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A B S T R A C T

The multivalued consensus problem is a fundamental issue in fault-tolerant distributed computing. It encompasses a wide range of agreement 
problems where processes must unanimously decide on a specific value 𝑣 ∈ 𝑉 , with |𝑉 | ≥ 2. Existing solutions that handle process crash failures 
simplify the multivalued consensus problem by reducing it to the binary consensus problem. Examples of such solutions include Mostéfaoui-Raynal-

Tronel [IPL 2000] and Zhang-Chen [IPL 2009].

In this work, we aim to design an even more reliable solution by leveraging the concept of self-stabilization, which provides a strong form of fault 
tolerance. Self-stabilizing algorithms can recover from transient faults, which represent any deviation from the system’s intended behavior (as long 
as the algorithm code remains intact) in addition to process and communication failures.

To the best of our knowledge, this work presents the first self-stabilizing algorithm for multivalued consensus in asynchronous message-passing 
systems susceptible to process failures and transient faults. Our solution uses, at most, 𝑛 concurrent invocations of binary consensus. This is another 
way we advance state-of-the-art solutions compared to previous non-self-stabilizing ones. For example, Mostéfaoui-Raynal-Tronel’s solution requires 
an unbounded number of sequential invocations of binary consensus.

1. Introduction

We propose, to the best of our knowledge, the first self-stabilizing, non-blocking, and memory-bounded implementation of multi-

valued consensus objects for asynchronous message-passing systems whose processes may crash.

1.1. Background and motivation

Fault-tolerant distributed systems find applications across diverse domains, such as banking, transportation, tourism, production, 
and commerce. These applications rely on message-passing systems and demand robustness against failures. Designing and verifying 
such systems is notoriously challenging due to the combination of failures and asynchrony, which introduces uncertainties regarding 
the application state from the perspective of individual processes. For instance, Fischer, Lynch, and Paterson [1] demonstrated that, 
in any asynchronous message-passing system, the occurrence of just one process crash is sufficient to prevent deterministic consensus 
from being achieved.

Our main application focus is the emulation of finite-state machines [2]. To ensure consistency, all emulating processes must 
follow identical sequences of state transitions. To achieve this, we divide the problem into two parts: (i) propagating user input to 
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all emulating processes, and (ii) ensuring that the emulating processes execute identical sequences of state transitions. The issue of 
propagating user input to all processes can be addressed using uniform reliable broadcast [3–5], which solves Problem (i). However, 
this work concentrates explicitly on Problem (ii) as the core challenge. In other words, all processes must reach a consensus on a 
shared value that dictates the execution of state transitions across all emulating processes. The literature on fault-tolerant consensus 
is extensive. This work advances the state of the art by tolerating a significantly broader set of failures and using a bounded amount 
of memory.

1.2. Problem definition and scope

The definition of the consensus problem appears in Definition 1.1. This work focuses on studying the multivalued version of the 
problem, where the set of values that can be proposed includes at least two values. We clarify that the upper bound on the number 
of these values can be any predefined constant. It is important to note that there is another version of the problem in which the set 
includes (at most) two values, known as binary consensus. Existing solutions for multivalued consensus (including the proposed one) 
often rely on binary consensus algorithms. The relationship among the mentioned problems is presented in Fig. 1.

Definition 1.1 (Consensus). Every process 𝑝𝑖 has to propose a value 𝑣𝑖 ∈ 𝑉 via an invocation of the 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑖(𝑣𝑖) operation, where 𝑉
is a finite set of values. Let Alg be an algorithm that solves consensus. Alg has to satisfy safety (i.e., validity, integrity, and agreement) 
and liveness (i.e., termination).

• Validity. Suppose that 𝑣 is decided. Then, some process had invoked 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣).
• Termination. All non-faulty processes decide.

• Agreement. No two processes decide different values.

• Integrity. No process decides more than once.

Definition 1.1 considers algorithms that can only be invoked once. Definition 1.2 enhances Definition 1.1 by considering repeated 
invocations. These invocations can occur in batches of 𝛿 consensus objects, where 𝛿 is a predefined constant. For example, in this 
work, where we solve the problem of multivalued consensus, we consider 𝛿 ∈ {1, 𝑛} when using 𝑛 binary consensus objects. Also, 
in [2], where we solve the problem of reliable total-order broadcast, we consider 𝛿 = 1 when using 3 multivalued consensus objects. 
The solution in [2] shows how these three objects are recycled; one object at a time.

Definition 1.2 (Repeated Consensus). Let 𝐴𝑙𝑔 be an algorithm that satisfies the requirements of Definition 1.1 for 𝛿 consensus objects, 
executed concurrently. Moreover, once all these 𝛿 objects have completed their task and delivered their decisions, all 𝛿 objects are 
recycled in a way that allows their reuse.

1.3. Fault model

An asynchronous distributed system is one in which components or processes operate independently of each other in terms of tim-

ing, meaning they are not synchronized to a common clock signal. In such systems, events or operations are driven by external stimuli 
or internal conditions. Asynchronous systems are often contrasted with synchronous systems, where all operations are coordinated 
and synchronized according to a common clock signal or the use of local timers.

We consider an asynchronous message-passing system with no guarantees on communication delays (except that they are finite) 
since it is well-known that bounded communication delays can serve as the basis for emulating global clocks. We clarify that the 
studied model does not allow the algorithm to access the local clock or use timers since they can also be used to emulate global 
clocks. Our fault model encompasses two types of failures: (𝑖) crashes affecting less than half of the processes and (𝑖𝑖) communication 
failures, including packet omission, duplication, and reordering.

In addition to the failures outlined in our model, we aim to address recovery from transient faults. These transient faults encompass 
any temporary violation of the assumptions under which the system and network were designed to operate. For example, this includes 
the corruption of critical control variables such as the program counter, packet payload, and indices (e.g., sequence numbers) that are 
essential for the correct running of the algorithm. Additionally, we consider operational assumptions, such as the assumption that at 
least a majority of processes never fail. As these transient faults can occur in arbitrary combinations, they may lead to unpredictable 
alterations in the system state. Our modeling assumes that these violations bring the system to an arbitrary state from which a self-
stabilizing algorithm should recover the system after the occurrence of the last transient fault. After this recovery period, it is essential 
to ensure that the system satisfies the task requirements (e.g., Definition 1.1).

1.4. Related work

The celebrated Paxos algorithm [6] circumvents the impossibility, as proven by Fischer, Lynch, and Paterson (FLP) [1], by as-

suming that failed computers can be detected using unreliable failure detectors [7]. Paxos has served as an inspiration for numerous 
veins of research, as seen in [8] and the references therein.

In this work, however, we follow Raynal’s family of abstractions [3] due to its clear and easily comprehensible presentation. 
2

Notably, the studied algorithm does not consider direct access to failure detectors. Instead, it assumes the availability of binary 
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finite-state machine emulation [2]

total-order delivery [2]

multivalued consensus (Algorithm 2)

binary consensus [21]

uniform reliable broadcast [5]

Fig. 1. An illustration of the hierarchical structure of protocols involved in the studied problem of multivalued consensus (highlighted in bold). The protocol suite 
above shows how Uniform Reliable Broadcast (URB) is utilized to implement binary consensus, which is used to implement multivalued consensus. This multivalued 
consensus is then employed to achieve total-order delivery, ultimately enabling finite-state machine emulation. The cited articles refer to relevant self-stabilizing 
solutions for each of these protocols.

consensus objects. We clarify that the latter utilizes the weakest failure detector, as described by Raynal [3]. Also, our study focuses 
on deterministic solutions and does not consider probabilistic approaches, such as [9–11].

1.4.1. Non-self-stabilizing solutions

Mostéfaoui, Raynal, and Tronel [12], from now on MRT, reduce multivalued consensus to binary consensus via a crash-tolerant 
block-free algorithm. MRT’s algorithm uses an unbounded number of invocations of binary consensus objects and, at most, one 
uniform reliable broadcast (URB) per process. Zhang and Chen [13] proposed an algorithm for multivalued consensus that uses only 
𝑥 instances, where 𝑥 is the number of bits it takes to represent any value in the domain of proposable values.

Our self-stabilizing solution terminates within at most 𝑛 invocations of binary consensus objects and at most one uniform reliable 
broadcast [5,14] (URB) operation per process, where 𝑛 is the number of processes in the system.

Afek et al. [15] showed that binary and multivalued versions of the 𝑘-simultaneous consensus task are wait-free equivalent. Here, 
the 𝑘-simultaneous consensus is required to let each process participate at the same time in 𝑘-independent consensus instances until 
it decides in any of them.

1.4.2. Self-stabilizing solutions

We follow the design criteria of self-stabilization, which Dijkstra [16] proposed. Dolev [17] and Altisen et al. [18] provided a 
detailed pretension of self-stabilization. Consensus was insufficiently explored in the context of self-stabilization. Blanchard et al. [19]

presented the first solution in the context of self-stabilization. They presented a practically-self-stabilizing version of Paxos [6]. We 
note that practically-self-stabilizing systems, as defined by Alon et al. [20], do not satisfy Dijkstra’s requirements, i.e., practically-self-

stabilizing systems do not guarantee recovery within a finite time after the occurrence of transient faults.

We base our self-stabilizing multivalued consensus on the self-stabilizing binary consensus [21] and Uniform Reliable Broadcast [5]

(URB, in short) both by Lundström, Raynal, and Schiller. These solutions are based on an assumption by Dolev, Petig, and Schiller [22]

for self-stabilization in the presence of seldom fairness. The latter is defined by Dolev, Petig, and Schiller as follows. In the absence of 
transient faults, these self-stabilizing algorithms do not assume system synchrony or fairness of its scheduler. Nevertheless, after the 
occurrence of the last transient faults, the system recovery assumes that the system execution eventually becomes fair so that a global 
reset [23] is possible. This new approch presented by Dolev, Petig, and Schiller allows us to relax assumptions related to execution 
fairness [24–27].

Georgiou, Lundström, and Schiller [28] conducted a study concerning self-stabilizing atomic snapshot objects. We study a different 
problem. Furthermore, we note the existence of self-stabilizing solutions for consensus within shared-memory systems susceptible 
to fail-stop failures [29], as well as message-passing systems prone to Byzantine failures [30–32]. These solutions address a similar 
problem. However, their fault models are more challenging than the ones studied here. Thus, the solution proposed in this paper is 
simpler than the ones in [30–32].

1.4.3. Applications

The studied solution is part of a protocol suite (Fig. 1) and it facilitates the self-stabilizing emulation of state-machine replication 
via reliable total-order broadcast [2]. Dolev et al. [33] proposed the first practically-self-stabilizing emulation of state-machine repli-

cation, which has a similar task to the one in Fig. 1. However, Dolev et al.’s solution does not guarantee recovery within a finite time 
since it does not follow Dijkstra’s criterion. Moreover, it is based on virtual synchrony by Birman and Joseph [34], where the one in 
Fig. 1 utilizes consensus.

1.4.4. Bibliographical notes

An earlier version of this work appeared as an extended abstract [35] and technical report [36].

1.5. Our contribution

We present a self-stabilizing algorithm for multivalued consensus in asynchronous message-passing systems susceptible to crash 
failures. To the best of our knowledge, we are the first to provide a solution for multivalued consensus that tolerates a broad fault 
model, encompassing crashes, communication failures (e.g., packet omission, duplication, and reordering), as well as transient faults, 
all while using a bounded amount of resources (unlike earlier work, such as the one by MRT, that uses an unbounded number of 
binary consensus objects). The latter type of failure models any violation of the assumptions under which the system was designed 
3

to operate (as long as the program code, which represents the proposed algorithm, remains intact).
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Our solution achieves (multivalued) consensus within 𝑛 invocations of binary consensus instances that run sequentially or concur-

rently, where 𝑛 is the number of processes.1 Furthermore, the concurrent version of our solution can piggyback the binary consensus 
messages and terminate within the time it takes to complete one uniform reliable broadcast (URB) and one binary consensus (when 
running 𝑛 invocations concurrently). This time frame also represents the system’s recovery period after the occurrence of the last 
transient fault, i.e., the stabilization time.

We note that each URB invocation needs to be repeated until the invoking algorithm deactivates the consensus object. This is 
due to a well-known impossibility [17, Chapter 2.3], which says that self-stabilizing systems cannot be quiescent, i.e., stop sending 
messages once the protocol has terminated. It is easy to trade the broadcast repetition rate with the recovery speed from transient 
faults.

As an application to the proposed solution, we refer to our self-stabilizing total order uniform reliable broadcast and finite-state 
machine emulation [2]. We note that the abstraction of state-machine replication is widely recognized as one of the most fundamental 
concepts in the area of distributed computing and systems.

1.6. Document organization

The task specifications and solution organization appear in Section 2. We state our system settings in Section 3. Section 4 includes 
a brief overview of the studied algorithm by Mostéfaoui, Raynal, and Tronel [12] that has led to the proposed solution. Our self-

stabilizing algorithm for multivalued consensus is proposed in Section 5. The correctness proof appears in Section 6. We conclude in 
Section 7 and explain how to extend the proposed application to serve as an emulator for state-machine replication.

2. Task specifications and solution organization

The proposed solution is tailored for the protocol suite presented in Fig. 1. Therefore, before detailing how these tasks are integrated 
into a cohesive solution, we first list the external building blocks and define the tasks under study.

2.1. External building-blocks

The proposed solution for multivalued consensus uses binary consensus and reliable broadcast objects.

2.1.1. Binary consensus objects

𝑇binCon denotes the task of binary consensus, which Definition 1.1 specifies. We assume the availability of self-stabilizing binary 
consensus objects, such as the one by Lundström, Raynal, and Schiller [21]. As in Definition 1.1, the proposed and decided values 
have to be from the 𝑉 domain (of proposable values). For clarity’s sake, for a given binary consensus object 𝐵𝐶 , the operation 
𝐵𝐶.𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) invokes the binary consensus on 𝑣 ∈ 𝑉 = {𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾}. (Traditionally, binary consensus results are either 0 or 1, 
but we rename them.)

2.1.2. Uniform Reliable Broadcast (URB)

The task 𝑇𝑈𝑅𝐵 of Uniform Reliable Broadcast (URB) [4] considers an operation for URB broadcasting of message 𝑚 and an event 
of URB delivery of message 𝑚. The requirements include URB-validity, i.e., there is no spontaneous creation or alteration of URB 
messages, URB-integrity, i.e., there is no duplication of URB messages, as well as URB-termination, i.e., if the broadcasting node is 
non-faulty, or if at least one receiver URB-delivers a message, then all non-failing processes URB-deliver that message. Note that the 
URB-termination property considers both faulty and non-faulty receivers. This is the reason why this type of reliable broadcast is 
named uniform. We clarify that the set of receivers also includes the sending node.

The proposed solution assumes the availability of a self-stabilizing URB, such as the one by Lundström, Raynal, and Schiller [5]. 
Their solution allows the operation for URB broadcast of message 𝑚 to return a transmission descriptor, txDes, which is the unique 
message identifier. Using a failure detector [7], they provide a predicate, 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(txDes), that holds whenever the sender 
knows that all processes (that are not-suspected to be faulty) have delivered 𝑚. Their implementation of 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(txDes) simply 
tests that all non-suspected receivers have acknowledged the arrival of the message with identifier txDes. This way, their solution 
implements 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽() since their self-stabilizing algorithm considers such messages as ‘obsolete’ messages and lets the garbage 
collector remove them.

2.2. Task specification: multivalued consensus

𝑇mulCon denotes the task of multivalued consensus, which Definition 1.1 specifies. As in Definition 1.1, the proposed and decided 
values have to be from the 𝑉 domain (of proposable values), where |𝑉 | ≥ 2. The operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) invokes the multivalued 
consensus on 𝑣 ∈ 𝑉 .

1 We note the possibility of the following straightforward extension. By running concurrent batches of binary consensus objects while preserving a sequential order 
between the batches, one can balance the trade-off between message size and the potential speed-up provided by concurrency since the size of each batch can be a 
4

predefined fraction of 𝑛..
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2.3. Solution overview

We consider a multivalued consensus object that uses an array, 𝐵𝐶[], of 𝑛 binary consensus objects, such as the one by [3, 
Chapter 17], where 𝑛 is the number of processes in the system. The proposed algorithm considers a single multivalued consensus 
object, denoted by 𝑂.

Definition 1.1 considers the 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) operation, but it does not specify how the decided value is retrieved. We clarify that it can 
be either via the returned value of the 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) (or 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) for the case of binary consensus) operation as the one in MRT’s 
algorithm [12] (as in the algorithm by Guerraoui and Raynal [37], respectively) or via the returned value of the 𝗋𝖾𝗌𝗎𝗅𝗍() operation, 
as in the proposed solution. But, if processor 𝑝𝑖 has yet to access the decided value, 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() returns ⊥. Otherwise, the decided value 
is returned. Specifically, for the case of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣), 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() is used and for the case of 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾(𝑣), also the parameter 𝑘 should be 
used when calling 𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘), where 𝑝𝑘 is a system processor. We clarify that, in the absence of transient faults, 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() and 𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘)
always return either ⊥ or the decided value for the multivalued and binary consensus objects, respectively.

The algorithm by Guerraoui and Raynal [37], which we use as a starting point in the design of the proposed solution, was not 
designed to deal with transient faults. As Section 4.2 explains, transient faults can cause the studied algorithm to violate Definition 1.1’s 
requirements without indicating the invoking algorithm. Thus, after a transient fault occurs, the proposed solution allows 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() to 
provide such indication to the invoking algorithm via the return of the transient error symbol Ψ. See details in Section 5.2.2.

3. System settings

We consider an asynchronous message-passing system that has no guarantees on the communication delay. Moreover, there is 
no notion of global (or universal) clocks and the algorithm cannot explicitly access the local clock (or timeout mechanisms).2 The 
system consists of a set,  = {𝑝0, … , 𝑝𝑛−1}, of 𝑛 crash-prone processors (or nodes) with unique identifiers.3 We assume that any 
pair of nodes 𝑝𝑖, 𝑝𝑗 ∈  have access to bidirectional peer-to-peer communication media, where channel𝑗,𝑖 denotes the communication 
channel that holds protocol message in transit from 𝑝𝑗 to 𝑝𝑖. Due to an impossibility [17, Chapter 3.2], we assume that channel𝑗,𝑖, 
at any time, has at most 𝖼𝗁𝖺𝗇𝗇𝖾𝗅𝖢𝖺𝗉𝖺𝖼𝗂𝗍𝗒 ∈ ℕ protocol messages on transit from 𝑝𝑗 to 𝑝𝑖. Specifically, Jayaram and Varghese [38]

show that, without such an assumption, crash failures can drive deterministic asynchronous distributed systems to arbitrary states 
regardless of the presence of transient faults.

3.1. The interleaving model

The interleaving model [17] is a framework used to analyze the behavior of distributed systems, particularly in the context of 
concurrency. It represents the execution of processes by interleaving their actions into a single global sequence, allowing us to visualize 
and reason about the system’s behavior as if the processes were executed one at a time, even though they actually run concurrently. 
The model considers all possible interleavings of actions from different processors, with each interleaving corresponding to a different 
possible execution of the system, thereby capturing the non-determinism inherent in concurrent execution.

The node’s program is a sequence of (atomic) steps. These steps are atomic in the sense that they represent operations that are 
indivisible and uninterruptible. This means that the step is executed entirely or not at all, with no intermediate states visible to 
other operations or processors. Specifically, each step starts with an internal computation and finishes with a single communication 
operation, i.e., a message 𝑠𝑒𝑛𝑑 or 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. The state, 𝑠𝑖, of node 𝑝𝑖 ∈  includes all of 𝑝𝑖 ’s variables and channel𝑗,𝑖. The term system 
state (or configuration) refers to the tuple 𝑐 = (𝑠0, 𝑠1, ⋯ , 𝑠𝑛−1). We define a system execution (or run) 𝑅 = 𝑐[0], 𝑎[0], 𝑐[1], 𝑎[1],… as 
an alternating sequence of system states 𝑐[𝑥] and (atomic) steps 𝑎[𝑥], such that each 𝑐[𝑥 + 1], except for the starting one, 𝑐[0], is 
obtained from 𝑐[𝑥] by the execution of step 𝑎[𝑥] that some processor takes. We clarify that, thus far, the term system execution has 
only considered the algorithm steps. However, in the presence of failures, the system execution also includes adversarial steps injected 
by the environment; see Section 3.2 for details.

As mentioned in Section 2.2, the studied distributed systems consider a set of specific tasks (Fig. 1), such as the task of repeated 
multivalued consensus, which is denoted by 𝑇mulCon, see Definition 1.2 for the specified requirements of 𝑇mulCon. The set of legal 
executions (𝐿𝐸) refers to all the executions in which the requirements of a given task hold.

3.2. The fault model and self-stabilization

As mentioned, in addition to the steps taken by the algorithm, in the presence of failures, the system execution may include 
adversarial steps taken by the environment or disable the algorithm from taking specific steps.

2 Such exclusion of the use of clocks is well-known to simplify the efficient deployment of distributed systems since (unlike synchronous systems) there is no need to 
wait until it is possible to guarantee that the slowest component in the system is ready to process the next communication round (which synchronous systems require 
to occur simultaneously)..

3 For the sake of a simple presentation, we use the processor’s index as its identifier. One can simply substitute the use of the index by the algorithm with the 
5

function 𝐼𝐷(𝑖), which returns a unique processor identifier that is not necessarily between 0 and 𝑛 − 1..
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3.2.1. Benign failures

The system is prone to crash failures, in which faulty nodes stop taking steps forever. We assume that at most 𝑡 < 𝑛∕2 node may 
crash. We denote by Correct the set of indices of processors that never crash. We consider solutions oriented towards asynchronous 
message-passing systems in which the notion of time does not play any role. Thus, the algorithm is oblivious to when packets arrive 
and depart. Also, the communication channels are prone to packet failures, such as omission (in which the environment removes a 
message from a communication channel), duplication (in which the environment duplicates a message), and reordering (in which 
the environment reorders messages). However, if 𝑝𝑖 sends a message infinitely often to 𝑝𝑗 , node 𝑝𝑗 receives that message infinitely 
often. We refer to the latter as the fair communication assumption. We assume any message can reside in a communication channel 
only for a finite period (before it is delivered or lost).

3.2.2. Transient faults

We consider any violation of the assumptions according to which the system was designed to operate. We refer to these violations 
and deviations as transient faults and assume they can corrupt the system state arbitrarily (as long as the program code, which 
represents the proposed algorithm, remains intact). We follow the model presented by Dijkstra [16] and detailed by Dolev [17] and 
Altisen et al. [18]. The model assumes that the last transient fault occurs before the system execution starts, i.e., before the first system 
state of any system execution. Moreover, the occurrence of the last transient fault leaves the system to begin in an arbitrary state. As 
we explain in Section 3.2.3, a self-stabilizing system must eventually recover from any arbitrary state. Once the recovery process is 
completed, the self-stabilizing system must exhibit correct behavior indefinitely.

3.2.3. Dijkstra’s self-stabilization criterion

An algorithm is self-stabilizing with respect to the task of 𝐿𝐸, when every (unbounded) execution 𝑅 of the algorithm reaches within 
a finite period a suffix 𝑅𝑙𝑒𝑔𝑎𝑙 ∈ 𝐿𝐸 that is legal. That is, Dijkstra [16] requires that ∀𝑅 ∶ ∃𝑅𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 ∶ 𝑅 = 𝑅𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦◦𝑅𝑙𝑒𝑔𝑎𝑙 ∧ 𝑅𝑙𝑒𝑔𝑎𝑙 ∈
𝐿𝐸 ∧ |𝑅𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦| ∈ ℤ+, where the operator ◦ denotes that 𝑅 = 𝑅′◦𝑅′′ concatenates 𝑅′ with 𝑅′′. In other words, any execution of a 
self-stabilizing system must reach a safe state regardless of the initial state. The literature sometimes refers to these states as legitimate 
system states because they signify the end of the Convergence, i.e., recovery phase, and ensure that the Closure property is indefinite. 
Furthermore, starting from a safe state, the system’s execution always satisfies the task requirements, thereby making these execution 
legal (Section 3.1).

The number of steps during recovery, denoted as |𝑅𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦|, serves as a complexity measure for self-stabilizing systems. In the 
literature, this measure is commonly referred to as stabilization time, acting as an analytical approximation for recovery time. Recovery 
time is well-defined for synchronous systems but remains conceptual for asynchronous systems under study, where it may not be 
directly measurable due to variations in timing and completion of recovery phases. As explained in Section 2.1, the studied and 
proposed solutions allow nodes to interact and share information via binary consensus objects and uniform reliable broadcast (URB). 
Thus, we measure the stabilization time as the number of accesses to these primitives plus the number of URB accesses. To do this, 
one needs to add the stabilization time of these two underlying objects when calculating the overall stabilization time.

4. The studied non-self-stabilizing multivalued consensus

We review in Sections 4.1 and 4.2 a non-self-stabilizing non-blocking algorithm for multivalued consensus by Mostéfaoui, Raynal, 
and Tronel [12], which uses an unbounded number of binary consensus objects.

4.1. Algorithm 1: non-self-stabilizing multivalued consensus

The non-self-stabilizing solution in Algorithm 1 is the basis for its self-stabilizing variation in Algorithm 2. The program code 
pertains to node 𝑝𝑖, where for any variable 𝑥 appearing in Algorithm 1, 𝑥𝑖 denotes the value stored by 𝑝𝑖 for variable 𝑥. The operation 
𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) (line 5) invokes an instance of a multivalued consensus object. Algorithm 1 uses a URB protocol (Section 2.1.2) for letting 
any 𝑝𝑖 ∈  disseminate its proposed value 𝑣𝑖 (line 7). Each 𝑝𝑗 ∈  that delivers this proposal, stores this value in 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑗 [𝑖]. Also, 
𝑝𝑘 ∈  can concurrently broadcast its proposal, 𝑣𝑘 , which 𝑝𝑗 stores in 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑗 [𝑘]. Therefore, Algorithm 1 must decide which entry 
in 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑗 [] the 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) operation should return. This decision is coordinated via an unbounded global array 𝐵𝐶[0], 𝐵𝐶[1], …, 
of binary consensus objects.

Algorithm 1 starts by URB-broadcasting 𝑝𝑖 ’s proposed value, 𝑣𝑖 (line 7). This broadcast assures that all correct nodes eventually 
receive identical sets of messages (Section 2.1.2). Also, the set of delivered messages must include every message URB-broadcast 
by any correct node. The arrival of PROPOSAL(𝑣) from 𝑝𝑗 , informs 𝑝𝑖 about 𝑝𝑗 ’s proposal, and thus, 𝑝𝑖 stores 𝑣𝑗 in 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖[𝑗]
(line 12).

Following the proposal broadcast, Algorithm 1 proceeds in asynchronous communication rounds. That is, each node operates 
as quickly as possible based on the conditions described in the code rather than waiting for all nodes to complete their previous 
communication rounds synchronously. The variable 𝑘 stores the round counter (lines 3 and 8). Once 𝑝𝑖 decides, it leaves the loop 
by returning the value of 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖[𝑥𝑖] (line 11), where 𝑥𝑖 = 𝑘𝑖 mod 𝑛. In other words, 𝑥𝑖 ∈ {0, … , 𝑛−1} is the identifier of the node 
that has broadcast the proposal stored in 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖[𝑥𝑖].

As mentioned, the selection of 𝑥𝑖 is facilitated via the unbounded array, 𝐵𝐶[], of binary consensus objects. Since all correct nodes 
eventually receive the same set of broadcasts, 𝑝𝑖 proposes 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖[𝑥] ≠ ⊥ to the 𝑘𝑖-th object, 𝐵𝐶[𝑘𝑖] (line 9). That is, 𝑝𝑖 proposes 
6

𝖳𝗋𝗎𝖾 on the 𝑘𝑖-th round if, and only if, it received 𝑝𝑥𝑖
’s proposal.
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Algorithm 1: Non-self-stabilizing non-blocking multivalued consensus using an unbounded number of binary consensus in-

stances; code for 𝑝𝑖.

1 local variables:

2 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[0, .., 𝑛-1] ; /* array of the received proposals */
3 𝑘 ; /* the communication round counter */
4 𝐵𝐶[0, …] ; /* binary consensus objects (unbounded list) */

5 operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) begin

6 (𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠, 𝐵𝐶) ← ([⊥, … , ⊥], [⊥, …]);
7 𝗎𝗋𝖻𝖡𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍 PROPOSAL(𝑣);
8 while (𝑘 ← 0; 𝖳𝗋𝗎𝖾; 𝑘 ← 𝑘 + 1) do

9 if 𝐵𝐶[𝑘].𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾((𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘 mod 𝑛] ≠ ⊥)) then

10 𝐰𝐚𝐢𝐭(𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘 mod 𝑛] ≠ ⊥);
11 return (𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘 mod 𝑛]);

12 upon 𝗎𝗋𝖻𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖾𝖽 PROPOSAL(𝑣) from 𝑝𝑗 do {𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑗] ← 𝑣;}

Algorithm 1 continues to the next round whenever 𝐵𝐶[𝑘𝑖] decides 𝖥𝖺𝗅𝗌𝖾. Otherwise, 𝑝𝑖 decides the value, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖[𝑥𝑖], proposed 
by 𝑝𝑥𝑖

. Due to asynchrony, 𝑝𝑖 might need to wait until 𝑝𝑥𝑖
’s broadcast was URB-delivered (line 10). However, if any node proposed to 

decide 𝑣𝑥𝑖
, it must be the case that 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖[𝑥𝑖] was delivered to the node that has proposed 𝖳𝗋𝗎𝖾 at 𝐵𝐶[𝑘𝑖]. Therefore, eventually, 

𝑝𝑖 is guaranteed to URB-deliver 𝑣𝑥𝑖
and stores it at 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖[𝑥𝑖]. For this reason, Algorithm 1 does not block forever in line 10, and 

the decided value is eventually returned (line 11).

4.2. Executing Algorithm 1 in the presence of transient faults

Before describing Algorithm 2, we review the main challenges one faces when transforming Algorithm 1 into an algorithm that 
can recover after the concurrence of transient faults. It is important to recall that the studied solution by Mostéfaoui, Raynal, and 
Tronel [12] did not consider recovery after the occurrence of transient faults.

4.2.1. Use of an unbounded number of binary consensus objects

Self-stabilizing systems can only use a bounded amount of memory [17]. This is because, in practice, (autonomous) computer 
systems use only a predefined amount of memory. However, a single transient fault can set every counter (or data structure) to its 
maximum value (respectively, exhaust the memory capacity of the data structure). Specifically, the correctness proof for Algorithm 1

does not consider cases where the communication round counter, 𝑘, reaches the maximum value that an integer can hold (or when 
all binary consensus objects are used).

4.2.2. Corrupted counter for communication round numbers and binary consensus objects

In the context of self-stabilization, one cannot simply rely on counter 𝑘 (line 3) to count the number of asynchronous rounds. This 
is because a single transient fault can set the value of 𝑘 to zero. It can also alter the state of every 𝐵𝐶[𝑘]𝑘∈{0,…,𝑧}∧𝑧∈ℤ+ , such that 
a call to 𝗉𝗋𝗈𝗉𝗈𝗌𝖾() returns 𝖥𝖺𝗅𝗌𝖾, where 𝑧 can be practically infinite, say 𝑧 = 264 − 1, which is a standard maximum integer value. In 
this case, the system must iterate 264 times before reaching a fresh binary consensus object. Assuming each iteration takes just one 
nanosecond, counting from zero to 264 − 1 takes more than 584 years, more than any practical system’s lifetime. In other words, the 
system will virtually block forever.

4.2.3. Corrupted program counter

A transient fault can set the program counter of every 𝑝𝑗 ∈  to skip over the broadcast in line 7 and to point to line 8. If this 
happens, validity or termination (Definition 1.1) can be violated. Therefore, there is a need to repeat the transmission of 𝑣𝑖 in order 
to ensures that at least one proposal is known to all correct processors.

4.2.4. A corrupted array of binary consensus objects

Transient faults can corrupt binary consensus objects in the array 𝐵𝐶[]. Specifically, since the array 𝐵𝐶[] should include only 
a bounded number of binary consensus objects, a transient fault can change the state of all objects in 𝐵𝐶[] to encode ‘𝖥𝖺𝗅𝗌𝖾 was 
decided’. In this case, Algorithm 1 cannot finish the multivalued consensus.

5. The proposed solution: self-stabilizing wait-free multivalued consensus

This section presents a new self-stabilizing algorithm for multivalued consensus that uses 𝑛 binary consensus objects (Section 2.1.1) 
7

and 𝑛 self-stabilizing URB objects (Section 2.1.2). The correctness proof appears in Section 6.
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(a) Upon 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣), uniform reliable broadcast ⟨𝑣⟩.
(b) By URB-termination, eventually, there is 𝑝𝑗 ∈  and round 𝑘′, such that 𝑝𝑗 ’s message arrived at all non-faulty processors,

i.e., ∀𝓁 ∈ Correct ⟹ 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝓁 [𝑗] ≠ ⊥.

(c) For 𝑘 ∈ {0, 1, 2, …}, 𝑝𝑖 invokes 𝐵𝐶[𝑘].𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾(𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘 mod 𝑛] ≠ ⊥).
(d) By BC-termination and stage (b), eventually, the 𝑘min-th binary consensus objects is the first to decide 𝖳𝗋𝗎𝖾 while all 𝑥-th objects decide 𝖥𝖺𝗅𝗌𝖾, where 
𝑥 ∈ {0, 1, 2, … , 𝑘min−1}.

(e) Due to URB-termination, eventually, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘min mod 𝑛] includes a non-⊥ value.

(f) Then, return 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘min mod 𝑛] as the decided value for the multivalued consensus.

Fig. 2. High-level stages in the execution of Algorithm 1; high-level code for 𝑝𝑖 .

(a) Upon 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣), uniform reliable broadcast ⟨𝑣⟩.
(b) Wait until 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽() says that ⟨𝑣⟩ arrived at all non-faulty processors.

(c) For 𝑘 ∈ {0,… , 𝑛−1} , 𝑝𝑖 invokes 𝐵𝐶[𝑘].𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾(𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘 mod 𝑛] ≠ ⊥).
(d) By BC-termination and stage (b), eventually, the 𝑘min-th binary consensus objects is the first to decide 𝖳𝗋𝗎𝖾 while all 𝑥-th objects decide 𝖥𝖺𝗅𝗌𝖾, where 
𝑥 ∈ {0, 1, 2, … , 𝑘min−1}.

(e) Due to URB-termination, eventually, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘min mod 𝑛] includes a non-⊥ value.

(f) Then, return 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘min mod 𝑛] as the decided value for the multivalued consensus.

Fig. 3. An alternative to Fig. 2 that uses a bounded number of binary consensus objects; high-level code for 𝑝𝑖 .

5.1. The algorithm idea

We sketch the key notions needed for Algorithm 2 by addressing the challenges raised in Section 4.2. For the sake of a simple 
presentation, the line numbers of Algorithm 2 continues the ones of Algorithm 1.

5.1.1. Using a bounded number of binary consensus objects

We explain how Algorithm 2 can use only 𝑛 binary consensus objects at most. Fig. 2 is a high-level description of Algorithm 1’s 
execution and Fig. 3 shows how this process can become more efficient. The key differences between Figs. 2 and 3 appear in the 
boxed text of Fig. 3. Specifically, Fig. 3 waits until 𝑝𝑖 ’s broadcast has terminated in line (b). At that point in time, 𝑝𝑖 knows that all 

non-faulty processors have received its message. Only then does 𝑝𝑖 allow itself to propose values via the array of binary consensus 
objects. This means that no processor starts proposing any binary value before there is at least one index 𝑘 ∈ {0, … , 𝑛−1} for which 
𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑗 [𝑘] ≠ ⊥, where 𝑝𝑗 is any node that has not failed. In other words, regardless of who is going to invoke the 𝑘-th binary 
consensus object, only the value 𝖳𝗋𝗎𝖾 can be proposed. For this reason, there is no need to use more than 𝑛 binary consensus values 
until at least one of them decides 𝖳𝗋𝗎𝖾, cf. line (c) in Fig. 3.

5.1.2. Dealing with corrupted round number counter

Using the object values in 𝐵𝐶[], Algorithm 2 calculates 𝗄(), which returns the current round number. This way, a transient fault 
cannot create inconsistencies between 𝗄()’s value and 𝐵𝐶[]. The 𝗄()’s calculation uses a notation that considers an object, 𝑂. When 
𝑂 ≠ ⊥, we say that using 𝑂 is enabled; thus, the object is said to be active. Otherwise, i.e., 𝑂 = ⊥, its use is disabled and hence 
inactive.

In detail, for an active multivalued consensus object 𝑂, i.e., 𝑂 ≠ ⊥, we say that the binary consensus object 𝑂.𝐵𝐶[𝑘] is active 
when 𝑂.𝐵𝐶[𝑘] ≠ ⊥. Algorithm 2 calculates 𝗄() (line 19) by counting the number of active binary consensus objects terminated, and 
the decided value is 𝖥𝖺𝗅𝗌𝖾. We restrict this counting to consider only the entries 𝐵𝐶[𝑘], such that 𝑘 = 0 or ∀𝑘′ < 𝑘 ∶ 𝐵𝐶[𝑘′] is an 
active binary consensus object that has terminated and the decided 𝖥𝖺𝗅𝗌𝖾. This is defined by the set 𝖪 = ({𝑘 ∈ 𝑆(𝑛-1) ∶ 𝑂.𝐵𝐶[𝑘] ≠ ⊥

∧𝑂.𝐵𝐶[𝑘].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘) = 𝖥𝖺𝗅𝗌𝖾}), where 𝑆(𝑥) = {0, … , 𝑥} is the set of all integers between zero and 𝑥. This way, the value of 𝗄() is 
max({{−1} ∪ {𝑥 ∈ 𝑆(𝑛−1) ∶ (𝑆(𝑥) ∩ 𝖪) = 𝑆(𝑥)}). Note that the value of −1 indicates that no active binary consensus objects in 𝐵𝐶[]
terminated with a decided value of 𝖥𝖺𝗅𝗌𝖾, i.e., 𝖪 = ∅.

5.1.3. Dealing with a corrupted program counter

As explained in Section 4.2.3, there is a need to repeat the transmission of 𝑣𝑖 to ensure that at least one proposal is known to all 
correct processors. Specifically, after 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑖(𝑣𝑖)’s invocation, 𝑝𝑖 ∈  needs to store 𝑣𝑖 and broadcast 𝑣𝑖 repeatedly due to a well-

known impossibility [17, Chapter 2.3]. Note that there is a straightforward way to trade the broadcast repetition rate for the recovery 
speed from transient faults. This is because as the rate becomes slower, it takes more time for information to propagate, which leads 
to a slower removal of stale information. Also, once the first broadcast has terminated, all correct processors 𝑝𝑖 ∈  are ready to 
decide by proposing 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾𝑖(𝑘, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖[𝑘] ≠ ⊥) for any 𝑝𝑘 ∈  , see steps (b) and (c) in Fig. 3.

5.1.4. Dealing with a corrupted array of binary consensus objects

Algorithm 2 uses only 𝑛 binary consensus objects. Due to the challenge in Section 4.2.4, we explain how to deal with the case in 
8

which a transient fault changes the state of all objects in 𝐵𝐶[] to encode ‘𝖥𝖺𝗅𝗌𝖾 was decided’. In this case, the algorithm cannot satisfy 
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the requirements of the multivalued consensus task (Definition 1.1). Therefore, our solution identifies such situations and informs 
the invoking algorithm via the return of the transient error symbol Ψ.

5.2. Algorithm description

We will now delve into a detailed presentation of Algorithm 2. Our adaptation of Algorithm 1 leverages the URB’s ability to 
signal the termination of its broadcast through the 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽() interface. This indication confirms the presence of at least one 
proposed value that every correct node stores within the array of proposals. Our solution utilizes the binary consensus objects to 
achieve uniform proposal selection upon this confirmation. Notably, within our variation on Algorithm 1, there exists a minimum 
of one index within the binary consensus object (alongside its corresponding proposal) for which every node will propose True. An 
illustrative example of this could be the index of the initial node to activate the binary consensus object, as it takes this step only 
after verifying the delivery of its proposal to all nodes.

Algorithm 2: Self-stabilizing non-blocking multivalued consensus; 𝑝𝑖 ’s code.

13 variables: /* initialization is optional in the context of self-stabilization */
14 𝑣 ; /* local decision estimates */

15 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[0, .., 𝑛-1] ; /* array of arriving proposals */

16 𝐵𝐶[0, .., 𝑛-1] ; /* array of 𝑛 binary consensus objects */

17 txDes ; /* URB transmission descriptor for decision sharing */

18 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 ; /* true once at least one broadcast termination occurred */

19 macro 𝗄() =max({{-1} ∪ {𝑥 ∈ 𝑆(𝑛-1) ∶ (𝑆(𝑥) ∩ 𝖪) = 𝑆(𝑥)}): where 𝑆(𝑥) = {0, … , 𝑥} and 𝖪 = ({𝑘 ∈ 𝑆(𝑛-1) ∶ 𝑂.𝐵𝐶[𝑘] ≠ ⊥ ∧𝑂.𝐵𝐶[𝑘].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘) = 𝖥𝖺𝗅𝗌𝖾}) ; 
/* 𝗄() is the max consecutive 𝐵𝐶[] entry index with the decision 𝖥𝖺𝗅𝗌𝖾 */

20 operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) do {if 𝑣 ≠ ⊥ ∧𝑂 = ⊥ then 𝑂.(𝑣, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠, 𝐵𝐶, txDes, 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚) ← (𝑣, [⊥, … , ⊥], [⊥, … , ⊥], ⊥, 𝖥𝖺𝗅𝗌𝖾)};

21 operation 𝗋𝖾𝗌𝗎𝗅𝗍() begin

22 if 𝑂 = ⊥ then return ⊥;

23 else if 𝑂.𝑣 = ⊥ ∨ 𝑘 ≥ 𝑛 − 1 then return Ψ where 𝑘 = 𝗄();
24 else if 𝐵𝐶[𝑘 + 1] = ⊥ ∨𝐵𝐶[𝑘 + 1].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘 + 1) ≠ 𝖳𝗋𝗎𝖾 then return ⊥;

25 else if 𝑥 = ⊥ then return Ψ else return 𝑥 where 𝑥 = 𝑂.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘 + 1];

26 do forever foreach 𝑂 ≠ ⊥ with 𝑂’s fields 𝑣, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠, 𝐵𝐶 , and txDes do

27 if (𝑣 ≠ ⊥ ∧ (txDes = ⊥ ∨ 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(txDes)) then

28 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 ← 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 ∨ (txDes ≠ ⊥ ∧ 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(txDes));
29 txDes←𝗎𝗋𝖻𝖡𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍 PROPOSAL(𝑣)

/* use either lines 30 to 31 or lines 32 to 33 */

30 if 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 ∧ 𝗄 < 𝑛-1 ∧𝐵𝐶[𝗄+1]=⊥ ∧ (𝗄=-1 ∨𝐵𝐶[𝗄].𝗋𝖾𝗌𝗎𝗅𝗍(𝗄) ≠ ⊥) then

31 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾(𝗄+1, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝗄+1] ≠ ⊥) where 𝑘 = 𝗄()
32 if 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 ∧ ∃𝓁 ∶ 𝐵𝐶[𝓁] = ⊥ then /* invoke BC objects concurrently */
33 for each 𝑘 ∈ {0,… , 𝑛−1} ∶ 𝐵𝐶[𝑘] = ⊥ do 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾(𝑘, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘]≠ ⊥)

34 upon PROPOSAL(vJ) 𝗎𝗋𝖻𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖾𝖽 from 𝑝𝑗 begin

35 if vJ ≠ ⊥ then

36 if 𝑂 ≠ ⊥ ∧𝑂.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑗] = ⊥ then 𝑂.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑗] ← vJ;

37 else if 𝑂 = ⊥ then

38 𝑂.(𝑣, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠, 𝐵𝐶, txDes) ← (vJ, [⊥, … , ⊥], [⊥, … , ⊥], ⊥);
39 𝑂.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑗] ← vJ;

5.2.1. The 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) operation and variables

The operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) activates a multivalued object by initializing its fields (line 20). These are the proposed value, 𝑣, the 
array, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[], of received proposals, where 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑗] stores the value received from 𝑝𝑗 ∈  . Moreover, 𝐵𝐶[] is the array of 
binary consensus objects, where the active object 𝐵𝐶[𝑗] determines whether the value in 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑗] should be the decided value. 
Also, txDes is the transmission descriptor (initialized with ⊥),4 and 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 is a boolean that indicates that at least one transmission 
has completed, which is initialized with 𝖥𝖺𝗅𝗌𝖾. Note that only 𝑣 has its (immutable) value initialized in line 20 to its final value. The 
other fields are initialized to ⊥ or an array of ⊥ values; their values can be changed later on.

5.2.2. The 𝗋𝖾𝗌𝗎𝗅𝗍() operation

Algorithm 2 allows retrieving the decided value via 𝗋𝖾𝗌𝗎𝗅𝗍() (line 21). As in Algorithm 1, the array of 𝑛 binary consensus objects 
encodes the proposal that will be used as the returned value by the multivalued consensus object. Specifically, the index of the entry in 
the array in which the first object decides True is the index of the proposal that should be used. As long as the multivalued consensus 
9
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object is not active (line 22), or there is no decision yet regarding the value of the multivalued consensus object (line 24), the operation 
returns ⊥. As explained in Section 5.1.3, Algorithm 2 might enter an error state. In this case, 𝗋𝖾𝗌𝗎𝗅𝗍() returns Ψ (lines 23 and 25). The 
only case left (the else clause of line 25) is when there is a binary consensus object 𝑂.𝐵𝐶[𝑘] and a matching 𝑂.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘] ≠ ⊥, 
where 𝑘 = 𝗄(). Here, due to the definition of 𝗄() (line 19), for any 𝑘′ ∈ {0, … , 𝑘-1} the decided value of 𝑂.𝐵𝐶[𝑘′] is 𝖥𝖺𝗅𝗌𝖾 and 𝑂.𝐵𝐶[𝑘]
decides 𝖳𝗋𝗎𝖾 since the if-statement condition in line 24 must be false whenever line 25 is reached. Thus, 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() returns the value of 
𝑂.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘].

5.2.3. The do-forever loop

As explained above, Algorithm 2 has to make sure that the proposed value, 𝑣, arrives at all processors and records in 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 the 
fact that at least once transmission has arrived. To that end, the if-statement in lines 27 to 29 lets 𝑝𝑖 test the predicate (txDes ≠ ⊥ ∧
𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(txDes)) and make sure that the transmission descriptor, txDes, refers to an active broadcast, i.e., txDes stores a descriptor 
that has not terminated (cf. 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽()’s definition in Section 2.1.2). In detail, whenever 𝑥.txDes ≠ ⊥ holds, 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽𝑖(txDes)
holds eventually (URB-termination). Thus, the if-statement condition in line 27 holds eventually and 𝑝𝑖 URB-broadcasts PROPOSAL(𝑣)
(line 29) after checking that 𝑣 ≠ ⊥ (line 27). Note that 𝑝𝑖 records the fact that at least one transmission was completed by assigning 
𝖳𝗋𝗎𝖾 to 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 (line 28).

Upon the URB-delivery of 𝑝𝑖 ’s PROPOSAL(vJ) at 𝑝𝑗 ∈  , processor 𝑝𝑗 considers the following two cases. If 𝑂 is an active object, 
𝑝𝑗 merely checks whether 𝑂.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑖] needs to be updated with vJ (line 36). Otherwise, 𝑂 is initialized with vJ as the proposed 
value (line 39), similar to line 20.

Returning to the sender side, Algorithm 2 uses either lines 30 to 31, which sequentially access the array, 𝐵𝐶[], of binary consensus 
objects, or lines 32 to 33, which simply access all binary consensus objects concurrently. In both methods, processor 𝑝𝑖 makes sure 
that at least one broadcast was completed, i.e., 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 = 𝖳𝗋𝗎𝖾 (lines 28, 30, and 32). When following the sequential method (lines 30

to 31), the aim is to invoke binary consensus by calling 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾(𝑘+1, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘+1] ≠ ⊥) (line 31), where 𝑘 = 𝗄𝑖(). This can only 
happen when the (𝑘+1)-th object in 𝐵𝐶[] is not active, i.e., 𝐵𝐶[𝑘+1] = ⊥ and 𝐵𝐶[𝑘+1] is either the first in 𝐵𝐶[], i.e., 𝑘 = -1 or 
𝐵𝐶[𝑘] has terminated, i.e., 𝐵𝐶[𝑘].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘) ≠ ⊥ (line 30).

The advantage of the sequential access method over the concurrent one is that it is more conservative with respect to the number 
of consensus objects being used since once the decision is 𝖳𝗋𝗎𝖾, there is no need to use more objects. The concurrent access method, 
marked in the boxed lines, encourages piggybacking of the messages related to binary concurrent objects. This is most relevant when 
every message (of binary consensus) can carry the data-loads of 𝑛 proposals. In this case, the concurrent access method is more 
straightforward and potentially faster than the sequential one.

6. Correctness of Algorithm 2

Theorems 6.1 and 6.6 show that Algorithm 2 implements a self-stabilizing multivalued consensus. Definition 6.1 is used by 
Theorem 6.1. As explained in Section 2.3, for the sake of a simple presentation, we make the following assumptions. Let 𝑅 be an 
Algorithm 2’s execution, 𝑝𝑖 ∈  , and 𝑂𝑖 a multivalued consensus object.

Definition 6.1 (Consistent multivalued consensus object). Let 𝑅 be an Algorithm 2’s execution and 𝑂𝑖 a multivalued consensus object, 
where 𝑝𝑖 ∈  . Suppose in system state 𝑐 ∈ 𝑅, either (i) 𝑂𝑖 = ⊥ is inactive or that (ii) 𝑂𝑖 ≠ ⊥ is active, 𝑂𝑖.𝑣 ≠ ⊥ ∧ (𝑘 < 𝑛 − 1) ∧
((𝐵𝐶[𝑘+1] = ⊥ ∨𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘+1) = ⊥ ∨ (𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘+1) = 𝖳𝗋𝗎𝖾 ∧𝑂𝑖.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘+1] ≠ ⊥))), where 𝑘 = 𝗄𝑖(). In either case, 
we say that 𝑂𝑖 is consistent in 𝑐.

Theorem 6.1 shows recovery from transient faults.

Theorem 6.1 (Convergence). Let 𝑅 be an Algorithm 2’s execution. Suppose that there exists a correct processor 𝑝𝑗 ∈  ∶ 𝑗 ∈ Correct, such that 
throughout 𝑅 it holds that 𝑂𝑗 ≠ ⊥ is an active multivalued consensus object. Moreover, suppose that any correct processor 𝑝𝑖 ∈  ∶ 𝑖 ∈ Correct
calls 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() infinitely often in 𝑅. Within 𝑛 invocations of binary consensus, (i) the system reaches a state 𝑐 ∈ 𝑅 after which 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥

holds. Specifically, (ii) 𝑂𝑖 is either consistent (Definition of 6.1) or eventually reports the occurrence of a transient fault, i.e., 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() =Ψ.

Proof of Theorem 6.1. Lemmas 6.2 and 6.5 imply the proof.

Lemma 6.2. Invariant (i) holds, i.e., 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥ holds in 𝑐.

Proof of Lemma 6.2. Suppose, towards a contradiction, that 𝑐 does not exist. Specifically, let 𝑅′ be the longest prefix of 𝑅 that in-

cludes no more than 𝑛 invocations of binary consensus. The proof of Invariant (i) needs to show that the system reaches a contradiction 
by showing that 𝑐 ∈ 𝑅′. To that end, arguments (1) to (3), as well as Claims 6.3 to 6.4, show the needed contradiction.

Argument (1) implies that it is enough to show that the if-statement in line 24 cannot hold eventually.

Argument (1) The if-statement conditions in lines 22, 23, and 25 do not hold for 𝑝𝑗 throughout 𝑅. By the theorem assumption that 
𝑂𝑗 ≠ ⊥ is an active multivalued consensus object throughout 𝑅, we know that the if-statement condition in line 22 cannot hold. 
Moreover, by the assumption that 𝑐 does not exist, we know that the if-statement conditions in lines 23 and 25 do not hold for any 
10

(correct) 𝑝𝑖 throughout 𝑅.
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Argument (2) The invariant 𝑂𝑗.𝑣 ≠ ⊥ holds throughout 𝑅. Since the if-statement condition in line 23 does not hold, 𝑂𝑗.𝑣 ≠ ⊥ holds 
in 𝑅’s starting system state. Moreover, only lines 20, 36, and 39 change the value of 𝑂𝑗.𝑣 but this happens only after testing that the 
assigned value is not ⊥ (lines 20 and 35).

Argument (3) 𝑅 has a suffix in which all correct processors 𝑝𝑖 ∈  are active. Since 𝑝𝑗 is active and 𝑂𝑗.𝑣 ≠ ⊥ holds throughout 
𝑅, the if-statement condition in line 27 holds eventually since either txDes = ⊥ or 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(txDes) holds eventually due to the 
URB-termination property. By line 29, 𝑝𝑗 broadcasts the ⟨𝑣⟩ message to all correct processors 𝑝𝑖. By the URB-termination property, 
𝑝𝑖 receives ⟨𝑣⟩ and by lines 36 to 39, processor 𝑝𝑖 is active.

Argument (4) ∀𝑖, 𝑗 ∈ Correct ∶ 𝑂𝑖.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑗] ≠ ⊥ ∧ 𝑂𝑖.txDes ≠ ⊥ ∧ 𝑂𝑖.𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 = 𝖳𝗋𝗎𝖾 holds eventually. By URB-termination, 
𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(𝑂𝑖.txDes) holds eventually. Once that happens, the if-statement condition in line 27 holds (due to arguments (2) and 
(3)) and 𝑂𝑖.txDes = ⊥ cannot hold (line 29). By Argument (2), 𝑂𝑖.𝑣 ≠ ⊥. Thus, 𝑝𝑖 eventually URB-broadcasts PROPOSAL(𝑂𝑖.𝑣). 
Once 𝑝𝑖 self-delivers this message, line 36 assigns 𝑣 to 𝑂𝑖.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑖] due to the assumption that 𝑂𝑖 ≠ ⊥ throughout 𝑅. We can 
now repeat the reasoning that 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(𝑂𝑖.txDes) holds eventually and thus the if-statement condition in line 27 holds. Thus, 
𝑂𝑖.𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 = 𝖥𝖺𝗅𝗌𝖾 does not hold eventually (line 28). By Argument (3), the same holds for 𝑝𝑗 . Specifically, 𝑝𝑗 eventually URB-

broadcasts PROPOSAL(𝑂𝑗.𝑣). Once 𝑝𝑖 URB-delivers this message from 𝑝𝑗 , 𝑝𝑖’s state can possibly change, even in the case that 𝑂𝑖 ≠ ⊥, 
cf. lines 36 and 39.

Claim 6.3. The if-statement condition in lines 30 and 32 can only hold at most 𝑛 times for any 𝑝𝑖 ∈  ∶ 𝑖 ∈ Correct.

Proof of Claim 6.3. The if-statement condition in line 32 can only hold at most once due to line 33. Thus, the rest of the proof 
focuses on the if-statement in lines 30 to 31.

By the proof of Argument (4), eventually, the system reaches a state, 𝑐′ ∈ 𝑅, in which 𝑂𝑖.txDes ≠ ⊥ ∧ 𝑂𝑖.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑗] ≠ ⊥ ∧
𝑂𝑖.𝑜𝑛𝑒𝑇 𝑒𝑟𝑚 = 𝖳𝗋𝗎𝖾 holds. Note that the if-statement condition in line 30 holds whenever 𝑘 = −1. Arguments (5) and (6) assume that 
𝑘 > −1 and consider the cases in which 𝑂𝑖.𝐵𝐶[𝑘+1] ≠ ⊥ holds and does not hold, respectively, where 𝑘 = 𝗄(). Argument (7) shows 
that the if-statement condition in line 30 can hold at most 𝑛 times.

Argument (5) Suppose that 𝑘 > −1 ∧𝑂𝑖.𝐵𝐶[𝑘+1] ≠ ⊥ holds. Eventually, either 𝑘𝑖() < 𝑛−1 does not hold or the if-statement condition 
in line 30 holds. 𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘+1) ≠ ⊥ holds eventually due to the termination property of binary consensus objects.

In case 𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘+1) = 𝖳𝗋𝗎𝖾, we know that 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥ holds due to the definition of 𝗄() (line 19). However, this implies 
a contradiction with the assumption made at the start of this lemma’s proof.

In case 𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘+1) = 𝖥𝖺𝗅𝗌𝖾 holds, the if-statement condition in line 30 holds in 𝑐′ if 𝑘+1 < 𝑛-1 and 𝑂𝑖.𝐵𝐶[𝑘+1] = ⊥. In 
case the former predicate holds and the latter does not, we can repeat the reasoning above for at most 𝑛 times until either the former 
does not hold or both predicates hold. In either case, the proof of the argument is done.

Argument (6) Suppose that 𝑘 > −1 ∧𝑂𝑖.𝐵𝐶[𝑘+1] = ⊥ holds. Eventually, either 𝑘𝑖() < 𝑛−1 does not hold or the if-statement condition 
in line 30 holds. The if-statement condition in line 30 holds if 𝐵𝐶[𝑘].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘) ≠ ⊥ holds. Since 𝑘 > −1, the reasoning in the proof of 
Argument (5), which shows that 𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘+1) ≠ ⊥ holds, can be used for showing that 𝐵𝐶[𝑘].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘) ≠ ⊥ holds eventually.

Argument (7) Within 𝑛 invocations of 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾𝑖(), the if-statement condition in line 30 does not hold. Suppose that the if-statement 
condition in line 30 holds. In line 31, 𝑝𝑖 invokes the operation 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾𝑖(𝑘+1, 𝑂𝑖.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘+1] ≠ ⊥) of the (𝑘+1)-th binary 
consensus object. This invocation changes 𝑝𝑖 ’s state, such that 𝑂𝑖.𝐵𝐶[𝑘+1] = ⊥ does not hold any longer (because the 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾𝑖()
operation initializes the state of 𝑂𝑖.𝐵𝐶[𝑘+1]). Since 𝐵𝐶[] has 𝑛 entries, there could be at most 𝑛 such invocations until the system 
reaches 𝑐′′ ∈ 𝑅, after which the if-statement condition in line 30 cannot hold. □

Claim 6.4. Once the if-statement condition in line 30 (or 32) does not hold, also the if-statement condition in line 24 does not hold.

Proof of Claim 6.4. Since if-statement condition in line 30 does not hold, we know that 𝐵𝐶𝑖[𝑘 +1] = ⊥ does not hold, see Argument 
(5) of Claim 6.3. In the case of line 32, the same holds in a straightforward manner. By BC-termination, 𝐵𝐶[𝑘 + 1].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑘 + 1) ≠ ⊥

holds eventually. Since ∀𝑝𝑥 ∈  ∶ 𝑂𝑖.𝐵𝐶[𝑥] ≠ ⊥ ∧𝐵𝐶[𝑥].𝗋𝖾𝗌𝗎𝗅𝗍𝑖(𝑥) = 𝖥𝖺𝗅𝗌𝖾 implies a contradiction with Argument (1), we know that 
𝐵𝐶𝑖[𝑘 + 1].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘 + 1) ≠ 𝖳𝗋𝗎𝖾 cannot hold. □

Lemma 6.5. Invariant (ii) holds, i.e., 𝑂𝑖 is either consistent or 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() =Ψ.

Proof of Lemma 6.5. Recall that the theorem assumes that 𝑂𝑖 is an active object throughout 𝑅. The argument is implied by Defini-

tion 6.1 and lines 22 to 25.

In detail, line 22 handles the case in which 𝑂𝑖 = ⊥. Suppose that 𝑂𝑖 ≠ ⊥ is active, which indicates that an inconsistency was 
detected. Line 23 handles the case in which 𝑂𝑖.𝑣 ≠ ⊥ ∧ 𝑘 < 𝑛−1 does not hold by returning Ψ, where 𝑘 = 𝗄𝑖(), which indicates that 
an inconsistency was detected. Line 24 allows the case in which 𝐵𝐶[𝑘+1] = ⊥ ∨ 𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘+1) = ⊥ (note that the case of 
𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘+1) = 𝖥𝖺𝗅𝗌𝖾 does not exist due to the definition of 𝗄() in line 19). This case is allowed since it is consistent, see 
Definition 6.1. Line 25 handles the case in which (𝐵𝐶[𝑘+1].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘+1) = 𝖳𝗋𝗎𝖾 ∧𝑂𝑖.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘+1] ≠ ⊥) does not hold by returning 
Ψ, which indicates that an inconsistency was detected. □
11

Theorem 6.6 demonstrates the Closure property and uses the term authentic executions (Definition 6.2).
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Definition 6.2 (Complete execution with respect to 𝗉𝗋𝗈𝗉𝗈𝗌𝖾() invocations). Let 𝑅 be an execution of Algorithm 2 that starts in 𝑐 ∈ 𝑅. We 
say that 𝑐 is completely free of 𝖯𝖱𝖮𝖯𝖮𝖲𝖠𝖫(−) messages if (i) the communication channels do not include 𝖯𝖱𝖮𝖯𝖮𝖲𝖠𝖫(−) messages, 
and (ii) for any non-failing 𝑝𝑖 ∈  , there is no active multivalued consensus object 𝑂𝑖 = ⊥ in 𝑐.

Let 𝑐𝑠 ∈ 𝑅 be the system state that is: (a) completely free of 𝖯𝖱𝖮𝖯𝖮𝖲𝖠𝖫(−), and (b) it appears in 𝑅 immediately before a step 
that includes 𝑝𝑖 ’s invocation of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(−) (lines 20) in which 𝑂𝑖 becomes active (rather than due to the arrival of a 𝖯𝖱𝖮𝖯𝖮𝖲𝖠𝖫(−)
message in lines 35 to 39). In this case, we say that 𝑝𝑖 ’s invocation is authentic. Suppose that 𝑝𝑖 sends a 𝖯𝖱𝖮𝖯𝖮𝖲𝖠𝖫(−) message after 
𝑐𝑠. In this case, we say that 𝖯𝖱𝖮𝖯𝖮𝖲𝖠𝖫(−) is an authentic message transmission.

An arrival of 𝖯𝖱𝖮𝖯𝖮𝖲𝖠𝖫(−) to 𝑝𝑗 ∈  (lines 20) is said to be authentic if it is due to an authentic message transmission. Suppose 
that 𝑝𝑗 actives 𝑂𝑗 = 𝐶𝑆𝑗 [𝑠] (line 39) due to an authentic arrival (rather than an invocation of the 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(−) operation). In this 
case, we also say that 𝑝𝑗 ’s invocation is authentic. We complete the definitions of authentic transmissions, arrivals, and invocations by 
applying the transitive closures of them.

Suppose that any invocation in 𝑅 of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑘(−) ∶ 𝑝𝑘 ∈  is authentic as well as the transmission and reception of 𝖯𝖱𝖮𝖯𝖮𝖲𝖠𝖫(−)
messages from or to 𝑝𝑘. In this case, we say that 𝑅 is an authentic execution.

Theorem 6.6 shows that Algorithm 2 satisfies the task requirements (Section 2.2).

Theorem 6.6 (Closure). Let 𝑅 be an authentic execution of Algorithm 2. The system demonstrates in 𝑅 the construction of a multivalued 
consensus object.

Proof of Theorem 6.6. Validity holds since only the user input is stored in the field 𝑣 (line 20), which is then URB-broadcast (line 29), 
stored in the relevant entry of 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 (lines 36 to 39), and returned as the decided value (line 25). Moreover, any value in 𝑣 can 
be traced back to an invocation of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) since 𝑅 is authentic.

Lemma 6.7 demonstrates termination and agreement.

Lemma 6.7. Let 𝑎𝑖 ∈ 𝑅 be the first step in 𝑅 that includes an invocation, say, by 𝑝𝑖 ∈  of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑖(𝑣𝑖). Suppose that 𝑣𝑖 ≠ ⊥ holds in any 
system state of 𝑅. There exists 𝑣 ∉ {⊥, Ψ}, such that for every correct 𝑝𝑗 ∈  it holds that 𝗋𝖾𝗌𝗎𝗅𝗍𝑗 () returns 𝑣 within 𝑛 invocations of binary 
consensus.

Proof of Lemma 6.7. Arguments (1) to (7) imply the proof.

Argument (1) 𝑂𝑖.(𝑣, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠, 𝐵𝐶, txDes, 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚) = (𝑣, [⊥, … , ⊥], [⊥, … , ⊥], ⊥, 𝖥𝖺𝗅𝗌𝖾) holds immediately after 𝑎𝑖. We show that the 
if-statement condition in line 20 holds immediately before 𝑎𝑖. Recall the theorem assumption that 𝑣𝑖 ≠ ⊥ holds in 𝑅. By the assumption 
that 𝑅 is authentic, we know that 𝑂𝑖 = ⊥ holds immediately before 𝑎𝑖. Therefore, 𝑝𝑖 assigns (𝑣𝑖, [⊥, … , ⊥], [⊥, … , ⊥], ⊥, 𝖥𝖺𝗅𝗌𝖾) to 
𝑂𝑖.(𝑣𝑖, 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠𝑖, 𝐵𝐶𝑖, txDes𝑖, 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚𝑖) (line 20).

Argument (2) Eventually PROPOSAL(𝑣𝑖) messages are URB broadcast and 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚𝑖 holds. The proof has to consider the case in 
which 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(𝑂𝑖.txDes) holds in the starting system state due to a transient fault rather than an actual broadcast during the 
system execution. By URB-termination, 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(𝑂𝑖.txDes) does not hold eventually. Since 𝑂𝑖.𝑣 ≠ ⊥ (by the lemma assumption), 
the if-statement condition in line 27 holds and 𝑝𝑖 URB-broadcasts PROPOSAL(𝑂𝑖.𝑣). By applying again the same argument, the 
assignment in line 28 makes sure that 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚𝑖 = 𝖳𝗋𝗎𝖾.

Argument (3) For any 𝑝𝑥 ∈  ∶ 𝑥 ∈ Correct, eventually 𝑂𝑥.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑖] ≠ ⊥ and 𝑂𝑥.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑥] ≠ ⊥ hold. By URB-termination, 
every correct processor, 𝑝𝑥, eventually URB-delivers Argument (2)’s PROPOSAL(𝑣𝑖) message. By the assumption that 𝑣𝑖 ≠ ⊥ holds in 
any system state of 𝑅, the if-statement condition in line 35 holds (even if 𝑝𝑥 has invoked 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑥(𝑣𝑥) before this URB delivery).

In case there was no earlier invocation of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑥(𝑣𝑥), the assignment 𝑂𝑥.𝑣 ← 𝑣𝑖 occurs due to line 39 (otherwise, a similar 
assignment occurs due to line 36). Moreover, due to the reasons that cause 𝑝𝑖 URB broadcasts in Argument (2), also 𝑝𝑥 URB broadcasts 
PROPOSAL(𝑣′ ≠ ⊥) messages. Upon the URB delivery of 𝑝𝑥 message to itself, the 𝑂𝑥.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑥] ← 𝑣′ ≠ ⊥ assignment occurs 
(line 36). (Note that this time, the if-statement condition in line 36 must hold since 𝑂𝑥 ≠ ⊥.)

Argument (4) The if-statement condition in lines 30 and 32 hold eventually. Since 𝑜𝑛𝑒𝑇 𝑒𝑟𝑚𝑖 holds eventually (Argument (2)), the 
if-statement condition in line 32 holds eventually. Also, the fact that 𝑂𝑥.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑥] ≠ ⊥ (Argument (3)) and URB-termination imply 
that eventually, in 𝑝𝑥 ’s do-forever loop, the if-statement condition in line 30 holds. In detail, since 𝑅 is an authentic execution, 
𝑘 = -1 ∧𝐵𝐶[𝑘+1] = ⊥ holds in 𝑅’s second state, where 𝑘 = 𝑘𝑥().

Let 𝑆(𝑧) = {0, … , 𝑧}. The proof of Argument (5) shows ∃𝑦 ∈ 𝑆(𝑛-1), ∀𝑥 ∈ Correct, 𝑝𝑥 invokes 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾𝑥() at most 𝑦 times and it 
observes that 𝑂𝑥.𝐵𝐶[𝑘] ≠ ⊥ ∶ 𝑘 ∈ 𝑆(𝑦-1).

Argument (5) The Termination property holds. By line 33, the if-statement condition in line 32 can hold at most once. The if-
statement condition in line 30 cannot hold for more than 𝑛 times due to the (𝑘 < 𝑛-1) clause. Thus, the termination property is 
implied.

Let 𝑟(𝑗) = [𝑥(0), … , 𝑥(𝑛-1)], such that 𝑥(𝑘) = ⊥ if 𝐵𝐶𝑗 [𝑘] = ⊥. Otherwise, 𝑥(𝑘) = 𝐵𝐶𝑗 [𝑘].𝗋𝖾𝗌𝗎𝗅𝗍(𝑘). Moreover, let 𝑆 = {[⊥, … , ⊥],
[𝖥𝖺𝗅𝗌𝖾, … , 𝖥𝖺𝗅𝗌𝖾, ⊥, … , ⊥], [𝖥𝖺𝗅𝗌𝖾, …, 𝖥𝖺𝗅𝗌𝖾, 𝖳𝗋𝗎𝖾, ⊥, … , ⊥], [𝖥𝖺𝗅𝗌𝖾, … , 𝖥𝖺𝗅𝗌𝖾, 𝖳𝗋𝗎𝖾]}. For the case of using lines 30 to 31, the proof of 
Argument (6) shows ∀𝑝𝑗 ∈  ∶ 𝑟(𝑗) ∈ 𝑆 , i.e., sequential invocation of 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾().

Argument (6) For the case of using lines 30 to 31, 𝑟(𝑗) ∈ 𝑆 holds. Due to lines 19 and 30 as well as the agreement property of binary 
consensus objects and the fact that 𝑅 is authentic, we know that eventually, all non-failing nodes must observe the same results from 
12

their consensus objects. Specifically for the case of lines 30 to 31, it holds that | ⋃𝑗∈𝐶𝑜𝑟𝑟𝑒𝑐𝑡{𝑟(𝑗)}| = 1. Also, at any time, 𝑟(𝑗) can only 
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include a finite number (perhaps empty but with no more than 𝑛-1) of 𝖥𝖺𝗅𝗌𝖾 values that are followed by at most one 𝖳𝗋𝗎𝖾 value and 
the only ⊥-values (if space is left), i.e., 𝑟(𝑗) ∈ 𝑆 .

Argument (7) The Agreement property holds. Since there is no system node 𝑝𝑗 ∈  invoking 𝖻𝗂𝗇𝖯𝗋𝗈𝗉𝗈𝗌𝖾𝑗 (𝑘𝑗+1, 𝑂𝑥.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘𝑗+1] ≠
⊥) (lines 30 and 32), before it had assured the safe URB delivery of 𝑂𝑥.txDes’s transmission, we know that eventually, at least one 
element of 𝑟(𝑗) is 𝖳𝗋𝗎𝖾. Thus, by the agreement property of binary consensus, every 𝑝𝑥 eventually calculates the same value of 𝑘𝑗 (), 
such that 𝐵𝐶[𝑘𝑗 ()].𝗋𝖾𝗌𝗎𝗅𝗍𝑥(𝑘𝑗 () + 1) = 𝖳𝗋𝗎𝖾. This implies the agreement property since 𝗋𝖾𝗌𝗎𝗅𝗍𝑥() returns 𝑂𝑥.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠[𝑘𝑗 ()+1] for any 
non-failing 𝑝𝑥 ∈  (line 25). □

Lemma 6.8 demonstrates the property of integrity.

Lemma 6.8. Suppose that ∃𝑣′ ∉ {⊥, Ψ} ∶ ∃𝑝𝑗 ∈  ∶ ∃𝑐′ ∈ 𝑅 ∶ 𝗋𝖾𝗌𝗎𝗅𝗍𝑗 () = 𝑣′ in 𝑐′. ∄𝑐′′ ∈ 𝑅 ∶ 𝗋𝖾𝗌𝗎𝗅𝗍𝑗 () = 𝑣′′ in 𝑐′′, such that 𝑣′ ≠ 𝑣′′.

Proof of Lemma 6.8. The proof is by contradiction. Suppose that 𝑐′′ ∈ 𝑅 exists and, without the loss of generality, 𝑐′ appears before 
𝑐′′ in 𝑅. Since 𝑅 is authentic and 𝑐′ ∈ 𝑅 exists. Then, there is a 𝑝𝑘 ∈  ∶ 𝑘 ∈ 𝑆(𝑛-1), such that for any 𝑝𝑗 ∈  , there is a system 
state 𝑐′

𝑗
that appears in 𝑅 not after 𝑐′ in which for any 𝑘′ ∈ 𝑆(𝑛-1) it holds that 𝐵𝐶[𝑘′].𝗋𝖾𝗌𝗎𝗅𝗍𝑗 (𝑘′) = 𝖥𝖺𝗅𝗌𝖾 for the case of 𝑘′ < 𝑘 and 

𝐵𝐶[𝑘].𝗋𝖾𝗌𝗎𝗅𝗍𝑗 (𝑘′) = 𝖳𝗋𝗎𝖾 for the case of 𝑘′ = 𝑘. This is due to the definition of 𝗄() (line 19). Note that in any system state that follows 
𝑐′
𝑗
, the value of 𝑘 = 𝗄𝑗 () does not change due to the integrity of binary consensus objects. Therefore, 𝗋𝖾𝗌𝗎𝗅𝗍𝑗 () must return the value of 

𝑂𝑗.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙[𝑘] in any system state that follows 𝑐′
𝑗
. Since line 36 does not allow any change in the value of 𝑂𝑗.𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙[𝑘] between 

𝑐′ and 𝑐′′, it holds that 𝑣′ = 𝑣′′. Thus, the proof reached a contradiction, and the lemma is true. □

7. Conclusions

We have demonstrated how a non-self-stabilizing algorithm for multivalued consensus, proposed by Mostéfaoui, Raynal, and 
Tronel [12], can be transformed into a self-stabilizing one that efficiently recovers from transient faults. Notably, our solution incurs 
only a bounded number of binary consensus invocations, distinguishing it from earlier approaches that either utilize an unbounded 
number of binary consensus objects [12] or rely on blocking mechanisms [13]. As a result, our proposed transformation method offers 
a more appealing and practical solution than the previously studied algorithm, regardless of the presence or absence of transient 
faults. As applications, we have found our self-stabilizing total-order message delivery and self-stabilizing emulator for state-machine 
replication [2] to benefit significantly from our solution as well as the proposed transformation method. We encourage researchers 
and practitioners to adopt our approaches when designing distributed systems that require efficient recovery from transient faults.
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