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1. pA ribonucleoside triphosphate synthesis 
1.1 Synthetic scheme 
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1.2 Experimental procedures 

All reactions were performed in flame-dried or oven-dried glassware under a nitrogen 
atmosphere unless otherwise noted. Reagents were purchased from various chemical vendors 
and either used as received or purified according to standard techniques. The following 
reagents used for the triphosphorylation were bought from Sigma-Aldrich: DCA deblock for 
ÄKTA, CAP A for ÄKTA, CAP B1 and B2 for ÄKTA, BTT Activator. All solvents used for 
reactions were HPLC-grade and purchased dry. Microwave reactions were performed with a 
Biotage Initiator using single mode microwave irradiation with temperature and pressure 
control and with fixed hold time on. Reactions were monitored by TLC on silica gel plates 
analyzed under UV (254 nm), and by UPLC-MS (ESI/UV), using a Waters Acquity system 
equipped with either an Acquity UPLC HSS C18 column (1.8 µm, length 50 mm, ID 2.1 mm) 
running a gradient of water-MeCN (95:5) to water-MeCN (5:95), with the water eluent 
containing 1% formic acid (pH 3) or an Acquity UPLC BEH C18 column (1.7μm, length 50 
mm, ID 2.1 mm) running a gradient of water-MeCN (95:5) to water-MeCN (5:95), with the 
water eluent containing 1% ammonium hydroxide (pH 10). Flash chromatography was 
performed by automated column chromatography using pre-packed silica columns. HPLC 
purification was performed with ammonia as modifier on a preparative HPLC system with an 
Xbridge C18 column (10 µm, 250 × 50 mm). 1H and 13C NMR spectra were recorded on a 
Bruker 500 MHz system equipped with a CryoProbe. 31P NMR spectra were recorded at 300 
K on a Bruker 500 MHz system. All shifts are recorded in ppm relative to the deuterated 
solvent: CDCl3 (7.26 ppm for 1H and 77.16 ppm for 13C), DMSO-d6 (2.50 ppm for 1H and 
39.52 ppm for 13C) or D2O.  

(2R,3R,4R,5R)-2-((Benzoyloxy)methyl)-5-(4-chloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-
7-yl)tetrahydrofuran-3,4-diyl dibenzoate (3): 4-chloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidine 
(1, 20 g, 71.6 mmol) was dissolved in MeCN (480 mL). trimethylsilyl (E)-N-
(trimethylsilyl)acetimidate (19.5 mL, 78.7 mmol) was added dropwise. The mixture was stirred 
at RT for 20 min. (2S,3R,4R,5R)-2-acetoxy-5-((benzoyloxy)methyl)tetrahydrofuran-3,4-diyl 
dibenzoate (2, 46.9 g, 93.0 mmol) was added in one portion, followed by dropwise addition of 
trimethylsilyl trifluoromethanesulfonate (15.2 mL, 78.7 mmol). The reaction mixture was 
stirred at 80 °C for 2 h. The reaction mixture was allowed to cool to RT and diluted with EtOAc 
(200 mL). The organic phase was washed with aq. satd. NaHCO3 (100 mL) and brine (100 
mL), dried over anhydrous Na2SO4, filtered, concentrated in vacuo, absorbed onto Celite and 
purified by flash column chromatography (Hept:EtOAc 90:10 to 70:30, KP-Sil 330 g) to yield 
3 (31.0 g, 60%) as a white solid. 
1H NMR (500 MHz, CDCl3) δ 8.58 (s, 1H), 8.09 – 8.13 (m, 2H), 7.99 (dd, J = 8.3, 1.2 Hz, 2H), 
7.92 (dd, J = 8.4, 1.2 Hz, 2H), 7.49 – 7.64 (m, 6H), 7.39 (dt, J = 22.8, 7.8, 7.8 Hz, 4H), 6.67 
(d, J = 5.4 Hz, 1H), 6.09 – 6.17 (m, 2H), 4.90 (dd, J = 12.3, 3.1 Hz, 1H), 4.80 (q, J = 3.5, 3.5, 
3.4 Hz, 1H), 4.68 (dd, J = 12.3, 3.6 Hz, 1H). 
13C NMR (125 MHz, CDCl3) δ 166.2, 165.5, 165.2, 153.3, 151.4, 151.1, 133.94, 133.91, 133.7, 
132.1, 129.98, 129.96, 129.8, 129.4, 128.9, 128.8, 128.71, 128.66, 128.5, 117.9, 86.9, 80.8, 
74.3, 71.6, 63.6, 53.8. 

HRMS (ESI-TOF) m/z calcd for C32H23ClIN3O7 [M + H]+ : 724.0347, found: 724.0384. 

(2R,3R,4R,5R)-2-((Benzoyloxy)methyl)-5-(4-chloro-5-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)tetrahydrofuran-3,4-diyl 
dibenzoate (4): Compound 3 (31 g, 42.8 mmol) and tetrakis(triphenylphosphine)palladium(0) 
(0.99 g, 0.86 mmol) were dissolved in THF (360 mL) to which triethylamine (59 mL, 428 
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mmol) was added. The reaction mixture was cooled to -78°C and stirred for 5 min before 
4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9.3 mL, 64.2 mmol) was added dropwise to the 
mixture. The reaction mixture was then allowed to warm to RT and successively heated to 80 
°C for 36 h. The reaction mixture was allowed to cool to RT, concentrated in vacuo, absorbed 
onto Celite and purified by flash-chromatography (KP-Sil, 330 g, Hept:EtOAc, 95:5 to 70:30 
to yield the target compound (4, 23.5 g, 76 %) as a white solid. 
1H NMR (500 MHz, DMSO) δ 8.58 (s, 1H), 8.33 (s, 1H), 7.98 (ddd, J = 11.8, 8.3, 1.2 Hz, 4H), 
7.83 (dd, J = 8.3, 1.2 Hz, 2H), 7.59 – 7.69 (m, 3H), 7.50 (dt, J = 9.8, 8.1, 8.1 Hz, 4H), 7.39 – 
7.43 (m, 2H), 6.76 (d, J = 5.4 Hz, 1H), 6.35 – 6.39 (m, 1H), 6.14 – 6.18 (m, 1H), 4.79 – 4.89 
(m, 2H), 4.69 (dd, J = 12.1, 5.0 Hz, 1H), 1.28 (s, 12H). 
13C NMR (126 MHz, DMSO) δ 165.4, 164.7, 164.4, 152.8, 152.5, 150.9, 138.7, 133.94, 133.87, 
133.5, 129.4, 129.3, 129.23, 129.17, 128.75, 128.72, 128.71, 128.6, 128.2, 119.8, 86.7, 83.6, 
79.3, 73.3, 70.8, 63.5, 54.9, 24.5. 

HRMS (ESI-TOF) m/z calcd for C38H35BClN3O9 [M + H]+ : 724.2233, found: 724.2245. 

tert-Butyl (3-Iodonaphthalen-2-yl)carbamate (5): A oven-dried 3-necked 1L round-bottom 
flask equipped with a magnetic stir bar was charged with 3-iodo-2-naphthoic acid (5a, 24.8 g, 
83.2 mmol) dissolved in toluene (320 mL) and triethylamine (14 mL, 100.0 mmol) was added. 
The flask was fitted with a reflux condenser and an addition funnel. The reaction was heated 
to reflux and diphenyl phosphorazidate (21.6 mL, 100.0 mmol) in toluene (80 mL) was added 
dropwise to the reaction mixture over a total period of 60 min. The rate of addition was kept to 
1 drop every 2-5 s and bubbles was observed after 5 min of addition. The addition funnel was 
rinsed with additional toluene (20 mL). After 15 min of stirring at reflux the bubble formation 
stopped. After an additional 15 min the addition funnel was charged with 2-methylpropan-2-ol 
(40 mL, 416.0 mmol) in toluene (60 mL), which was cautiously (note: the formed intermediate 
is extremely reactive and must be handled with care) added dropwise to the reaction mixture 
at reflux. The reaction was stirred at reflux for an additional 3 h. The reaction mixture was 
allowed to cool to RT, transferred to a separatory funnel and the material was washed 
sequentially with water (3x500 mL), aq. satd. NaHCO3 (3x250 mL) followed by brine (1x500 
mL). The resulting orange solution was dried over MgSO4, filtered and concentrated in vacuo 
to yield 5 (20.0 g, 65 %) as a beige solid. 
1H NMR (500 MHz, DMSO) δ 8.63 (s, 1H), 8.52 (s, 1H), 7.94 (s, 1H), 7.86 (dd, J = 14.9, 8.1 
Hz, 2H), 7.46 – 7.54 (m, 2H), 1.48 (s, 9H). 
13C NMR (126 MHz, DMSO) δ 153.4, 138.1, 136.1, 132.7, 132.2, 127.3, 126.8, 126.4, 126.1, 
123.5, 96.7, 79.2, 28.1. 

HRMS (ESI-TOF) m/z calcd for C15H16INO2 [M + H]+ : 370.0304, found: 370.0295. 

(2R,3R,4R,5R)-2-((Benzoyloxy)methyl)-5-(5-(3-((tert-
butoxycarbonyl)amino)naphthalen-2-yl)-4-chloro-7H-pyrrolo[2,3-d]pyrimidin-7-
yl)tetrahydrofuran-3,4-diyl dibenzoate (6): Compound 4 (22 g, 30.4 mmol), tert-butyl (3-
iodonaphthalen-2-yl)carbamate (5, 10.7 g, 29.0 mmol), bis(triphenylphosphine)palladium(II) 
dichloride (1.02 g, 1.45 mmol), potassium carbonate (10.0 g, 72.4 mmol) was dissolved in 
DME (300 ml) and the reaction was stirred at 80 °C for 24 h. The reaction mixture was 
concentrated in vacuo, absorbed on Celite and purified by flash-chromatography (KP-Sil 330 
g, Hept:EtOAc 90:10 to 40:60) to yield 6 (18.2 g, 75 %) as a yellow solid.  
1H NMR (500 MHz, DMSO) δ 8.64 (s, 1H), 8.40 (s, 1H), 8.15 (s, 1H), 8.10 (s, 1H), 7.99 (d, J 
= 7.3 Hz, 2H), 7.88 – 7.94 (m, 5H), 7.84 (d, J = 6.6 Hz, 2H), 7.63 – 7.68 (m, 2H), 7.57 (t, J = 
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7.3, 7.3 Hz, 1H), 7.4 – 7.53 (m, 8H), 6.87 (d, J = 4.7 Hz, 1H), 6.39 (t, J = 5.1, 5.1 Hz, 1H), 6.23 
(t, J = 5.9, 5.9 Hz, 1H), 4.91 (q, J = 5.1, 5.0, 5.0 Hz, 1H), 4.82 (dd, J = 12.1, 3.5 Hz, 1H), 4.71 
(dd, J = 12.1, 5.0 Hz, 1H), 1.27 (s, 9H). 
13C NMR (125 MHz, DMSO) δ 165.4, 164.6, 164.5, 153.2, 151.5, 151.3, 150.5, 135.6, 134.0, 
133.9, 133.5, 133.1, 130.6, 129.5, 129.4, 129.3, 129.2, 129.17, 128.9, 128.8, 128.7, 128.6, 
128.5, 128.3, 127.4, 127.0, 126.5, 125.5, 125.1, 116.6, 112.9, 86.6, 78.8, 73.8, 31.2, 27.9, 22.1, 
13.9. 

HRMS (ESI-TOF) m/z calcd for C47H39ClN4O9 [M + H]+ : 839.2484, found: 839.2485. 

(2R,3R,4S,5R)-2-(2,3,5,6-Tetraazacyclopenta[de]tetracen-2(6H)-yl)-5-
(hydroxymethyl)tetrahydrofuran-3,4-diol (8): Compound 6 (7 g, 8.3 mmol) was dissolved 
in DMF (18 mL) to which 1,4-diazabicyclo[2.2.2]octane (7.5 mL, 16.7 mmol) and 
2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (2.5 mL, 16.7 mmol) was added. The 
reaction mixture was stirred at 75 °C for 17 h. The reaction mixture was allowed to cool to RT 
and was subsequently co-evaporated with toluene (5x15 mL). The crude product was purified 
by flash chromatography (KP-Sil 100 g, DCM:MeOH 100:0 to 95:5) which yielded a mixture 
of products consisting of Boc- and de-Boc protected product (7a and 7b, 3.1 g). The material 
obtained was used in the next step without further purification. 

The mixture of compound 7a and 7b (2.85 g) was dissolved in MeCN (32 mL) and sodium 
methanolate (3.9 mL, 21.3 mmol) was added. The reaction mixture was stirred at RT for 1 h. 
The reaction mixture was concentrated in vacuo, absorbed onto Celite and purified by flash 
chromatography (KP-Sil 25 g, DCM:MeOH 100:0 to 90:10) to yield 8 (0.55 g, 17 % over two 
steps) as a white solid. 
1H NMR (500 MHz, DMSO) δ 10.90 (s, 1H), 8.19 (s, 1H), 8.15 (s, 1H), 7.80 (d, J = 7.8 Hz, 
1H), 7.72 (d, J = 8.1 Hz, 1H), 7.70 (s, 1H), 7.55 (s, 1H), 7.33 – 7.43 (m, 2H), 5.95 (d, J = 6.4 
Hz, 1H), 5.40 (d, J = 6.5 Hz, 1H), 5.18 (d, J = 4.5 Hz, 1H), 4.55 (q, J = 6.3, 6.3, 6.3 Hz, 1H), 
4.15 (q, J = 4.6, 4.6, 4.6 Hz, 1H), 3.97 (q, J = 3.8, 3.8, 3.8 Hz, 1H), 3.68 (d, J = 12.0 Hz, 1H), 
3.55 – 3.61 (m, 1H), 2.54 (s, 1H). 
13C NMR (126 MHz, DMSO) δ 155.2, 153.6, 147.2, 137.4, 132.6, 129.6, 129.2, 128.5, 127.2, 
126.6, 126.3, 124.7, 122.4, 120.3, 113.4, 113.3, 110.4, 106.7, 88.5, 85.6, 74.1, 70.9, 61.9 

HRMS (ESI-TOF) m/z calcd for C21H18N4O4 [M + H]+ : 391.1406, found: 391.1405. 

(2R,3R,4S,5R)-2-(2,3,5,6-tetraazacyclopenta[de]tetracen-2(6H)-yl)-5-((bis(4-
methoxyphenyl)(phenyl)methoxy)methyl)tetrahydrofuran-3,4-diol (9): Compound 8 (150 
mg, 0.38 mmol) was co-evaporated with pyridine (25 mL) thrice before pyridine (3 mL) was 
added, and the flask was placed in an ice bath (0 °C) to which DMTr-Cl (143 mg, 0.42 mmol) 
was added in one portion. The reaction mixture was stirred for 5 min before being returned to 
RT and stirred for 18 h. MeOH (3 mL) was added and the reaction mixture was extracted with 
EtOAc (50 mL), washed with water (20 mL) and brine (10 mL). The organic layers were dried 
over MgSO4, concentrated in vacuo, absorbed onto Celite and purified by flash 
chromatography (KP-Sil 25 g, flushed with 2% Et3N in DCM prior to use, EtOAc in DCM: 0 
to 50%) to yield 9 (60 mg, 23 %) as a light brown solid. 
1H NMR (500 MHz, DMSO-d6) δ 10.90 (bs, 1H), 8.19 (s, 1H), 7.74 (s, 1H), 7.71 (d, J = 8.0 
Hz, 1H), 7.66 (d, J = 9.9 Hz, 2H), 7.52 (s, 1H), 7.40 (d, J = 7.5 Hz, 3H), 7.33 – 7.39 (m, 2H), 
7.28 (t, J = 8.3 Hz, 6H), 7.20 (t, J = 7.3 Hz, 1H), 6.84 (dd, J = 8.9, 6.9 Hz, 4H), 6.03 (d, J = 4.5 
Hz, 1H), 5.57 (bs, 1H), 4.67 (t, J = 4.8 Hz, 1H), 4.39 (t, J = 5.0 Hz, 1H), 4.07 (q, J = 4.4 Hz, 
1H), 3.66 (s, 3H), 3.65 (s, 3H), 3.22 (m, 2H). 
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13C NMR (126 MHz, DMSO-d6) δ 158.1, 158.0, 155.5, 153.6, 147.6, 144.8, 137.6, 135.7, 
135.6, 132.7, 129.8, 129.7, 129.5, 127.9, 127.8, 127.1, 126.7, 126.6, 126.4, 124.7, 122.2, 120.3, 
113.3, 113.2, 112.8, 110.7, 106.5, 88.4, 85.6, 82.8, 74.2, 70.6, 63.7, 55.0, 54.9. 

HRMS (ESI-TOF) m/z calcd for C42H36N4O6 [M+H]+: 693.2713, found: 693.2729. 

((2R,3S,4R,5R)-5-(2,3,5,6-tetraazacyclopenta[de]tetracen-2(6H)-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methyl hydrogen triphosphate (10): Reaction was 
performed following procedure described by Baladi et al.1 using CPG-bound pA nucleoside 
(9, 400 mg, 18 umol/g loading, 0.0072 mmol). Briefly, steps were performed as following: 

 
a. 5’-DMT removal: the support was washed with a flow of DCA deblock until the filtrate 

was colorless, whereafter it was washed with ACN (5 x 5 mL). 

b. Coupling: N,N-diisopropyl-4H-benzo[d][1,3,2]dioxaphosphinin-2-amine (345 mg, 
1.36 mmol) was dissolved in 5 mL ACN and reacted portion wise with the support (3 
equally charged couplings with reaction times 60 s, 60 s, and 90 s, respectively). To 
each coupling, BTT activator (2.4 mL) was also added. The support was subsequently 
washed with ACN (3 x 5 mL). 

c. Oxidation: Pyridine/Water/Iodine (9/1/12.7 v/v/w, 5 mL) for 45 s, followed by ACN 
wash (3 x 5 mL) and drying of the support in an argon flow. 

d. Triphosphorylation: Two injections of bis(tetrabutylammonium) dihydrogen 
diphosphate (0.5 M, 5 ml) were carried out and allowed to react for 15 min and 18 
hours, respectively. The support was subsequently rinsed with DMF (5 mL), water (3 x 
5 mL), ACN (5 mL) and then dried in an argon flow. 

e. Cleavage and Purification: Cleavage of the triphosphate was done with AMA (50/50 
v/v mix of 23% aq. NH4OH and 40% aq. methylamine, 5 mL) for 2 h at RT. After 2 h, 
the AMA filtrate was purged in a round-bottom flask and the support was rinsed 3 times 
with 23% aq. NH4OH solution. After freeze-drying the mixture, purification by HPLC 
(XBridge BEH C18 OBD, 5 μm 10x250 mm column, 25 mL/min, A: dibutylammonium 
acetate 50 mM pH7 in 95% water and 5% ACN, B: ACN, 15%–45% B over 10 min 
followed by 100% B over 2 min) was performed to yield pATP (2.7 mg, 60 %, as 
determined by UV absorption) as a white solid (dibutylammonium salt). The salt form 
could subsequently be exchanged to ammonium using standard phase HPLC in 
ammonium carbonate or ammonium ion-exchange columns. 

 
1H NMR (500 MHz, D2O, 25°C) δ 4.37 (s, 2H), 4.44 (s, 1H), 4.67 (d, J = 4.2 Hz, 2H), 5.88 (d, 
J = 5.9 Hz, 1H), 6.89 (s, 1H), 7.24 (z, 3H), 7.34–7.42 (m, 2H), 7.55 (s, 1H), 7.70 (s, 1H). 
13C NMR (126 MHz, D2O) δ 134.3, 131.9, 129.5, 127.2, 126.7, 126.5, 125.3, 122.7, 118.2, 
114.3, 112.3, 105.0, 86.8, 83.4, 74.7, 70.7, 65.6. 
31P NMR (202 MHz, D2O, 25°C) δ -22.58 (J = 20.1), -11.08 (J = 19.9), -8.72.  

HRMS (ESI-TOF) m/z calcd for C21H21N4O13P3 [M+H]+: 631.0396, found: 631.0416. 

((2R,3S,4R,5R)-5-(8-cyano-2,3,5,6-tetraazaaceanthrylen-2(6H)-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate (12): 2CNqAMP was 
synthesized using a similar method than pATP 10, starting from the corresponding 2CNqA 
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nucleoside, but replacing step d with a simple water wash to hydrolyze the cyclic 
phosphoramidite intermediate. Compound 12 was isolated as a yellow solid (2 mg, 40 %). 
1H NMR (500 MHz, D2O) 4.04 – 4.2 (m, 2H), 4.36 (s, 1H), 4.53 (t, J = 4.2 Hz, 1H), 4.72 (t, J 
= 5.7 Hz, 1H), 5.99 (d, J = 6.0 Hz, 1H), 6.76 (s, 1H), 6.87 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 7.9 
Hz, 1H), 7.38 (s, 1H), 7.81 (s, 1H). 
31P NMR (202 MHz, D2O) 1.75. MS (ESI+ , MeOH) m/z: 446.1 [M+H]+. 

 

((2R,3S,4R,5R)-5-(8-cyano-2,3,5,6-tetraazaaceanthrylen-2(6H)-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methyl hydrogen triphosphate (13): 2CNqATP was 
synthesized as previously described by our group.5 An additional 13C NMR experiment was 
recorded to strengthen characterization data. 
1H NMR (500 MHz, D2O) δ 7.88 (s, 1H), 7.47 (s, 1H), 7.34 (d, J = 7.9 Hz, 1H), 6.99 (d, J = 
7.8 Hz, 1H), 6.83 (s, 1H), 6.04 (d, J = 5.8 Hz, 1H), 4.76 (s, 1H), 4.61 (s, 1H), 4.39 (s, 1H), 4.31 
(s, 2H). 
31P NMR (202 MHz, D2O) δ -22.48 (bs, 1P), -11.19 (d, J=19.9 Hz, 1P), -9.25 (bs, 1P). 
13C NMR (126 MHz, D2O) δ 154.3, 152.2, 146.1, 137.6, 126.9, 125.1, 123.7, 120.9, 119.1, 
111.7, 111.2, 109.1, 107.7, 86.7, 83.6, 83.5, 74.6, 70.6. 
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1.3 Spectral data 
 

(2R,3R,4R,5R)-2-((benzoyloxy)methyl)-5-(4-chloro-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-
7-yl)tetrahydrofuran-3,4-diyl dibenzoate (3) 
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(2R,3R,4R,5R)-2-((benzoyloxy)methyl)-5-(4-chloro-5-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)tetrahydrofuran-3,4-diyl 
dibenzoate (4) 
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tert-butyl (3-iodonaphthalen-2-yl)carbamate (5) 
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(2R,3R,4R,5R)-2-((benzoyloxy)methyl)-5-(5-(3-((tert-
butoxycarbonyl)amino)naphthalen-2-yl)-4-chloro-7H-pyrrolo[2,3-d]pyrimidin-7-
yl)tetrahydrofuran-3,4-diyl dibenzoate (6) 
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(2R,3R,4S,5R)-2-(2,3,5,6-tetraazacyclopenta[de]tetracen-2(6H)-yl)-5-
(hydroxymethyl)tetrahydrofuran-3,4-diol (8) 
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(2R,3R,4S,5R)-2-(2,3,5,6-tetraazacyclopenta[de]tetracen-2(6H)-yl)-5-((bis(4-
methoxyphenyl)(phenyl)methoxy)methyl)tetrahydrofuran-3,4-diol (9) 
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((2R,3S,4R,5R)-5-(2,3,5,6-tetraazacyclopenta[de]tetracen-2(6H)-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methyl hydrogen triphosphate (10) 
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((2R,3S,4R,5R)-5-(8-cyano-2,3,5,6-tetraazaaceanthrylen-2(6H)-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate (12) 
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D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/17/10102/7736808 by guest on 03 O

ctober 2024



17 
 

((2R,3S,4R,5R)-5-(8-cyano-2,3,5,6-tetraazaaceanthrylen-2(6H)-yl)-3,4-
dihydroxytetrahydrofuran-2-yl)methyl hydrogen triphosphate (13) 
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1.4 UV-vis and fluorescence spectroscopy 

Supplementary Table S1. Photophysical characteristics of the FBA-TPs used in this study, 
recorded at room temperature (ca. 22 °C). For buffer conditions, see materials and methods 
section or the indicated references. ε260: molar absorptivity at 260 nm; ΦF: fluorescence 

quantum yield referenced to quinine sulphate in 0.5 M H2SO4; λabs,max: wavelength of 
absorption maximum; λem,max: wavelength of emission maximum; εmax, FBA x ΦF: brightness at 

the absorption maximum; εmax, FBA x ΦF: brightness at 405 nm which is the excitation 
wavelength used for the microscopy and flow cytometry experiments in this study; τ: 
fluorescence lifetime 

FBA-TP 
ε260 

(M-1 cm-1) 
ΦF 
(%) 

λabs, max 
(nm) 

λem, max 
(nm) 

εmax, FBA x ΦF 

(M-1 cm-1) 

ε
405, FBA x ΦF 

(M-1 cm-1) 
τ 

(ns) 

tCOTP 110002 27 360 453 2700 417 3.4 

2CNqATP 146003 485 3525 4715 4900 504 9.95 

pATP 223004 49 386 420 6000 909 6.0 
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2. Analysis of nucleoli under ActD exposure 

Supplementary Table S2. Analysis of nucleoli area under ActD exposure using 2CNqATP 
uptake as readout. Three images per condition (ActD treated or 2CNqATP only, i.e. control) 
were used for analysis. Using the fluorescent channel and the transmission image nuclei were 
identified and nucleoli inside them were used for analysis. Using the polygon selection tool in 
ImageJ nucleoli were outlined and measured. Visualization of this data is presented in the main 
Figure 2D. 

ActinomycinD treated Control 
#nucleolus Area [µm2] #nucleolus Area [µm2] 

1 5.858 1 27.624 
2 1.967 2 15.560 
3 1.381 3 11.553 
4 3.640 4 13.983 
5 1.506 5 6.053 
6 5.670 6 8.611 
7 3.965 7 8.910 
8 5.542 8 6.480 
9 4.604 9 6.096 

10 2.558 10 7.929 
11 1.108 11 32.678 
12 1.918 12 17.532 
13 6.569 13 9.331 
14 4.142 14 7.615 
15 3.724 15 16.862 
16 4.059 16 9.080 
17 2.720 17 2.803 
18 2.092 18 11.883 
19 8.034 19 16.779 
20 4.059 20 6.109 
21 1.841 21 5.942 
22 3.389 22 5.983 
23 1.967 23 4.644 
24 5.607 24 4.477 
25 4.937 25 24.268 
26 2.008 26 9.373 
27 4.937 27 5.732 
28 1.716 28 4.142 
29 1.046 29 9.875 
30 2.720 30 13.975 

Mean 3.509 Mean 11.063 
Standard 
Deviation 

1.781 Standard 
Deviation 

7.029 

 t test : p = 3.13872E-06  
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3. Pulse-Chase Experimental Setup 

Supplementary Table S3. Tested conditions using ActD and NaAsO2. Cells were first 
exposed to 2.5 µM 2CNqATP over three hours for maximum fluorescent signal. Hereafter, 
cells were washed once with PBS and exposed to indicated concentrations of ActD or NaAsO2. 
Effects were observed under confocal laser scanning microscope over time. Conditions used 
for data presented in the main text are highlighted in bold. 

Treatment Concentration Observation 
ActD 1 µM No visible effect after several hours. 

2 µM After 3 h nucleoli visibly smaller. 
4 µM After 1.5 h nucleoli become visibly smaller, 

cells start dying at around 3 h. 
NaAsO2 0.5 µM No visible effect after several hours. 

50 µM Cells start dying at around 2 h, nucleoli remain 
intact. 

200 µM Cells die within one hour 
 

 

 

 

Figure S1. A Left: Huh-7 cells exposed to 2.5 µM 2CNqATP for comparison. Right: Huh-7 
cells were first exposed to 4 µM ActD for 1.5 h. Then 2CNqATP was added while ActD was 
kept in the medium. Indicated times in the figure are total exposure times at imaging time. B 
Huh-7 cells exposed to 2CNqATP and NaAsO2. Left: cells were first exposed to 50 µM 
NaAsO2 for one hour and then 2.5 µM 2CNqATP was added. Right: Cells were first incubated 
with 2.5 µM 2CNqATP for three hours, then washed once with PBS and hereafter exposed to 
50 µM NaAsO2 for 1.5 h. Note that brightness and contrast of the images are adjusted for better 
visibility of nucleolar structure. Due to different 2CNqATP exposure times the signal intensity 
varied. Scale bars 20 µm.  
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4. Accumulation of pATP and 2CNqATP in SH-SY5Y cells before 
and after exchanging the FBA treatment solutions to fresh cell culture 
medium (CCM) 

 

Supplementary Figure S2. Confocal microscopy images of SH-SY5Y cells before (24 h after 
exposure) and after the exchange of the 2.5 μM FBA treatment solution with normal CCM, 
showing the clearance as function of time. Scale bars represent 20 µm.  
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5. Cytotoxicity assessment of 2CNqAMP 

 

Supplementary Figure S3. Cytotoxicity of 2CNqAMP to Huh-7 cells determined using the 
AlamarBlue assay. Relative metabolic activity was referenced to that of untreated cells. All 
treatments were performed in triplicates in a single experiment. The data is presented as mean 
± standard deviation. 
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6. Intensity profile analysis of 2CNqAMP subcellular distribution in 
Huh-7 cells 

 

Supplementary Figure S4. Representative fluorescence intensity line profile of cellular 
2CNqAMP intensity after 24 h of incubation of Huh-7 cells at 37 °C with 2.5 µM 2CNqAMP 
in the cell medium. The nucleoli display a 2.3 ± 0.1 times higher emission intensity compared 
to the nuclei and cytosol. 
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7. Comparison of flow cytometry readout with lysate readout using 
plate reader 
 

 

Supplementary Figure S5. Comparison between readout methods of the cellular uptake of 
2CNqATP (yellow) and 2CNqAMP (red) at 37 °C at various concentration after 24 h. Filled 
circles with solid lines represent readout of flow cytometry readout of detached Huh-7 WT 
cells after exposure. Empty circles with dotted lines show readout of lysed cells using a plate 
reader. Lines were added to guide the eyes. Experiment was performed once including two 
exposures of each compound at each concentration (mean ± S.D.).    
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8. Flow cytometry histograms showing FBA uptake as function of 
time 

 

Supplementary Figure S6. Representative flow cytometry histograms showing the 
distribution of cellular fluorescence intensity as function of incubation time for Huh-7 cells. 
The blue histograms show the background signal of unexposed Huh-7 cells. Left panel: Cells 
exposed to 2CNqAMP (2.5 µM) with lightest red directly after exposure (“0 min”) and darkest 
red 250 min after exposure. Right panel: Cells exposed to 2CNqATP (2.5 µM) with lightest 
green directly after exposure (“0 min”) and darkest green 250 min after exposure. Time interval 
was 5 min over 15 min, followed by an interval of 15 min to 60 min exposure time and finally 
60 min interval until a total exposure time of 250 min was reached.  
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9. Fitting of the uptake kinetics  
 

 
Supplementary Figure S7. Uptake kinetics of 2CNqAMP (left) and 2CNqATP (right) in Huh-
7 cells at 37 °C measured using flow cytometry. Cells were exposed to 2.5 µM 2CNqAMP or 
2CNqATP, respectively. Data is presented as mean fluorescence intensity (MFI) ± S.D. (n=3). 
Each experiment was done three times, indicated in triangles (dashed line), squares (solid line), 
and dots (dotted line). Lines represent the fitted mono-exponential curve as detailed in 
Supplementary Table S4. 

 

Supplementary Table S4. Fitting details of the uptake kinetics presented in Supplementary 
Figure S7. Using OriginPro (Version 9.7.0.188) a mono-exponential fit (ExpDec1; y = 
A1*exp(-x/t1) + y0) in global data fit mode was performed using Levenberg Marquard iteration 
algorithm (iterations until fit converged, chi-square tolerance value 1E-9 was reached). The fit 
included all three replicates with instrumental weighting (square of the reciprocal of the error 
values) and a shared time constant i.e. shared for the triplicates during fitting procedure. The 
table shows the resulting fit values with the time constants highlighted in bold. 

Results for fit of monophosphate (2CNqAMP) uptake Results for fit of triphosphate (2CNqATP) uptake 

 Replicate 1 Replicate 2 Replicate 3 Replicate 1 Replicate 2 Replicate 3 

y0 316497.39633  
± 18934.51137 

222725.81616  
± 15126.43651 

120373.67685  
± 7275.02599 

205342.48712 
 ± 8935.19101 

281824.20989  
± 10736.64207 

99992.65641  
± 7489.47324 

A1 -312155.39145  
± 18964.11055 

-217355.75712  
± 15182.48138 

-116344.62157  
± 8083.96919 

-192318.37472  
± 11354.53877 

-277360.3993  
± 11386.24771 

-100985.11065  
± 10118.66503 

t1 34.89731  
± 3.0207 

34.89731  
± 3.0207 

34.89731  
± 3.0207 

74.21937  
± 7.27118 

74.21937  
± 7.27118 

74.21937  
± 7.27118 
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10. Uptake of 2CNqATP and 2CNqAMP in the presence of 
competitors 

 

 

Supplementary Figure S8. Representative flow cytometry histograms of the uptake of 
2CNqATP and 2CNqAMP into Huh-7 cells at 37 °C in presence of respectively ATP and AMP 
as competitors, corresponding to the mean cell intensity data shown in Figure 3f in the main 
text. The grey histograms show the background signal of the unexposed cells. Left: Cells 
exposed to 2.5 µM 2CNqAMP (red) for 3 h, with and without 625 µM AMP. Right: Cells 
exposed to 2.5 µM 2CNqATP (green) for 3 h, with and without 625 µM ATP.  
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11. Uptake of pATP in the presence of ATP as competitor 
 

 

Supplementary Figure S9. Uptake of pATP in Huh-7 cells at 37 °C determined using flow 
cytometry. Cells were exposed to 2.5 µM pATP for 3 h, with and without 625 µM ATP. Data 
is presented as mean ± S.D. (n=2).  

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/17/10102/7736808 by guest on 03 O

ctober 2024



31 
 

12. Titration of RNA to 2CNqAMP 

 

Supplementary Figure S10. Fluorescence excitation spectra of 2CNqAMP (10 µM) in the 
presence of increasing concentrations of unlabelled RNA. The excitation maxima are indicated 
by the vertical line at 352 nm.  

  

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/17/10102/7736808 by guest on 03 O

ctober 2024



32 
 

13. Agarose gel of total RNA extracts of cells exposed to 2CNqAMP 

 

Supplementary Figure S11. 2% agarose gel (%w/v) of total RNA extracts of Huh-7 cells 
exposed 2.5 µM 2CNqAMP over indicated time. For control 2CNqAMP was added to cell 
lysate before extraction. 500 ng RNA of each sample was loaded and SYBRsafe was added to 
the gels for detection. Indicated bands are 28S rRNA (I), 18 S rRNA (II), xylene cyanol dye 
present in the loading dye (grey III) small RNAs (IV), and bromophenol blue present in the 
loading dye (grey V). Ladder is RiboRuler High Range (Thermo Scientific). Gel was run for 1 
h at 100 V.  
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14. Images of cells exposed to 2CNqAMP and hydroxyurea 

 

Supplementary Figure S12. A Representative emission spectra of RNA extracts from Huh-7 
cells that had been exposed to 2.5 µM 2CNqAMP and 15 nM hydroxyurea for 24 h (dashed 
dark red line). For control, RNA extraction was done as shown in Figure 4a. B Microscopy 
images of Huh-7 cells exposed to 2.5 µM 2CNqATP and various concentrations of 
hydroxyurea (HU) after 4 h. Scale Bars 20 µm. 
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15. Standard curve for determination of 2CNqA concentration in 
extracted RNA 

 

Supplementary Figure S13. Recorded values of a dilution series of 2CNqATP in milliQ and 
correction for change in quantum yield and excitation at emission wavelength (top table) and 
the resulting standard curve. Linear fit was applied with fitting results presented in table in 
the graph. 
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16. Emission spectra of RNA extracts from cells exposed to pATP or 
tCOTP 

 

Supplementary Figure S14. Representative emission spectra of RNA extracts from Huh-7 
cells that had been exposed to 2.5 µM pATP (left, blue) or tCOTP (right, orange) for 24 h. 
Controls, performed as indicated for 2CNqA in main Figure 4a, are shown in faint 
corresponding color. Water was recorded to confirm appearance of the Raman peak at the same 
wavelength as in the sample (grey dotted line). 
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