
using Response Amplitude Operators (RAOs) in conjunction with wave
conditions (Lang et al., 2021). Then, the fatigue damage can be esti-
mated from spectral moments and the S-N curve, as depicted in Fig. 2.

2.2. Narrow-band fatigue approximation

RAOs are commonly derived through the assumption of a ship’s rigid
body movements for the analysis of wave loading, with beam theory
being employed for stress analysis. The estimation of wave loads on
ships is carried out using potential theory to predict ship fatigue, and is
illustrated through a damped spring-mass system, as depicted in Eq. (2):

(M+A)Z̈+BŻ+ CZ = Fe, (2)

where Z is the location in a ship’s local coordinate system, Ż and Z̈
represent the 6DoF ship motions’ velocities and accelerations, respec-
tively. M is the ship’s mass matrix, and A, B, and C denote the added
mass, radiation damping coefficients, and hydrostatic stiffness.
Through the application of numerical analysis to solve Eq. (2), the

RAOs for the vertical bending moment Mv(ω|V, θ) within the frequency
domain are derived. The RAOs are computed across different wave
frequencies, denoted as ω, for a specific ship speed through water V and
relative wave heading θ (0◦ represents the head sea), as follows:

Hv(ω|V, θ) =
Mv(ω|V, θ)

Iv
Δz, (3)

where Iv defines the area moment of inertia and Δz is the distance be-
tween the detail and the neutral axis. The RAOs can be utilized in the
estimation of the short-term response spectra pertaining to the vertical
bending moment. For the purposes of fatigue prediction, long-termwave
conditions are considered to consist of a series of short-term stationary
sea states, each potentially lasting from 30-min to 6-h. These sea states
are typically characterized by parameters such as significant wave
height (Hs), wave period (Tz), and wave spectrum. Various wave spectra
are utilized to model these conditions. The International Ship and
Offshore Structures Congress (ISSC) recommended ISSC wave spectrum
(Tucker, 1991) is adopted in this study and described in the following:

S(ω|Hs,Tz)=
4π3H2s
T4z ω5 exp

[

−
1
π

(
ωTz

2π

)− 4
]

. (4)

The ship stress response spectra are ultimately determined through
the calculation of RAOs’ squares in conjunction with the wave spectrum.
This methodology facilitates the calculation of the stress spectral mo-
ments, denoted as λn for n = 0, 1, 2, …, as follows:

λn(V, θ,Hs,Tz)=

∫∞

0

⃒
⃒
⃒
⃒ω +

ω2V cos θ
g

⃒
⃒
⃒
⃒

n

H2v (ω|V, θ)S(ω|Hs,Tz)dω. (5)

If the stress signals for each sea state are approximated as a narrow-
band process, their stress ranges adhere to the Rayleigh distribution. The
so-called narrow-band approximation can further approximate fatigue
damage accumulated during this period as follows:

dNB =
tfz
α 2

3m
2 Γ
(
1+

m
2

)λ
m /2
0

, and fz =
1
2π

̅̅̅̅̅
λ2
λ0

√

, (6)

where the frequency of zero-crossing (referred to as fz) and the gamma
function denoted as Γ() are the key components in the narrow-band
approximation discussed above, the spectral moments are the sole var-
iables in this approximation, and their estimation can be achieved using
Eq. (5).

2.3. Bandwidth correction

The stress responses, however, are rarely strictly confined processes
within a narrow-band, as shown in Fig. 3. The broadness of a stress
signal can be defined as the ratio of the average period between peaks
and the zero up-crossings frequency and peak frequency as ε =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − λ22/λ0λ4
√

. If ε = 0, it indicates a narrow-band process, while ε = 1
means an extremely broad-band process. Narrow-band approximation in
Eq. (6) is an upper bound limit of fatigue damage caused by a Gaussian
process.
While stress responses may not adhere to Gaussian processes when

ships navigate particularly harsh sea states, the assumption of a
Gaussian response remains a widely adopted approximation for ship
fatigue prediction. To enhance the accuracy of fatigue damage estima-
tion under this assumption in Eq. (6), various correction methods have
been developed and applied. This research employs a correction
approach based on spectral moments as proposed by Wirsching and
Light (1980) to assess its accuracy in fatigue damage estimation and
identify valuable features for gray-box modeling. This bandwidth
correction method uses only the bandwidth parameter ε2, but in terms of
the S-N curve slope parameter m:

dWL =

(

a(m)+

(

1 − a(m)

(

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ε22
√ )b(m)

)

dNB, (7)

where a(m) = 0.926 − 0.033m and b(m) = 1.587m − 2.323.

3. Methodology

As previously introduced, physics-based WBMs for ship fatigue
calculation are subject to various inherent uncertainties. This study

Fig. 2. The procedure for conducting direct ship fatigue calculations involves utilizing numerically estimated stress responses.
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seeks to combine a purely data-driven BBM with a numerical analysis-
guided GBM, thereby establishing a metamodel that enhances the ac-
curacy of predicting fatigue damage induced by vertical bending under
various volumes of available data. In this section, we first delineate the

architecture of the modeling framework. This is followed by an expla-
nation of the machine learning algorithms implemented within the
study, concluding with an in-depth discussion of the model’s establish-
ment process.

Fig. 3. Examples of narrow-band and broad-band processes.

Fig. 4. Parallel modeling architecture of the proposed physics-guided metamodel for vertical bending-induced fatigue damage prediction.
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3.1. Modeling architecture

The proposed physics-guided metamodel employs a parallel
modeling architecture, as illustrated in Fig. 4. This architecture config-
ures two distinct base learner models to operate concurrently. The first
base learner in this architecture is a physics-guided GBM that utilizes
numerical analysis based on 2-D potential theory to obtain the RAOs
Hv(ω|V, θ) that characterize the case study vessel’s response to vertical
bending under different operational profiles. This is followed by a syn-
thesis of the encountered metocean data, specifically significant wave
heightHs, wave period Tz, and the vessel’s operational data (including V,
θ). This integration follows Eq. (5) and yields the stress response spectra,
from which the spectral moments—denoted as [λ0, λ1, λ2, λ3, λ4]—are
derived by Eq. (6). These spectral moments [λ0, λ1, λ2, λ3, λ4] serve as
inputs to XGBoost to approximate the rainflow counting fatigue damage
dRFC, with the forecasted outcome referred to as dMoment.
The second base learner is a BBM that estimates fatigue damage by

leveraging ship heave and pitch motion measurements. The selected
input features include the standard deviations (σ) of heave (z2), heave
velocity (ż2), and heave acceleration (z̈2; denoted as σ(z2),σ(ż2),σ(z̈2)),
as well as the standard deviations of pitch (z6), pitch velocity (ż6), and
pitch acceleration (z̈6; represented as σ(z6), σ(ż6), σ(z̈6)). These param-
eters were chosen due to their high feature importance for fatigue
damage induced by vertical bending, as identified in previous research
by Lang et al. (2023). Subsequently, [σ(z2),σ(ż2),σ(z̈2),σ(z6),σ(ż6),σ(z̈6)]
are input into the eXtreme Gradient Boosting (XGBoost) algorithm to
estimate the rainflow counting fatigue damage dRFC, with the resultant
prediction denoted as dMotion. Finally, the dMotion value predicted by the
BBM and the dMoment value predicted by the GBM are fed into a Gaussian
processes regression (GPR), which functions as the meta learner within
the proposed metamodel. The GPR is tasked with predicting fatigue
damage dRFC again, and the predictive result is denoted as dMeta. Because
the second base learner is based on actual measured heave and pitch
motions, it can capture nonlinearities present in the measured stress
responses that arise from both wave and structural effects. Conse-
quently, this compensates for the uncertainties that arise due to as-
sumptions and simplifications (such as reliance on linear theory, wave
spectrum difference, and the exclusion of wind and current loads)
employed in the physical modeling process of the first base learner, the
physics-guided GBM.

3.2. Machine learning algorithms

In the proposed metamodel, the black-box and gray-box models
serve as the base learners, utilizing XGBoost to learn from original data
and generate the foundational predictions dMotion and dMoment. The choice
of XGBoost as the base learner is driven by its superior performance and
efficiency in ship performance modeling, as demonstrated in prior work
by Lang et al. (2022). Additionally, this selection maintains consistency
with the authors’ previous research on ship motion-based fatigue pre-
diction using BBM (Lang et al., 2023). The meta learner (i.e., the GPR
model) then synthesizes and refines these predictions. The XGBoost al-
gorithm is a machine learning technique that uses numerous simple
evaluators to create a more accurate prediction model through a process
known as gradient tree-boosting. The main aim of XGBoost is to find out
how different training features, represented as X, relate to the target
variable, which in this study is the rainflow counting fatigue damage
dRFC. If the model includes K trees, the prediction for the i -th sample,

d̂RFC
i , is calculated by summing the outputs from all K trees as:

d̂RFC
i =

∑K

k=1
fk( Xi), i=1,…, n, (8)

where n is the training samples’ quantity, fk represents the k-th tree, and
the weight on the k-th tree’s q-th leaf is denoted as fk( Xi) = ωq( Xi)

.

Traditional objective functions are limited in measuring a model’s per-
formance and do not account for its computational efficiency. In
contrast, the objective function employed by XGBoost incorporates
model complexity as a means to evaluate efficiency:

Obj=
∑n

i=1
l
(
dRFC

i , d̂RFC
i
)
+
∑K

k=1
Ω(fk), (9)

where the first component of the objective function is the traditional loss
function, measuring the difference between the measurement, dRFC

i , and

the prediction, d̂RFC
i . The second component evaluates the model’s

complexity, focusing on the structure of the decision trees. This algo-
rithm employs an additive training approach, meaning that each new
tree is incorporated based on the outcomes of the preceding iteration.
Therefore, during the γ-th iteration, the loss function is evaluated as

l
(
dRFC

i
(γ)
, d̂RFC

i

(γ− 1)
+ fγ( Xi)

)
, where fγ represents the tree added in the

γ-th iteration. To simplify and optimize this iterative process, the algo-
rithm uses a Taylor expansion of the loss function around the previous
iteration’s predictions as:

Obj(γ) =
∑n

i=1

[

gifγ( Xi)+
1
2
hifγ( Xi)

2
]

+ Ω
(
fγ

)
, (10)

where gi and hi represent the 1st and 2nd derivatives of the loss function

l
(
dRFC

i
(γ)
, d̂RFC

i

(γ− 1))
to d̂RFC

i

(γ− 1)
, respectively. If a tree in the XGBoost

model has δ leaves, each leaf can be identified by an index ε, then the
weight assigned to each leaf is denoted as ωε. For a set of instances
Iε = {i|q( Xi)= ε} that fall into leaf ε, the optimal weight ω*ε that mini-
mizes the objective function Obj(γ) can be calculated as:

ω*ε = −

∑
i∈Iε gi

∑
i∈Iε hi + β

, (11)

where β serves as the regularization parameter that manages overfitting.
Additional details regarding the hyperparameters are provided by Chen
and Guestrin (2016).
For the ship motion-based BBM base learner FMotion, its input feature

is XMotion = [ σ(z2), σ(ż2), σ(z̈2), σ(z6), σ(ż6), σ(z̈6)] and its output is dMotion.
For the numerical analysis-guided GBM base learner FMoment, its input
feature is XMoment = [λ0,λ1,λ2,λ3,λ4], while its output is dMoment . The meta
learner GPR synthesizes the predictions obtained from two distinct base
learners. GPR is a nonparametric modeling technique that incorporates a
Gaussian process (GP) before conducting regression analysis, as Ras-
mussen (2004) described. This approach incorporates the regression
residual and a prior GP determined through Bayesian inference. The
GPR employs a mean function and a kernel or covariance function to
provide the most probable prediction and a measure of uncertainty. The
kernel function enables the GPR to understand and adapt to the structure
within the base learners’ output. For the new samples’ predictions using
the proposed metamodel, the GPR meta learner takes the BBM and GBM
predictions (dMotion

* and dMoment
* , respectively) for new samples and gen-

erates the final prediction dMeta, as follows:

dMeta
=GP

(
U
([
dMotion
* ,dMoment

*

])
,RBF

([
dMotion
* ,dMoment

*

]
,
[
dMotion

Trained,d
Moment
Trained

]))
,

(12)

where GP represents the Gaussian process that encapsulates the distri-

bution over the possible functions that fit the data. RBF
([
dMotion
* ,

dMoment
*

]
,
[
dMotion

Trained,d
Moment
Trained

]))
is the kernel function that evaluates the

similarity between the new predictions from the base learners and the
training data. The radial basis function (RBF) is employed here.

U
([
dMotion
* , dMoment

*

])
is the mean function, where dMotion

* =
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FMotion
(
XMotion,*

)
and dMoment

* = FMoment
(
XMoment,*

)
.

3.3. Model establishment

Fig. 5 outlines the workflow for establishing the metamodel. The
dataset is initially pre-processed to prepare it for analysis. An indepen-
dent set of voyages, designated as the unseen test set, is set aside from
this pre-processed dataset. The remainder of the dataset is divided into a
training set, which is used to build and refine the metamodel.
There are some hyperparameters in the XGBoost algorithm and GPR.

Notably, a change in hyperparameter values can affect the performance
of the constructed model. Since the hyperparameters interact, the op-
timum combination cannot be obtained by adjusting a specific hyper-
parameter individually. Table 1 outlines the hyperparameters under
consideration and their tuning ranges for the XGBoost modeling. For
GPR, two hyperparameters—i.e., alpha (scale mixture parameters) and
length_scale (the length scale of the RBF kernel)—are tuned in the range
of [0.01,100] and [1,15], respectively.
Bayesian optimization is employed in this study to identify the

optimal hyperparameters for machine learning models. Bayesian opti-
mization utilizes the Bayesian theorem to adapt hyperparameter data
and employs surrogate models to ascertain their optimal values. This
method, contrasting with traditional grid and random searches, lever-
ages prior iteration results to tune superior hyperparameter configura-
tions, effectively balancing search efficiency and performance while
mitigating the risk of local optima.
This research adopts a 10-fold cross-validation to prevent overfitting

and validate the reliability of the hyperparameter settings. The dataset is
segmented into ten sequential batches, maintaining their original order
without shuffling. The model is trained on nine of these batches, while
the tenth batch evaluates its performance. The performance of the 10-
fold cross-validation is quantified by the average of the evaluation
metrics across all splits, with root mean square error (RMSE) selected as
the primary metric for assessing cross-validation in this analysis.

4. Case study and full-scale measurement

4.1. Data acquisition

This study utilizes data collected from the hull monitoring system to
predict vertical bending-induced fatigue damage in a 2800 TEU
container vessel operating in the North Atlantic. The vessel in the case

study has its main characteristics detailed in Table 2.
The hull monitoring system on the vessel was installed in accordance

with the DNV hull monitoring regulations (DNV, 2005). This system
captures real-time data, including GPS coordinate, ship speed over
ground and heading, and 6DoF ship motions. Four strain sensors are
strategically placed at the case study container ship, two of which are
positioned at the midsection, one on the port and the other on the
starboard side of the stiffener web, to measure longitudinal strain. The
strain gauges used are model WFLA 6–11, manufactured by Tokyo
Measuring Instruments Laboratory Co., Ltd. (TML). Each gauge has a
length of 6 mm, and a width of 2.2 mm. Fig. 6 shows the amidship strain
sensor on the starboard side. This container ship was equipped with
strain sensors because cracks were detected during its operation (before
8 years of trade). Consequently, DNV installed strain sensors near the

Fig. 5. Workflow for the establishment of the proposed metamodel.

Table 1
Hyperparameters used in XGBoost modeling and their respective tuning ranges.

Parameter Description Tuning
domain

Eta Step size (learning rate) [0.01, 1]
max_depth Maximum depth of a tree [3, 10]
n_estimators Number of trees [100, 5000]
Gamma Minimum loss reduction required to make a

split
[0, 5]

reg_alpha L1 regularization term [0, 100]
reg_lambda L2 regularization term [0, 100]
min_child_weight Minimum sum of instance weight required in a

child
[0, 10]

colsample_bytree Subsample ratio [0.5, 1]

Table 2
Main characteristics of the 2800TEU container vessel operating in the North
Atlantic.

Parameter Symbol Magnitude

Max. TEU – 2800
Length between perpendicular Lpp 232 [m]
Molded breadth B 32.2 [m]
Molded depth D 19.0 [m]
Design draft T 10.78 [m]
Block coefficient CB 0.685
Deadweight DWT 40900 [tons]
Service speed Vservice 21.3 [knots]
Building year – 1998
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crack site to monitor the strain, and the fatigue damage (stress) at the
hot spot is obtained by applying an assigned stress concentration factor
(SCF) of 2 recommended by DNV for this vessel (Mao, 2010). For other
vessels, it may be necessary to conduct model experiments or FEM
analysis to determine different SCFs, depending on the sensor’s location
and the ship’s structure. For the fatigue analysis, only the stress induced
by vertical bending at the midsection is considered, averaging the stress
measurements from the strain sensors on both the port and starboard
sides.
The considered container vessel is engaged in trade routes between

Western Europe and Quebec, Canada. From the full-scale measurements,
forty-eight routes spanning from 2007–09 to 2010–02 were chosen for
inclusion in the case study. Voyages that lacked more than 50% of the
required measurements were excluded from this study. The data
collection frequency for strain/stress and ship motions is 25 Hz, and 1
Hz for other operational variables.

4.2. Data pre-processing and analysis

Fig. 7 illustrates all forty-eight case studies, categorized into winter
and summer voyages. During winter, the container ship often adopts
alternative routes that significantly deviate from the shortest voyages to
avoid harsh wave conditions, as depicted in Fig. 7(a). The emphasis of
this study is on the open sea; hence, data collected near coastal and
shallow-water areas have been omitted. This is achieved by establishing
two geographical boundaries at 55◦W and 5◦W longitudes (marked by
red lines in Fig. 6) also help exclude anomalous strain/stress measure-
ments from ports and coastal regions.
Fig. 8 showcases two examples of response stress (25 Hz) from

voyages that commenced on 2008-03-01 and 2008-04-24. The blue
frame highlights the span selected by the spatial boundaries, with the
mean stress level normalized to 0. This setup ensures that the analysis
includes only the strain/stress induced in open sea navigation, excluding
strain/stress with less fluctuation during anchoring or when the vessel is
near berths.
This study assumes stationary sea states have a fixed 30-min

duration, following the assumption in prior work by Mao et al. (2010).
Post data synchronization and the application of geographic filters for
open sea conditions, the final dataset size for fatigue machine learning
modeling comprises more than 10000 samples.
For the i-th 30-min sea state, accumulated fatigue damage, dRFC

i , is
calculated using the rainflow counting method. Fig. 9 showcases the
normalized stress spectra (λ0 = 1), employing the fast Fourier transform
to convert the response into the power spectral density from the stress
signals of the case study vessel’s voyage commenced on 2008-01-06.
Following the application of geographic boundaries, the voyage,
which includes 277 sea states, is analyzed. The blue frame in Fig. 9(a)
specifically marks the 150th sea state.

Fig. 6. The 2800TEU container ship utilized in this study, along with the arrangement of the strain sensor placement at the midsection, indicating the specific
measurement point on the starboard upper deck.

Fig. 7. The 2800TEU container ship’s case study voyages are depicted for (a)
winter and (b) summer navigation. The black lines illustrate the GPS positions
recorded during these voyages, and the red frame highlights the routes chosen
for analysis, filtered by the spatial boundaries set between 55◦W and 5◦

W longitudes.
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In the analysis presented in Fig. 9(b), it is possible to observe the
distinct multi-peak nature of the spectra across the 277 spectra that were
examined. The initial crest in the spectra arose due to the wave fre-
quency (WF) ship responses, while the subsequent crest was a result of
whipping/springing. The third peak, generated by high-order ship re-
sponses, had a minor impact on fatigue forecasting. The spectral method
applied in this study, when calculating RAOs, considers only wave-
induced hydrodynamic loads (through numerical analysis); conse-
quently, vibrations (such as whipping and springing) and high-order
ship responses are not accounted for. Therefore, this paper focuses on
fatigue damage induced by WF loads, which are extracted from the
overall response within a frequency band of 0–3 rad/s, to ensure a fair
comparison between the proposed metamodel and the conventional
spectral method.
The metocean conditions encountered, including the mean wave

direction (Dwave), significant wave height (Hs), mean wave period (Tz),
were sourced hourly from the ERA5 reanalysis dataset, which offers a
spatial resolution of 0.5◦ by 0.5◦ (Copernicus, 2019). Since the case
study container ship onboard measurements do not include metocean
data, employing spatial-temporal interpolation of the hindcast data is

reasonable and aligns with practices in state-of-the-art research. Addi-
tionally, the current velocities (Ucurrent and Vcurrent) were acquired from
the Copernicus Marine Service, featuring a geographic resolution of
0.083◦ by 0.083◦ and a temporal resolution of 24 h (CMEMS, 2021).
During the measurement campaign for the case study container ship,
speed over ground was the only measured speed variable. Current ve-
locities are therefore utilized to calculate the speed through water V
(required for the spectral moments’ calculation in Eq. (5)) based on the
speed over ground, according to ISO (2015) guidelines.
The frequency distribution histograms of the final pre-processed data

for the encountered significant wave height Hs, relative wave heading θ,
and ship speed through water V are presented in Fig. 10. The statistical
distribution of wave height is divided into winter and summer voyages
(see Fig. 10(a)). As previously mentioned, the North Atlantic has the
harshest navigation environment in winter. Even if this case study
container vessel was equipped with an old conventional weather routing
system to guide the ship to avoid severe environmental conditions, the
waves encountered during winter sailings are significantly higher. In
summer, ships rarely encountered waves with Hs values greater than 5
m. However, in winter, at least 25% of the samples had wave heights
greater than 5 m, with the highest waves encountered being close to 10
m. Fig. 10(b) presents the distribution of relative wave angles in the case
of westbound (Europe to North America) and eastbound (North America
to Europe) sailing. In Fig. 10(b), heading angle θ = 0◦ means the head
sea operation, while θ = 180◦ stands for the following sea. When sailing
eastbound, the ship is mainly subjected to the following wave. When
sailing westbound, the relative angle is concentrated at 0◦ ∼ 50◦, and
the waves come from the bow side of the ship. When sailing westbound
in winter, the container vessel’s speed through water V is much smaller
than when sailing eastbound in summer due to larger waves and more
head sea conditions, as shown in Fig. 10(c).
The encountered metocean environment and operational profiles

have a wide distribution. Therefore, the dataset in the current investi-
gation should be able to represent most of the operating conditions for
the ship’s entire service life.

4.3. Fatigue damage calculated by rainflow counting and spectral
methods

The fatigue damage for each 30-min sea state across the forty-eight
case study routes was calculated using the rainflow counting method,
applied to stress signals induced by WF loads. For the case study ship,
the Ib S-N curve characterized by α = 1012.76 and m = 3 is employed as
per the Palmgren-Miner rule in Eq. (1) (DNV, 2005). Fig. 11 displays the
fatigue damage dRFC for each sea state in chronological order of the

Fig. 8. Time series data depicting stress measured at midship during example
voyages departing on (a) 2008-03-01 and (b) 2008-04-24. The blue frame de-
lineates the stress span selected for the study, filtered according to the voyage’s
spatial boundaries. The mean stress level is normalized to 0.

Fig. 9. (a) The first westbound winter voyage departing 2008-01-06 includes stress data for fatigue analysis filtered by geographic boundaries, encompassing 277 sea
states. (b) From this voyage, 277 normalized spectra are derived from stress measurements taken during every 30-min sea state.
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voyages, spanning from 2007–09 to 2010–02. Additionally, Fig. 12 il-
lustrates the significant wave heights Hs encountered along the sailing
route for each sea state. Orange frames in the figure denote westbound
voyages, while blue frames indicate eastbound voyages.
As depicted in Fig. 12, the significant wave height Hs , as systemat-

ically quantified in Fig. 10(a), exhibits a clear seasonal pattern, with
wave conditions becoming markedly more severe during winter. This
seasonal variation in wave intensity significantly contributes to
increased fatigue damage during winter voyages when compared to
those undertaken in the summer, even when following the same sailing
direction. Furthermore, the majority of the most substantial fatigue
damage predominantly occurred during westbound voyages in winter.
This is largely attributable to the relative wave angles for westbound
navigation being comparatively closer to head sea conditions, as illus-
trated in Fig. 10(b).
For the calculation of ship fatigue damage based on numerically

estimated stress responses, the RAOs for the vertical bending moments
at the midship section of the upper deck are derived through a hydro-
dynamic analysis. This analysis uses the 2-dimensional potential theory-
based Waveship software, considering the vessel’s fully loaded condi-
tion (Mao et al., 2009, 2010). Fig. 13 displays the RAOs in polar heat-
maps for three different speeds: V = 1 m/s (left), V = 7 m/s (middle),
and V = 12 m/s (right).
In these figures, the angle represents the relative wave direction θ,

and the radius indicates the wave frequency ω in rad/s ([0.2895, 1.63]).
The heatmap colors denote the RAO values, with darker colors indi-
cating higher values of Hv(ω|V, θ), thus reflecting a greater stress
response under the same significant wave height Hs and wave period Tz

conditions. As shown in Fig. 13, the RAOs demonstrate sensitivity to
changes in θ and V.
Based on the obtained RAOs, the fatigue damage for each stationary

sea state has been predicted using the physical spectral methods intro-
duced in Sections 2.2 and 2.3 for all 48 case study voyages. The narrow-
band and bandwidth correction methods estimated fatigue damage and
are denoted as dNB and dWT , respectively. Fig. 14 presents the discrep-
ancies between the predictions of these physical models and the fatigue
damage derived from rainflow counting for each sea state, represented
as dNB− dRFC and dWL− dRFC. Indeed, presenting dimensionless relative
error would better characterize the deviations. However, for very small
waves (Hs < 1 meter), dRFC would also be small, resulting in a large
relative error. It causes the data for larger wave heights to appear
densely plotted and overlapping at the lower part of the figure, thus
failing to accurately present the changes in deviations. Therefore, this
study determines to present the fatigue damage prediction differences to
ensure clarity and precision in illustrating the results. As shown in
Fig. 14(a), the prediction error of the narrow-band method is relatively
minor when Hs is less than 2 m. However, as Hs increases, the difference
dNB− dRFC shows a significant rise, indicating a nonlinear increase with
larger waves. Fig. 14(b) illustrates the prediction of the Wirsching and
Light method with bandwidth correction. Notably, the overestimation
observed in the narrow-band method is mitigated by applying band-
width correction. However, a significant nonlinear increasing trend in
dWL− dRFC with the growth of Hs remains evident. The prediction errors
from both methods are attributed to uncertainties involved in the
physical modeling (see Fig. 1). Specifically, the inability of linear

Fig. 10. Frequency distribution histograms of (a) encountered significant wave height Hs for winter and summer voyages, (b) relative wave angle θ for eastbound
and westbound voyages, and (c) estimated ship speed through water V for westbound winter sailing and eastbound summer sailing, based on the processed data.

Fig. 11. Fatigue damage for every 30-min sea state across the forty-eight voyages, conducted from 2007–09 to 2010–02, was calculated using the rainflow
counting method.
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hydrodynamic analysis and beam theory to accurately account for the
nonlinear effects of increasing significant wave height on RAOs leads to
these discrepancies. This overestimation is consistent with findings from
previous studies by Mao et al. (2010) and Lang et al. (2023), which
highlight physical models’ limitations in capturing the complex dy-
namics of ship responses in high waves.

5. Results and discussion

This section compares the pure data-driven BBM based on ship mo-
tion with the physics-guided GBM informed by numerical analysis, as
well as the metamodel proposed in Section 3. The physics-guided GBM
(referred to as FMoment, with predictions denoted as dMoment) and the ship
motion-based BBM (referred to as FMotion, with predictions denoted as
dMotion) correspond to base learner 1 and base learner 2 in Section 3.1
and Fig. 4, respectively. The input features for these models are

Fig. 12. Encountered significant wave height Hs of every 30-min sea state along the forty-eight voyages from 2007–09 to 2010–02.

Fig. 13. Polar heatmaps of the RAOs (Hv(ω|V,θ)) for the longitudinal stiffener at the amidship deck of the case study container vessel are shown for speeds through
water of V = 1 m/s (left), V = 7 m/s (middle), and V = 12 m/s (right).

Fig. 14. Scatter plots of fatigue damage prediction differences with significant wave height HS increases: (a) dNB− dRFC and (b) dWL− dRFC.
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numerical calculations of spectral moments [λ0, λ1, λ2, λ3, λ4] and stan-
dard deviations of variables related to heave and pitch motions, spe-
cifically [σ(z2), σ(ż2), σ(z̈2), σ(z6), σ(ż6), σ(z̈6)]. These two models are
compared to the metamodel to test each base learner’s capabilities, pros,
and cons. Another physics-guided GBM is included in this comparison,
referred to as FCombine (with predictions denoted as dCombine). It remains
an XGBoost-based model but combines the input features from both base
learners, comprising [σ(z2),σ(ż2),σ(z̈2),σ(z6),σ(ż6),σ(z̈6),λ0,λ1,λ2,λ3,λ4].
The comparison between the combined method and the meta method
aims to determine whether a traditional machine learning model, using
only the input features considered by the meta method, can achieve
similar predictions. This comparison is crucial for validating the effec-
tiveness and significance of the proposed metamodel.
The comparisons are conducted under three different data volume

cases, as illustrated in Fig. 15: using 25% of the data for training to
predict the remaining 75%; using 50% for training to predict the
remaining 50%; using 75% for training to predict the remaining 25%.
This analysis aims to determine the efficacy of eachmodel under varying
volumes of actual measured stress signal data. Such evaluations are
critical in practical navigation, where ships monitor fatigue for future
voyages—including potentially unseen voyages throughout their life
cycle—following a short measurement campaign.

5.1. Black-box model

Firstly, for the pure data-driven BBM, the differences between the
machine learning model prediction and the actual fatigue damage (i.e.,
dMotion − dRFC for each sea state) are presented in Fig. 16 for three
comparison cases, with the RMSE also noted. As shown in Fig. 16(a),
when only 12 routes are used as training data, the BBM based on ship
motion significantly overestimates fatigue damage in large waves (Hs >

6 meters). This is because, in the training dataset consisting of 12 routes,
the maximum significant wave height encountered by the case study
container vessel is approximately 7.5 m, with most of the other training
data being below 6 m. Therefore, it fails to accurately predict the more
severe sea states of unseen voyages, as shown in Fig. 12. However, as the
training data increases to 50%, the overestimation noticeably decreases
(see Fig. 16(b)). When 75% of the data is used for training to predict the
remaining 25%, the model’s predictions become more stable, the RMSE
significantly reduces, and the prediction differences mainly concentrate
near zero even though the remaining 25% of the voyages include harsh
wave conditions with Hs over 8 m.
In addition to comparing predictive capabilities across each sea state,

monitoring fatigue damage accumulation over individual voyages is
equally critical. For the three comparison cases, Cases 1–3, 36, 24, and
12 unseen voyages were used for evaluation. Fig. 17 presents the
accumulated difference in fatigue damage between the BBM predictions
and the rainflow counting calculation—denoted as Δ

(
dMotion −

dRFC
)

—along each unseen voyage. The x-axis represents the number of

sea states of each voyage, while the color of the lines indicates the value
of encountered significant wave height.
As illustrated in Fig. 17(a), in Case 1, for unseen harsh wave condi-

tions, the BBM accumulates an error of up to 0.0035 on one route where
the case study vessel encountered waves with Hs exceeding 9 m. Some of

the other unseen routes also exhibited accumulated errors exceeding
0.001. However, with an increase in training data, the accumulated
errors decrease in Case 2 (Fig. 17(b)), consistent with the trends
observed in Fig. 16. For Case 3, regardless of whether the encountered

wave heights exceed 8 m or not, the accumulated Δ
(
dMotion − dRFC

)
re-

mains within a range of approximately ±0.0005.

5.2. Physics-guided gray-box model

For the physics-guided GBM, two models were compared: one using
only spectral moments as input features and another considering both
spectral moments and ship motions. Their predictions are denoted as
dMoment and dCombine, respectively. The prediction errors of these models
compared to the rainflow counting fatigue damage (i.e., dMoment − dRFC

and dCombine − dRFC for each sea state across three different cases) are
presented in Fig. 18.
For the spectral moments-guided GBM (see Fig. 18(a)), when the

training data volume is only 25%, there is no significant over-
estimation—similar to the BBM results. However, noticeable prediction
errors begin to appear on either side of zero when Hs exceeds 4 m;
however, there is no trend of errors increasing with larger Hs. In
contrast, for Cases 2 and 3, when the training data increases to 50%
(Fig. 18(c)) and 75% (Fig. 18(d)), the improvement in prediction ac-
curacy is not significant. Unlike the BBM, where an increase to 50% in
training data slightly improves accuracy and a further increase to 75%
significantly enhances it due to learning from sufficient data, the spec-
tral moments-guided GBM does not show marked improvement in pre-
dictive capability with increased data volume, even though it has lower
RMSE values than the BBM for Cases 1 and 2.

FCombine, which considers spectral moments and ship motions (as
depicted in Fig. 18(b) and (d)), exhibits a balanced approach. Its pre-
dictive capability shows some overestimation with small data volumes,
though this overestimation is not as pronounced as the motion-based
BBM because the spectral moments serve as guided additional fea-
tures. Furthermore, as the data volume increases to 75% in Fig. 18(f),
FCombine outperforms the pure spectral moments-based GBM, with
dCombine − dRFC more closely clustered around zero; however, its RMSE
remains lower than that of the BBM.
The following analysis concerns the accumulated fatigue damage

over individual voyages for the two GBMs. Fig. 19 presents the accu-
mulated differences in fatigue damage between the predictions from the
spectral moments-based GBM and the rainflow counting calculations,
denoted as Δ

(
dMoment − dRFC

)
. The results confirm the observation in

Fig. 18, showing that the maximum accumulated error remains within

±0.001, without distinct overestimation regardless of the data volume.
However, the accumulated errors do not decrease with increased
training data. Unlike the BBM results in Fig. 17, where several voyages
exhibited significant overestimation and most had more minor accu-
mulated errors, the spectral moments-based GBM displays diverging
accumulated errors.
The accumulated error for the GBM that incorporates both spectral

moments and ship motions, Δ
(
dCombine − dRFC

)
, is presented in Fig. 20.

As demonstrated in Fig. 18, the inclusion of additional ship motions as

Fig. 15. Three comparison cases in this study: Case 1 utilizes the first 25% of data, Case 2 uses 50%, and Case 3 uses 75% as training data to monitor vertical
bending-induced fatigue damage in the remaining unseen voyages.
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input features leads to overestimation under harsh wave conditions.
However, as the data volume increases, the predictive capability of this
model improves, aligning with the observed reduction in prediction
error. This trend indicates that while initial models may overestimate,
their accuracy increases with additional data, as per the BBM prediction
results.
The comparison between the pure data-driven BBM and the physics-

guided GBMs reveals that spectral moments obtained from numerical
analysis can rapidly capture the main variations in the data when the
data volume is limited. This allows the model to rapidly achieve high
accuracy with minimal overestimation. However, as the data volume
increases, the improvement in model performance shows diminishing
returns because these features cannot capture more complex relation-
ships that may exist within the data. This may be explained by the
inherent uncertainties in calculating spectral moments during numerical
analysis, which limit their ability to capture complex patterns in the
data. As the data volume increases, the representativeness and diversity
of the data also increase. When used as input features, ship motions
initially do not exhibit their full predictive potential due to insufficient

data. As the data volume increases, these features can reveal more
profound and complex patterns and relationships within the data,
leading to significant improvements in model performance and even-
tually surpassing the performance of models based on spectral moments
alone.
However, the GBM FCombine, which simply combines spectral mo-

ments and ship motions as input features, serves as a compromise be-
tween the two models. With a small data volume, there is significant
overestimation, though not as extensive as with the BBM. With a large
data volume, the predictive capability improves significantly but does
not reach the level of accuracy achieved by the BBM. This result illus-
trates that simply combining features can mitigate some of the issues
observed in single-feature models but does not always produce optimal
results—especially in complex predictive scenarios.

5.3. Physics-guided metamodel

The prediction errors between the proposed physics-guided meta-
model and the rainflow counting fatigue damage, dMeta − dRFC, are pre-

Fig. 16. Prediction error from the pure data-driven BBM based on ship motion versus the rainflow counting fatigue damage dMotion − dRFC across each sea state for
three cases: (a) Case 1, (b) Case 2, and (c) Case 3.

Fig. 17. Accumulated prediction error from the pure data-driven BBM based on ship motion versus the rainflow counting fatigue damage Δ
(
dMotion − dRFC

)
across

each unseen voyage for three cases: (a) Case 1, (b) Case 2, and (c) Case 3.
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sented in Fig. 21 for all three evaluation cases. Overall, the metamodel
achieved the best predictive results when compared to the BBM and
GBMs, with the lowest RMSE across the three different data volume
cases.
Although only 25 and 50% of the data were used for training in Cases

1 (Fig. 21(a)) and 2 (Fig. 21(b)), respectively, the metamodel did not
exhibit significant overestimation for large waves. Moreover, as the data

volume increased to 75% (see Fig. 21(c)), the predictive capability of the
metamodel improved rapidly, surpassing that of the pure data-driven
BBM. The proposed model effectively learns from the strengths of both
the BBM and the spectral moments-guided GBM. It rapidly improves the
prediction accuracy in scenarios with limited data, thereby avoiding
unreasonable predictions. With larger data volumes, the model can learn
deeper and more complex patterns within the data, thus demonstrating

Fig. 18. Prediction error from the physics-guided GBMs versus the rainflow counting fatigue damage across each sea state for three cases: (a) dMoment − dRFC of Case 1;
(b) dCombine − dRFC of Case 1; (c) dMoment − dRFC of Case 2; (d) dCombine − dRFC of Case 2; (e) dMoment − dRFC of Case 3; (f) dCombine − dRFC of Case 3.

Fig. 19. Accumulated prediction error from the physics-guided GBM based on spectral moments versus the rainflow counting fatigue damage Δ
(
dMoment − dRFC

)

across each unseen voyage for three cases: (a) Case 1, (b) Case 2, and (c) Case 3.
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Fig. 20. Accumulated prediction error from the physics-guided GBM based on spectral moments and ship motions versus the rainflow counting fatigue damage Δ
(
dCombine − dRFC

)
across each unseen voyage for three cases: (a) Case 1, (b) Case 2, and (c) Case 3.

Fig. 21. Prediction error from the physics-guided metamodel versus the rainflow counting fatigue damage dMeta − dRFC across each sea state for three cases: (a) Case
1, (b) Case 2, and (c) Case 3.

Fig. 22. Accumulated prediction error from the physics-guided metamodel versus the rainflow counting fatigue damage Δ
(
dMeta − dRFC

)
across each unseen voyage

for three cases: (a) Case 1, (b) Case 2, and (c) Case 3.
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its robustness and adaptability across different training scenarios.
The accumulated prediction error Δ

(
dMeta − dRFC

)
across each un-

seen voyage for the three cases is illustrated in Fig. 22. As depicted in
Fig. 22(a), when the data volume is small, the predictive capability of
the metamodel is similar to that of FMoment, with no excessively large
accumulated errors. Moreover, the distribution range of accumulated
errors is even smaller; except for one voyage where the accumulated
error is about 0.001, most are within ±0.0005. This demonstrates the
metamodel’s precision, even with limited data. As the training data in-
creases to 50%, the results remain consistent (see Fig. 22(b)), with no
significant overestimation like that observed with FMotion and FCombine.
When the data volume is increased to 75%, the distribution of

accumulated errors becomes very narrow (see Fig. 22(c)), with the er-
rors of nine out of twelve unseen voyages being close to zero. This in-
dicates a substantial improvement in model reliability and effectiveness,
highlighting the metamodel’s ability to learn and adapt effectively to
diverse and complex datasets. The performance of this model showcases
the model’s advanced capability in integrating the strengths of both the
BBM and GBM approaches while minimizing their individual

weaknesses, leading to improved accuracy in fatigue damage pre-
dictions across tested scenarios.
As predicted by four models, the accumulated fatigue damage for all

evaluation voyages in three cases was also compared with the rainflow
counting fatigue damage in Fig. 23. For Case 1, with limited training
data, the accumulated fatigue damage predictions for remaining unseen
voyages are presented in Fig. 23(a). The pure data-driven BBM shows
the largest error due to overestimation in some voyages caused by
insufficient data volume, reaching up to 45% error when compared to
dRFC. For the GBM based on spectral moments and ship motions, FCombine,
its relatively large overestimation also results in a significant cumulative
error of approximately 19% across 36 unseen voyages (see Fig. 18);
however, this is somewhat lower when compared to the BBM. The
spectral moments-based GBM (see Fig. 18) has its prediction errors
distributed around zero, resulting in a much lower accumulated error of
approximately 14%. The proposed metamodel achieves the lowest level
of accumulated error (10%). In scenarios with limited data, it is rec-
ommended to use the proposed metamodel or the physics-guided GBM
for model building. This approach is advocated because, with

Fig. 23. Accumulated fatigue damage across (a) 36 unseen voyages for Case 1, (b) 24 unseen voyages for Case 2, and (c) 12 unseen voyages for Case 3.
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insufficient training data, relying solely on ship motion can lead to un-
realistic predictions in future unseen scenarios.
Similar predictive outcomes are observed in Case 2, as shown in

Fig. 23(b). Although the BBM still has the largest accumulated error, its
overestimation decreases to 32% with additional training data. For
FCombine, FMoment, and FMeta, while the RMSE of fatigue prediction is
smaller in Case 2 than in Case 1, their accumulated errors increase
slightly to 26, 24, and 18%, respectively. However, the metamodel’s
prediction dMeta accumulation remains the closest to the accumulated
rainflow counting fatigue damage among the four models. In Case 3,
where the training data volume reaches 75%, all models’ fatigue accu-
mulation predictions closely match the accumulated rainflow counting
fatigue damage. The BBM presents an underestimation of approximately
10% and a 13% underestimation of FCombine. Although both the meta-
model and the spectral moments-based GBM have accumulated errors of
6%, the spectral moments-based GBM exhibits a significant over-
estimation at around the 1500th sea state, followed by a decrease to
underestimation, thereby showing instability. In contrast, the meta-
model’s predictions are more stable and superior.

6. Conclusions

This study proposes a physics-guided metamodel to predict the ver-
tical bending-induced fatigue damage of a North Atlantic-sailing
2800TEU container vessel by utilizing full-scale measurement data
from the onboard hull monitoring system. The metamodel integrates
two base learners. The first is a physics-guided GBM developed using
XGBoost, which employs spectral moments derived from numerical
analysis as inputs. The second is a BBM developed using XGBoost based
on ship heave and pitch motion measurements. A meta learner, i.e.,
GPR, subsequently processes the predictions from both the BBM and
GBM, to predict the final fatigue damage. This metamodel has been
evaluated against the BBM and GBMs for predicting unseen voyages,
using varying volumes of training data. The key conclusions of this study
can be summarized as follows.

• The physics-guided GBM captures primary data variations under
limited data volumes but struggles with complex relationships as
data increases, thus showing diminishing returns in performance
improvements.

• The BBM fails to unleash its full predictive potential with limited
data, often generating unreasonable predictions for unseen sce-
narios. However, it excels at uncovering complex patterns with more
data, which significantly enhances model performance.

• The innovative metamodel synergistically combines the strengths of
both gray-box and black-box models, effectively reducing their in-
dividual limitations and enhancing accuracy in fatigue damage
predictions across various data volume scenarios.

• This metamodel consistently delivers optimal and stable predictive
performance in scenarios with limited data availability and sufficient
training data, improving predictions of fatigue damage accumulation
by up to 35% when compared to conventional BBMs.

This study also has some assumptions and limitations. To ensure a
fair comparison between the conventional spectral method and the
proposed method, only fatigue damage induced by wave frequency
loads has been considered, achieved through filtering of the stress time
series. Due to the absence of onboard metocean measurements, our
research employs spatial-temporal interpolation of hindcast data, a
method widely used in state-of-the-art research, to match the wave pa-
rameters encountered by the case study ship. This work contributes to
advancing data-driven methodologies for monitoring ship fatigue
damage in open sea navigation. It provides the maritime transportation
industry with innovative tools and methodologies to account for ship
fatigue accumulation and, when appropriate, to perform predictive

maintenance before structural failure.
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