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ABSTRACT
Data subsampling has become widely recognized as a tool to overcome computational and economic
bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for
estimation of finite population characteristics, using active learning and adaptive importance sampling.
We propose an active sampling strategy that iterates between estimation and data collection with optimal
subsamples, guided by machine learning predictions on yet unseen data. The method is illustrated on
virtual simulation-based safety assessment of advanced driver assistance systems. Substantial performance
improvements are demonstrated compared to traditional sampling methods.
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1. Introduction

We consider a deterministic computer simulation experiment
which for a given input z returns a fixed output y. The input
space is assumed to be discrete and the simulation experiment
hence characterized by the set of complete input–output pairs
{(zi, yi)}N

i=1, where N is the size of the experiment. The aim our
experiment it to calculate a characteristic

θ = h(ty), ty =
N∑

i=1
yi, (1)

for some differentiable function h : Rd → R and d-dimensional
vector of totals ty. Examples of such a characteristic include, for
example, a total, mean, ratio, or correlation coefficient. This is
also known as a finite population inference problem (Beaumont
and Haziza 2022). We further assume that N is large, as is the
computational cost of each single experiment, rendering com-
plete enumeration unfeasible. In such circumstances, researches
often resort to subsampling.

Subsampling methods have seen a huge increase in popu-
larity over the past few years across many different areas of
statistics. For instance, Ma, Mahoney, and Yu (2015); Ma et al.
(2022) introduced leverage sampling for big data regression,
which subsequently inspired similar developments for logistic
regression (Wang, Zhu, and Ma 2018; Yao and Wang 2019)
generalized linear models (Ai et al. 2021b; Yu et al. 2022), and
quantile regression (Ai et al. 2021a; Wang, Peng, and Zhao
2021). Similarly, Dai, Song, and Wang (2022) developed an
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optimal subsampling method for regression using a minimum
energy criterion. Sometimes subsampling is induced by eco-
nomical rather than computational constraints. In this setting,
Imberg et al. (2022) developed an optimal subsampling method
for two-phase sampling experiments. A similar measurement-
constrained experiment problem was addressed by Zhang, Ning,
and Ruppert (2021) using a sequential subsampling procedure
and by Meng et al. (2021) using a space-filling Latin hypercube
sampling method.

For computer simulation experiments, subsampling meth-
ods using adaptive design for Gaussian process response sur-
face modeling are commonly employed. Together with active
learning and Bayesian optimization, this provides a powerful
framework for computer experiment emulation (Gramacy and
Apley 2015; Sun et al. 2017; Lei et al. 2021; Lim et al. 2021).
Another popular approach is model-free space-filling methods
using, for example, Latin hypercube sampling designs (see, e.g.,
Cioppa and Lucas 2007; Zhang et al. 2024; Zhou et al. 2024).
Others have used methods based on optimal transport, for
example, for kernel density estimation (Zhang et al. 2023). For
estimating a simple statistic, such as a mean or ratio, how-
ever, importance sampling and adaptive importance sampling
remains prominent (Bucher 1988; Oh and Berger 1992; Feng
et al. 2021). Importance sampling is widely known, easy to
implement, and provides consistent estimates under minimal
assumptions (Fishman 1996; Fuller 2009). Some recent devel-
opments include adaptive importance sampling for quantile
estimation (Pan 2020) and online monitoring of data streams
(Liu, Mei, and Shi 2015; Xian, Wang, and Liu 2018).
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There has also been a considerable interest in subsampling
and adaptive design in machine learning, particularly in the
context of active learning (MacKay 1992; Cohn 1996; Settles
2012). Adaptive importance sampling methods for active learn-
ing were developed in, for example, Bach (2007), Beygelzimer,
Dasgupta, and Langford (2009) and Imberg, Jonasson, and
Axelson-Fisk (2020). Active learning has also been used for
deep learning (Ren et al. 2021), Gaussian processes (Sauer,
Gramacy, and Higdon 2023) and adaptive design of experiments
(Lookman et al. 2019; Sun et al. 2021), to mention a few.

Returning to the finite population inference problem (1),
this is a classical problem in statistics and hence has achieved
considerable attention over the years, particularly in the survey
sampling literature. Common approaches to estimation include
importance sampling methods and/or using estimators that use
information of known auxiliary variables to improve estima-
tor efficiency (see, e.g., Cassel, Särndal, and Wretman 1976;
Deville and Särndal 1992; Kott 2016; Ta et al. 2020). Methods
using machine learning in survey sampling have just recently
begun to emerge (Breidt and Opsomer 2017; Kern, Klausch,
and Kreuter 2019; McConville and Toth 2019; Sande and Zhang
2021). Although there has been a substantial amount of work
on subsampling and adaptive design in the statistical literature,
there is to our knowledge little done at the intersection of
machine learning and adaptive design for the finite population
inference problem (1).

1.1. Contributions

To fill the gap in adaptive design and machine learning for finite
population inference, we propose an active sampling strategy
for estimation of finite population characteristics. Our method
iterates between estimation and data collection with optimal
subsamples, guided by machine learning predictions on yet
unseen data. The proposed sampling strategy interpolates in a
completely data-driven manner between simple random sam-
pling when no auxiliary information is available and optimal
importance sampling as more information is acquired. Consis-
tency and asymptotic normality of the active sampling estimator
is established using martingale central limit theory. Methods for
variance estimation are proposed and conditions for consistent
variance estimation presented.

1.2. Outline

The structure of this article is as follows: We start by presenting
a motivating example in crash-causation-based scenario gener-
ation for virtual vehicle safety assessment in Section 2. Mathe-
matical preliminaries and notation is introduced in Section 3.
In the end of this section we also derive an optimal importance
sampling scheme for estimating a finite population character-
istic while accounting for uncertainty in the study variables
of interest. This is then incorporated in the active sampling
algorithm proposed in Section 4. An empirical evaluation on
simulated data is conducted in Section 5 and application to
virtual vehicle safety assessment in Section 6. Additional the-
oretical results and proofs are provided in the supplementary
material.

2. Motivating Example

Traffic safety is a problem worldwide (World Health Organiza-
tion 2018). Safety systems have been developed to improve traffic
safety and have shown the potential to avoid or mitigate crashes.
However, when developing both advanced driver assistance sys-
tems and automated driving systems, there is a need to assess the
impact on safety of the systems before they are on the market.
One way to do that is by running virtual simulations comparing
the outcome of simulations both with and without a specific
system (Seyedi et al. 2021; Leledakis et al. 2021).

We consider a virtual simulation experiment based on a
glance-and-deceleration crash-causation model where a driver’s
off-road glance behavior and braking profile are represented
by discrete (empirical) probability distributions, using a similar
setup as in Bärgman et al. (2015) and Lee et al. (2018). The
outcome of the simulations is a distribution of impact speeds
of all the crashes generated by all combinations of the eyes-
off-road glance duration and the maximum deceleration during
braking. Here “all combinations” is the problem. Complete enu-
meration becomes practically unfeasible in high-dimensional
(many parameters varied) or high-resolution (many levels per
parameter) settings, and subsampling is inevitable.

A small toy example of our problem and illustration of the
proposed active sampling method is provided in Figure 1. The
figure shows the output of a computer simulation experiment to
evaluate the impact speed reduction with an automatic emer-
gency braking system (AEB) compared to a baseline manual
driving scenario (without AEB) in a rear-end collision gener-
ation. The impact speed and impact speed reduction depend
on the maximal deceleration during braking and the driver’s
off-road glance duration, that is, the time the driver of the
“following” car is looking off-road (e.g., due to distraction). By
iteratively learning to predict the response surface of Figure 1(A)
while running the experiment, an accurate estimate of the over-
all safety benefit of the AEB system may be obtained by adaptive
importance sampling (Figure 1(B)). In doing so, computational
demands can be substantially reduced compared to complete
enumeration.

3. Finite Population Sampling

We introduce the mathematical framework and notation in
Section 3.1, presented in the context of the crash-causation-
based scenario generation application outlined above. Tradi-
tional methods for sample selection and estimation are reviewed
in Section 3.2 and optimal importance sampling schemes dis-
cussed in Section 3.3.

3.1. Target Characteristic and Scope of Inference

Assume we are given an index set or dataset D with N instances
or elements i = 1, . . . , N. Associated with each element i in D
is a vector (yi, zi), where yi is a vector of outcomes or response
variables, and zi a vector of design variables and auxiliary vari-
ables. We are interested in a characteristic θ = h(ty) for some
differentiable function h : Rd → R and d-dimensional vector
of totals ty = ∑N

i=1 yi.
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Figure 1. A: Simulated impact speed reduction with an automatic emergency braking system (AEB) compared to a baseline manual driving scenario (without AEB) in a
computer experiment of a rear-end collision generation. In the bottom right corner, no crash was generated in the baseline scenario; such instances are noninformative with
regards to safety benefit evaluation. B: Corresponding optimal active sampling scheme. Active sampling oversamples instances in regions where there is a high probability
of generating a collision in the baseline scenario (attempting to generate only informative instances) and with a large predicted deviation from the average. These instances
will be influential for estimating the safety benefit of the AEB system.

In the context of crash-causation-based scenario generation,
the index set D represents a collection of N potential simulation
scenarios of interest. The response variables yi are outcomes of
the simulation, including, for example, whether a crash occurred
or not, impact speed if there was a crash, and impact speed
reduction with an advanced driver assistance system compared
to some baseline driving scenario. The auxiliary variables zi
contain scenario information, such as simulation settings and
parameters that are under the control of the investigator, and
any additional information that is available without running
the actual simulation. Characteristics of interest include, for
example, the mean impact speed reduction and crash avoidance
rate with an advanced driver assistance system compared to
some baseline driving scenario, when restricted to the relevant
set of crashes (Figure 1).

3.2. Unequal Probability Sampling

In our application, as in many computer simulation experiment
applications, running all N simulations of interest to observe
the outcomes {yi}N

i=1 is computationally unfeasible. Hence, we
assume that observing complete data is affordable only for a
subsetS ⊂ D of size n. We consider the case when the subsetS is
selected using unequal probability sampling, that is, by a random
mechanism where each instance i ∈ D has a strictly positive
and possibly unique probability of selection. In this section we
also restrict ourselves to nonadaptive designs. We let Si be the
random variable representing the number of times an element i
is selected by the sampling mechanism, assuming that sampling
may be with replacement. Hence, the subsampleS is the random
set given by S = {i ∈ D : Si > 0}. We will primarily consider
multinomial sampling designs but note that the methodology of
our article is applicable also for other designs, such as the Poisson
sampling design (Tillé 2006), with minimal modifications.

In this context, an estimator for the finite population charac-
teristic (1) may be obtained by sample weighting as

θ̂ = h(t̂y), t̂y =
∑
i∈S

Siwiyi, (2)

where wi = 1/μi and μi = E[Si]. We note that t̂y is an
unbiased estimator of the total ty provided that μi > 0 for all
i ∈ D, and furthermore a consistent estimator under general
conditions (Hansen and Hurwitz 1943; Horvitz and Thompson
1952). Consequently, θ̂ is a consistent estimator for θ under mild
assumptions (see, e.g., Fuller 2009).

3.3. Optimal Importance Sampling Schemes

When the function h is linear and all h(yi) are positive, it is well-
known that the optimal sampling scheme for θ in terms of min-
imizing the variance of the estimator θ̂ is given by μi ∝ h(yi), in
fact producing an estimator with zero variance (Fishman 1996).
In general, one can show that the optimal importance sampling
scheme for a characteristic θ = h(ty) and nonlinear function
h(u) is of the form μi ∝∣∣∇h(ty)Tyi

∣∣ (Proposition 1). A proof is
provided in Section A in the supplement.

Proposition 1 (Optimal importance sampling scheme, yi known).
Let {yi}N

i=1 be fixed. Let {mk}k≥1 be an increasing sequence of
positive integers and Sk = (Sk1, . . . , SkN) ∼ Multinomial(mk, π)

a corresponding sequence of random vectors. Let θ̂k be defined
for the kth random vector Sk as in (2). As a function of π =
(π1, . . . , πN), the asymptotic mean squared error AMSE(θ̂) :=
limk→∞ E[mk(θ̂k − θ)2] is minimized by

π∗
i =

√ci∑N
j=1

√cj
, i = 1, . . . , N, (3)

with ci =∣∣∇h(u)Tyi
∣∣2
u=ty

.

We note that the result of Proposition 1 is of limited practical
use as it requires all the yi’s to be known. Inspired by active learn-
ing (Settles 2012), we introduce in Section 4 an active sampling
algorithm that overcomes this limitation through sequential
sampling with iterative updates of the estimate for the total ty
and predictions for the yi’s. However, as shown in the experi-
ments in Section 5, naively plugging in the predictions immedi-
ately to the importance sampling scheme of Proposition 1 often
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results in poor performance. Indeed, accounting for prediction
error is essential to control the variance of the active sampling
estimator. We therefore in Proposition 2 propose an optimal
importance sampling scheme to minimize the expected mean
squared error of our estimator for θ , treating the unobserved
values of the yi’s as random variables Y i. Integrated with flexible
machine learning models, this will be the key ingredient of the
active sampling method introduced in Section 4.

Proposition 2 (Optimal importance sampling scheme, yi unknown).
Let {yi}N

i=1, ty = ∑N
i=1 yi and θ = h(ty) be fixed but unknown

constants. Consider, as a proxy for yi, a collection of random
variables {Y i}N

i=1 with means E[Y i] = ηi and finite, positive
semidefinite covariance matrices Cov(Y i) = �i. Let mk, Sk, θ̂k
and AMSE(θ̂) be defined as in Proposition 1. Then, the expected
asymptotic mean squared error EY [AMSE(θ̂)] is minimized by
(3) with ci = [

(∇h(u)Tηi)
2 + ∇h(u)T�i∇h(u)

]
u=ty

.

For a proof, see Section A in the supplement.

4. Active Sampling

In this section we propose an active sampling strategy for finite
population inference with optimal subsamples using adaptive
importance sampling and machine learning. The active sam-
pling algorithm is described in Section 4.1. Variance estimation
for the active sampling estimator is discussed in Section 4.2 and
asymptotic properties in Section 4.3. We conclude by a brief
discussion on sample size calculations for the active sampling
method in Section 4.4.

4.1. Active Sampling Algorithm

The active sampling method is summarized in Algorithm 1. The
algorithm is executed iteratively in K iterations k = 1, . . . , K
and chooses, in each iteration, nk new instances at random
(possibly with replacement) from the index set D = {1, . . . , N}.
Once a new batch of instances has been selected, we observe or
retrieve the corresponding data yi and update our estimates of
the characteristics of interest. In our application, this is done by
running a virtual computer simulation. The process continues
until a pre-specified maximal number of iterations K is reached,
or the target characteristic is estimated with sufficient precision,
based on a pre-specified precision target δ for the standard error
of the estimator. Methods for variance estimation are discussed
in Section 4.2.

A key component of the active sampling algorithm is the
inclusion of an auxiliary model or surrogate model f (y|z) for the
distribution of the unobserved data yi given auxiliary variables
zi. At this stage any prediction model or machine learning
algorithm may be used. The first two moments of the response
vector are then used as input to the optimal importance sam-
pling scheme of Proposition 2. When the covariance matrices
of the response vectors are not immediately available from the
model, they may be estimated from the residuals. We suggest
that this is done using the method of moments on hold-out
data, for example, by cross-validation. Underestimation of the
residual variance may otherwise cause unstable performance by
assigning sampling probabilities too close to zero with highly

Algorithm 1 Active Sampling

Input: Index set D = {1, . . . , N}, target characteristic θ = h(ty)
(to be estimated), precision target δ > 0, maximal number of
iterations K, batch sizes {nk}K

k=1.
Initialization: Let m0 = 0, t̂(0)

y = 0, and L0 = ∅.
1: for k = 1, 2, …, K do
2: Learning (only if k > 1): Train prediction model f (yi|zi)

on the labeled dataset {(yi, zi)}i∈Lk−1 . Let ŷi and �̂i be the
predicted mean and estimated residual covariance matrix
for Y i, respectively. ∗

3: if k > 1 and Learning step was successful† then
4: Optimization: Calculate sampling scheme πk as

πki ∝ √
ci,

ci =
[
(∇h(u)T ŷi)

2 + ∇h(u)T�̂i∇h(u)
]

u=t̂(k−1)
y

, i ∈ D.

5: else
6: Fallback: Set πki ∝ 1 for all i ∈ D.
7: end if
8: Sampling: Draw vector sk = (sk1, . . . , skN) ∼

Multinomial(nk, πk).
9: Labeling: Retrieve data yi for selected instance(s) i : ski >

0. Update labeled set Lk = Lk−1 ∪ {i ∈ D : ski > 0}.
10: Estimation: Let μki = nkπki, wki = 1/μki, mk = mk−1 +

nk, and

t̂y,k =
∑

i:ski>0
skiwkiyi,

t̂(k)
y = 1

mk

(
mk−1 t̂(k−1)

y + nk t̂y,k
)

, θ̂ (k) = h(t̂(k)
y ).

11: Estimate the variance of θ̂ (k) according to (4).

12: if
√

v̂ar(θ̂ (k)) < δ then
13: Termination: Stop execution. Continue to 16.
14: end if
15: end for
16: Output: Estimate θ̂ (k), labeled dataset {(yi, zi)}i∈Lk and

selection history {sj, μj}k
j=1.

∗Although the value of yi is assumed to be fixed (but unknown) it is modeled
here as a random variable Y i to account for prediction uncertainty around the
true value.
†The prediction model could be fitted (converged and nontrivial model
achieved) and prediction R-squared (regression) or prediction accuracy (clas-
sification) on hold-out data (e.g., by cross-validation) > 0.

variable sample weights and increased estimation variance as
a result. In practice, one may also need to make further sim-
plifying assumptions, including assumptions about the mean-
variance relationship and correlation structure of the response
variables.

In each iteration k, the active sampling estimator θ̂ (k) of the
characteristic θ is constructed in three steps. First, we define an
estimator t̂y,k for the total ty using data acquired in the current
iteration. This estimator is then combined with the estimators
from the previous iterations to produce a pooled estimator t̂(k)

y .
Finally, our estimator for θ is obtained using the plug-in estima-
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tor h(t̂(k)
y ). We note that the pooled estimator t̂(k)

y is an unbiased
estimator for the finite population total, provided that πki > 0
for all k and i. Consequently, one may expect our estimator θ̂ (k)

to be consistent for θ under mild assumptions. We will return to
this in Section 4.3.

By gathering data in a sequential manner, we are able to learn
from past observations how to sample in an optimal way in
future iterations. The proposed active sampling scheme inter-
polates in a completely data-driven manner between simple
random sampling when the prediction error is large (or no
model has been fitted) and the optimal importance sampling
scheme of Proposition 1 when the prediction error is small.
Importantly, unbiased inferences for θ are obtained even if the
surrogate model f (y|z) would be biased. This is due to the
use of importance sampling and inverse probability weighting.
However, the performance of the active sampling algorithm in
terms of variance depends on the adequacy of the prediction
model and capability of capturing the true signals in the data.
It also depends on the signal-to-noise ratio between the inputs
or auxiliary variables zi and response vectors yi. The stronger the
association, the greater the potential benefit of active sampling.

4.2. Variance Estimation

To estimate the variance of our estimator θ̂ (k), we first need an
estimator of the covariance matrix �(k) = Cov(t̂(k)

y ) for the

pooled estimator t̂(k)
y of the finite population total ty. Given such

an estimate, the variance of θ̂ (k) = h(t̂(k)
y ) may be estimated

using the delta method as

v̂ar(θ̂ (k)) = ∇h(u)T�̂(k)∇h(u)
∣∣
u=t̂(k)

y
, (4)

(see, e.g., Sen and Singer 1993). Three different approaches to
variance estimation are presented below and evaluated empir-
ically in Section 6. A theoretical justification is provided by
Proposition S1 and Corollary S1, Section A in the supplement.

4.2.1. Method 1 (Design-based Variance Estimator)
First, we may proceed as for the estimator of the finite population
total ty and use a pooled variance estimator

�̂
(k)
1 = m−2

k

k∑
j=1

n2
j �̂j,

where �̂j are (any) unbiased estimators of the conditional
covariance matrices �j = Cov(t̂y,j|S1, . . . , Sj−1). Each of the
covariance matrices �j may be estimated using standard survey
sampling techniques. For instance, under the multinomial
design we may use Sen-Yates-Grundy estimator for �j, that is,

�̂j = nj

nj − 1
∑
i∈D

Sji

(
yi
μji

− t̂y,j

nj

)(
yi
μji

− t̂y,j

nj

)T

, μji = njπji,

provided that nj ≥ 2 (Sen 1953; Yates and Grundy 1953). For
fixed-size designs with nj = 1, other estimators must be used.

4.2.2. Method 2 (Martingale Variance Estimator)
Alternatively, we may use the squared variation of the individual
estimates t̂y,j and estimate �(k) by

�̂
(k)
2 = m−2

k

k∑
j=1

n2
j

(
t̂y,j − t̂(k)

y

) (
t̂y,j − t̂(k)

y

)T
.

This estimator arises immediately from the martingale theory
used for our asymptotic analyses in Section A in the supplement.
This method is particularly useful when the batch sizes are small
and the number of iterations large.

4.2.3. Method 3 (Bootstrap Variance Estimator)
Finally, variance estimation may be conducted by nonparamet-
ric bootstrap (Efron 1979; Davison and Hinkley 1997). If sub-
sampling is done with replacement, the importance-weighted
bootstrap should be used to account for possible differences
in the number of selections per observation. Specifically, the
bootstrap sample size should be equal to the total sample size
mk = ∑k

j=1 nj (number of distinct selections), and the selection
probabilities for the bootstrap proportional to the number of
selections

∑k
j=1 sji per instance i. One way to achieve this with

ordinary bootstrap software is to create an augmented dataset
with one record for each of the sji selections, and perform ordi-
nary nonparametric bootstrap on the augmented dataset. An
estimate of the covariance matrix of t̂(k)

y can then be obtained by

�̂
(k)
3 = 1

B − 1

B∑
b=1

(
t̃(k)

y,b − t̄(k)
y

) (
t̂(k)

y,b − t̄(k)
y

)T
,

where t̄(k)
y = 1

B
∑B

b=1 t̃(k)
y,b is the mean of B bootstrap estimates

t̃(k)
y,b of ty.

4.3. Asymptotic Properties and Interval Estimation

Using the martingale central limit theorem of Brown (1971), we
show that under mild assumptions our active sampling estimator
is consistent and asymptotically normally distributed, for fixed
N and bounded batch sizes nk, as the number of iterations tends
to infinity (Proposition S1 and Corollary S1, Section A in the
supplement). The essential conditions for this to hold are (in the
scalar case) that:

1. the sampling probabilities are properly bounded away from
zero,

2. the total variance var(
∑k

j=1 t̂y,j) tends to infinity as the num-
ber of iterations k → ∞, and

3. the ratio of the total variance var(
∑k

j=1 t̂y,j) to the sum of
conditional variances∑k

j=1 var(t̂y,j|S1, . . . , Sj−1) converges in probability to 1 as
k → ∞.

Similar conditions are sufficient also for consistent variance
estimation. In this setting, we note that the importance sam-
pling scheme in Algorithm 1 remains optimal in the sense of
minimizing the variance contribution (or mean squared error
contribution) from each iteration of the algorithm, given the
information available so far.
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In practice, the first assumption may be violated by overfitting
and underestimation of the residual variance in the learning step
of the active sampling algorithm. Both of these issues may cause
variance inflation and an erratic behavior of the estimator due to
incidentally large sample weights. The second assumption could
be violated, for example, for a linear estimator in a noise-free
setting where a perfect importance sampling scheme yielding
zero variance may be found. Indeed, an optimal importance
sampling estimator would in this case have zero variance and
hence would not converge toward a normal limit. In most cases,
however, estimation- and prediction uncertainty are intrinsic
to the problem, and the second assumption is trivially fulfilled
in most realistic applications. The third assumption is more
of technical nature and needed to ensure that the statistical
properties of the active sampling estimator can be deduced from
a single execution of the algorithm. Empirical justification for
these assumptions is provided in Section 6.

Confidence intervals can be calculated using the classical
large sample formula

θ̂ (k) ± zα/2 × SE
θ̂ (k) (5)

where θ̂ (k) is the estimate of the characteristic θ , SE
θ̂ (k) =√

v̂ar(θ̂ (k)) the corresponding standard error, and zα/2 the α/2-
quantile of a standard normal distribution. Under the assump-
tions stated above, such a confidence interval has approximately
100 × (1 −α)% coverage of the true population characteristic θ ,
under repeated subsampling from D, in large enough samples.

4.4. How Many Samples are Needed?

An important practical question is how many samples or itera-
tions of the active sampling algorithm that are required for esti-
mating a characteristic θ with sufficient precision. This question
can be addressed as follows. First, a pilot sample may be selected
to obtain an initial estimate of θ with a corresponding estimate
for the variance. A precision calculation may then be conducted
using standard theory for simple random sampling designs, and
the number of samples needed for a certain level of precision
deduced. This would give a conservative estimate of the sample
size needed for the active sampling algorithm, which usually
can be terminated for sufficient precision with much smaller
samples. Importantly, the pilot sample can be reused in the first
iteration of the active sampling algorithm and hence comes at
no additional cost. It also possible to monitor the precision of the
active sampling estimator during execution of the algorithm and
possibly update the precision target or iteration limit as needed.

5. Simulation Experiments

We evaluated the empirical performance of the active sampling
method by repeated subsampling on synthetic data. Methods are
described in Section 5.1 and results in Section 5.2.

5.1. Data and Methods

We generated a total of 24 datasets with varying support, signal-
to-noise ratio, and degree of non-linearity in the association

between a scalar auxiliary variable zi and scalar response variable
yi. This was done as follows. First, N = 103 data points zi
were generated on a uniform grid from 0.001 to 1. This was
taken as our auxiliary variable. Next we generated a variable
yi according to a Gaussian process, using a Gaussian kernel
with bandwidth σ . This was taken as the study variable of
interest. We varied the bandwidth σ = 0.1, 1, 10, correspond-
ing to a nonlinear, polynomial, and linear scenario (Figure 2).
We also varied the residual variance to obtain a coefficient of
determination R2 = 0.10, 0.50, 0.75, 0.90 for the true model,
corresponding to a low, moderate, high, and very high signal-to-
noise ratio. Finally, we normalized the response variable to have
unit variance, positive correlation with the auxiliary variable,
and support on the positive real line (strictly positive scenario,
min1≤i≤N yi = 0.1) or zero mean (unrestricted scenario, ȳ = 0,
yi ∈ R).

We used active sampling to estimate the finite population
mean ȳ using a linear estimator h(u) = u/N, yi = yi, and
nonlinear (Hájek) estimator h(u) = u2/u1, y = (1, yi)T .1
The active sampling algorithm was implemented according to
Algorithm 1 with a batch size of nk = 10 or nk = 50 obser-
vations per iteration. The learning step was implemented using
a simple linear regression model, generalized additive model
(thin plate spline), random forests, gradient boosting trees, and
Gaussian process regression surrogate model for yi given zi. For
comparison we implemented simple random sampling using
the before-mentioned estimators (linear and nonlinear), control
variate estimator (Fishman 1996), and ratio estimator (Särndal,
Swensson, and Wretman 2003). We also compared to impor-
tance sampling with probability proportional to the auxiliary
variable zi. We finally implemented a naive version of the active
sampling algorithm ignoring prediction uncertainty, that is, set-
ting the residual covariance matrix equal to zero in the optimiza-
tion step of the algorithm. This is the same as to plug in the
predictions from the surrogate model into the formula for the
theoretically optimal sampling scheme of Proposition 1, treating
the predictions as known true values of the yi’s. Each sampling
method was repeated 500 times for sample sizes up to n = 250
observations.

The performance was measured by the root mean squared
error of the estimator (eRMSE) for the finite population mean ȳ,
calculated as

RMSE(θ̂) =
√√√√ 1

M

M∑
m=1

(θ̂m(n) − θ)2, (6)

where θ̂m(n) is the estimate in the mth simulation from a sample
of size n, M = 500 the number of simulations, and θ = ȳ the
characteristic of interest (i.e., the ground truth).

The experiments were implemented using the R language
and environment for statistical computing (R Core Team 2023),
version 4.2.3. The R code is available in the supplementary
material and at https://github.com/imbhe/ActiveSampling.

1In the nonadaptive setting, the linear estimator is given by N−1 ∑
i∈S Siwiyi

and the Hájek estimator by N̂−1 ∑
i∈S Siwiyi , N̂ = ∑

i∈S Siwi .

https://github.com/imbhe/ActiveSampling


TECHNOMETRICS 7

Figure 2. Examples of three synthetic datasets with varying degree of non-linearity. Data were generated according to a Gaussian process, using a Gaussian kernel with
bandwidth σ .

Figure 3. Performance of active sampling using a linear surrogate model (LM) or generalized additive surrogate model (GAM) compared to simple random sampling, ratio
estimator, control variates, and importance sampling for estimating a finite population mean in a strictly positive scenario (all yi > 0) using a linear estimator (h(u) = u/N)
and batch size nk = 10. Results are shown for 12 different scenarios with varying signal-to-noise ratio (R2) and varying degree of non-linearity (σ ) (see Figure 2). Shaded
regions are 95% confidence intervals for the root mean squared error of the estimator (eRMSE) based on 500 repeated subsampling experiments. Asterisks show the smallest
sample sizes for which there were persistent significant improvements (p < 0.05) with active sampling compared to simple random sampling.

5.2. Results

The results of active sampling compared to four benchmark
methods are shown in Figure 3 for the strictly positive scenario,
linear estimator, batch size nk = 10, and linear or generalized
additive surrogate model. Results under other settings are pre-
sented in Section C in the supplement.

There were substantial reductions in eRMSE with active sam-
pling compared to both simple random sampling and standard
variance reduction techniques in the nonlinear (σ = 0.1)
and polynomial (σ = 1) scenarios when a generalized addi-
tive surrogate model was used (Figure 3). Similar results were
observed also using random forests, gradient boosting trees,
and Gaussian process regression as surrogate models (supple-

mental Figure S1). In contrast, there was a slight advantage of
the standard variance reduction techniques in the linear setting
(σ = 10). Batch size influenced the performance, with a better
performance when using a smaller (nk = 10) compared to larger
batch size (nk = 50). However, the effect of batch size was
attenuated as the number of iterations increased (supplemental
Figure S2). The benefits of active sampling were somewhat
smaller in the unrestricted scenario (ȳ = 0, yi ∈ R) and for
nonlinear estimators. Still, sample size reductions of up to 30%
were achieved compared to simple random sampling for the
same level of performance (supplemental Figures S3 and S4).

Notably, active sampling never performed worse than simple
random sampling, even for a misspecified model (i.e., when
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applying a linear surrogate model to nonlinear data; Figure 3,
supplemental Figures S3 and S4). In contrast, a naive imple-
mentation of the active sampling algorithm, ignoring prediction
uncertainty, resulted in worse performance than simple random
sampling. This was particularly exacerbated in low signal-to-
noise ratio settings, for nonpositive data, nonlinear estimators,
and misspecified models (supplemental Figures S5 and S6).

6. Application

We next implemented active sampling on the crash-causation-
based scenario generation problem introduced in Section 2. The
data, model, and simulation set-up is described in Section 6.1,
together with methods for performance evaluation. Empirical
results are presented in Section 6.2.

6.1. Data and Methods

6.1.1. Ground Truth Dataset
The data used for scenario generation in this study were
reconstructed pre-crash kinematics of 44 rear-end crashes from
a crash database provided by Volvo Car Corporation. This
database contains information about crashes that occurred
with Volvo vehicles in Sweden (Isaksson-Hellman and Norin
2005). We constructed a ground truth dataset by running virtual
simulations for all 1005 combinations of glance duration (67
levels, 0.0–6.6s) and deceleration (15 levels, 3.3–10.3 m/s2)
for all 44 crashes. Additionally, each scenario configuration
was associated with a prior probability pi of occurring in
real life, estimated by the empirical probability distribution
of the glance-deceleration distribution in real crashes. The
simulations were run under both manual driving (baseline
scenario) and automated emergency braking (AEB) system
conditions, producing a dataset of 44,220 pairs of observations.
Running the complete set of simulations took about 50 hr,
running 26 threads in parallel on a high-performance computer
equipped with 24 Intel� Xeon� CPU E5-2620 processors.

6.1.2. Outcomes and Measurements
The outputs of the simulations were the impact speed under
both scenarios (baseline and AEB). We also calculated the
impact speed reduction (continuous) and crash avoidance
(binary) of the AEB system compared to the baseline scenario.
The aim in our experiments was to estimate the benefit of the
AEB system, as measured by mean impact speed reduction and
crash avoidance rate compared to baseline manual driving, given
that there was a crash in the baseline scenario. Accounting for
the prior observation weights (scenario probabilities) pi, the
target characteristic θ may in this case be written as

θ =
∑N

i=1 pi(yi,0 − yi,1)I(yi,0 > 0)∑N
i=1 piI(yi,0 > 0)

(7)

where yi,0 is the outcome of the simulation (e.g., impact speed
or binary crash indicator) under the baseline scenario, yi,1 the
corresponding outcome with the countermeasure (AEB), and
I(yi,0 > 0) a binary indicator taking the value 1 if there was a
collision in the baseline scenario and 0 otherwise. The obser-
vation weights pi are known a priori and need not be learned

from data. This makes our problem particularly suitable for
importance sampling methods. Note also that there may be large
regions in the input space generating no crash (see Figure 1),
hence, providing no information for the characteristic θ . Active
sampling offers an opportunity to learn and exploit this feature
during the sampling process.

As auxiliary variables we used the glance duration and maxi-
mal deceleration during braking, that is, the inputs to the virtual
simulation experiment, and an a priori known maximal impact
speed per original crash event. The maximal impact speed was
considered as a means to summarize a 44-level categorical vari-
able (ID of the original crash event) as a single numeric variable
in the random forest algorithm used for the learning step of the
active sampling method; see Section 6.1.5 and Section B in the
supplement for further details. Although comprising only three
variables, this corresponds with ordinary statistical methods
to an 88-dimensional vector of auxiliary variables (or greater,
if nonlinear terms are included), counting all the interactions
between glance duration and deceleration with the 44 original
crash events.

6.1.3. Confidence Interval Coverage Rates
We evaluated the large-sample normal confidence intervals
(5) with the three different methods for variance estimation
described in Section 4.2: the design-based (pooled Sen-Yates-
Grundy) estimator, martingale estimator, and bootstrap esti-
mator. The empirical coverage rates of the confidence intervals
were calculated using 500 repeated subsampling experiments.

6.1.4. Active Sampling Performance Evaluation
We evaluated the performance of the active sampling method for
estimating the mean impact speed reduction or crash avoidance
rate of an AEB system compared to baseline driving (without
AEB). Active sampling performance was evaluated against sim-
ple random sampling, importance sampling, Latin hypercube
sampling (Cioppa and Lucas 2007; Meng et al. 2021), leverage
sampling (Ma, Mahoney, and Yu 2015; Ma et al. 2022), and
active learning with Gaussian processes. Two importance sam-
pling schemes were considered: a density sampling scheme with
probabilities proportional to the prior observation weights pi,
and a severity sampling scheme that additionally attempts to
oversample high-severity instances (i.e., with low deceleration
and long glances). Each subsampling method was repeated 500
times up to a total sample size of n = 2000 observations. The
performance was measured by the root mean squared error of
the estimator (eRMSE) compared to ground truth, calculated
as in (6). The results are presented graphically as functions of
the sample size, that is, the number of baseline-AEB simulations
pairs.

6.1.5. Implementation
The empirical evaluation was implemented using the R lan-
guage and environment for statistical computing, version 4.2.1
(R Core Team 2023). Active sampling was implemented with
a batch size of nk = 10 observations per iteration. Random
forests (Breiman 2001) were used for the learning step of the
algorithm. We also performed sensitivity analyses for the choice
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of machine learning algorithm using extreme gradient boosting
(Chen and Guestrin 2016) and k-nearest neighbors. Latin hyper-
cube sampling was implemented similarly to Meng et al. (2021).
Statistical leverage scores for the leverage sampling method were
calculated using weighted least squares with the two auxiliary
variables (off-road glance duration and maximal deceleration
during braking) as explanatory variables and the prior scenario
probabilities pi as weights. The Gaussian process active learn-
ing method was implemented using a probabilistic uncertainty
scheme, with probabilities proportional to the posterior uncer-
tainty (standard deviation) of the predictions. This was chosen
based on computational considerations and to promote explo-
ration of the design space. For Gaussian process active learn-
ing, estimation was conducted using a model-based estimator
by evaluating the predictions over the entire input space. All
other methods used observed data rather than predicted values
for estimation. Further implementation details are provided in
Section B in the supplement. The R code and data are available
in the supplementary material and at https://github.com/imbhe/
ActiveSampling.

6.2. Results

6.2.1. Confidence Interval Coverage Rates
The empirical coverage rates of large-sample normal confidence
intervals under active sampling are presented in Figure 4. There
was a clear under-coverage in small samples, as expected. Both
the pooled Sen-Yates-Grundy estimator and bootstrap variance
estimator produced confidence intervals that approached the
nominal 95% confidence level relatively quickly as the sam-
ple size increased. Coverage rates were somewhat lower with
the martingale variance estimator, and more iterations where
needed before the nominal 95% level was reached.

6.2.2. Active Sampling Performance Evaluation
The eRMSE with active sampling compared to five benchmark
methods is presented in Figure 5. Simple random sampling
and Latin hypercube sampling overall performed worst and had
similar performance. Active learning using Gaussian processes
had good performance for the crash avoidance (which was rel-
atively constant over the input space, with 80% of all crashes

Figure 4. Empirical coverage rates of 95% confidence intervals for the mean impact speed reduction (A) and crash avoidance rate (B) using active sampling. The lines show
the coverage rates with three different methods for variance estimation in 500 repeated subsampling experiments. A batch size of nk = 10 observations per iteration was
used.

Figure 5. Root mean squared error (eRMSE) for estimating the mean impact speed reduction (A) and crash avoidance rate (B). The lines show the performance using simple
random sampling, importance sampling, Latin hypercube sampling, leverage sampling, Gaussian process active learning, and active sampling optimized for the estimation
of the mean impact speed reduction and crash avoidance rate. Shaded regions represent 95% confidence intervals for the eRMSE based on 500 repeated subsampling
experiments. Asterisks show the smallest sample sizes for which there were persistent significant improvements (p < 0.05) with active sampling compared to the best
performing benchmark method.

https://github.com/imbhe/ActiveSampling
https://github.com/imbhe/ActiveSampling
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avoided by the AEB), but poor performance for the impact speed
reduction (which varied more and was harder to predict). With
the other methods, estimation variance in the early iterations
was largely driven by the variance of the scenario probability
weights in the subsample. In contrast, estimation variance for
the model-based (Gaussian process) response surface estimator
was attenuated by evaluating predictions over the entire input
space. Leverage sampling and the two importance sampling
schemes had similar performance, with a slight advantage of
severity importance sampling for estimating the crash avoidance
rate. Active sampling optimized for a specific characteristic had
best performance on the characteristic for which it was opti-
mized. Significant improvements compared to the best perform-
ing benchmark method were observed from around 400 samples
for estimating the crash avoidance rate and 700 observations for
estimating the mean impact speed reduction.

The benefit of active sampling increased with the sample size.
At n = 2000 observations, a reduction in eRMSE of 20%–39%
was observed compared to importance sampling. Accordingly,
active sampling required up to 46% fewer observations than
importance sampling to reach the same level of performance
on the characteristic for which it was optimized. Moreover,
active sampling performance was on par with that of traditional
methods when evaluated on characteristics other than the one
it was optimized for. Similar results were observed when using
k-nearest neighbors and extreme gradient boosting as auxiliary
models for the learning step of the active sampling algorithm
(supplemental Figure S7).

Active sampling was also relatively fast and required about
60 sec for running 200 iterations (generating n = 2000 sam-
ples) on a laptop computer equipped with an AMD Ryzen™7
PRO 585OU 1.90 GHz processor. The Gaussian process active
learning method required approximately 270 sec to generate the
same number of samples.

7. Discussion

We have presented an active sampling framework for finite
population inference with optimal subsamples. Active sampling
outperformed standard variance reduction techniques in non-
linear settings, and also in linear settings with moderate signal-
to-noise ratio. We evaluated the performance of active sam-
pling for safety assessment of advanced driver assistance systems
in the context of crash-causation-based scenario generation.
Substantial improvements over traditional importance sampling
methods were demonstrated, with sample size reductions of up
to 50% for the same level of performance in terms of eRMSE.
In our application, active sampling was also superior to space-
filling, leverage sampling, and Gaussian process active learning
methods.

Our work contributes to the ongoing development of sub-
sampling methods in statistics and for computer simulation
experiments in particular. In this context, Gaussian processes
and space-filling methods have been particularly popular and
shown great success for a variety of tasks (Cioppa and Lucas
2007; Sun et al. 2017; Feng et al. 2020; Batsch et al. 2021; Lim
et al. 2021). In our application, however, neither space-filling
methods nor Gaussian process active learning performed as well

as importance sampling or active sampling. Although we cannot
rule out that another implementation of the Gaussian process
active learning method could have had better performance, the
active sampling framework is less model-dependent and thus is
superior for finite population inference. Furthermore, we have
proved theoretically that active sampling provides consistent
estimators under general conditions. This was also confirmed in
our experiments. In our application, we believe that the model-
based (Gaussian process) approach to computer experiment
emulation is affected by the high complexity of our problem,
involving not only one but 44 response surfaces (one per original
crash event) that must be learned simultaneously. Yet, this is
a fairly small example for scenario generation problems (see
Ettinger et al. 2021; Duoba and Baby 2023) and comprises only a
fraction of the crashes in the original crash database (Isaksson-
Hellman and Norin 2005). Substantial sample sizes would be
needed to accurately model all of the response surfaces. Active
sampling, targeting a much simpler problem, requires only a
rough sketch of the response surface(s) to identify which regions
are most informative for estimating the characteristic of interest.

The choice of batch size influenced the performance of the
active sampling algorithm, although less so when the number of
iterations were large. In practice, one may need to balance the
benefits of a smaller batch size on increased statistical efficiency
with the benefits of a larger batch size (involving fewer model
updates) on increased computational efficiency. With flexible
machine learning methods and proper hyper-parameter tuning,
carefully avoiding overfitting, we expect this to hold irrespective
of the dimension of the problem, although in higher dimensions
larger batch sizes may be favored both for computational effi-
ciency and numerical stability. The choice of prediction model
had limited influence on performance, as long as the model
was flexible enough to capture the true signals in the data. In
computer simulation experiment applications, both computa-
tional aspects and anticipated performance should be consid-
ered for choosing an appropriate model. It is also possible to
use several machine learning algorithms in the early iterations
of the active sampling algorithm to identify the computationally
simplest possible model that does not compromise the accuracy
of the estimate. Importantly, active sampling was never worse
than simple random sampling, even for a misspecified model.
Moreover, using an overly complex model (e.g., a nonlinear
auxiliary model when the true association is linear) only resulted
in a minor loss of efficiency of the active sampling estimator. In
contrast, ignoring prediction uncertainty resulted in poor per-
formance, particularly in nonlinear settings and for misspecified
models.

This article illustrated the active sampling method in an
application to generation of simulation scenarios for the assess-
ment of automated emergency braking. In this application, the
computation time for running the active sampling algorithm
is orders of magnitudes smaller than the computation time
for running the corresponding virtual computer experiment
simulations. The computational overhead of the training and
optimization steps of the active sampling algorithm is thus neg-
ligible. The gain in terms of sample size reductions for a given
eRMSE therefore translates to a corresponding reduction in total
computation time of equal magnitude. The precision obtained
by active sampling at n = 2000 observations corresponds to an
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error margin of about ± 0.5 km/h for the mean impact speed
reduction and ±1.0 percentage points for the crash avoidance
rate, which may be considered sufficient in a practical setting.
This corresponds to savings of about 95% in computation time
compared to complete enumeration. Not only can the method
be applied more broadly in the traffic safety domain, such as for
virtual safety assessment of self-driving vehicles of the future,
but it can be applied to a wide range of subsampling applications.
Future research on the topic may pursue more efficient methods
of partitioning the dataset into areas where the outcomes are
more precisely predicted or known (where subsampling is less
useful) and those where outcomes are less precisely predicted,
as well as demonstrate practical applications further.

8. Conclusion

We have introduced a machine-learning-assisted active sam-
pling framework for finite population inference, with application
to a deterministic computer simulation experiment. We proved
theoretically that active sampling provides consistent estimators
under general conditions. It was also demonstrated empiri-
cally to be robust under different choices of machine learn-
ing model. Methods for variance and interval estimation have
been proposed, and their validity in the active sampling setting
was confirmed empirically. Properly accounting for prediction
uncertainty was crucial for the performance of the active sam-
pling algorithm. Substantial performance improvements were
observed compared to traditional variance reduction techniques
and response surface modeling methods. Active sampling is a
promising method for efficient sampling and finite population
inference in subsampling applications.

Supplementary Materials

Supplemental methods and results: Additional theoretical results and
proofs (Section A), details on the implementation of the sampling
methods in the application (Section B), and additional experiment
results (Section C). (.pdf file)

R code and data: R code and data used for the empirical evaluation in
Section 5, application in Section 6, and replication of main results
(Figures 3–5). (.zip file). Also available at https://github.com/imbhe/
ActiveSampling.
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