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Safety Margin for Li-Plating-Free Fast-Charging of Li-Ion Batteries
Considering Parameter Uncertainty

Yao Cai, Yang Li, and Torsten Wik

requested output tracking problems in lithium-ion batteries.

The above-mentioned model-based algorithms usually
require the model parameters to be well-identified to achieve
high control accuracy. One of the most accurate models is
the electrochemical pseudo-two-dimensional (P2D) model,
which is a complex, high-dimensional, nonlinear partial
algebraic-differential equation system [8]. The P2D model
is built from the underlying physical understanding of the
reaction, diffusion, and migration phenomena that take
place inside the batteries, making it possible to predict the
internal behaviors, e.g., degradation, of the batteries during
charging and discharging. However, since the P2D model
consists of around a hundred parameters in a series of
coupled partial differential equations, it is inconvenient to
use in practice for online battery management. To reduce the
complexity of the electrochemical model without losing the
ability to predict aging behaviors, the single particle model
(SPM) was introduced, which assumes only one particle
in each electrode and no electrolyte dynamics [9]. With
the simplified model structure, the number of parameters
needed to be identified is significantly reduced. However,
when using the SPM for battery fast charging design, a
major challenge is that the uncertainty in the identified
parameters can have considerable influence on the efficacy
of the designed charging control scheme [10]. An analysis
of a simple electrochemical model with inevitable inaccurate
parameters for reliable fast charging control design has not
been previously reported.

In this paper, we investigate this problem by designing
an inversion-based charging control algorithm for battery
charging, which takes into account the parameter bias of
the SPM. With this method, the unwanted lithium-plating
caused by inaccurate model parameters can be completely
avoided, providing the error bounds of the parameters hold.
In Section II, we present a reduced SPM with grouped model
parameters. In Section III, the details of the SPM-inversion-
based output tracking control method are introduced. In
Section IV, the safety margin to prevent lithium-plating from
occurring is calculated. The results of the proposed SPM-
inversion-based control with and without the safety margin
are shown, along with a sensitivity analysis of the grouped
parameters. Conclusions are given in Section VI.
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Abstract— The widespread adoption of electric vehicles has 
led to increasing concerns about range anxiety. Fast charging 
of the lithium-ion battery is an important part of addressing 
this problem. However, a higher charging rate also tends 
to cause more rapid degradation and shorter battery life. 
Therefore, how to charge as fast as possible while not leading 
to excessive aging has become an important research topic. 
This paper introduces a single particle model-based inversion-
based fast charging method with a calculated safety margin. 
The inversion-based fast-charging method relies a lot on the 
accuracy of the model parameters that cannot be identified 
precisely due to inevitable differences between the model and 
the plant. Provided with the range of parameter uncertainty, 
a theoretical Li-plating safety margin is calculated with which 
lithium-plating can be completely avoided. Simulation results 
demonstrate the effectiveness of the proposed algorithm.

I. INTRODUCTION

Electric vehicles (EVs) play an important role in the 
increasing demand for sustainable transportation. On the 
road to fully displacing fossil-fuelled vehicles, one of the 
main difficulties t o c onquer i s s peeding u p t he charging 
process of EV batteries. Charging at excessively high rates
is a major cause of accelerated battery degradation, due to 
the occurrence of lithium-plating and growth of the solid 
electrolyte interface layers. With the battery’s state of health 
worsened, not only the capacity of the battery is lost, but 
there is also an increasing risk of safety problems such 
as internal short circuits and thermal runaways [1]. This
can especially happen if a fixed, e mpirical f ast charging 
protocol is applied, such as constant-current constant-voltage 
(CCCV) and constant-power CV (CP-CV) methods [2], 
during which the internal information is unknown. To 
observe the dynamics of the battery while performing fast
charging, many electrochemical model-based closed-loop
charging strategies have been proposed [3]–[5], aiming to 
prevent violating health-related constraints and increase the
charging speed at the same time. However, the complexity 
of the electrochemical model limits its use because of high
computation demand, which is a main obstacle to using these 
strategies practically [6]. To avoid the high computational
load in the aforementioned optimization-based strategies,
a model inversion-based output tracking control method 
[7] has been proposed to derive analytical solutions to the
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II. SINGLE PARTICLE MODEL AND MODEL REDUCTION

A. Single Particle Model

The SPM is a simplified electrochemical model of lithium-
ion batteries. Assuming only one solid particle exists in each
electrode and no electrolyte dynamics are present, the system
order and the number of model parameters are both greatly
reduced. The SPM under investigation is given by
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ss
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where i ∈ {p, n} represents the positive and negative elec-
trodes. Here, (1) governs the diffusion of lithium species in
the particles according to the Fick’s law, where c̄p and c̄n are
the normalized lithium-ion concentration in the positive and
negative electrodes, and r̄p and r̄n represent the normalized
radial position of the two particles, respectively. Equation (2)
is the respective boundary conditions of (1), where I is the
current density. Equation (3) is the activation overpotential
in the electrode, calculated using the Butler-Volmer equation
for reaction kinetics, where R is the universal gas constant, F
is the Faraday constant, T is the battery temperature, and c̄ss

i

is the normalized concentration at the surface of the particle.
Equation (4) calculates the battery voltage, where Ui is the
open-circuit potential (OCP) of the electrode, which is a
nonlinear function of c̄ss

i . In (5), ηLiP is the lithium-plating
potential. If ηLiP drops below zero, this indicates that lithium-
plating has occurred in the negative electrode. Furthermore,
Grouped parameters are defined as [11]
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and the meaning of the symbols are given in the appendix.

B. Padé Approximation

To simplify the PDEs in the SPM, the Padé approximation
is applied [12], [13]. Instead of the concentration variables
concerning the position and the time inside the PDE, the
normalized surface concentration c̄ss

i , the normalized volume-
averaged concentration c̄avg

i , and a set of concentration devi-
ation terms are used to represent the normalized lithium-ion
concentration dynamics. Considering the 2nd-order Padé ap-
proximation with a normalized concentration in the negative

electrode, a reduced negative electrode model is
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Given the initial averaged concentration c̄avg
n (0) and as-

suming the initial c̄diff
n (0) = 0, (7)–(9) can be solved as
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The overpotential in the negative electrode is
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where θn3 = θ′n3.
A similar result can be derived for the positive electrode.

The new grouped parameters are
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III. SPM-INVERSION-BASED OUTPUT TRACKING
CONTROL METHOD

In general, the charging current needs to be as high as
possible to shorten the charging time. However, too large
current will cause lithium-plating, attributed to a negative
ηLiP. Therefore, in order to avoid Li-plating while fast
charging, ηLiP needs to be limited at a non-negative value,
i.e.,

ηLiP = Un(c̄
ss
n) + ηn = ηmin ≥ 0, (16)

where ηmin is the safety margin set for the lithium-plating
overpotential, which is a non-negative value. When ηLiP
falls below zero, this indicates that lithium deposition has
occurred. The purpose of the inversion-based output tracking
control method is to calculate the maximum instantaneous
input current that can satisfy (16).



Inserting (14) into (16), it can be derived that

I = sinh ((ηmin − Un(c̄
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Note that a constant current charging stage is usually
applied at the beginning of the charging process, and this
current limit is denoted as Ic. The calculated input current
in (17) will only be adopted when it is smaller than the limit
Ic, and thus the final applied input current, denoted by Iapp,
is

Iapp = min(|I|, |Ic|). (18)

Equation (18) gives the exact solution to achieve constant-
current constant-potential (CC-Cη) charging for the reduced
SPM. In practice, since true model states and parameters
are unknown, this current can only be calculated from the
estimated states and identified model parameters, i.e., Ûn, ˆ̄css

n

and θ̂n3. The process can be described in Fig. 1.

Fig. 1. Inversion-based control based on the identified model.

Fig. 1 shows that the parameters and states needed to cal-
culate the applied current are calculated from the identified
model. Due to the unavoidable parameter errors, a safety
margin must be introduced to avoid lithium-plating. Denote
η̂min as the applied limit in the inverse model and ηmin as
the limit set for the plant. When choosing η̂min = ηmin, the
applied current can only prevent the battery from lithium-
plating if the model is the same as the battery plant.

IV. CALCULATION OF SAFETY MARGIN

In the rest of the work, plant parameters are denoted by

[θp1, θp2, θp3, θn1, θn2, θn3]

and the corresponding estimated parameters by

[θ̂p1, θ̂p2, θ̂p3, θ̂n1, θ̂n2, θ̂n3]

The relationships between the true and estimated parame-
ters are expressed by

θik = (1 + qik)θ̂ik, (19)

where i ∈ {p, n}, k ∈ {1, 2, 3}. qik represents the normal-
ized difference between the corresponding true and estimated
parameter.

A. With Known Parameter Bias

We start our investigation assuming known parameter bias.
This calculation serves as theoretical analysis of the influence
of parameter errors on the charging performance, and it is a
base for the next step where the safety margin for a known
range of parameter bias can be calculated.

In the rest of the work, the superscript “ss” that represents
the surface concentration of the solid phase particle is
dropped for ease of notation.

For a battery model with a differentiable negative-
electrode OCP function, the estimated negative OCP is
expressed as

Ûn = Fn(ˆ̄cn)

Similarly, the plant’s OCP is

Un = Fn(c̄n).

We define
∆c̄n = ˆ̄cn − c̄n

It can then be derived that
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which shows that ∆c̄n is a function of qn1 and qn2.
Applying a first-order Taylor’s expansion, we have
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For the negative overpotential, the estimated and true
values are denoted as

η̂n = Yn(ˆ̄cn, θ̂n3)

ηn = Yn(c̄n, θn3).

Denote the partial derivatives of Yn(ˆ̄cn, θ̂n3) with respect
to ˆ̄cn and θ̂n3 as Y ′
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tively.
Also define

∆θn3 = θ̂n3 − θn3 = −qn3θ̂n3.

Once more, using a first-order Taylor’s expansion,
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Fig. 2. Inversion-based control with safety margin.

ηn = η̂n − Y ′
n,ˆ̄cn

(ˆ̄cn, θ̂n3)∆c̄n − Y ′
n,θ̂n3

(ˆ̄cn, θ̂n3)∆θn3

= η̂n +∆n2,
(26)

where

∆n2 = −Y ′
n,ˆ̄cn

(ˆ̄cn, θ̂n3)∆c̄n − Y ′
n,θ̂n3

(ˆ̄cn, θ̂n3)∆θn3. (27)

With ∆n2 and ∆n1, the next step is to find the relationship
between η̂LiP and ηLiP, we have

ηLiP = Un + ηn

= (Ûn +∆n1) + (η̂n +∆n2)

= η̂LiP +∆n1 +∆n2,

(28)

Now, let η̂LiP = η̂min and ηLiP = ηmin, which gives,

η̂min = ηmin −∆n1 −∆n2, (29)

Equation (29) suggests that in order to achieve lithium-
plating-free charging control, i.e., ηmin = 0, the safety
margin should be set to −(∆n1 +∆n2). The whole process
of calculating this safety margin is summarized in Fig.
2. Compared to Fig. 1, the difference is that parameter
biases exist in Fig. 2, and these biases are assumed to be
known. With this information, the required safety margin
for zero-lithium-plating charging, η̂min, can be calculated.
For the inversion-based charging control, the applied current
calculated based on η̂min will prevent the cell from triggering
lithium-plating. We summarize the control strategy in Fig. 2
as Algorithm 1.

B. With Known Parameter Bias Range

In practice, the parameter bias cannot be known precisely.
A most realistic situation is that the range of the bias is
available [11], [14]. In this case, the safety margin should
be selected so that no possible parameter bias combinations
of qn1, qn2, and qn3, will lead to lithium-plating during the
charging process.

As mentioned earlier, ∆c̄n is a function of qn1 and qn2.
Assuming −1 < qn1, qn2, qn3 < 1, the derivative of ∆c̄n
with respect to qn1 and qn2 can be derived as

∂∆c̄n
∂qn1

=
I(t)

5
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5
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(31)

Algorithm 1 Find the safety margin with known parameter
bias values

Input tol = 1× 10−9, ηmin = 0, θ̂i, q̂i, and Ic
Output η̂min and Iapp

1: Initialize η̂min = ηmin − 0.1;
2: for each iteration do
3: η̂pre

min = η̂min
4: for each time sample do
5: Calculate model-inversion-based current
6: Î = f(η̂min),
7: Iapp = max(|Ic|, |Î|)
8: end for
9: Calculate time-dependent η̂min(t) series by (24), (27),

and (29);
10: η̂min = max(η̂min(tinv : tend)), where tinv is the time

when Î starts to be effective;
11: if ∥η̂pre

min − η̂min∥∞ < tol then
12: break
13: end if
14: end for

The derivative of ∆n1 with respect to qn1 and qn2 can
thus be derived as

∂∆n1

∂qik
=

d∆n1

d∆c̄n

∂∆c̄n
∂qik

= −F ′
n(ˆ̄cn)

∂∆c̄n
∂qik

, ik ∈ {n1, n2}
(32)

The deviation of ∆n2 with respect to qn1, qn2, and qn3
can also be, and the results are derived, yielding:

∂∆n2

∂qik
=

∂∆n2

∂∆c̄n

∂∆c̄n
∂qik

= −Y ′
n,ˆ̄cn

(ˆ̄cn, θ̂n3)
∂∆c̄n
∂qik

, ik ∈ {n1, n2}
(33)

∂∆n2

∂qn3
=

∂∆n2

∂∆θn3

∂∆θn3
∂qn3

= Y ′
n,θ̂n3

(ˆ̄cn, θ̂n3)θ̂n3 (34)

Here, the functions F ′
n(ˆ̄cn), Y ′

n,ˆ̄cn
(ˆ̄cn, θ̂n3), and

Y ′
n,θ̂n3

(ˆ̄cn, θ̂n3) can be derived from the expressions

of Ûn and η̂n. Consequently, the derivatives of the safety
margin w.r.t. the parameter biases can be calculated. Hence,
the adjustment of the safety margins can be performed if
the range of the parameter is provided. This can help to find
out the maximum possible safety margin, which can prevent
lithium-plating for all the possible parameter variations
within the given range.

V. RESULTS AND DISCUSSION

Simulations were conducted to verify the proposed method
to determine the safety margin for battery charging control.
The battery parameters are for a cylindrical 21700 com-
mercial cell (LGM50) [15]. Furthermore, the range of the
parameter biases are limited to

qik ∈ [−0.1, 0.1], i ∈ {p, n}, k ∈ {1, 2, 3} (35)



A. Verification of the SPM-Inversion-Based Fast Charging
Method

Fig. 3 shows an example of the simulation result of the
SPM-inversion-based control. For demonstration purposes,
we select η̂min = 20 mV, upon which the control current
is calculated and shown. In this example, the true model
parameters are used in the controller design. It can be seen
that at the beginning of the simulation, the constant charging
rate 1.5C is applied while η̂LiP begins to decrease. When
η̂LiP drops to the preset η̂min, the applied current begins to
decrease since the inversion-based control is triggered at the
same moment. After that, it is shown that η̂LiP can follow
η̂min well by applying the calculated current.

0 500 1000 1500 2000 2500 3000

Time[s]

0
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0.1

0 500 1000 1500 2000 2500 3000

Time[s]

0.5

1

1.5

Fig. 3. η̂LiP and applied C-rate under SPM inversion-based control. Here
η̂lim ≡ η̂min.

B. Verification of the Calculated Safety Margin

When there is a parameters bias, if no safety margin is set
for the model, i.e., η̂min = 0 V, lithium-plating can happen in
the plant when performing the SPM-inversion-based control.
In Fig. 4, 1000 random simulations were tested. In each
simulation, again, 1.5C constant current was applied at the
beginning of the charging, and the control current calculated
from the inversion-based method is applied at the moment
when it drops below 1.5C. Parameter biases were generated
randomly within the predefined range, qik ∈ [−0.1, 0.1],
in each simulation. The simulation results show that some
parameter biases can lead to negative ηLiP, which indicates
that lithium-plating has occurred.

Next, we apply the proposed Algorithm 1 for 1000 random
simulations. In each simulation, a random parameter set
[qn1, qn2, qn3], qik ∈ [−0.1, 0.1], is assigned to the plant.
With (24), (27), and (29), a specific safety margin η̂min can
be calculated. Similarly, in the constant charging period, the
current is selected as 1.5C, and the control current calculated
under the new safety margin is derived and compared with
the constant current, the smaller one will be applied. In
each simulation, the parameter bias is known. With the
calculated safety margin, 1000 ηLiP curves from the plant

Fig. 4. ηLiP in 1000 simulations with η̂min = 0 V and random parameter
bias.

Fig. 5. ηLiP in 1000 simulations using Algorithm 1. Parameter bias is
known.

are illustrated in Fig. 5. Every line corresponds to a ran-
domly generated parameter set bias within the limit and a
specifically calculated safety margin. We plot the histogram
of the minimum value of ηLiP in all these simulations in
Fig. 6, from which it can be seen that all the deviations
are positive, meaning no lithium-plating occurs. This shows
that in all the 1000 cases Algorithm 1 works well. The
calculated maximum safety margin among all the simulations
is 0.0422 V. It approaches but remains below the calculated
theoretical value of 0.0431 V.

It should be noted that, in Fig. 4, the minimum value of
ηLiP is found to be −0.023 V in all these cases, but this
does not mean the safety margin needs to be set at 0.023 V
since changing the safety margin can affect the entire current
trajectory, possibly still causing lithium-plating. In order to
demonstrate this, we compare the results between the cases
with safety margin η̂min = 0.023 V and η̂min = 0.0431 V in
Figs. 7 and 8. In Fig. 7, the red dashed line is the safety



Fig. 6. Histogram of minimum value of ηLiP in Fig. 5.

Fig. 7. ηLiP in 1000 simulations with η̂min = 0.023 V and random
parameter bias.

margin η̂min = 0.023 V, and the black dashed line is zero. It
can be seen that there are many cases in which the lithium-
plating potential drops below zero. In contrast, in Fig. 8,
all the lines are above zero and the lowest points are close
to zero. This indicates that with the proposed method, it is
possible to achieve lithium-plating-free charging with a small
safety margin.

C. Sensitivity Analysis

From (30), it can be seen that qn2 is the coefficient of the
integration of the current, which means qn2 is the dominant
term that can affect the safety margin. A sensitivity analysis
is carried out on the safety margin, the mean abstract error
of the output voltage, and the maximum error of the output
voltage. The normalized results of the sensitivity analysis
on qn1, qn2, qn3, qp1, qp2, and qp3 are shown in Fig. 9. For
the safety margin, it is qn2 that dominates, whereas for the
voltage error, qp2 is much more sensitive to other parameters.

Fig. 8. ηLiP in 1000 simulations with η̂min = 0.0431 V and random
parameter bias.
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Fig. 9. Sensitivity analysis on qn1, qn2, qn3, qp1, qp2, and qp3 with
respect to different output.

VI. CONCLUSION

Several concluding remarks are given as follows. Firstly,
SPM inversion-based control may cause lithium-plating in
the Li-ion battery if no safety margin is set. To find a suitable
safety margin, only running Monte Carlo simulations to find
the minimum possible ηLiP does not work.

Algorithm 1 is developed to calculate the theoretical safety
margin. When the range of the parameter bias is known,
we can calculate the safety margin that works under all the
parameter biases. The Monte Carlo simulation result is also
given to verify the theoretical result.

Besides, the theoretical safety margin is verified by simu-
lations. The final results show that the safety margin is large
enough to prevent Li-plating in all the simulations while
small enough to be not wasted.

Finally, the sensitivity analysis shows that the safety
margin is most and much more sensitive to qn2 than to other
parameter biases while the voltage mean error and maximum



error are most sensitive to qp2. Therefore, in our future work,
the deviation of the terminal voltage can be considered in the
calculation of the safety margin. In addition, it can be seen
at the late stage of charging, the safety margin is higher than
needed, which implies that a hybrid fast-charging control
method can be developed for shorter charging time.

APPENDIX
ci: Solid-phase concentration [mol ·m−3]
c

avg
i : Volume-averaged solid-phase concentration [mol ·m−3]
cmax
i : Theoretical maximum solid-phase concentration [mol ·m−3]
css
i : Surface concentration of solid-particle [mol ·m−3]
cdiff
i : Concentration difference between c

avg
i and css

i [mol ·m−3]
ce: Electrolyte concentration [mol ·m−3]
Ri: Radius of the solid-phase particle [m]
Li: Thickness of the electrode [m]
Di: Solid-phase diffusion coefficient [m2 · s−1]
εi: Volume fraction of the solid phase [-]
ki: Reaction rate [A ·m2.5 ·mol−1.5]
Ui: Open-circuit potential of the electrode [V]
ηi: Activation overpotential for intercalation [V]
ηmin: Limit for the Li-plating overpotential [V]
Iapp: Applied current to the model and plant [A]
Ic: Constant charging stage current [A]
A: Electrode plate area [m2]
F : Faraday constant [s ·A ·mol−1]
T : Cell temperature [K]
R: Universal gas constant [J ·K−1 ·mol−1]
i = p: Positive electrode
i = n: Negative electrode
x̄: Normalized value of x
x̂: Estimated value of x̄
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[13] J. Basdevant, “The Padé approximation and its physical applications,”
Fortschritte der Physik, vol. 20, no. 5, pp. 283–331, 1972.

[14] E. Namor, D. Torregrossa, R. Cherkaoui, and M. Paolone, “Parameter
identification of a lithium-ion cell single-particle model through non-
invasive testing,” J. Energy Storage, vol. 12, pp. 138–148, 2017.

[15] C.-H. Chen, F. B. Planella, K. O’Regan, D. Gastol, W. D. Widanage,
and E. Kendrick, “Development of experimental techniques for param-
eterization of multi-scale lithium-ion battery models,” J. Electrochem.
Soc., vol. 167, no. 8, p. 080534, May 2020.


