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SE–412 96 Göteborg, Sweden
Phone +46 (0)31-772 1000

Chalmers Digitaltryck
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Abstract

This compilation thesis explores the intersection of machine learning and quantum
computing, focusing on optimizing quantum systems and exploring use-cases for
quantum computers. Motivated by the potential impact of quantum computers,
we investigate several key areas.

First, we delve into machine learning and optimization techniques, establishing
the foundation for our research. We then explore reinforcement learning, enabling
machines to learn through interaction. Building on these concepts, we investigate
variational quantum algorithms as a promising framework for near-term quan-
tum computing. We analyze the quantum approximate optimization algorithm
and introduce gradient-based optimization techniques for VQAs, aiming to assess
the potential of quantum computing in solving real-world challenges. Next, we
focus on quantum circuit optimization, proposing methods to combine machine
learning techniques with the qubit allocation and routing problem. This work
aims to narrow the gap between theoretical quantum algorithms and their prac-
tical implementation on quantum hardware. Finally, we focus on quantum error
correction, developing a reinforcement learning approach to efficiently decode er-
ror syndromes. This demonstrates the potential of machine learning in enhancing
the reliability of quantum computations.

Throughout the thesis, we highlight the benefits of using classical machine
learning methods to optimize processes on a quantum computer, contributing to
the advancement of quantum computing technologies and their practical applica-
tions.

Keywords: Quantum computing, variational quantum algorithm, quantum
circuit optimization, machine learning, reinforcement learning, combinatorial op-
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timization, quantum information, quantum machine learning, generative neural
networks, optimization
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Wirfält, Fredrik Sandblom, Jenny Erneman, Thierry Hours, and Parthasarathy
Dhasarathy for many meaningful discussions and support.

The collaborative environment at MC2 has been crucial to my progress. Fur-
thermore, a special thanks goes to the PIQuIL group at the Perimeter Institute,
particularly Roger Melko. The opportunity to collaborate with your team has
been invaluable, broadening my perspectives. Your expertise and insights have
greatly enriched this work.

My deepest appreciation goes to my parents, whose unwavering support and
encouragement have been my foundation. This gratitude extends to my entire
family, whose support has been a constant source of strength, most notably Flo-
rian and Meghana.

This journey has been as much about personal growth as it has been about
scientific discovery. I am deeply thankful for all the experiences, challenges, and
opportunities that have shaped me into the researcher I am today. As I look
forward to future endeavors, I carry with me the invaluable lessons, skills, and
relationships forged during this remarkable chapter of my life.
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Chapter 1
Introduction

The dawn of the 20th century marked the beginning of a scientific revolution
stemming from a series of issues in physics. The established physical theories,
now known as classical physics, suggested predictions that contradicted empirical
observations and logical reasoning. Two examples of these inconsistencies were the
“ultraviolet catastrophe”, implying the existence of systems with infinite energy,
a clear physical impossibility, and the unstable atomic model, suggesting that
electrons would inevitably spiral towards the atomic nucleus. Scientists tried to
resolve these issues by extending classical theories. However, these explanations
became more and more convoluted as our understanding of atomic structures and
radiation advanced. The crisis reached its apex in the early 1920s, resulting in the
formulation of quantum mechanics. Since its inception, quantum mechanics has
been widely used in science, with applications across many domains, including
the structure of the atom [1], nuclear fusion [2], superconductors [3], elementary
particles of nature [4], and last but not least as a new paradigm for computation,
known as quantum computing [5–7].

The theory of quantum computing emerged in the 1980s when physicists be-
gan to discuss paradigms of computation that integrated quantum mechanics.
Initially proposed by Feynman [8] as a means of simulating quantum mechan-
ical systems [8–14], the field has since expanded to address a broader range of
computational challenges [15–18]. However, the theoretical framework for quan-
tum computing was only solidified by the seminal contributions of Benioff [5] and
Deutsch [6], who introduced quantum Turing machines and universal quantum
computation. Building upon this foundation, researchers discovered numerous
quantum algorithms, with Peter Shor’s algorithm for integer factorization [19]
in 1994 marking a pivotal moment. Arguably, it was Shor’s work that sparked
the quantum computing revolution, as it exposed vulnerabilities in many classi-
cal cryptographic protocols previously considered secure [20, 21]. A new wave of
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physicists and computer scientists entered the field in the hope of finding new
quantum algorithms challenging today’s classical computers [7]. From then on,
quantum algorithms [15–18] have matured into a sophisticated subfield of quan-
tum computing, with applications including machine learning [22–30], simulation
of quantum systems [9, 31, 32], natural language processing [33–36], cryptogra-
phy [19, 37], and search and optimization [22, 38–42].

In the following part of the introduction, I survey the quantum computing
stack, and differentiate it from the classical computing stack. In addition, I intro-
duce the paradigm of differential programming and explain the similarities with
variational quantum algorithms. The introduction ends with an overview of the
thesis.

1.1 Quantum information and computing

The compute stacks of classical and quantum machines share similarities, but dif-
fer in some fundamental aspects, notably their fundamental unit of information
processing. While classical computers use bits with discrete values (0 or 1), quan-
tum computers use analog quantum bits (qubits). A qubit state is represented by
a vector in a complex Hilbert space, spanned by basis vectors |0⟩ =

[
1 0

]⊺
and

|1⟩ =
[
0 1

]⊺
. Any qubit state can be written as a superposition of these basis

vectors:
|ψ⟩ = c0 |0⟩+ c1 |1⟩ ; ci ∈ C. (1.1)

The complex amplitudes ci determine the probability of measuring each basis
state, following the Born rule: p|i⟩ = |⟨i|ψ⟩|2 = |ci|2. The probability interpre-
tation of quantum mechanics necessitates that the total probability must sum to
one, leading to the condition |c0|2 + |c1|2 = 1. This state can be alternatively
expressed in polar coordinates, commonly visualized on the Bloch sphere

|ψ⟩ = cos(θ/2) |0⟩+ eiφ sin(θ/2) |1⟩ . (1.2)

Information in a qubit state is in this representation encoded by two continuous
parameters: the polar angle θ, corresponding to population probabilities, and
the azimuthal angle φ, representing the phase [Fig. 1.1]. However, measurement
of a qubit always yields a discrete result, either |0⟩ or |1⟩, preserving its digital
nature. As a result, obtaining a qubit’s full state representation requires multiple
iterations of state preparation followed by measurement.

Multi-qubit gates are necessary to leverage the full power of a quantum com-
puter. To that end, consider a system of N qubits. To encode such a quantum
state using classical methods, one would need in the general case to program 2N

complex amplitudes. The general form of any state in this high-dimensional space
can be written as

|ψN ⟩ =

2N−1∑
i=0

ci|i⟩. (1.3)
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φ

θ

x

y

z

|0⟩

|1⟩

|ψ⟩

Figure 1.1: Bloch-sphere representation of a qubit state. This representation
maps the quantum state to a point on the sphere’s surface, with operations on
the qubit corresponding to rotations of this point on the sphere.

Here, the summation index i corresponds to the decimal representation of each
possible qubit state.

We can categorize these states into two fundamental classes: separable and
entangled. Separable states can be expressed as a tensor product of individual
qubit states

|Ψ⟩ =
⊗
i

|ψi⟩ = |ψ0⟩ ⊗ |ψ1⟩ ⊗ · · · ⊗ |ψN−1⟩. (1.4)

Conversely, entangled states cannot be decomposed into localized Hilbert spaces.
The Bell states are a famous example of entanglement:

|Φ±⟩ =
1√
2

(|00⟩ ± |11⟩) (1.5)

|Ψ±⟩ =
1√
2

(|01⟩ ± |10⟩). (1.6)

These states are entangled because they cannot be expressed as tensor products
of individual qubit states, i.e., there exist no single-qubit states |ψ1⟩ and |ψ2⟩ such
that |Φ±⟩ or |Ψ±⟩ = |ψ1⟩ ⊗ |ψ2⟩. Entanglement, in particular, uniquely separates
quantum information from classical information. This property is instrumental
in many quantum algorithms [6, 19, 43–45].

1.2 Quantum computing stack

As alluded in the epigraph of this chapter, quantum computation promises to run
many interesting algorithms; however, running these requires building quantum



4 Introduction

computers from the ground up. Similarly to classical computers, it is not sufficient
to simply build the transistor. Several layers of abstraction, working closely with
each other, are necessary to make these machines work. We call these layers of
abstraction the “computing stack”.

Conceptually, a computing stack is a description of different layers of a com-
puting system. The computer stack ranges from the user interface enabling the
user to interact with the system, to the control and instruction layers used to con-
trol and program the computer, to the physical implementation of the compute
units. In quantum computing, the computing stack is analogous to its classical
counterpart. The quantum computing stack describes the different layers of a
quantum computing system, from the application layer, which includes high-level
programming languages and algorithms used to program the quantum computer
[Fig. 1.2], to the physical and logical systems that control and manipulate the
qubits, and all the way to the elementary particles used to store and compute
information (the qubits). These layers are examined in more detail below.

Algorithms

Quantum intermediate representation (QIR)

Logical qubits

Quantum error correction (QEC)

Physical qubits

Hardware

Figure 1.2: The quantum computing stack.

1. Algorithm: The topmost layer is the algorithm layer, which is tightly cou-
pled to a specific application. Ideally, the machine solves a computational
task that classical machines cannot do in reasonable time. The most famous
example being Shor’s factoring algorithm, rendering today’s cryptographic
protocols insecure [19]. Today, more algorithms are known that could pro-
vide advantages over classical machines [10, 16–19, 43]. We describe the
paradigm of VQAs [22] in more detail in Chapter 4.

2. Quantum intermediate representation (QIR): In classical computing,
intermediate representations serve as a bridge between source code and ma-
chine language. Analogously, QIR function as an interface in quantum com-
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puting, enabling the translation of quantum algorithms into a format suit-
able for implementation on physical quantum devices. QIRs are typically
designed with three key characteristics: compiler compatibility, hardware
independence, and standardization. These features enable QIRs to effec-
tively mediate between high-level quantum algorithms and different quan-
tum hardware platforms.

3. Logical qubit: This is an error-protected quantum state encoded across
multiple physical qubits, offering better robustness and reliability in the rep-
resentation of quantum information. The implementation of logical qubits
relies on quantum error correction (QEC) codes [Chapter 6] and additional
techniques, which collectively mitigate errors and extend coherence time.

4. Physical qubit: As described earlier, these are the fundamental building
blocks of a quantum computer. Physical qubits are inherently susceptible
to errors and decoherence, which can cause quantum information to be lost
or corrupted.

5. Hardware: The realization of physical qubits can take many forms [46, 47],
such as neutral atoms, superconducting qubits, trapped ions, or photonic
circuits.

All the papers included in this thesis are connected to one or more layers of
the quantum computing stack. Paper A aims at the QEC layer, providing a ma-
chine learning (ML)-driven decoder for an error-correction algorithm. Paper B
and Paper C both contribute to the algorithm layer, by adding a new use case
and novel gradient-based optimization techniques, respectively. In Paper D, we
attempt to learn the ground state properties of a specific quantum computing
hardware architecture, namely Rydberg atom arrays. Our final contribution tar-
gets the QIR layer, leveraging an AlphaZero-like approach [48] to route quantum
circuits, bridging the gap between abstract algorithms and hardware implemen-
tation.

1.3 Differentiable programming

As we have seen in Section 1.2, the quantum computing stack covers a wide range
of tasks, which formulated as optimization problems can tap into the tool box
of differentiable programming (DP). Essentially, DP enables us to build computer
programs consisting of parameterized and adjustable elements of code, instead of
programs where each instruction is explicitly defined to create a specific point in
the program space [Fig. 1.3]. In this paradigm, programmers define the desired
program behavior via a loss function. The optimal program is then identified
by exploring the program space, adjusting the code parameters to minimize the
specified loss function using gradient information. The underlying mechanics of
DP are detailed in Chapter 2.
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In most real-world applications, collecting data representative of correctly
solved tasks is easier to obtain than writing an explicit program that solves the
task. Those are the scenarios in which DP excels, as it enables the derivation
of task-solving programs directly from data. There are numerous examples, such
as face recognition [49, 50], automated driving [51, 52], natural language pro-
cessing [53, 54], and playing games [55], such as chess or go [48, 56], where this
paradigm achieved remarkable results.

Recently, DP has also found its way into scientific computing [57]. Algorithms
such as Fourier transforms, eigenvalue solvers, singular value decompositions, or
ordinary differential equations [58, 59] have been written in a fully differentiable
manner. In addition, the ability to differentiate through domain-specific com-
putational processes to solve inverse problems, such as learning or control tasks,
has shown great potential [60]. Fully differentiable implementations now exist for
tensor networks [61, 62], molecular dynamics [63, 64], quantum chemistry [65–
68], quantum optimal control [69–74], and quantum circuits [75, 76]. Papers A,
C, and D tap into this toolbox of DP, allowing us to automatically optimize the
predefined task at hand.

Traditional programming

Input

Program

Computation Results

Machine learning

Input

Desired
result

Computation Program

Figure 1.3: Illustration showing the difference between traditional programming,
based on the algorithmic approach (left), and the experience-based/data-driven
approach (right), fundamental to the ML paradigm. The ML paradigm represents
the first step towards teaching computers to learn abstractions by identifying
common features within data.

1.4 Variational quantum agorithms

Algorithms derived from the DP paradigm share many similarities with VQAs.
Both can be reframed as optimization problems. The core structure of VQAs
mirrors that of DP: a cost function defines the problem, a parametrized quantum
circuit (PQC) provides the parametrized model, and a hybrid quantum-classical
optimization loop fine-tunes the parameters θ [Fig. 1.4] to solve the optimization
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Quantum
circuit

Classical
optimizer

L(θ)

θ

Figure 1.4: Schematic description of a VQA. The algorithm aims to minimize the
cost function L(θ), which represents the energy of the quantum state generated
by the parameterized circuit, through iterative optimization of θ.

task

θ∗ = argmin
θ
L(θ) . (1.7)

This class of algorithms leverages classical optimization techniques, running
only the parameterized quantum circuit on the quantum computer, while out-
sourcing parameter optimization to a classical optimizer. The process involves
iteratively minimizing the energy L(θ) of the quantum state prepared by the
variational circuit, by adaptively tuning the circuit parameters θ. Like DP, VQA
found many potential applications, such as in chemistry [77–79], optimization [38–
42], and machine learning [24, 27, 28, 30, 80], making it a promising avenue for
quantum algorithms.

Despite their potential, VQAs face several challenges, particularly in trainabil-
ity and accuracy. A critical issue is the efficient optimization of the variational
parameters in the quantum circuit, which has been shown to be NP-hard [81].
However, this should not be discouraging, as NNs once faced similar challenges
before the advent of backpropagation [82] and potent hardware. These historical
parallels suggest that overcoming the current limitations of VQAs may be possible
with continued research and technological advancements. In fact, in Paper C, we
propose a new optimizer specifically designed to address these optimization chal-
lenges in VQAs. Furthermore, in Paper B, we explore the application of VQAs
to a specific optimization problem.

1.5 Thesis outline

This is a compilation thesis of the appended papers, discussing aspects ranging
from quantum computing to ML. We present several classical and quantum al-
gorithms that tackle different challenges around the quantum computing stack.
The thesis is organized as follows.

Chapters 2 and 3 are devoted to the broad field of learning machines. This
field is fundamental to many of the papers appended, namely, Papers A, C and D.
First, we review the different learning tasks in ML and describe the different NN
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architectures used throughout the appended papers. We also introduce neural
quantum states (NQSs), which leverage this machinery to learn representations of
quantum states, a key concept utilized in Paper D. We describe how automatic
differentiation (AD) allows us to estimate the gradients of arbitrary computer
programs, which is at the heart of modern deep learning (DL). Further, we intro-
duce in Chapter 3 the paradigm of learning from interaction, e.g., reinforcement
learning (RL). We lay the groundwork underlying all RL algorithms, namely the
Markov property, derive the Bellman optimality equations and further introduce
value-based methods and connect RL to ML, resulting in deep RL. The frame-
work of learning from interaction plays a key role in Paper A, where we use deep
Q-learning to train an NN to act as a decoder for the toric code.

In Chapter 4, we move the concepts previously introduced to the quantum
computer. We describe the class of VQAs as an analogous concept to NNs and
introduce the concept of gradient-based optimization for quantum computers.
This chapter discusses ideas such as the parameter-shift rule, enabling gradient-
based optimization and higher-order optimization methods for quantum comput-
ers, which is developed further in Paper C. Furthermore, we discuss the Ising
model and demonstrate how certain optimization problems can be mapped onto
it, facilitating their integration into the VQA framework, which is used in Paper B.

Chapters 5 and 6 both provide the playground for our RL agent. Chapter 5
covers the different challenges comprising quantum circuit optimization (QCO).
We outline the different steps necessary to transpile a quantum circuit to its target
hardware and describe the circuit routing and allocation problem, which is the
environment used in our final research project. Chapter 6 introduces concepts for
QEC. We describe the need for QEC, introduce the concept of repetition codes
and from there the stabiliser formalism. Once that is established, we describe the
toric code, the environment used to train the RL agent in Paper A.

Finally, in Chapters 7 and 8 we conclude by summarizing our work and looking
to the future. There are indeed many interesting directions to pursue in the
intersection of quantum computing and machine learning. Especially with the
rise of large language models, the time is ripe to unleash these machines to help
us build better quantum machines.



Chapter 2
Machine learning and
optimization

Building upon the concept of DP introduced in Section 1.3, we now explore its
principles and applications. This chapter explores the computational methodol-
ogy that enables programs to learn and adapt through gradients. We examine
how DP allows for the optimization of complex systems by leveraging automatic
differentiation and gradient-based techniques. This chapter is based on the ideas
outlined in Dawid et al. [60].

Creating intelligent machines has been a long-standing goal of human civiliza-
tion. The aim is to build machines with the ability to conceptualize and create
abstractions, which are fundamental mechanisms underlying human learning and
reasoning. Conceptualization and abstraction enable us to consider various levels
of detail within a representation or switch between levels while preserving rele-
vant information. Representations can vary; we can encode music digitally, on
vinyl, or in a music score, yet the core concept remains unchanged, indicating
that abstract ideas are independent of their data sources. Our brains excel at ex-
tracting abstract ideas from various representations of knowledge, allowing us to
process information from multiple sources describing the same concept differently.
This ability to reason and connect high-level ideas forms what we call intelligence.
Delegating these properties to a computer would create a general problem-solving
machine.

Currently, human brains and computers excel at different sets of tasks. Com-
puters outperform humans in solving problems defined by formal mathematical
rules, such as logic, algebra, geometry, and optimization, which can be addressed
with hard-coded solutions or knowledge-based artificial intelligence (AI). How-
ever, problems that are not easily formalized mathematically, such as face recog-
nition [49, 50] or the detection of new quantum phases [83–86], pose challenges. A
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promising direction to overcome these challenges is the development of algorithms
that learn from experience or data, leading to the rise of ML, shifting from tradi-
tional programming to a data-driven paradigm, as illustrated in Fig. 1.3. DL, a
subset of ML, operates large hierarchical models to analyze complex patterns in
real-world data [60].

This chapter is laying the groundwork to explain how computers can be taught
from real-world data rather than from handcrafted rules. To enable a computer
to learn, we need several components. First of all, a task to solve and data that
can be considered as an equivalent of experience. This data can be provided in
the form of, for example, an interactive environment or a static dataset. Lastly,
a model that learns how to solve the task. To assess a computer’s success in
learning a task, we establish a performance measure. This can be as simple
as comparing the model’s predictions to expected answers. The learning process
then becomes an iterative procedure, either minimizing model error or maximizing
model performance on the given task and dataset. Several of the ideas introduced
are key components in the appended Papers.

2.1 Basics of machine learning

We have already discussed the shift from traditional programming, based on the
algorithmic approach, to the data-driven programming paradigm (see Fig. 1.3).
In this section, we discuss the different learning tasks and learning types that are
fundamental to ML.

2.1.1 Typical learning tasks

The first component needed for a computer to learn is the concept of a learning
task. The typical ML task involves examining a response variable, y(x), influenced
by an explanatory variable, x. There are no inherent restrictions on whether y,
x, or both are continuous, discrete, or categorical.

We start by considering regression tasks, which typically assumes a determin-
istic relationship between two variables, x and y. The goal is to express the output
y as a function of the input x. Generally, both variables can be multidimensional.
The objective is to find the function f that maps y = f(x) for all tuples (x, y).
Practically, we use a finite data set to determine a model that maps each input
x to its corresponding target y. The model, often predefined with parameters, is
tuned to fit the data.

Classification represents another broad class of tasks, where the objective is
to use an algorithm to assign discrete class labels to instances. Unlike regression,
where the goal is to optimize a model to establish a mapping from an input vector
x to a target y, classification focuses on identifying a representation of distinct
classes. The most basic example of this type of task is binary classification, where
an algorithm differentiates between two classes, such as true or false. When the
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task requires distinguishing between more than two classes, it is referred to as
multiclass classification. A classic example of such a task is the classification of
handwritten digit images from the MNIST [87] dataset, which covers ten classes,
one for each digit from zero to nine.

Both regression and classification tasks require a training dataset containing
examples of inputs x along with their corresponding labels y. However, there are
tasks that do not require explicit labels. One example is density estimation [88,
89], where the objective is to infer the probability density function of the dataset.
This is closely related to generative problems, which aim to produce new data
instances that mimic the given input data. The key distinction between these
fields is that generative problems do not need explicit knowledge or reconstruction
of the underlying data distribution to generate new samples.

In quantum science, two primary learning tasks have emerged. The first being
quantum state [88, 90] or process tomography [91], which aims to reconstruct
quantum states or processes from experimental data. This technique allows for
the estimation of observables not directly accessible through experiments. The
second learning task utilizes the ML framework to simulate quantum systems,
employing a data-driven [92, 93] or a Hamiltonian-driven [94] optimization ap-
proach, or both [95–97]. Notably, the Hamiltonian-driven simulation task does
not require training data, making it distinct from traditional ML paradigms. Us-
ing a generative model for this task allows for the generation of new samples
similar to the target distribution, effectively simulating the quantum system, a
key insight utilized in Paper D. We cover the second learning task in more detail
in Section 2.3.

This list of tasks is not comprehensive. Other examples that do not fit directly
into the categories mentioned above include text translation, anomaly detection,
and data denoising, among others [60]. This should give the reader an idea of the
diverse set of learning tasks suitable for the ML framework.

2.1.2 Machine learning paradigms

The second key element in learning is data. Task and data are closely related, as
certain tasks can only be accomplished with sufficient data, and a richer dataset
allows for easier transitions between tasks. In the ML community, data is defined
as a dataset D containing data points xi, either alone or paired with labels yi.
Data can be viewed as synonymous with experience, generated through repeated
interactions with an environment. The type of accessible data defines the learning
methods our model can adopt, typically categorized into supervised, unsupervised,
and RL (see Chapter 3).

Supervised learning can be viewed as a generalized notion of regression and
classification, introduced in Section 2.1.1, and covers ML algorithms that learn
from labeled data, i.e., D = {(xi, yi)}. A key requirement of supervised learning is
accurately labeled data, which is often seen as a major drawback since obtaining
perfectly matched labels is not always feasible and often requires manual human
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annotation.
However, in many real-world scenarios, we encounter datasets without prior

information such as labels, i.e., D = {xi}. The scarcity of labeled data can make
traditional supervised learning approaches ineffective. In such cases, unsupervised
learning techniques offer an alternative approach. These methods can be employed
for initial preprocessing tasks, like dimensionality reduction, or for representation
learning, such as clustering. Recently, self-supervised learning [98], a subset of
unsupervised learning, has received significant attention. Self-supervised learning
involves a machine-learning process, where the model trains itself by learning one
part of the input from another part of the input. In this process, the unsupervised
problem is converted into a supervised one by automatically generating labels.
To effectively leverage the vast amounts of unlabeled data, it is crucial to set
appropriate learning objectives to derive supervision from the data itself.

Unlike the previously described types of learning, RL typically lacks a prede-
fined dataset. Instead, it involves interacting with an environment to achieve a
specific task. This interaction is supported by feedback, which provides informa-
tion on whether an action was beneficial or harmful in achieving the task. This
feedback is important because there is no predefined path to achieve the task,
and often, we do not even know the relevant components needed for success [60].
From these interactions, we can derive a dataset. The dataset in RL consists
of the states s of the environment visited, actions a taken, and rewards r or
penalties received (D = {(si, ai, ri)}). The field of RL introduces a mathematical
framework to learn from interaction and we dedicate Chapter 3 to it. Notably,
RL serves as the primary driver behind Paper A and our final research project,
demonstrating its crucial role in our work.

2.2 Machine learning models

We discussed the different tasks the framework of ML can target. They can be
used for image classification, learning the optimal action to play complex games,
solve control problems, machine translation tasks, and more. For each problem
different model architectures are beneficial. In this section, we review different
architectures excelling at different tasks.

2.2.1 Neural networks

In ML, NN represent a wide range of models used for data processing tasks.
These models are parameterized functions made up of several simple functions.
The initial inspiration for NNs came from the NNs found in our brains [99]. They
generally consist of interconnected layers that process information in sequence,
as shown in Fig. 2.1. Each layer contains multiple nodes, called artificial neurons
or perceptrons. Each node i receives an input vector x = (x1, x2, . . . , xd) ∈ Rd,
representing the activations of all nodes from the previous layer. It then produces
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Figure 2.1: Illustration of a fully connected NN. The network consists of three
sections: the input layer, which processes the data vector x; followed by n hidden
layers (in this case, three); and finally, the output layer. Each layer incorporates
a non-linear activation function.

a scalar value ai ∈ R (referred to as its activation), computed as,

ai = ζ

∑
j

wijxj + bi

 , (2.1)

where {wij}dj=1 and bi ∈ R are the weights and bias of node i, respectively.
Typically, we denote the weights and biases as parameters θ. The weights of
a node determine the strength of its connection to the neurons in the previous
layer. The function ζ is a nonlinear activation function, commonly chosen as the
rectified linear unit (ReLU), defined as ζ(z) = max(0, z). However, a wide variety
of nonlinear functions can be chosen [60, 100, 101].

The first layer is known as the input layer, where node activations are set
based on the vector x representing the input data. The final layer is called the
output layer, and the activations of its nodes form the output of the NN. All
layers in between are known as hidden layers. NNs where each node is by default
connected to all nodes in the subsequent layer are called fully connected. The
number of layers, nodes, and their connections is known as the architecture of a
NN.

The function implemented by a feedforward NN with L layers (L − 1 hidden
layers and one output layer) can be expressed as:

NN(x) = a(L)(x) = ζ(L)(W (L)a(L−1)(x) + b(L)), (2.2)
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where a(0)(x) = x represents the input vector. Specifically, the output relies
on x exclusively through the activations of the previous layer a(L−1), which in
turn depends on x only through a(L−2), and so on. This cascade of dependen-
cies is a direct consequence of the layer-by-layer information processing inherent
to feedforward NNs. This hierarchical information processing is a fundamental
characteristic of feedforward NNs [60].

The trainable parameters θ of an NN are typically optimized using gradient-
based methods to minimize a specified loss function L. The gradient of the loss
function with respect to the NN parameters is usually computed numerically
through backpropagation, which is discussed in more detail in Section 2.4.

While feedforward NNs process information in a straightforward manner from
input to output, certain applications require models that can capture sequential
dependencies in data. This need has led to the development of specialized ar-
chitectures, such as autoregressive NNs, which we will explore in the following
section.

2.2.2 Autoregressive neural networks

Autoregressive NNs cover a diverse set of applications, ranging from time-series
forecasting [102] to machine translation [103, 104] to a wide range of physics use
cases [83, 92, 93, 95–97, 105–115]. These models are structured such that the
output adheres to a conditional framework:

f(x) =

m∏
i=1

fi(xi | xi−1, . . . , x1). (2.3)

Here, x = (x1, x2, . . . , xm) denotes the inputs. For time-series data, the inputs xi
represent the values of a variable at times ti, and the model f aims to forecast
future values based on past observations. A common example of such networks is
the recurrent neural network (RNN) [82], which has gained popularity in natural
language processing tasks. The key concept in these models is that information
“loops back” into the network, creating correlations between different parts of the
model, unlike feedforward NNs [60].

However, the current state-of-the-art model architecture for these tasks is
the transformer, which replaces recurrences with the attention mechanism [116–
118]. The following section provides a detailed description of the transformer
architecture introduced in Vaswani et al. [116].

Transformer

The transformer encoder-decoder architecture, central to Paper D, depicted in
Fig. 2.2, consists of an encoder composed of multiple identical layers. Each layer
comprises two sublayers: a multihead self-attention mechanism followed by a
position-wise feedforward NN. The model uses residual connections [119]. More
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precisely, for any input x ∈ Rd at any position in the sequence, it is necessary
that sublayer(x) ∈ Rd allows the residual connection x + sublayer(x) ∈ Rd. This
residual connection is followed by layer normalization [120]. The transformer
encoder outputs a d-dimensional vector representation for each position in the
input sequence.

The transformer decoder also consists of multiple identical layers, incorporat-
ing residual connections [119] and layer normalization [120]. Besides the two
sublayers present in the encoder, the decoder includes a third sublayer: the
encoder-decoder attention, conditioning the decoder on the encoder. In the
encoder-decoder attention mechanism, the queries originate from the decoder’s
self-attention sublayer outputs, while the keys and values come from the trans-
former encoder outputs. In the decoder’s self-attention, the queries, keys, and
values are derived from the previous decoder layer’s outputs. Note that each po-
sition in the decoder can only attend to all preceding positions, preserving the
autoregressive property. This masked attention ensures that the prediction relies
solely on the previously generated tokens.

Multi-head attention The self-attention mechanism is one of the key elements
of the transformer. The objective is to design an attention mechanism where
any element in a sequence can attend to any other element while maintaining
computational efficiency. The dot-product attention operates on a set of queries
Q ∈ RS×dk , keys K ∈ RS×dk , and values V ∈ RS×dv , where S is the sequence
length and dk and dv are the hidden dimensions for queries/keys and values,
respectively. For simplicity, the batch dimension is omitted here. The attention
value from element i to j is determined by the similarity between the query Qi

and the key Kj , using the dot product as the similarity metric. Mathematically,
the dot-product attention is computed as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (2.4)

The matrix multiplication QKT computes the dot product for each pair of queries
and keys, resulting in an S × S matrix. Each row represents the attention log-
its (raw, unnormalized attention scores) for a specific element i relative to all
other elements in the sequence. A softmax function is then applied, followed
by multiplying with the value vector to obtain a weighted average (with weights
determined by the attention). The scaling factor 1√

dk
is crucial to maintain an

appropriate variance of attention values after initialization.
The scaled dot-product attention mechanism enables a network to attend on

different parts of a sequence. However, when multiple aspects of a sequence
element need attention, a single weighted average is insufficient. To address this,
the attention mechanism is extended to multiple heads, meaning several different
query-key-value triplets on the same features. Specifically, given a query, key,
and value matrix, we convert these into h sub-queries, sub-keys, and sub-values,
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which are then processed through the scaled dot-product attention independently.
Subsequently, we concatenate these heads and combine them using a final weight
matrix. This process is mathematically represented as follows:

Multihead(Q,K, V ) = Concat(head1, . . . ,headh)WO (2.5)

where headi = Attention(QWQ
i ,KW

K
i , V WV

i ). (2.6)

This is referred to as the multi-head attention layer, with the learnable parameters
WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk , WV

i ∈ Rd×dv , and WO ∈ Rh·dv×dout (remember d is
the input dimensionality).

Position-wise feedforward network In addition to the attention sub-layers,
each layer of the encoder and decoder contains a fully connected feedforward NN
(as introduced in Section 2.2.1), which is applied separately and identically to each
position. This NN consists of two linear transformations with a ReLU activation
function in between. The feedforward NN is defined as

FFN(x) = max(0, xW1 + b1)W2 + b2. (2.7)

While the linear transformations remain consistent across different positions, they
use different parameters from layer to layer. Typically, the dimensionality ratio
of input to output is 1:4. For example, if d = 512, then the inner layer has a
dimensionality of dff = 2048.

Positional encoding The multi-head attention block cannot distinguish the
order of inputs in a sequence. However, in tasks like language understanding, the
position of each word is important. To address this, position information is added
to the input features. While it is possible to learn an embedding for every possible
position, this approach does not generalize well to varying input sequence lengths.
A more effective method is to use feature patterns that can be identified by the
network from the features and generalize to longer sequences. Vaswani et al. [116]
chose sine and cosine functions of different frequencies for this purpose, expressed
as

PEpos,i =

{
sin
(

pos
100002i/d

)
if i mod 2 = 0

cos
(

pos
10000(2i−1)/d

)
otherwise.

(2.8)

Here, PEpos,i represents the positional encoding at position pos and hidden di-
mension i. These values are added to the input features of each layer (as illus-
trated in Fig. 2.2 under “Positional Encoding”). We differentiate between even (i
mod 2 = 0) and odd (i mod 2 = 1) hidden dimensions, applying sine and cosine
functions, respectively. The rationale behind this encoding is that PE(pos+k,:)

can be expressed as a linear function of PE(pos,:), enabling the model to easily
attend to relative positions. The wavelengths of the functions span from 2π to
10000 · 2π [116].
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2.2.3 Graph neural networks

So far we have not discussed the different ways in which data is represented.
Sometimes it is in text form, sometimes in form of tables, but more often than not
the data is graph structured. Take for example a social network, in the academic
context we can think of a citation network, the world wide web, proteins, or even
quantum circuits. All of these types of data are naturally represented as a graph.
Graph neural networks (GNNs) are neural architectures specifically designed for
graph-structured data.

Formally, a graph is defined as G = (V, E), where V is the set of nodes and
E is the set of edges. We denote A ∈ RN×N as the adjacency matrix, with
N representing the total node count. The node-attribute matrix is given by
X ∈ RN×D, where D denotes the number of features for each node. The primary
objective of GNNs is to learn effective node representations, denoted as H ∈
RN×F (where F is the dimensionality of the node representations), by synthesizing
information from both the graph structure and node attributes. These learned
representations serve as a foundation for a wide range of graph-based ML tasks.

The fundamental operation of GNNs relies on the principle of iteratively re-
fining node representations by integrating information from neighboring nodes.
This process begins with an initial node representation H0 = X and proceeds
through a series of layers. Each layer executes two key operations: an aggregation
function, which consolidates information from a node’s local neighborhood, and
a combine function, which updates the node’s representation by merging the ag-
gregated neighborhood data with its existing representation. The mathematical
description of this framework is as follows:

Algorithm 1 Framework graph neural network

1: Initialization: H0 = X
2: for k=1 to K do
3: akv = AGGREGATEk{Hk−1

u : u ∈ N(v)}
4: Hk

v = COMBINEk{Hk−1
v , akv}

5: end for

Here, N(v) represents the set of neighbors for node v. The node representa-
tions from the final layer, HK , are considered the definitive node representations.

These learned representations can be used in various downstream applications.
Typical tasks evolve around node edge or graph classification. Once we define
the task-specific loss function, we can use the same machinery used for NNs to
optimize the GNN [121–123].
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Graph convolutional networks

Graph convolutional networks (GCNs) update the node representations according
to the equation

Hk+1 = ζ(D̃− 1
2 ÃD̃− 1

2HkW k). (2.9)

Here, Ã = A + I represents the adjacency matrix of the undirected graph G,
including self-connections to incorporate node features during updates. I ∈ RN×N

denotes the identity matrix, while D̃ is a diagonal matrix where D̃ii =
∑

j Ãij

corresponds to the degree of node i. The function ζ(·) is an activation function,
commonly ReLU or tanh. The trainable linear transformation matrix W k ∈
RF×F ′

, where F and F ′ represent the dimensions of node representations in the
k-th and (k+1)-th layers, respectively [121, 124]. In Paper E, we utilize GCNs to
learn a representation of a graph structure that can be used in combination with
a transformer architecture (see Section 2.2.2).

Having explored various NN architectures, including those designed for graph-
structured data, we now turn our attention to a specialized application of NNs in
quantum physics. This brings us to the concept of NQSs, where NNs are used to
represent quantum systems.

2.3 Neural quantum states

Let us return to the quantum many-body system introduced in Section 1.1. The
state of such a system is described by a wave function that exists in an exponen-
tially large Hilbert space. For a system of N -qubit states, there are 2N amplitudes
to describe the wave function. As the size of the system increases, the number of
coefficients required to describe the state exactly becomes increasingly large. For
instance, storing the wave function of 60 qubits would require approximately 18
exabytes of memory, far exceeding the capabilities of today’s largest supercom-
puters.

However, physically relevant states often occupy only a small portion of the
Hilbert space, typically constrained by local interactions. This observation moti-
vates the use of variational methods to find efficient representations of quantum
states [125]. A promising approach in finding these representations is offered by
NQSs [125, 126]. By encoding the complex amplitudes of the wave function onto
a parametrized function (often an NN), we can represent the quantum states of
large systems using a number of parameters that scale polynomially with system
size. We can express the variational state in its computational basis as

|ψθ⟩ =
∑
σ

ψθ(σ) |σ⟩ (2.10)

where θ represents the parameters of the NN, |σ⟩ = |σ1⟩ ⊗ |σ2⟩ ⊗ · · · ⊗ |σN ⟩
are the basis vectors of the Hilbert space that describes the N -qubit system, and
ψθ(σ) = ⟨σ|ψθ⟩ is the probability amplitude for the state |σ⟩. The task then
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becomes finding the optimal parameters θ that best describe the quantum state
of interest, such as the ground state of a given Hamiltonian [60].

2.3.1 Autoregressive neural quantum states

Using the autoregressive NNs previously discussed in Section 2.2.2, one can con-
struct NQSs. A key advantage of these NQS models is their normalized Born
probability distribution, which allows for direct autoregressive sampling. This
sampling method is more easily parallelizable compared to Markov chain Monte
Carlo (MCMC) techniques [127]. In this framework, we express the many-body
wave function as a product of conditional complex amplitudes, similar to Eq. (2.3):

ψθ(σ) =

N∏
i=1

ψθ(σi|σi−1, . . . , σ1), (2.11)

based on the normalization condition
∑

σ |ψθ(σ|σi−1, . . . , σ1)|2 = 1. It enables
direct sampling of state configurations for computing expectation values, bypass-
ing the need for Markov chain construction via methods such as the Metropolis-
Hastings algorithm [127, 128]. Sampling occurs in sequence: beginning with σ1
drawn from |ψθ(σ1)|2, subsequent spins are sampled from conditional distribu-
tions |ψθ(σi|σi−1, . . . , σ1)|2 until σN is reached [60]. This sampling procedure
yields independent, identically distributed samples. Autoregressive NQS played
a key role in Paper D.

2.4 Optimization with gradients

Among optimization algorithms, gradient-based methods have gained widespread
adoption and success, serving as the foundation for modern DL and numerous
scientific disciplines. These methods optimize the parameters θ of a function L(θ)
through iterative gradient calculations, employing a step size η > 0:

θ′ = θ − η ∂L
∂θ
. (2.12)

The standard gradient-descent algorithm is adaptable to various contexts. In
cases where L(θ) depends on data, such as the least-squares loss function L(θ) =∑N

i ||f(xi; θ)− yi||22, a single gradient update requires calculations across the en-
tire dataset. Stochastic gradient descent (SGD) offers an alternative by updating
parameters based on individual data points (xi, yi), while mini-batch gradient
descent processes small subsets of n examples. Despite its effectiveness, this
approach may face challenges including convergence to local minima, slow con-
vergence rates, strong dependence on learning-rate selection, and issues such as
sparse gradients [88, 129].
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2.4.1 Improving gradient descent

To overcome some of the challenges associated with standard SGD, several algo-
rithmic improvements have been developed [129–134]. A notable enhancement is
the momentum technique, which accelerates SGD by reducing oscillations around
local minima and maintaining the trajectory established by previous updates.
This is implemented using a velocity vector:

rt = γrt−1 + η
∂L
∂θ
. (2.13)

Here, γ is commonly assigned a value of 0.9. The SGD update rule is then adjusted
to

θ′ = θ − rt. (2.14)

This modification allows the algorithm to accumulate momentum in consistent
directions, potentially leading to faster convergence and improved optimization
outcomes.

A commonly used optimization algorithm is the Adam optimizer, which com-
bines the benefits of momentum and adaptive learning rates. Adam maintains a
separate learning rate for each parameter, adapting the learning rate based on the
first and second moments of the gradients [130]. It maintains moving averages of
the gradient mt and the squared gradient vt, defined as

mt = β1mt−1 + (1− β1)gt, (2.15)

vt = β2vt−1 + (1− β1)g2t . (2.16)

Here, gt = ∇θtL(θt) denotes the gradient at step t, with β1 and β2 being positive
coefficients. To address the bias introduced by initializing mt and vt to 0, Adam
applies a correction:

m′
t =

mt

1− (β1)t
, (2.17)

v′t =
vt

1− (β2)t
. (2.18)

The resulting update rule is

θ′ = θ − η√
v′t + ϵ

m′
t, (2.19)

where ϵ ≈ 10−8 ensures numerical stability. Typically, β1 = 0.9 and β2 = 0.999,
although these values can be fine-tuned through hyperparameter optimization [88,
129, 130].

The effectiveness of gradient-based optimization methods relies on the ability
to compute gradients ∇θL(θ) for arbitrary computer programs. The introduction
of the backpropagation algorithm [82] marked a significant milestone, enabling
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efficient gradient computation in NN architectures. Building on this foundation,
the recent emergence of AD tools has further streamlined the implementation
of gradient calculations in software, making gradient-based optimization more
accessible and widely applicable in computational tasks.

2.4.2 Automatic differentiation

While traditional programming requires explicit coding of every instruction, auto-
matic differentiation (AD) uses parameterized code segments that can be modified
(see Fig. 1.3). In this paradigm, programmers define the intended behavior of the
program through a loss function. The solution is then identified by exploring the
program space, a process that relies on the efficient computation of derivatives.

Derivative computation methods in computer programs can be categorized
into four types: manually deriving and coding derivatives, numerical differentia-
tion via finite difference approximations, symbolic differentiation using expression
manipulation, and AD. Except for AD, the other methods have some pitfalls that
make them infeasible to use: finite difference methods introduce a computational
overhead when calculating the gradients, and symbolic differentiation becomes
increasingly difficult to calculate when the expressions are complex.

AD enables the calculation of gradients with the same time complexity as
computing the function itself. There are two flavors of it, forward-mode and
reverse-mode AD. For functions with many inputs (i.e., where m ≫ n in f :
Rm → Rn), the reverse-mode is computationally more efficient. In the case of f :
Rm → R, a single reverse-mode application is sufficient to calculate the complete
gradient, contrasting with m forward-mode passes. Applications in ML typically
involve evaluating derivatives of a loss function y = L : Rm → R with respect to m
trainable parameters, where m is usually large. Therefore, reverse-mode AD is the
preferred approach for automatic gradient computation due to its computational
efficiency compared to forward-mode AD [60].

Reverse-mode AD

Reverse-mode AD is a two-stage process. First, the original function code is exe-
cuted forward, populating intermediate variables and tracking their dependencies
within the computational graph. In the subsequent phase, derivatives are calcu-
lated by propagating adjoints in reverse, from the outputs back to the inputs (see
Fig. 2.3).

To illustrate the process, consider the function

f(x) = sin
(
2x2 − 3 + x2

)
. (2.20)

The derivative of the trial function can be explicitely calculated as

df

dx
= cos

(
2x2 − 3 + x2

)
· 6x. (2.21)
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Figure 2.3: Computational graph. Illustrating the forward pass (data) and the
backward pass (grad). The AD process contains two steps, the first one being
the forward pass that evaluates each intermediate data point. Once each value is
computed the gradients can be evaluated during the backward pass.
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However, this method becomes challenging when the expressions become large as
it is typical for NNs with billions of parameters. Another way of approaching the
problem is to define intermediate variables

a = x2,

b = 2 · a,
c = b− 3,

d = c+ a,

e = sin(d).

(2.22)

From this set of equations we can write the computational graph and show the
relationship between all the variables (see Fig. 2.3). Next, we can manually write
down the derivatives of each individual term, and given all of this, we can work
backward to calculate the derivative of f with respect to each variable, by applying
the chain rule:

de

dd
= cos(d),

de

dc
=
de

dd

dd

dc
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da
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= 2

de

da
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(2.23)

AD can be understood as a formalization and generalization of this process. It
allows for systematic computation of derivatives for a wide class of functions f :
Rm → Rn by representing them as expression graphs. In the forward propagation
phase, we compute intermediate values sequentially (see Algorithm 2).

Algorithm 2 Forward propagation

1: for i=1 to M do
2: xi ← gi(xPa(i))
3: end for

In this formulation, x1, ..., xm represent the input variables, xm+1, ..., xM−1

denote intermediate computational values, and xM is the final output of the func-
tion. The functions gi correspond to elementary operations applied to the “par-
ent” variables Pa(i) of the i-th node in the computational graph (see Fig. 2.3).

Given a function represented as an expression graph, we can systematically
apply the chain rule to compute derivatives. By definition, the function output f
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is equivalent to xM , leading to the initial condition

df

dxM
= 1. (2.24)

For all other intermediate variables xi, we can express the derivative with respect
to xi as

df

dxi
=

∑
j:i∈Pa(j)

df

dxj

dxj
dxi

(2.25)

=
∑

j:i∈Pa(j)

df

dxj

dgj
dxi

. (2.26)

This formulation allows for an efficient backward propagation of derivatives through
the computational graph (see Fig. 2.3) [135].

This concludes our general introduction to ML. Next, we dive deeper into the
paradigm of learning through interaction, known as RL.





Chapter 3
Reinforcement Learning

Up to this point, we have looked at various ML concepts, such as supervised and
unsupervised learning tasks, where goals include predicting labels, estimating
specific values, or identifying patterns within data. In this chapter, we explore
the computational methodology of learning through interaction. This chapter is
based on the ideas outlined in Dawid et al. [60] and Sutton and Barto [136].

In the context of supervised learning, one can imagine a student learning from
a teacher holding the correct answers to all questions within a specific domain. In
this scenario, the student’s knowledge is restricted to that of the teacher and can-
not exceed it or address questions beyond the teacher’s competence. To overcome
this limitation, in RL, the teacher is removed, allowing the student to experiment
and learn from the resulting experiences. The student is referred to as the agent,
as it can take actions independently. Similar to humans, the agent learns through
interaction with its environment. The agent receives feedback based on the out-
come of its actions, and comes up with strategies to achieve certain objectives.

Consider the example of teaching an agent to play chess. In a supervised
learning setting, the model is trained to mimic the moves from games played by
expert players. Therefore, the agent’s performance is limited by the quality of
the training data, making it unlikely for the agent to surpass the skill level of the
baseline players. Instead, we can allow the agent to play chess games, either with
different opponents or even against itself, without giving any additional knowledge
beyond the rules. This results in an agent with far greater potential than the
previous one, as it is not constrained by its teacher. However, learning through
experience can be difficult, given that the quality of actions is only assessed at the
end of the game when the win or loss is determined. Therefore, the agent must
establish a broad understanding of the long-term effects of its actions based on
the limited feedback from the environment [60].

Describing problems as games to discover strategies has many applications.
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In the context of quantum computing, control and optimization problems are a
natural fit. However, we can design games to obtain any protocol or algorithm of
interest, from new quantum circuit optimization routines [137] to faster matrix
multiplication [138] or sorting algorithms [139]. In our work, we leverage these
game-based strategies across different layers of the quantum computing stack.
Paper A applies this approach to the QEC layer, developing a ML-driven decoder
for error-correction algorithms. Additionally, our research extends to the QIR
layer, where we employ game-based techniques to optimize the routing of quantum
circuits, effectively bridging the gap between abstract algorithms and hardware
implementation.

In this chapter, we introduce the field of RL, exploring the concepts of learn-
ing from experience and its mathematical foundation. We present the two main
paradigms in RL: model-free methods, exemplified by value-based RL, and model-
based methods, represented by planning algorithms. This comprehensive coverage
allows us to examine both approaches that learn directly from interactions with-
out an explicit model of the environment, and those that leverage a model for
planning and decision making.

3.1 Basics of reinforcement learning

The two main elements in the RL framework are an agent and an environment
that it interacts with. The environment consists of all the information that defines
the problem and provides the agent with observations and feedback according to
its actions. The environment spans the set of all possible states, s ∈ S.

The agent can observe (sometimes only partially1) the state s of the environ-
ment and suggests an action a. The action is chosen from a set of possible actions,
a ∈ A, which is determined by the environment. The actions can alter the state
in which the environment is found, and they can have deterministic or stochastic
outcomes. Whenever the agent performs an action, the environment provides it
with an observation of the new state together with a feedback called the reward,
r. The reward can take any numerical value. The agent obtains higher rewards
when accomplishing the objective task, for example, winning a game, while re-
ceiving penalties when performing bad actions, e.g., losing a game. Figure 3.1
summarizes these concepts.

Rewards may only be received at the end of the game. Therefore, we need
a method to manage delayed rewards. The concept involves considering future
rewards obtained along a trajectory through the state space. However, we can
diminish the value of rewards that are far in the future using a discount factor
γ ∈ [0, 1]. The discount factor adjusts the importance of rewards based on their

1Partially observable Markov decision processes (POMDP) are essential in QEC. In this
context, only parity measurements are conducted to prevent interference with the computa-
tion. While these measurements offer only partial system information, they are adequate for
suggesting error correction strategies. Details can be found in Chapter 6.
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agent environment

action

observation, reward

Figure 3.1: Overview of the RL setting. The agent receives an observation from
the environment. Given the observation the agent suggests the next action based
on its policy. The environment processes the action and returns an observation
and a reward.

temporal distance. As such, immediate rewards are given more weight than those
occurring further in the future. The objective in RL is to maximize the discounted
return, defined as the weighted sum of future rewards:

Gt =

T−t−1∑
k=0

γkrt+k+1 (3.1)

= rt+1 + γGt+1. (3.2)

This sum considers the rewards obtained from time t until the final time T . Note
that in Eq. (3.2), the return is defined in a recursive manner crucial for many RL
algorithms.

Formally, we maximize the discounted return by learning the optimal pol-
icy, π∗. The policy determines which action to take given the observations, and
therefore dictates the strategy followed by the agent. In general, a policy can take
many different forms, ranging from look-up tables that map actions to states to
ML models [60].

3.2 Markov decision process

All RL problems are represented as a Markov decision process (MDP). A general
framework for modeling environments with sequential relationships between states
is provided by MDPs. In such environments, the future is independent of the past
given the present, which is known as the Markov property. Consequently, there
are no memory effects from previously visited states. Formally, at any time step
t,

p(st+1|s0, . . . , st) = p(st+1|st). (3.3)

Mathematically, an MDP is expressed as the tuple (S,A, p,G, γ), where S is the
state space, A is the action space, p represents the dynamics, G is the set of
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total returns, and γ is the discount factor. In this context, the return G and the
discount factor γ define the objective, while p encapsulates the dynamics of the
environment:

p(s′, r|s, a) = p(st+1 = s′, rt+1 = r|st = s, at = a), (3.4)

and represents the joint probability of transitioning to a new state s′ and receiving
a reward r after taking action a in state s. In fully deterministic environments,
p(s′, r|s, a) takes values of either zero or one.

In the interactive setting between the agent and the environment, the agent
selects actions according to a policy, which maps states to the probability of
executing each possible action:

π(a|s) = p(at = a|st = s). (3.5)

The goal in RL is to adapt the policy based on the experience gained from
interacting with the environment to maximize the return. These interactions
generate sequences, or trajectories, of the form

s0, a0, r1, s1, a1, r2, s2, a2, . . . , sT , (3.6)

where all states, actions, and rewards are random variables. Thus, the agent
follows a trajectory through the state-action space τ = a0, s1, a1, . . . , sT with
probability

p(τ) =

T−1∏
t=0

p(st+1|st, at)π(at|st), (3.7)

starting from an initial state s0. The discounted return associated with the tra-
jectory is defined as G(τ) =

∑T−1
t=0 γtrt+1.

This entire formalism assumes the Markov property from Eq. (3.3), which
implies that the environment is memoryless. However, there are situations where
the environment exhibits memory effects, such as in games where executing a
sequence of actions has an additional effect at the end. In such cases, the Markov
property is restored by considering an extended state space that includes this
memory. Consequently, even deterministic Markovian dynamics in the full state
space can lead to non-deterministic and non-Markovian dynamics in the reduced
state space [60].

3.2.1 Bellman equations

As mentioned in previous sections, the goal in RL is to find the optimal policy π∗

that maximizes the return, as introduced in Eq. (3.2). This clear objective allows
us to define value functions that estimate how beneficial it is for the agent to be
in a given state or to perform a certain action to achieve the task. These value
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functions quantify the expected future return that the agent can obtain given the
current conditions. Since future rewards depend heavily on the actions the agent
will take, value functions are defined with respect to the policy.

The state-value function, Vπ(s), for a state s under policy π represents the
expected return when starting at state s and subsequently adhering to policy π.
Formally, it is defined as

Vπ(s) = E[Gt|st = s] = E

[
T−t−1∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s

]
. (3.8)

Likewise, the action-value function, Qπ(s, a), denotes the expected return starting
from state s, taking action a, and then following policy π:

Qπ(s, a) = E[Gt|st = s, at = a] = E

[
T−t−1∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s, at = a

]
. (3.9)

The value functions satisfy a recursive relationship used by many RL algorithms.
This relationship originates from the recursive nature of the return [Eq. (3.2)] and
allows us to write the state-value function Vπ(s) as a function of the next states:

Vπ(s) = E[Gt|st = s] = E[rt+1 + γGt+1|st = s]

=
∑
a

π(a, s)
∑
s′,r

p(s′, r|s, a) (r + γE[Gt+1|st+1 = s′])

=
∑
a

π(a, s)
∑
s′,r

p(s′, r|s, a) (r + γVπ(s′))

= E[rt+1 + γVπ(st+1)|st = s].

(3.10)

A similar derivation can be performed for the action-value function Qπ(s, a):

Qπ(s, a) = E[Gt|st = s, at = a] = E[rt+1 + γGt+1|st = s, at = a]

=
∑
s′,r

p(s′, r|s, a) (r + γE[Gt+1|st+1 = s′])

=
∑
s′,r

p(s′, r|s, a) (r + γVπ(s′))

= E[rt+1 + γVπ(st+1)|st = s, at = a],

(3.11)

from which the relationship Vπ(s) =
∑

a π(a|s)Qπ(s, a) becomes clear as displayed
in the backup diagram in Fig. 3.2. The term “backup” refers to the process of
propagating value information backwards from future states to the current state s.
These are the Bellman equations for the value functions, which are fundamental
to RL. They establish the relationship between the value of a state s and its
successors s′, recursively incorporating information about the future [60].
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s

a1 a2 a3

Vπ(s)
taken with

probability π(a|s)
Qπ(s, a)

Figure 3.2: A backup diagram rooted at the state, s, and considering each possible
action, a.

3.2.2 Bellman optimality equations

With the concepts of a state-value and action-value functions in place, we are
ready to introduce the concept of partial orderings of policies. A policy π is
considered better than or equivalent to another policy π′ if its expected return is
at least as great as that of π′ for every state. Specifically, π ≥ π′ if and only if
Vπ(s) ≥ Vπ′(s) for all s ∈ S. There is always at least one policy that is as good
as or better than all other policies. This is referred to as an optimal policy. Even
though there might be multiple optimal policies, we denote all of them by π∗.

These optimal policies share common value functions, referred to as the opti-
mal state-value function, denoted as Vπ∗ , and the optimal action-value function,
represented as Qπ∗ . They are defined as follows:

Vπ∗(s)
.
= max

π
Vπ(s), (3.12)

Qπ∗(s, a)
.
= max

π
Qπ(s, a), (3.13)

for all s ∈ S and a ∈ A(s).

By combining the Bellmann equations Eq. (3.10) and Eq. (3.11), we obtain

Vπ∗(s) = max
a

E [Gt|st = s, at = a]

= max
a

E [rt+1 + γVπ∗(st+1)|st = s, at = a]

= max
a

Qπ∗(s, a),

(3.14)

thereby establishing the relationship Vπ∗(s) = maxaQπ∗(s, a), showing how the
optimal state-value Vπ∗(s) is determined by selecting the maximum Q-value among
all possible actions a. The “max” label in the figure emphasizes this selection pro-
cess [Fig. 3.3].

Note that this new Bellman equation maximizes over the first action, rather
than taking the expectation over actions as in Eq. (3.10). This is because the
value of a state under the optimal policy must equal the expected return for the
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s
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Vπ∗(s)
max

Qπ∗(s, a)

Figure 3.3: A backup diagram for the optimal state-value function rooted at the
state, considering each possible action but selecting only the action that maximises
the cumulative reward.

best action. Now we can define the set of Bellman optimality equations:

Vπ∗(s) = max
a

∑
s′,r

p(s′, r|s, a) [r + γVπ∗(s′)] , (3.15)

Qπ∗(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
Qπ∗(s′, a′)

]
. (3.16)

We can define the optimal policy π∗(a|s) and optimal action a∗ at a given state
s as:

π∗ = arg max
π

Vπ∗(s), (3.17)

a∗ = arg max
a

Qπ∗(s, a). (3.18)

The optimal policy π∗ corresponds to the deterministic choice of the best action
a∗ for a given state s based on the optimal action-value function Qπ∗(s, a). Due
to the recursive nature of the value functions, a greedy action according to Vπ∗

or Qπ∗ is optimal in the long term [60].

3.3 Value-based methods

In value-based RL, the objective is to derive the optimal policy π∗(a|s) by learning
the optimal value functions, as described in Eqs. (3.15) and (3.16). We begin with
an initial estimation of the value function for each state, Vπ(s), or state-action
pairs, Qπ(s, a). These estimations are then progressively updated based on the
experience accumulated by the agent as it follows its policy.

One of the most straightforward methods to learn the value function is to
sample trajectories τ ∼ p(τ) [Eq. (3.7)], and then use the return Gt to update
our value function estimation for every visited state st:

Vπ(st) = Vπ(st) + η
(
Gt − Vπ(st)

)
, (3.19)

where η is the learning rate. Note, we can also learn Qπ(s, a) for every visited
state and action along the trajectory. However, this approach only allows learning
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at the end of each trajectory, known as episodes, which can be highly inefficient for
problems involving long or infinite episodes. This estimate of the value function
introduces a low bias but high variance, which is typical for Monte Carlo methods.
In contrast, temporal difference (TD) algorithms take advantage of the recursive
nature of the value functions, as shown in Eq. (3.10) and Eq. (3.11), to learn at
each time step:

Vπ(st) = Vπ(st) + η
(
rt+1 + γVπ(st+1)− Vπ(st)

)
. (3.20)

It is important to note that while Vπ(st) is an estimate, Vπ(st+1) is also an
estimate. This is referred to as a bootstrapping method, where the update is
partially based on another estimate and thus introducing a high bias with low
variance on the estimates. The term in brackets is known as the TD error.

The algorithm that implements Eq. (3.20) is referred to as TD(0), which is a
special instance of the TD(λ) algorithms [60, 136]. An equivalent algorithm for
the action-value function is called SARSA [60, 136]:

Qπ(s, a) = Qπ(s, a) + η (r + γQπ(s′, a′)−Qπ(s, a)) , (3.21)

where the symbols s′, a′, and r represent the next state, action, and reward,
respectively [60]. If we maximize over the next action [maxa′ Qπ(s′, a′)] we obtain
Q-learning [140], for which we provide a detailed introduction in the following
section.

3.3.1 Q-learning

Q-learning is a widely used RL algorithm known for its simplicity. Typically,
we start by arbitrarily initializing our estimates Qπ(s, a)∀s ∈ S, a ∈ A, in table
form. However, for many scenarios having a table for the entire state-action
space is not feasible. Therefore we have to rely on an efficient way to represent
Qπ(s, a)∀s ∈ S, a ∈ A. A promising candidate is a function approximator such
as an NN instead of a look-up table [55]. Using an NN to learn the Q-values is
known as deep Q-learning and the NN representing the value estimates is typically
referred to as a deep Q-network (DQN). The DQN takes a representation of the
state ϕ(s) as input and outputs Qπ(s, a;θ) ∀a ∈ A, where θ denotes the set of
trainable parameters.

Naively implementing the algorithm outlined in Algorithm 3 with the update
rule for the parameter as

θ = θ + η
(
r + γmax

a′
Qπ(s′, a′;θ)−Qπ(s, a;θ)

)
∇θQπ(s, a;θ) (3.22)

is highly unstable. The instabilities are mainly due to correlations in consecutive
observations along the trajectories, correlations between target and prediction,
and significant changes in the data distribution due to small variations in the
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Algorithm 3 Deep Q-learning with Experience Replay

Require: learning rate, η, replay memory capacity N
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1,M do

Initialise sequence s1
for t = 1, T do

ξ ← uniform ∈ [0, 1]
a← uniform a if ξ ≤ ϵ else arg maxaQ(s, a;θ) ▷ ϵ-greedy policy
Execute action a and observe reward r and next state s′

Store transition (s, a, r, s′) in D
Sample random minibatch of transitions (s, a, r, s′) from D
Set y =

{
r for terminal s′

r + γmaxa′ Q(s′, a′;θ−) for non-terminal s′

θ = θ + η (y −Qπ(s, a;θ))∇θQπ(s, a;θ)
end for

end for

parameters. We overcome these challenges with experience replay [141] and in-
troducing a target network.

Using experience replay, rather than learning at every time step, we store the
experience gathered during episodes in a memory that retains the information of
each transition (s, a, r, s′). Once the agent has accumulated sufficient experience,
it replays a randomly sampled batch of transitions from its memory to compute
the loss and update the DQN parameters. In this manner, the agent alternates
between episodes to gather experience and replaying the stored transitions to
perform the learning process.

To mitigate the correlation between target and prediction, we employ a target
network, which is a duplicate of the DQN, updated at a different rate. While
we update the DQN parameters θ at every iteration, the target network param-
eters θ− are updated less frequently by copying θ. This target network is then
used to predict the target term maxa′ Qπ(s′, a′;θ−), ensuring that the prediction,
Qπ(s, a;θ), and the target remain uncorrelated. Thus, we obtain:

L =
1

n

n∑
i=1

(
ri + γmax

a′
Qπ(s′, a′;θ−)−Qπ(si, ai;θ)

)2
, (3.23)

where θ− indicates the frozen copy of θ and n the number of samples for the
batch update [60]. Finally we update the target network every few iterations,
θ− ← θ. The complete algorithm is described in Algorithm 3.
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3.4 Planning and learning

Having examined model-free algorithms such as Q-learning (Section 3.3.1), we
now turn to model-based RL. Unlike model-free approaches, model-based RL
algorithms require a model of the environment. While model-based methods
primarily use planning, and model-free methods focus on learning, they share
significant similarities. Both approaches focus on computing value functions, an-
ticipating future events, calculating backed-up values, and using these to update
approximate value functions.

In the context of model-based RL, a model of the environment refers to any
tool an agent can use to predict how the environment will respond to its actions.
Given a state s and an action a, a model forecasts the resulting next state s′

and reward r. Stochastic models present multiple possible outcomes, each with
an associated probability. To illustrate, in chess, this would be akin to a chess
engine that an agent can interact with to evaluate potential moves and their
consequences, allowing for strategic planning.

A family of algorithms, including AlphaGo, AlphaGo Zero, AlphaZero, and
MuZero algorithms, have emerged as promising candidates in model-based RL
to tackle complex decision-making tasks. AlphaGo [56] was the first computer
program to achieve superhuman performance in the game of Go, demonstrating
its ability to model and navigate the vast state space of the game. It defeated
world champion Lee Sedol in 2016, marking an important moment in AI history.
Building on this success, AlphaGo Zero [142] introduced the concept of zero-
knowledge learning, eliminating the need for external human knowledge. Unlike
its predecessor, AlphaGo Zero does not rely on expert game records to predict
moves. Instead, it constructs its environmental model solely through self-play,
learning from scratch. Experiments showed that this approach resulted in even
stronger play, with AlphaGo Zero decisively beating AlphaGo 100-0.

The success of zero-knowledge learning paved the way for broader applica-
tions. Without the need for domain-specific knowledge, self-play training could
be conducted across a wider class of games. This led to AlphaZero [48], which
demonstrated that the same approach could be extended to chess and shogi, beat-
ing the state-of-the-art programs in each game.

MuZero [143], the latest in this lineage, takes a significant leap forward. It
improves upon its predecessors by removing the need for explicit knowledge of
the task environment, including game rules and state transitions. By learning
additional representation and dynamics models, MuZero can plan ahead without
directly interacting with the environment. This allows it to master both board
games and Atari games, opening up the potential for extensions to complex real-
world scenarios where the rules or dynamics may not be explicitly known [144].

All of these algorithm rely on a combination of Monte Carlo tree search
(MCTS) and guidance by an NN. In the following, we will discuss in detail the
AlphaZero algorithm, which powers our final research project enabling efficient
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circuit routing.

3.4.1 AlphaZero

AlphaZero integrates MCTS with an NN for guidance. The network fθ, parame-
terized by θ, processes a state representation s and produces action probabilities
p and a value estimate v: (p, v) = fθ(s). For each available action a, pa = Pr(a|s)
represents its selection probability, while v estimates the game outcome. In the
context of two-player games, it estimates the current player’s winning probability
from state s.

The NN fθ guides the MCTS simulations in AlphaZero, as illustrated in Fig. 3.4.
Each tree edge (s, a) maintains a prior probability P (s, a), visit count N(s, a), and
action value Q(s, a). Simulations begin at the root, selecting moves that maximize
Q(s, a)+U(s, a), where U(s, a) ∝ P (s, a)/

(
1+N(s, a)

)
, upon reaching a leaf node

as depicted in Fig. 3.4(a). Once the leaf node is reached, the network evaluates
it once, producing

(
P (s′), V (s′)

)
= fθ(s′) [Fig. 3.4(b)]. Traversed edges update

their visit counts and action values, withQ(s, a) = 1/N(s, a)
∑

s,a→s′ V (s′), where
s, a→ s′ denotes a simulation path from s to s′ via action a [Fig. 3.4(c)]. In the
context of self-play, MCTS can be understood as an algorithm that generates
move recommendations. Given network parameters θ and a starting position s, it
calculates a probability vector π = αθ(s). Each move’s probability πa is propor-
tional to its visit count raised to a power: πa ∝ N(s, a)1/τ , where τ represents a
temperature parameter controlling exploration [Fig. 3.4(d)].

The NN in AlphaZero is trained through a self-play RL algorithm that em-
ploys MCTS for move selection. The process begins with random initialization
of network weights θ0. For each subsequent iteration i ≥ 1, self-play games are
generated as illustrated in Fig. 3.5(a). Importantly, while this framework is often
associated with two-player games, it can also be adapted for single-player scenar-
ios [137, 138]. At each time step t within a game, an MCTS search using the
previous iteration’s NN fθi−1

produces move probabilities πt = αθi−1
(st), from

which moves are sampled. Games conclude when predefined conditions are met,
such as both players passing, reaching a maximum game length, or any other stop-
ping criterion reasonable for the environment. Upon termination, a final reward
r is assigned. The algorithm stores data for each time step t as a tuple (st, πt, zt),
where zt represents the outcome of the game. In a two-player game, its the
winner; in the context of optimization tasks it is the terminal reward obtained.
Concurrently, as shown in Fig. 3.5(b), new network parameters θi are trained
using data (s, π, z) sampled uniformly from recent self-play iterations. The neu-
ral network fθi(s) = (p, v) is optimized to minimize the difference between the
predicted values v and the actual game results z, while maximizing the similarity
between the network’s move probabilities p and the MCTS-derived probabilities
π. This optimization is achieved through gradient descent on a loss function that
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(a) Selection

Q+U

Q+U

(b) Expand and evaluate

fθ = (p, v)

(c) Backup (d) Play

π = αθ

Figure 3.4: AlphaZero’s MCTS process: (a) Tree traversal selects edges maximiz-
ing Q+U , where U is based on prior probability P and visit count N . (b) In the
leaf nodes, the neural network fθ(s) evaluates position s, generating (P (s), V (s));
P values initialize new edges. (c) The Q values are updated to reflect the mean
evaluations in the subtrees. (d) The final search probabilities π are computed as
N1/τ , with N being the root move visit counts and τ controlling the exploration
temperature.

combines mean-squared error and cross-entropy losses:

(p, v) = fθ(s), l = (z − v)2 − π⊤ logp + c∥θ∥2. (3.24)

Here, c controls the level of L2 weight regularization [145, 146], introduced to
mitigate overfitting. This iterative process of self-play and network optimization
continues, progressively enhancing the NN’s ability to evaluate game states and
suggest strong moves across various scenarios [48].

This marks the end of our exploration of ML and RL methodologies. The
subsequent chapter will investigate how analogous concepts can be transferred
to quantum computers, where qubits replace classical bits as the computational
units.
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(a) Self-play
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p3 v3
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(b) Neural network training

Figure 3.5: Overview of the AlphaZero self-play framework. a) The program
played multiple games, illustrated by a sequence of positions si, i = 1, 2, . . . , T ,
with moves ai and final outcome z. Each move ai was determined by action
probabilities πi from the MCTS, guided by an NN. The network’s input is a
representation of the state si, outputting move probability vectors p for MCTS
and outcome estimates v for each position si. b) Network training used randomly
sampled steps from recent self-play games. Weights were updated to align policy
vector p with the MCTS probabilities π, and to incorporate the outcome z in
estimates v.





Chapter 4
Quantum machine learning

Up to this point, we have examined various ML approaches, including supervised
and unsupervised learning tasks, where the goals are to predict based on labels,
estimating specific values, or identifying patterns within data. These algorithms
typically run on accelerator devices such as graphics processing units (GPUs).
Near-term quantum computers may be used in a similar manner, acting as accel-
erators for learning problems.

The branch of quantum technologies dedicated to these algorithms is known as
quantum machine learning (QML). Its goal is to use quantum hardware instead of
classical accelerators such as GPUs. A promise of QML is its ability to enhance
the capabilities of ML algorithms by leveraging the laws of quantum physics,
addressing problems that are simply too complex for classical computers. In the
rest of the chapter, we focus on a type of QML algorithm that is at its core similar
to classical ML algorithms: variational quantum algorithms (VQAs).

This chapter begins with an introduction to VQAs, followed by a detailed de-
scription of a specific algorithm, the quantum approximate optimization algorithm
(QAOA). We then explore the application of gradient-based optimization meth-
ods, a framework introduced in Chapter 2, to these quantum algorithms, which
is central to our work in Paper C. The chapter concludes with an introduction to
the Ising model, a key component of Paper B.

4.1 Variational quantum algorithms

VQAs are a class of hybrid quantum-classical algorithms that have emerged to
run on the current generation of noisy intermediate-scale quantum (NISQ) de-
vices [15, 22, 147]1. Many experimental proposals for NISQ devices involve train-

1In this context, intermediate-scale refers to the size of quantum computers with 50 to a
few hundred qubits. “Noisy” implies that we cannot protect the system well against losses and
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Input: Objective Ô & θ0

QPU

...
...Param. quantum

circuit Û(θ)

X

Rx(θ)

H

Y

Measure

〈ψ(θ)|Ô|ψ(θ)〉

CPU

Classical
optimizer

Update parameters θ

Quantum-classical loop

Output: Optimum L(θ∗)

Figure 4.1: A diagrammatic representation of a VQA consists of three main ele-
ments: an objective function that defines the problem to be solved, a PQC Û(θ)
in which parameters θ are adjusted to minimize the objective, and a classical
optimizer that performs this minimization. The inputs for a VQA are the circuit
ansatz and initial parameter θ0 values, while the outputs are the optimized param-
eter values θ∗ and the minimum value of the objective function, ⟨ψ(θ)| Ô |ψ(θ)⟩.

ing a closed-loop optimization between a quantum device and a classical computer.
Such hybrid quantum-classical algorithms are popular for chemistry [77–79], op-
timization [38–42], and machine learning [24, 27, 28, 30, 80] applications.

The first step is to define a loss (or energy) function L, which encodes the
problem. Next, one proposes an ansatz, i.e., a quantum operation depending on
a set of continuous or discrete parameters θ that can be optimized. This ansatz
is analogous to the NN functions described in Chapter 2, with the key difference
being its execution on a QPU rather than a GPU. This ansatz is then optimized
in a hybrid quantum-classical loop (see Fig. 4.1) to solve the optimization task

θ∗ = argmin
θ
L(θ) . (4.1)

This optimization task poses several requirements for the classical optimizer.
Specifically, the optimizer must identify solutions in the presence of noise and
scale favorably with the number of variational parameters, i.e., the running time
must not increase exponentially as the number of parameters increases. In ad-
dition, the classical optimizer should be able to locate good parameter settings
while limiting the number of queries it sends to the QPU. It is not surprising
that classical optimizers have been widely explored given all these requirements.
To this end, several optimization algorithms ranging from classical noise-resilient

errors, which will lead to severe limitations in near-term quantum devices. We discuss the aspect
of errors in quantum systems in Chapter 6.
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Objective

Update variational parameter

0
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0

Figure 4.2: A schematic illustration of the QAOA, visualizing the interplay be-
tween the quantum device and the classical computer. The quantum computer
implements a variational state formed by applying p parameterized layers of oper-
ations. Each layer has operations involving the cost Hamiltonian HC and a mixing
Hamiltonian HM , weighted by the angles γ and β, respectively. Measurements of
the variational state and calculations of its resulting energy are used to guide the
classical optimizer, which minimizes the energy in a closed-loop optimization.

algorithms [148–153] to machine-learning approaches [154–161] have been sug-
gested.

However, there exists a large class of quantum circuit ansätze where the loss-
function landscapes concentrate exponentially towards their mean value as the
system size grows. On such landscapes, exponential resources are required for
training, prohibiting the successful scaling of variational quantum algorithms.
This phenomenon, known as barren plateaus [22, 162–170], points to a crucial
design principle for variational quantum models; restrict the circuit ansatz to a
relevant subspace of the Hilbert space. While this can be difficult, it is essential
when barren plateaus hinder the optimization process.

4.1.1 Quantum approximate optimization algorithm

Among VQAs, a prominent algorithm is the quantum approximate optimiza-
tion algorithm (QAOA), which we studied for a particular optimization problem
in Paper B. As a hybrid quantum-classical algorithm, the QAOA combines quan-
tum and classical processing in a closed-loop optimization, illustrated in Fig. 4.2.
This figure showcases the algorithm’s various components and the building blocks
that constitute the quantum circuit. The quantum subroutine, operating on n
qubits, consists of a consecutive application of two non-commuting operators de-



44 Quantum machine learning

fined as

U(γ) ≡ e−iγHC γ ∈ [0, 2π] , (4.2)

U(β) ≡ e−iβHM =

n∏
j=1

e−iβXj β ∈ [0, π] . (4.3)

The Xj operation is analogous to the classical NOT gate on qubit j. It changes
the |0⟩ state to the |1⟩ state, and vice versa. The operator U(γ) gives a phase
rotation to each computational basis state based on its associated cost, while the
mixing term U(β) creates superpositions of these states. We call U(γ) the phase-
separation operator with HC the cost Hamiltonian (detailed in Section 4.3) and
U(β) the mixing operator with HM the mixing Hamiltonian. The bounds for γ
and β are valid if HC has integer eigenvalues [171].

The initial state for the algorithm is a superposition of all possible compu-
tational basis states. This superposition can be obtained by first preparing the
system in the initial state |0⟩⊗n

= |00 . . . 0⟩ for all qubits and then applying the
Hadamard gate on each qubit:

(
H̃ |0⟩

)⊗n

=

( |0⟩+ |1⟩√
2

)⊗n

≡ |+⟩⊗n
, (4.4)

where ⊗ denotes the tensor product and H̃ the Hadamard gate.

For any integer p ≥ 1 and 2p angles γ1 . . . γp ≡ γ and β1 . . . βp ≡ β, we define
the angle-dependent quantum state

|γ, β⟩ = U(βp)U(γp) . . . U(β1)U(γ1) |+⟩⊗n
. (4.5)

The quantum circuit parameterized by γ and β is then optimized in a closed loop
using a classical optimizer. The objective is to minimize the expectation value of
the cost Hamiltonian HC [171], i.e.,

(γ∗, β∗) = argmin
γ,β

E(γ, β) , (4.6)

E(γ, β) = ⟨γ, β|HC |γ, β⟩ . (4.7)

To provide context for the cost Hamiltonian, Section 4.3 introduces the Ising
model and illustrates its application in formulating combinatorial optimization
problems. The problem of calculating the energy of 2#q (#q denotes the number of
qubits) possible bitstrings (solutions) is thus reduced to a variational optimization
over 2p parameters. For a detailed description, see Algorithm 4.
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Algorithm 4 Quantum approximate optimization algorithm

1: Input cost Hamiltonian, HC , mixer Hamiltonian, HM , and layers, p.
2: Construct the circuits U(γ) = e−iγHC and U(β) = e−iβHM .
3: Build the state

|γ,β⟩ = U(βp)U(γp) . . . U(β1)U(γ1) |+⟩⊗n
.

4: while Optimization (e.g. Nelder-Mead) of ⟨γ, β|HC |γ, β⟩ do
5: for number of shots do
6: Sample variational quantum state, |γ,β⟩
7: Record measurement outcome
8: end for
9: Calculate E(γ, β)

10: Use optimization routine to propose new γ,β with information E(γ, β)
11: end while
12: return the final parameters γ, β and energy of the cost function E(γ, β)

4.2 Optimizing variational parameters

The classical computer’s role is to iteratively adjust the parameters from an initial
guess θ0 to minimize the cost function. While this process mirrors the optimiza-
tion of classical NNs discussed in Chapter 2, the quantum nature of VQAs presents
unique challenges. Unlike classical NNs, where backpropagation efficiently com-
putes gradients, quantum circuits do not allow for direct differentiation due to
their probabilistic nature and the no-cloning theorem.

To address this, various methods have been developed for estimating gradients
in quantum circuits. These include finite-difference methods, linear combinations
of unitaries [172], and the parameter-shift rule [173, 174]. The latter evaluates the
cost function at two shifted parameter positions, using their rescaled difference as
an unbiased gradient estimate.

Given these gradient estimates, we can employ gradient descent (GD), apply-
ing the update rule θk+1 = θk − η∇Lk. Here, η ∈ R+ is the step size controlling
parameter changes per iteration, and ∇Lk ≡ ∇L(θk) denotes the cost function
gradient at the kth iteration. The optimization process terminates when the
gradient norm ∥∇Lk∥2 approaches zero, indicating a stationary point.

The limitations of these gradient estimation techniques motivate the explo-
ration of advanced optimization strategies for VQAs. In Paper E, we delve into
these challenges, proposing novel solutions to enhance the efficiency and effective-
ness of VQA optimization.
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4.2.1 Metric-informed optimization

VQAs utilize a parameterization of the wave function where the parameters rep-
resent the phases of unitary gates acting on an input state. A small change in a
parameter δθi not only affects the observable of interest, as used by GD, but also
impacts the associated metric ⟨ψ(δθj)|ψ(δθi)⟩. This additional information can
help determine a more effective direction for the optimization trajectory. Two
prominent metric-informed optimization strategies are quantum imaginary time
evolution (QITE) and quantum natural gradient (QNG).

QITE [175–178] is based on the Wick-rotated (τ = it) [179] imaginary-time
Schrödinger equation

∂ |Ψ(τ)⟩
∂τ

= −Ĥ |Ψ(τ)⟩ (4.8)

or |Ψ(τ + ∆τ)⟩ = N(τ)−1e−∆τĤ |Ψ(τ)⟩ , (4.9)

with N(τ) =

√
⟨Ψ(τ)| e−2∆τĤ |Ψ(τ)⟩ (4.10)

and is a quantum algorithm finding the ground and excited states [180] of a
quantum system. It is a variation of the imaginary time evolution algorithm [181–
184], a well-established method in classical computational physics to determine the
ground state of a system. The iterative application of the exponential operator
with sufficiently small time steps ∆τ [183] exponentially damps higher energy
contributions, leading to convergence to the ground state |Ψ0⟩, provided the initial
state |Ψ(0)⟩ has a non-zero overlap with the ground state [175, 176]. However,

since e−∆τĤ is not unitary, directly implementing imaginary time evolution (ITE)
on quantum hardware is not straightforward.

One approach is to convert QITE into a hybrid quantum-classical variational
form (VarQITE) [176, 177] (Fig. 4.1), where the target state |Ψ(τ)⟩ is encoded
by a PQC. This is expressed as |ψ(θ(τ))⟩ = Û(θ(τ)) |ψ0⟩ and the time evolution
is translated to the parameters θ(τ) of the variational ansatz. The update rule
for the parameters θk for the next iteration k + 1 at (imaginary) time τ + ∆τ
is obtained by applying McLachlan’s variational principle [185] to Eq. (4.8), aim-
ing to minimize the discrepancy between the time evolution of the ansatz state
|ψ(τ)⟩ ≡ |ψ(θ(τ))⟩ to the exact imaginary time evolution

δ∥
(
∂/∂τ + Ĥ − Eτ

)
|ψ(τ)⟩∥2 = 0, (4.11)

where ∥|ψ⟩∥2 =
√
⟨ψ|ψ⟩ is the 2-norm of a quantum state |ψ⟩ and Eτ = ⟨ψ(τ)| Ĥ |ψ(τ)⟩

is the expected energy at time τ . By solving Eq. (4.11) we obtain the imaginary-
time derivative of the parameters,

∂θ

∂τ
= −2 F−1∇L, (4.12)
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where F is the quantum Fisher information matrix (QFIM) and ∇L the cost
gradient. Eq. (4.12) enables the parameter updates for the next iteration. With
a fixed time-step ∆τ and the Euler method, this becomes

θk+1 = θk + ∆τ
∂θ

∂τ
= θk −

∆τ

2
F−1

k ∇Lk, (4.13)

or higher-order methods [186]. Here, ∆τ is equivalent to the step size, η, in the
GD update rule (see Chapter 2). The elements of the QFIM are given by

Fij = 4Re
[〈
∂θiψ|∂θjψ

〉
− ⟨∂θiψ|ψ⟩

〈
ψ|∂θjψ

〉]
, (4.14)

where, ∂θi ≡ ∂
∂θi

. The QFIM F represents the complex geometry of the parameter

space [187, 188] and acts as the quantum equivalent of the classical Fisher infor-
mation matrix. This matrix is the unique Riemannian metric tied to a probability
density function [189–191].

QNG [192] is another metric-informed optimization technique based on the
principles of natural gradient descent by Amari et al. [189, 193–196], originally
designed for optimizing NNs. Similar to VarQITE, the natural gradient takes into
account the geometry of the function’s parameter space and is calculated using
the inverse of the QFIM [197, 198]. Therefore, employing QNG leads to steps
that are better aligned with the geometry of the parameter space, enabling faster
convergence, the ability to cross local minima, and helping the algorithm escape
regions with vanishing gradients [163, 192, 199–203].

The primary disadvantage of QFIM and QNG is that computing the entire
QFIM for an ansatz with nθ parameters is computationally intensive and requires
measuring O(n2θ) terms in every iteration.

Approximating the metric

Due to the expensive computation of the QFIM, several approximations have
been suggested, such as the (block-) diagonal approximation proposed by Stokes
et al. [192], reduce the scaling to linear in the number of parameters by discarding
the off-diagonal elements [199].

Another approximation is based on the assumption that the QFIM varies
slowly as the parameter space is traversed. This allows to update the metric Bk

between steps using a rank-1 perturbation based on the current gradient:

Bk+1 = (1− εk)Bk + εk∇Lk∇L⊤
k , (4.15)

where εk is a learning rate that decays over time and ∇Lk ≡ ∇L(θk).
To avoid inverting Bk+1 at each step, using the Sherman-Morrison formula to

update its inverse directly:

B−1
k+1 =

[
1− εkB

−1
k ∇Lk∇L⊤

k

1− εk(1−∇L⊤
k B

−1
k ∇Lk)

]
B−1

k

1− εk
(4.16)
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and therefore maintaining positive semi-definiteness of the metric, reduces the
number of necessary circuit evaluations.

While this approximation method can improve computational efficiency, it
may lose some of the theoretical convergence guarantees associated with ex-
act QITE. This approximation is a key component in the optimizer introduced
in Paper C.

4.3 The Ising model

Our earlier discussion of VQAs highlighted the role of the cost Hamiltonian Hc

in capturing the details of the optimization problem. To bridge the gap be-
tween classical combinatorial optimization problems and quantum algorithms, we
must represent these problems in a manner that quantum devices can interpret
and manipulate. This section introduces the Ising model as a tool for recast-
ing optimization problems into quantum variables, which is central to the work
in Paper B.

4.3.1 A model to describe magnetism

The Ising model, introduced in the mid-1920s by Ernst Ising and Wilhelm Lenz, is
one of the most influential models in physics. Originally conceived to explain mag-
netic materials, the method has found applications far beyond its initial scope [38–
41, 154, 204–207]. At its core, the Ising model represents a magnetic material as
an assembly of interacting atomic spins.

In this model, each atom possesses a spin si ∈ {−1,+1}, which can align or
anti-align with an applied magnetic field. The spins interact with each other,
creating a complex network of interactions. The energy of a spin configuration s
is given by

E(s) =
∑
i,j′

Jijsisj +
∑
i

hisi ≡ ⟨s,Js⟩+ ⟨h, s⟩. (4.17)

Here, hi represents the strength of the applied field at atom i, while Jij denotes
the interaction strength between spins i and j. At low temperatures, the system
favors low-energy states. A positive Jij promotes anti-alignment of neighboring
spins (sisj = −1), whereas a negative Jij encourages alignment (sisj = 1).

Its versatility has led to its adoption in modeling a wide array of physical sys-
tems, which extends far beyond its original domain. The model’s framework can
describe any system composed of pairwise-interacting independent elements. This
adaptability makes it an ideal candidate for representing various computational
problems, including NP-complete ones, which we will explore in the next section.
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4.3.2 Ising model for some NP-complete problems

As discussed, the versatility of the Ising model extends to representing complex
computational challenges, particularly NP-complete problems. These problems
are characterized by the absence of known polynomial-time algorithms for their
solution, despite the ability to quickly verify a proposed solution [208, 209]. The
ability to map NP-complete problems to the Ising model opens up possibilities for
utilizing quantum annealing and other quantum optimization techniques. Next,
we will explore how some NP-complete problems, including the heterogeneous
vehicle routing problem (HVRP) considered in Paper B, can be formulated within
the Ising framework.

Knapsack problem

The knapsack problem, a classic optimization challenge with applications span-
ning logistics and finance [210, 211], exemplifies the complexity of resource allo-
cation. Consider a set of N objects, each with an integer weight wi and value
ci. Given a knapsack with maximum capacity W , the goal is to select items that
maximize total value C while keeping total weight W within capacity. Formally,
we seek to optimize:

C =

N∑
i=1

cixi subject to W =

N∑
i=1

wixi ≤W, (4.18)

where xi ∈ 0, 1 indicates item inclusion. This NP-hard problem [212, 213] ele-
gantly captures the essence of constrained optimization.

The knapsack problem can be mapped onto an Ising model. Following Lu-
cas [213], we introduce binary variables zn for 1 ≤ n ≤W , where zn = 1 indicates
that the final weight of the knapsack is n. The problem is then formulated as
minimizing a Hamiltonian H = HA +HB , where:

HA = A

(
1−

W∑
n=1

zn

)2

+A

(
W∑
n=1

nzn −
N∑
i=1

wixi

)2

, (4.19)

HB = −B
N∑
i=1

cixi . (4.20)

Here, HA enforces the problem constraints, while HB represents the optimization
objective. To make sure that the hard constraint is not violated, we require
0 < max(|HB |) < A [214].

Traveling salesperson problem

The travelling salesperson problem (TSP) seeks the shortest path between a series
of cities. Formally, given a graph G = (V,E), where vertices represent cities and
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edges denote routes, with associated weights Wij , the goal is to find a minimum-
weight Hamiltonian cycle [213], i.e., a cycle that visits each vertex once. The Ising
formulation encodes this problem as a Hamiltonian H = HA +HB , where

HA = A

N∑
i=1

(
1−

N∑
α=1

yiα

)2

+A

N∑
α=1

(
1−

N∑
i=1

yiα

)2

(4.21)

+A
∑

(i,j)/∈E

N∑
α=1

yiαyjα+1, (4.22)

HB = B
∑

(i,j)∈E

Wij

N∑
α=1

yiαyjα+1. (4.23)

Here, N = |V | is the number of nodes, A and B are positive constants, satisfying
0 < max(|HB |) < A, and W encodes the distances between the nodes. The index
i represents the nodes and α the order in a prospective cycle. The binary variables
yiα can be referred to as “routing variables” indicating in which order of the cycle
node i is visited. There are N2 variables, with yi,N+1 ≡ yi,1 for all i, such that
the route ends where it starts [213].

The heterogeneous vehicle routing problem

The vehicle routing problem (VRP), an extensively studied combinatorial opti-
mization problem, focuses on determining the optimal route design for a fleet
of vehicles serving multiple customers. Since its formalization by Dantzig and
Ramser in 1959 [215], the VRP has spawned hundreds of research papers ex-
ploring exact and approximate solutions for its numerous variants. Among these
variants is the HVRP, introduced by Golden et al. [216], which considers a fleet
of vehicles with varying capacities and costs for distribution activities.

The HVRP can be formulated as follows [217]. Consider a complete graph
G = (N , E), where node 0 represents a single depot housing a fleet of vehicles.
The set of nodes N = {0, . . . , n} includes the depot and n customers, with the
customer set defined as N0 = N \ {0}. The set of edges E = {(i, j) : 0 ≤ i, j ≤
n, i ̸= j} connects all nodes. Each customer i has a positive demand qi. The
vehicle fleet consists of k types, represented by the set V = {1, ..., k}, with mv

vehicles available of each type v ∈ V.
Delivering goods to meet customer demands involves various costs and con-

straints. These include the fixed vehicle cost tv, which is independent of the
distance traveled by a vehicle of type v and depends on factors such as power-
train, trailer, and engine type. Another consideration is the vehicle capacity Qv,
noting that different vehicle types may have the same capacities but vary in other
aspects, such as powertrain [218]. Additionally, there’s the distance-dependent
cost cvij , representing the cost of traveling on edge (i, j) with a vehicle of type
v, including fuel and powertrain-related expenses. Binary variables xvij are used,
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where 1 indicates that a vehicle of type v travels on edge (i, j), and 0 otherwise.
Furthermore, we denote by fvij the amount of goods that are leaving node i to go
to node j using truck of type v, while the amount of goods entering the node is
denoted fvji.

Using this notation, the HVRP is to minimize the cost

Ctot =
∑
v∈V

∑
j∈N0

tvxv0j +
∑
v∈V

∑
(i,j)∈E

cvijx
v
ij , (4.24)

subject to the constraints∑
j∈N0

xv0j ≤ mv v ∈ V , (4.25)

∑
v∈V

∑
j∈N

xvij = 1 i ∈ N0 , (4.26)

∑
v∈V

∑
i∈N

xvij = 1 j ∈ N0 , (4.27)∑
j∈N0

xvj0 =
∑
j∈N0

xv0j v ∈ V , (4.28)

∑
v∈V

∑
j∈N

fvji −
∑
v∈V

∑
j∈N

fvij = qi i ∈ N0 , (4.29)

qjx
v
ij ≤ fvij ≤ (Qv − qi)xvij (i, j) ∈ E , v ∈ V , (4.30)

xvij ∈ {0, 1} (i, j) ∈ E , v ∈ V , (4.31)

fvij ≥ 0 (i, j) ∈ E , v ∈ V . (4.32)

The objective function in Eq. (4.24) is the sum of the fixed vehicle cost for the
vehicles used to deliver goods and the total (variable) travel cost for those vehicles.
Constraint Eq. (4.25) ensures adherence to the availability limits of vehicle types.
Equations (4.26) and (4.27) guarantee that each customer is served exactly once,
while Eq. (4.28) ensures all vehicles return to the depot after completing deliveries.
The proper flow of goods to meet the demands of the customers is enforced by
constraints (4.29) and (4.30). Lastly, equations (4.31) and (4.32) impose binary
and non-negativity restrictions on the variables, respectively.

By integrating the Ising models presented in Section 4.3.2 and Section 4.3.2
with our mathematical description of the HVRP, we can construct an Ising model
for the HVRP. This approach, similar to formulations described in [219, 220],
involves two steps. First, we extend the TSP formulation to encompass the VRP.
Subsequently, we incorporate a capacity constraint inspired by the Knapsack Ising
formulation to complete the HVRP model.

The original Ising formulation of the TSP employs binary variables yiα to
denote the order in which city i is visited in the cycle. In contrast, the HVRP
mathematical formulation uses decision variables xij , where 1 indicates a vehicle
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traverses edge ij, and 0 otherwise. To reconcile these approaches and integrate
the TSP Ising model with the HVRP formulation presented in Eqs. (4.24)–(4.32),
we need to establish a mapping from the y variables to the x variables. The map
we use is

xvij =

N0−1∑
α=1

yviαy
v
jα+1 , (4.33)

xv0i = yvi1 +

N0∑
α=2

1−
N0∑
j=1
j ̸=i

yvjα−1

 yviα , (4.34)

xvi0 = yviN0
+

N0−1∑
α=1

yviα

1−
N0∑
j=1
j ̸=i

yvjα+1

 . (4.35)

The summation in Eq. (4.33) is non-zero only if nodes i and j are consecutive
stops on the same route. Equations (4.34) and (4.35) guarantee that the initial
and final stops are automatically linked to the depot (assuming there is only one
depot). It is important to note that index 0 refers to the depot, while index 1
represents the first city (node) in the sequence of cities (nodes).

We can now express the Ising formulation for the routing problem. Let V =
|V| represent the total number of trucks, where V refers to the set of vehicles
selected for optimization (as opposed to vehicle types). Additionally, letN0 = |N0|
denote the number of customers to be visited. In this formulation, the indices v
correspond to a specific truck of a particular type, rather than just a vehicle type.
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The Ising Hamiltonian we arrive at is then

H = HA +HB +HC +HD , (4.36)

HA = A

V∑
v=1

N0∑
i=1

N0∑
j=1

cvij

N0−1∑
α=1

yviαy
v
jα+1 (4.37)

+A

V∑
v=1

N0∑
i=1

cv0i

yvi1 +

N0∑
α=2

1−
N0∑
j=1
j ̸=i

yvjα−1

 yviα

 (4.38)

+A

V∑
v=1

N0∑
i=1

cvi0

yviN0
+

N0−1∑
α=1

yviα

1−
N0∑
j=1
j ̸=i

yvjα+1


 , (4.39)

HB = B

N0∑
j=1

V∑
v=1

tv
N0∑
α=2

(
1−

N0∑
i=1

yviα−1

)
yvjα , (4.40)

HC = C

N0∑
i=1

(
1−

N0∑
α=1

V∑
v=1

yviα

)2

, (4.41)

HD = D

N0∑
α=1

(
1−

N0∑
i=1

V∑
v=1

yviα

)2

. (4.42)

The Hamiltonian H in Eq. (4.36) is composed of different parts. Here, HA in
Eq. (4.39) captures the first part of the original mathematical formulation, i.e.,
the minimization of the variable cost. The first term estimates the variable cost for
traveling between the different customers/cities, while the second and third terms
measure the cost of leaving and arriving at the depot. For this particular mapping,
it is necessary to define the set of vehicles used for the optimization beforehand.
Therefore, we can neglect the inequality constraint defined in Eq. (4.25) from the
original formulation, which ensures that the number of vehicles of a specific type
does not exceed the number of available vehicles. Similarly, HB in Eq. (4.40)
estimates the fixed costs of each vehicle leaving the depot [see Eq. (4.24)]. Note
that the prefactors A and B must be equal in order not to rescale the relative
fixed versus variable costs. The constraint given by HC in Eq. (4.41) ensures that
each city is visited exactly once. Furthermore, HD in Eq. (4.42) guarantees that
each city has a unique position in the cycle and that not more than one city can
be traveled to at the same time. We require 0 < max(HA+HB) < C,D, to satisfy
the constraints.

The decision variables yvij are positioned as shown in Fig. 4.3. It helps us un-
derstand what the different constraints enforce. Consider Eq. (4.41) and Eq. (4.42),
summing over all indices v and i, ensuring that each column and row contains a
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y31,1 y31,2 y31,3 · · · y31,N0

y32,1 y32,2 y32,3 y32,N0

y33,1 y33,2 y33,3 y33,N0

...
. . .

y3N0,1
y3N0,2

y3N0,3
y3N0,N0

y21,1 y21,2 y21,3 · · · y21,N0

y22,1 y22,2 y22,3 y22,N0

y23,1 y23,2 y23,3 y23,N0

...
. . .

y2N0,1
y2N0,2

y2N0,3
y2N0,N0

y11,1 y11,2 y11,3 · · · y11,N0

y12,1 y12,2 y12,3 y12,N0

y13,1 y13,2 y13,3 y13,N0

...
. . .

y1N0,1
y1N0,2

y1N0,3
y1N0,N0 V

α

i

1

Figure 4.3: Visualization of the decision variables yvij in the Ising formulation of
the routing problem.

single non-zero element. This is important since a valid solution must visit each
city exactly once.

Next, we focus on the capacity constraints described by the HVRP. The ca-
pacity constraint is of a similar nature as the constraints for the knapsack problem
— both are described by an inequality constraint, which for the knapsack problem
is not to add too many items to the knapsack and for the capacity problem not
to overload the vehicles. Therefore, we can use the formulation given in Ref. [213]
to model the inequality constraint introduced by the capacities.

We can make use of the inequality constraint given in the knapsack formulation
[Eq. (4.19)] to encode the capacity constraints for the HVRP. Therefore, we can
neglect HB [see Eq. (4.20)] and only consider HA [see Eq. (4.19)]. Let Qv be the
maximum capacity of vehicle v. The Hamiltonian then becomes

HE = E
∑
v

(
1−

Qv∑
k=0

zvk

)2

+ E
∑
v

 Qv∑
k=0

k · zvk −
∑
α,i

qiy
v
iα

2

. (4.43)

We can now combine the Ising model for the routing and capacities into one
unifying Hamiltonian:

HC = HA +HB +HC +HD +HE . (4.44)

For the terms HA to HE , see Eqs. (4.39)–(4.42) and (4.43) [214].
This concludes our exploration of QML methods. While these algorithms

demonstrate the potential of quantum computing, their practical implementation
hinges on efficient compilation to target devices. This process of transforming
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abstract quantum algorithms into optimized circuits tailored for specific quantum
architectures is the focus of QCO, which we will explore in depth in the next
chapter.





Chapter 5
Quantum circuit
optimization

Up to this point, we have explored various quantum computing concepts, from
basic principles to near-term algorithms, such as VQAs. Referring back to the
quantum computing stack introduced in Fig. 1.2, our focus has been primarily on
the algorithm layer. Now, we descend to the QIR layer, bridging the gap between
high-level algorithms and their actual implementation on quantum hardware.

This transition is analogous to the compilation process in classical comput-
ing, where high-level programming languages are translated into machine code.
While classical compilers efficiently optimize code for specific hardware architec-
tures, QCO performs a similar yet more complex role for quantum circuits. The
additional layers of complexity in QCO stem from the unique constraints and
characteristics of quantum systems.

These constraints often include limited qubit connectivity and platform-specific
native gate sets, which can differ even across quantum processors based on the
same technology, such as superconducting qubits. As a result, compiling high-
level quantum algorithms into low-level instructions becomes more challenging,
requiring the optimizer to account for qubit routing and the gates supported by
the hardware. Although various hardware platforms face unique challenges, we
focus specifically on the compilation process for superconducting qubits.

In the context of superconducting qubits, QCO involves solving a set of inter-
connected problems, such as initial qubit allocation, circuit routing (to facilitate
interactions between non-adjacent qubits), and gate compression (to minimize
the total gate count and circuit depth). Each of these subproblems presents its
own set of challenges, often falling into the category of NP-hard optimization
tasks [221].

In this chapter, we cover the fundamental components of QCO, including key
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circuit representations essential for optimization. We examine each subproblem,
with a particular focus on qubit routing, which is the primary challenge addressed
in the final research project. Finally, we discuss how these elements come together
in the overall QCO process.

5.1 Quantum circuit optimization pipeline

The process of QCO involves several interconnected steps, transforming an ab-
stract quantum algorithm into an optimized circuit tailored for a specific quantum
hardware.

• Abstract algorithm representation: The QCO process begins with an
abstract quantum algorithm, often expressed as a series of unitary oper-
ations. For instance, the QAOA variational state can be represented as
U(βp)U(γp) . . . U(β1)U(γ1) |+⟩, as displayed in Fig. 4.2.

• Initial circuit decomposition: The abstract representation is decom-
posed into a sequence of quantum gates. At this stage, we assume ideal
conditions with full qubit connectivity, allowing any qubit to interact with
any other without restrictions, thus violating some of the hardware con-
straints. We refer to the qubits in this representation as virtual ones.

• Native gate set adaptation: The circuit is then translated into the native
gate set of the target quantum hardware. A native gate set typically consists
of a universal set of quantum gates, often composed of just single- and two-
qubit gates, which are sufficient to perform any quantum computation [7].
This step ensures that all operations can be physically implemented on the
specific hardware device.

• Qubit allocation: Virtual qubits from the circuit are mapped to physical
qubits on the hardware. This step takes into account factors like qubit
quality and connectivity. Qubit quality refers to several characteristics, such
as coherence time (the duration a qubit can maintain its quantum state),
or gate fidelity (the accuracy of operations performed on the qubit) [222].

• Qubit routing: Given the hardware’s connectivity constraints, additional
operations (often SWAP gates) are inserted to enable interactions between
non-adjacent qubits. This problem is related to token swapping, known to
be NP-hard [221].

• Circuit compression: The final step involves reducing the circuit depth
and gate count while preserving the algorithm’s functionality. This often
includes applying circuit identities and cancelling redundant operations.
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It is important to note that these steps are not always executed in a strictly linear
fashion. Different approaches to solving the QCO problem may vary in the order
of execution, often combining or repeating steps in unique ways.

The complexity of QCO stems from the interplay between these steps. For
instance, the initial qubit allocation significantly impacts the subsequent routing
problem, while the choice of native gates can affect the possibilities for circuit
compression. Moreover, many of these subproblems, such as qubit allocation and
optimal routing, are computationally hard, often falling into NP-hard complexity
classes [221].

5.2 Quantum circuit representation

In order to tackle the problem of QCO, it is important to work with an effective
encoding for quantum circuits. Finding such an encoding that enables QCO is a
non-trivial task. The challenge is compounded by hardware-specific constraints,
such as limited qubit connectivity, which requires mapping from virtual to physical
qubits. This mapping increases both the complexity of the problem and the
amount of information needed to find a suitable state representation.

5.2.1 Standard circuit diagram

A quantum circuit is a model for quantum computation, analogous to classical
circuits. The circuit model contains several key elements as depicted in Fig. 5.1.
First are the qubits, represented by horizontal lines. Next, the state preparation or
initial operations to set up the desired quantum state followed by gate operations
are represented by boxes on qubit lines for single-qubit gates, or vertical lines
connecting boxes for multi-qubit gates. Finally, the measurements are, depicted
at the end of qubit lines; these operations read out the final quantum state.

The standard circuit diagram provides an intuitive visualization of the quan-
tum algorithm, showing the sequence of operations from left to right. It illustrates
which qubits are involved in each operation and the order of gate applications.
While this representation is widely used, it has limitations for optimization tasks,
particularly in capturing gate commutations and hardware constraints. As cir-
cuits become more complex, this representation can become difficult to analyze
algorithmically. These limitations motivate the need for alternative representa-
tions, such as the directed acyclic graph (DAG) representation, which we discuss
next.

5.2.2 Directed acyclic graph (DAG)

The circuit representation of a quantum computation (a large unitary matrix
decomposed into single and multi-qubit interactions allowed by the target hard-
ware) is usually not unique since various gates may commute. For example, the
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|0⟩ H • • • • Rx(θ)

|0⟩ H • • • • Rx(θ)

|0⟩ H • • • • Rx(θ)

|0⟩ H • • • • Rx(θ)

Figure 5.1: Quantum circuit diagram. Qubits, depicted as horizontal lines, un-
dergo a series of operations from left to right. The circuit structure includes initial
state preparation, followed by quantum gates (boxes for single-qubit operations,
vertical lines for multi-qubit interactions), and concludes with measurement op-
erations to extract the final quantum state.

two circuits represented in Fig. 5.2(a) and Fig. 5.2(b) implement the same unitary
operation. For some applications it is desirable to work with a representation of
quantum circuits that does not change under pairwise commutation of gates, as
shown in Fig. 5.2(c) [223, 224].

This form of a quantum circuit is a directed acyclic graph (DAG) with the
following properties. Vertices in the graph correspond to individual gates in the
circuit. The graph has an edge i → j from vertex i to vertex j if, by repeatedly
interchanging commuting gates, one can bring gate i immediately to the left of
gate j, but gates i and j themselves do not commute. Figure 5.2 illustrates
this concept with an example circuit, its commuted equivalent, and the resulting
canonical form. For any circuit its canonical form can be efficiently computed with
an algorithm whose worst-case complexity scales quadratically in the number of
gates [224].

1 2 3 4
qubit 1 • • Z

qubit 2 •
qubit 3 •

(a) Circuit C

3 2 1 4
Z • •

•
•

(b) Commuted circuit C

1

2

3 4

(c) Canonical form of C

Figure 5.2: Illustration of quantum circuit equivalence. (a) Initial circuit design,
(b) restructured circuit with interchanged commuting gates, and (c) canonical
representation, invariant under pairwise gate commutations. From Ref. [223].
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x0 x1

x2 x3

(a) Coupling graph


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


(b) Adjacency matrix


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


(c) Degree matrix

2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2


(d) Laplacian matrix


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1


(e) Edge incidence matrix

Figure 5.3: Different representations and properties of the coupling map. (a) The
coupling graph shows the connectivity between the different physical qubits. Each
qubit is connected to two other qubits. (b) The adjacency matrix form A is a
commonly used representation for graphs. (c) The degree matrix D indicates the
number of edges attached to each vertex. (d) The Laplacian matrix defined as
L = D − A is another commonly used representation of a graph. (e) The edge
incidence matrix is useful for directed graphs since it encodes the direction of the
connection. Each column represents a different edge and each row represents a
specific node in the graph.

5.2.3 Hardware representation

The physical constraints of quantum hardware play a crucial role in QCO. These
constraints, particularly qubit connectivity for superconducting architectures, are
typically represented as graphs. Figure 5.3(a) shows an example of such a coupling
graph. Several mathematical representations can capture the structure of these
hardware graphs.

A common representation for graphs is as an adjacency matrix A. The adja-
cency form for the coupling graph is shown in Fig. 5.3(b). This form does not
contain any information about the direction of the edges. This can be a problem
since certain hardware devices allow only a specific direction and the coupling map
is therefore a directed graph. The degree of a node in a graph encodes the number
of edges attached to this node. The degree matrix D captures this information
for all nodes/vertices; see Fig. 5.3(c). The Laplacian matrix is a combination of
the adjacency matrix and the degree matrix and is defined as L = D − A, see
Fig. 5.3(d). The edge incidence form becomes useful since it can capture the in-
formation of a directed graph. This representation is covered in Fig. 5.3(e). Each
column represents a different edge and each row represents a specific node in the
graph. Thus, for each row there are two non-zero entries encoding the connection.
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|ψ⟩ • H •

|0⟩ H • 1

|0⟩ X Z |ψ⟩

Figure 5.4: The circuit for the quantum teleportation protocol.

These representations provide different perspectives on the hardware’s con-
nectivity, each useful for specific aspects of quantum circuit optimization. For
instance, the adjacency matrix is helpful for quickly determining direct connec-
tions, while the edge incidence matrix can be crucial for optimizing operations on
architectures with directional constraints.

5.3 Qubit allocation

Qubit allocation involves mapping virtual qubits to physical qubits while adhering
to architectural constraints and optimizing circuit parameters such as depth. In
this context, depth refers to the number of computational layers or the longest
sequence of dependent operations in the quantum circuit. Consider the four-qubit
architecture in Fig. 5.3(a), where vertices and edges represent qubit registers
and their connections, respectively. To explore this concept, we implement the
quantum teleportation protocol [Fig. 5.4] on this architecture, focusing on the
two-qubit gates that are subject to hardware limitations. The protocol’s circuit
diagram, shown separately, designates qubits as q0, q1, and q2 from top to bottom.

Examining Fig. 5.4, we observe two-qubit interactions between q1 − q2 and
q0 − q1. With these interactions identified, we can proceed to map the qubits
onto the hardware registers. Figure 5.5 illustrates two potential qubit allocations
for this three-qubit circuit. The configuration in Fig. 5.5(a) requires additional
SWAP gates to execute the q1 − q2 interaction, whereas Fig. 5.5(b) presents an
optimal assignment, allowing all interactions without supplementary gates. This
example underscores the impact of initial qubit allocation on circuit performance.
However, finding an ideal allocation that satisfies all connectivity requirements is
often infeasible, necessitating additional routing procedures. Furthermore, qubit
mapping algorithms must account for device noise in current quantum systems.
The problem of determining optimal qubit allocation with routing is NP-hard
[225, 226], requiring heuristic algorithms [227].
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(a) q0 q1

q2

(b) q0 q1

q2

Figure 5.5: Two possible qubit allocations. (a) The assignment of qubit registers
does not allow the qubit interaction between q1 and q2 (red). (b) The allocated
qubits allow all the relevant interactions (green). This assignment is optimal in
the sense that no additional routing is necessary.

5.4 Qubit routing

In the following, we assume that there exists a non-optimal quantum circuit im-
plementing the unitary of choice without taking the connectivity of the hardware
into consideration. The goal is to find a sequence of gates that implements the
same unitary while satisfying these hard constraints. Formally, given a coupling
graph and a quantum circuit C, the goal is to compile a circuit C ′ that is func-
tionally equivalent to C and compatible with the coupling graph [226].

This problem is particularly challenging due to its vast search space and the
need to minimize the circuit depth ratio (CDR), defined as the ratio of the com-
piled circuit depth to the initial circuit depth. Ideally, the CDR should be as close
to one as possible, though this is often unattainable due to hardware constraints.

Both qubit allocation [225, 226, 228–231] and routing [221, 228, 232–236] have
been extensively studied in recent years. Siraichi et al. [237] proposed a bounded
mapping tree algorithm leveraging advancements in graph theory, decomposing
the problem into subgraph isomorphism and token swapping. Li et al. [231] intro-
duced SABRE, a SWAP-based BidiREctional heuristic search algorithm. While
the qubit allocation problem is intricately linked to routing, the latter can be
examined independently. In addition, ML techniques are used to improve the
routing procedure [225, 238–241]. In our work, we explore this further by lever-
aging AlphaZero, an RL algorithm, to optimize the qubit routing process. It
has also been suggested to use temporal planners for the routing and allocation
problem [230, 242–244].

Having examined methods to optimize quantum circuits for current hardware
constraints, we now confront a fundamental challenge in quantum computing: the
inevitability of errors. The following chapter introduces QEC, a vital component
in the development of scalable and reliable quantum computers. These techniques
are essential for overcoming the limitations imposed by quantum decoherence and
imperfect operations, paving the way for fault-tolerant quantum computation and
play a crucial role in Paper A.





Chapter 6
Quantum error correction

Quantum computers promise to solve certain tasks faster than any classical com-
puter can [15–18]. However, these results assume a “perfect” quantum computer,
meaning that the computer is free of errors. Since quantum computers are inher-
ently noisy, we need to understand if they can deal with these errors. The natural
way to tackle these errors is by using error correction.

The concept of error correction is nothing new. In classical computing, there is
a long history of using error-correcting codes [245, 246]. These codes typically rely
on the idea of redundancy, meaning that we encode the relevant information using
several bits such that an error on one of the latter does not change the encoded
information. The simplest example would be to copy the classical information
represented by one bit into n bits. This ensemble of bits represents one logical
bit, and the logical state is defined by the majority of its physical bits. Lets say
due to some errors

⌊
n−1
2

⌋
bits flip. Then the majority voting system would still

allow us to conserve the original state of the bit. Only if more than
⌊
n−1
2

⌋
errors

occur does the majority voting system fail. The number of errors leading to a
change of the logical state is what is known as the code distance, d.

There exist many different quantum error correction codes and these are com-
monly describe by a triplet,

[[n, k, d]],

where n denotes the number of physical qubits, k the number of logical qubits,
and d the code distance [247]. Ideally, we want error-correction schemes that
require few physical qubits n to encode a large amount of logical qubits k while
having a large code distance d.

Contrary to classical error correction, correcting errors in quantum mechanical
systems poses some additional challenges. First, we cannot clone an arbitrary
quantum state due to the no-cloning theorem [7, 248]. Quantum mechanics rules
out the presence of a unitary operation U that changes a known state |s⟩ into
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a copy of an unknown arbitrary quantum state |ψ⟩ without altering the latter.
Formally, we require the unitary U to satisfy the following relation: U(|ψ⟩⊗|s⟩) =
|ψ⟩ ⊗ |ψ⟩, where U cannot exist [7, 248]. Second, measuring a quantum state
causes its collapse, raising the question how QEC is at all possible if corrections
disturb the quantum state. Luckily, we can obtain information about some global
property, without causing too much back-action. And finally, there is a continuous
set of possible errors due to the analog nature of quantum computers, while digital
computers only have bit-flip error sources. We refer the reader to the literature
for more details [249–252].

This chapter introduces key concepts in QEC and describes various error-
correction schemes, providing essential background for Paper A. In that work, we
develop an RL agent to act as a decoder for the toric code.

6.1 The three-qubit bit-flip code

As the name suggests, the three qubit bit-flip code protects the quantum state
from bit flips. Assume we want to protect an arbitrary quantum state,

|ψ⟩ = α |0⟩+ β |1⟩ . (6.1)

We encode the quantum state using three qubits as

|ψ3⟩ = α |000⟩+ β |111⟩ . (6.2)

This state can be created by applying CNOT gates between the auxilliary qubits
and the registers holding the quantum state, as shown in Fig. 6.1. Now assume a
bit-flip error occured on qubit 2 such that

|ψ3,err⟩ = α |010⟩+ β |101⟩ . (6.3)

Next, we perform parity measurements on adjacent qubits, meaning Z1Z2 (M12)
and Z2Z3 (M23). These measurements do not affect the quantum state |ψ⟩, since
Z1Z2 |ψ3⟩ = |ψ3⟩ = Z2Z3 |ψ3⟩, up to a global phase. The information from the
parity measurement helps us to conclude that qubit 2 flipped, and we can then
correct that with an X gate, returning to the state |ψ3⟩.

For an arbitraryX rotationRx(θ), we know thatRx(θ) = cos(θ/2)I−i sin(θ/2)X.
Thus, the state we obtain is now a superposition of the correct state and faulty
state:

cos(θ/2) |ψ3⟩ − i sin(θ/2) |ψ3,err⟩ . (6.4)

Measuring again the observables Z1Z2 and Z2Z3 will collapse the superposition
and project us either in the state |ψ3⟩ or |ψ3,err⟩. In both scenarios, whether the
state collapses to |ψ3⟩ or |ψ3,err⟩, the parity measurements M12 and M23 provide
relevant information. If |ψ3⟩ is obtained, no correction is needed. If |ψ3,err⟩
results, the measurement outcomes pinpoint the flipped qubit, allowing for a
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|ψ⟩ • •

bit flip
M12

Flip iff M12 = −1,M23 = 1

|0⟩
M23

Flip iff M12 = −1,M23 = −1

|0⟩ Flip iff M12 = 1,M23 = −1

1

Figure 6.1: The three-qubit bit-flip error-correction code. The CNOT gates gen-
erate the state in Eq. (6.2). Once a bit flip occurred, parity measurements guide
the error-correction procedure.

targeted X gate correction to restore the original state. This measurement-based
feedback ensures we can always recover the error-corrected state [247].

The error-correction protocol introduced can be extended to capture phase
flips. The idea is to switch from the computational basis to the Hadamard basis.
The protocol is then the same. Thus, we encode our quantum state into the
following state

|ψ3⟩ = α |+ + +⟩+ β |− − −⟩ . (6.5)

6.2 Stabilisers

Many QEC codes can be understood in terms of stabilisers. Extending this frame-
work, we define S to be a group of N -qubit operators. If a state is unchanged
under the action of a unitary operator U , i.e., U |ψ⟩ = |ψ⟩, we say |ψ⟩ is stabilized
by U . This concept extends to operators and sets of states. For a group S of
N -qubit operators, we define VS as the set of N -qubit states stabilized by every
element in S. Then, S is called the stabilizer of VS . For VS to be non-trivial, the
elements of S must commute, and −I cannot be in S.

Returning to the three-qubit bit-flip example introduced in Section 6.1, we
measured Z1Z2 and Z2Z3, which retained the encoded state. In this case, VS is
the subspace spanned by |000⟩ and |111⟩, while S is the group I, Z1Z2, Z2Z3, Z1Z3

generated by Z1Z2 and Z2Z3. The additional elements I and Z1Z3 result from
combining the generators Z1Z2 and Z2Z3.

Measuring the generators of S enables us to correct specific errors on the
stabilized states. This principle can be extended to the design of other error-
correction codes by identifying stabilizers, their generators, and the corresponding
stabilized states. To resolve which errors a code can protect against, we consider a
stabilizer S and error sets Ej that are subgroups of the N -qubit Pauli group GN ,
consisting of products of single-qubit Pauli matrices and factors ±1,±i. These
errors are correctable if E†

jEk /∈ N(S)−S for all j, k. Here, N(S), the normalizer

of S, is the set of elements g ∈ GN that satisfy gsg† ∈ S for all s ∈ S, implying
that N(S) commutes with S as a set (see Ref. [7] for the proof). In the three-qubit
bit-flip code example, it easy to see that any product of two elements from the
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error set I,X1, X2, X3 anti-commutes with at least one element in the stabilizer
group generated by Z1Z2 and Z2Z3 (except I, but I ∈ S, so I /∈ N(S) − S).
Consequently, all errors in this set are correctable [247]. There is much more to
say about the stabiliser formalism; for more details we refer the reader to the
literature [7, 247, 252, 253].

6.3 Surface codes

Surface codes are a promising error-correction scheme to achieve fault-tolerant
quantum computation. Recent experiments have shown that these codes can
effectively increase the lifetime of quantum states [254], underscoring their rele-
vance. Fundamentally, these codes rely on the concept of repetition codes on a
2d lattice. The toric code was the first of these, introduced by Kitaev [249], and
played a key role in Paper A. In this work, we build an RL agent acting as a
decoder for the toric code.

6.3.1 Toric code

The toric code consists of a two-dimensional quadratic grid of physical qubits with
periodic boundary conditions. The d×d grid consists of 2d2 qubits corresponding
to a Hilbert space of 22d

2

states, of which four will form the logical code space.
This configuration encodes a 4-fold qudit, equivalent to two logical qubits, though
we conventionally refer to this as a single logical qubit. The code’s architecture
is based on the stabilizer formalism. A large set of commuting local parity-check
operators (the stabilizers) split the state space into distinct sectors.

The toric code stabilizers are categorized into two types, namely plaquette
and vertex operators,

As =
∏

j∈star(s)

Xj , Bp =
∏

j∈boundary(p)

Zj , (6.6)

consisting of products of Pauli Z or X operators acting on the four qubits of a
plaquette or vertex (see Fig. 6.2), respectively. These operators mutually commute
as the star (s) and boundary (p) share either no edges or exactly two edges. The
operators As and Bp are Hermitian with eigenvalues of 1 and −1, respectively.
The logical qubit corresponds to the sector with eigenvalue +1 on all stabilizers.
We denote a stabilizer with eigenvalue −1 as a plaquette or vertex defect. A
single bit flip X or phase flip Z on a state in the qubit sector will produce a pair
of defects on neighboring plaquettes or vertices, with Pauli Y ∼ XZ giving both
pairs of defects, as shown in Fig. 6.2. In Paper A, we consider a depolarizing
noise model (px = py = pz).

The syndrome, a collection of stabilizer defects associated with specific X, Y ,
or Z operations on the logical state, does not uniquely determine the underlying
errors. This ambiguity makes QEC challenging and motivated our exploration
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YX

Z

Figure 6.2: A d = 9 toric code showing the basic operations. Physical qubits are
shown as circles, with shaded areas indicating periodic boundaries. Error types
are color-coded: bit flip X (red), phase flip Z (blue), and combined Y ∼ XZ
(yellow), each generating plaquette and vertex “defects” at error-chain endpoints.
These defects are detected using plaquette and vertex parity-check operators,
employing ⊗Z and ⊗X respectively. Also shown are logical bit- and phase-flip
operators corresponding to closed loops spanning the torus. From Paper A.

of RL techniques in Paper A. Logical operations, which transition between dif-
ferent states in the logical sector, are defined by sequences of X or Z operators
that loop around the torus, representing logical bit-flip and phase-flip operations,
respectively (see Fig. 6.2). The shortest loop that can enclose the torus has a
length of d. The toric code corrects

⌊
d−1
2

⌋
errors. This is easy to see as an error

chain longer than
⌊
d−1
2

⌋
and assuming that the shortest correction chain will be

employed, will introduce an additional non-trivial loop and change the logic state
of the code. The toric code is an example of a topological code, as the logical
operations correspond to ‘non-contractible’ loops on the torus, whereas products
of stabilizers can only generate ‘contractible’ loops.





Chapter 7
Paper overview

This chapter provides a summary of the four papers that form the foundation of
this thesis. Research is done best in teams, and each of these papers represents a
joint effort. As part of the overview, I will clarify my own contribution to each of
the appended papers.

7.1 Paper A: Deep Q-learning decoder for depo-
larizing noise on the toric code

In Paper A, we address a critical challenge of QEC by developing an RL-based
decoding agent for the toric code. Our approach utilizes deep Q-learning, an RL
technique (introduced in Chapter 3), to train an NN that encodes state-action Q-
values for error-correcting Pauli operations. This methodology allows the decoder
to learn and exploit complex correlations between bit-flip and phase-flip errors,
a capability that traditional decoders often lack. The theoretical foundations for
this work are detailed in Chapters 2, 3, and 6, which cover ML, RL, and QEC,
respectively.

We demonstrate that our deep reinforcement learning (DRL)-based decoder
outperforms the widely-used minimum-weight-perfect-matching (MWPM) [255,
256] algorithm for code distances up to d = 9. Specifically, our decoder achieves
higher success rates and error thresholds for depolarizing noise, a common noise
model in quantum systems.

Moreover, our decoder exhibits versatility. Not only does it excel in its trained
domain of depolarizing noise, but it also shows robust performance across vari-
ous noise models, including uncorrelated and biased noise (see Chapter 6). This
adaptability is a crucial feature for practical QEC, where the exact nature of the
noise can vary or be imperfectly characterized.



72 Paper overview

This work represents one step forward in the application of ML techniques
to QEC. By demonstrating that a DRL-based approach can outperform tradi-
tional methods, we have opened new avenues for research in this area of quantum
computing. This project highlights the potential of RL in tackling complex quan-
tum information processing tasks, suggesting that further exploration of these
techniques is warranted. This is exemplified by recent works [257, 258], which
combine several concepts related to this thesis, such as transformers or GNNs as
decoders for the surface code.

My contributions to this project included implementing the algorithm, training
the RL agent, and benchmarking its performance against the graph-based MWPM
algorithm, showcasing the practical application of RL in quantum computing.

7.2 Paper B: Applying quantum approximate op-
timization to the heterogeneous vehicle rout-
ing problem

Paper B focuses on the application of hybrid quantum-classical algorithms to op-
timization problems, as introduced in Chapter 4, where we describe the Ising
model and QAOA, the key components of our work. We focus on a specific lo-
gistics problem known as the HVRP and develop a mapping for the HVRP to
an Ising model as shown in Section 4.3.2, allowing us to apply the framework of
hybrid quantum-classical computation to find approximate solutions. Further, we
simulate QAOA and determine its performance, i.e., its ability to find the global
minimum of the optimization problem. We investigate problem instances consist-
ing of 11, 19, and 21 qubits and use well-established optimization techniques to
optimize the quantum circuit.

We analyze the optimization landscape for p = 1, where p is the number of
layers in the PQC, and find distinct minima for each problem instance. We also
simulate QAOA with higher p and see that with increasing circuit depth, the
performance increases. However, there is a trade-off that with a growing number
of variational parameters: the optimization of these variational parameters be-
comes increasingly difficult. This can even lead to a shallower circuit reaching a
lower energy state than a highly parameterized quantum circuit. We analyze the
running time of the four considered optimizers and can observe an exponential
scaling. This is in accordance with Ref. [81] considering that the optimization of
the energy landscape is NP-hard. Both differential evolution and basinhopping
give the best performance, i.e., they find the optimal solution with the highest
probability. We investigate whether the variational states generated via the hy-
brid quantum-classical routine generate states with a high probability of sampling
the optimal bitstring. This is desired since we are looking for the best solution to
the problem.

We find that constrained optimization problems are particularly challenging
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for the QAOA since much work is spent on staying in the subspace of physically
viable solutions. The quantum alternating operator ansatz suggests some novel
mixers and initial states, but as shown in [38, 40], also these methods are sensitive
to the inherent noise of NISQ devices.

In this work, I was involved in all stages, from ideation to implementation and
manuscript writing, and conducted all simulations.

7.3 Paper C: Optimizing variational quantum al-
gorithms with qBang

Paper C addresses a critical challenge in the realm of VQAs: the optimization
of variational parameters. We introduce the quantum Broyden adaptive natural
gradient (qBang) approach, a novel optimization technique designed to enhance
VQA performance while minimizing quantum resource requirements. qBang com-
bines the Broyden method [Section 4.2.1] for approximating Fisher information
matrix updates with a momentum-based algorithm [Chapter 2]. This interplay
allows qBang to navigate difficult optimization landscapes more efficiently than
existing methods. The algorithm strikes a balance between computational effi-
ciency and convergence speed, making it particularly well-suited for the noisy
intermediate-scale quantum (NISQ) era where quantum resources are limited.

To validate qBang’s effectiveness, we conducted extensive benchmarks. These
include the barren-plateau problem [202], which tests an optimizer’s ability to
navigate flat energy landscapes; quantum chemistry simulations, which probe
the algorithm’s performance in real-world scientific applications; and the max-
cut problem, a classic optimization task with relevance to both classical and
quantum computing. Across these varied scenarios, qBang demonstrated sta-
ble performance and advantages over existing techniques. Notably, it showed
particular strength in scenarios featuring flat (but not exponentially flat) opti-
mization landscapes due to faster converges compared to its competitors. This
work not only provides a powerful new tool for optimizing VQAs, including po-
tential applications to our Ising formulation from Paper B, but also establishes
a new development strategy for gradient-based VQAs with potential for further
improvements. The theoretical foundations underlying this study are elaborated
in detail in Chapters 2 and 4.

My role in this project was comprehensive, encompassing all stages from initial
concept development to implementation and manuscript preparation, including
the design and execution of all simulations.

7.4 Paper D: RydbergGPT

In Paper D, we introduce RydbergGPT, a generative pretrained transformer de-
signed to predict measurement outcomes of neutral-atom-array quantum com-
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puters. This work applies ML techniques from Chapter 2 to the emerging field of
Rydberg atom arrays, which are a promising platform for quantum information
processing.

In these systems, qubits are encoded using the electronic ground state |g⟩
and excited (Rydberg) state |r⟩ of individual atoms arranged in a lattice struc-
ture [259–263]. In our work, we consider a system of N = L× L atoms arranged
on a square lattice. The governing Hamiltonian defining the Rydberg atom array
interactions has the following form:

Ĥ =
Ω

2

N∑
i=1

σ̂x
i − δ

N∑
i=1

n̂i +
∑
i,j

Vij n̂in̂j , (7.1)

where σ̂x
i = |g⟩i⟨r|i + |r⟩i⟨g|i, the occupation number operator n̂i = 1

2 (σ̂i + 1) =
|r⟩i⟨r|i, σ̂i = |r⟩i⟨r|i−|g⟩i⟨g|i, and Vij = ΩR6

b/|r⃗i−r⃗j |6. The experimental settings
of a Rydberg atom array are controlled by the detuning from resonance δ, the
Rabi frequency Ω, the lattice length scale a, and the positions of the atoms {ri}Ni .
We obtain a symmetric matrix V, which encapsulates the relevant information
about the lattice geometry, and derive the Rydberg blockade radius Rb, within
which simultaneous excitations are penalized [96, 259, 260].

Our encoder-decoder architecture, based on a transformer model, as intro-
duced in Section 2.2.2, takes the interacting Hamiltonian as input and gener-
ates an autoregressive sequence of qubit measurement probabilities, as detailed
in Section 2.3. We demonstrate the effectiveness of the architecture by studying
its performance near a quantum phase transition in Rydberg atoms arranged in a
square lattice [264]. The model’s generalization capabilities are explored by pre-
dicting ground-state measurements for Hamiltonian parameters not included in
the training set. Notably, we found that our model accurately reproduces physical
estimators for the ground state, but shows limitations when applied to thermally
mixed states at higher temperatures. This work not only provides benchmarks for
scaling larger RydbergGPT models, but also introduces an open-source framework
to facilitate the development of foundation models for various quantum computer
interactions and datasets.

My contributions to this project included designing and building the trans-
former architecture, training the model, and collaboratively writing the manuscript.



Chapter 8
Conclusion

The intersection of quantum computing and machine learning has been the fo-
cus of this thesis. We followed a hybrid path, examining both hybrid classical-
quantum algorithms and the application of machine learning to the quantum
computing stack. The hybrid classical-quantum algorithms and their optimiza-
tion methods are fundamental to our work in Papers B and C.

In Paper B, we investigate the application of the QAOA to the HVRP, an in-
dustrially relevant logistics problem introduced in Chapter 4. We present a novel
Ising mapping for the HVRP and simulate it for simplified instances. Our results
reveal that obtaining the optimal solution with high probability is challenging.
A key issue is that the Hamiltonian’s energetics are dominated by constraints,
causing the algorithm to prioritize constraint satisfaction over cost optimization.
This leads to a scenario where the algorithm expends most of its computational
resources maintaining feasible solutions, rather than optimizing within the sub-
space of physically viable solutions.

Furthermore, we note that modern high-performance optimizers (classical
computers) for the HVRP can solve problem instances with more than 1,000
customers [265, 266]. For a quantum computer to solve problem instances of
this size, it would need at least millions of controllable qubits with millions of
multi-qubit interactions.

The qBang optimizer, introduced in Paper C, represents an advance in the
optimization of VQAs. By combining the Broyden approach to approximate
the QFIM updates with momentum-based techniques, qBang effectively navi-
gates flat energy landscapes while reducing quantum resource requirements. The
success of qBang opens up new avenues for gradient-based VQA optimization, sug-
gesting numerous potential improvements and applications. Future research could
explore its adaptability to different quantum computing architectures, its scala-
bility with increasing qubit numbers, and its integration with error-mitigation
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techniques. Furthermore, the principles underlying qBang may inspire further
innovations in quantum-classical hybrid algorithms.

Looking ahead, future research should build upon these findings by focus-
ing on benchmarking quantum devices with larger optimization problems. As
quantum hardware advances, tackling more complex tasks becomes feasible. A
critical aspect of this progression will be comparing the time-to-solution of quan-
tum approaches against classical optimizers. This benchmarking process will pro-
vide valuable insights into the computational advantages of quantum devices and
help identify specific areas where quantum computing offers significant benefits.
Such comparisons will not only guide the development of future quantum algo-
rithms and hardware, but also offer a more nuanced understanding of the relative
strengths of quantum and classical computing paradigms.

In Paper D, we introduced RydbergGPT, a generative pretrained transformer
that learns and reproduces measurement outcomes from neutral atom array quan-
tum computers. This model demonstrates the potential of machine learning in
quantum state prediction, effectively generalizing to unseen Hamiltonian param-
eters near quantum phase transitions.

Looking ahead, machine learning approaches offer promising solutions to the
challenge of exponentially increasing Hilbert-space dimensions in quantum sys-
tems. In this context, NQSs, introduced in Section 2.3, present an interesting
avenue to represent complex quantum systems efficiently. However, the inter-
pretability of these models remains a challenge. Future research could explore
symbolic machine learning for more interpretable quantum state representations.
Furthermore, leveraging machine learning to optimize measurement strategies in
quantum experiments could significantly reduce complexity and cost. These de-
velopments may uncover new synergies between quantum physics and machine
learning, potentially leading to breakthroughs in both fields and inspiring novel
quantum algorithms and experimental designs.

RL holds immense promise for automating and optimizing various aspects of
the quantum computing stack. As demonstrated in Paper A with quantum error
correction, RL can be extended to address other critical challenges in quantum
computing. Future applications could include automated calibration of quantum
devices, where RL agents learn to fine-tune system parameters for optimal per-
formance. In quantum circuit optimization, RL algorithms could discover more
efficient circuit designs, potentially reducing gate counts and execution times.
Moreover, RL could play a crucial role in the adaptive control of quantum sys-
tems, real-time error mitigation, and even in the design optimization of quantum
hardware components. By leveraging RL’s ability to learn complex strategies
through interaction, we can envision a more self-optimizing and robust quantum
computing ecosystem. This approach not only has the potential to enhance the
performance and reliability of quantum systems but also to accelerate the devel-
opment of practical, large-scale quantum computers.
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[27] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M.
Chow, and J. M. Gambetta, “Supervised learning with quantum-enhanced
feature spaces”, Nature 567, 209–212 (2019).

[28] M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert
Spaces”, Physical Review Letters 122, 040504 (2019).

[29] V. Dunjko, J. M. Taylor, and H. J. Briegel, in 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Banff, AB,
2017) pp. 282–287.

[30] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quan-
tum classifiers”, Physical Review A 101, 032308 (2020).

[31] Y. Sun, J.-Y. Zhang, M. S. Byrd, and L.-A. Wu, “Adiabatic Quantum
Simulation Using Trotterization”, arXiv:1805.11568 (2018).

[32] Q. Gao, J. M. Garcia, N. Yamamoto, H. Nakamura, T. P. Gujarati, G. O.
Jones, J. E. Rice, S. P. Wood, M. Pistoia, and N. Yamamoto, “Compu-
tational investigations of the lithium superoxide dimer rearrangement on
noisy quantum devices”, Journal of Physical Chemistry A 125, 1827–1836
(2021).

[33] K. Meichanetzidis, S. Gogioso, G. de Felice, N. Chiappori, A. Toumi, and
B. Coecke, “Quantum Natural Language Processing on Near-Term Quan-
tum Computers”, Electronic Proceedings in Theoretical Computer Science
340, 213–229 (2021).

[34] E. R. Miranda, R. Yeung, A. Pearson, K. Meichanetzidis, and B. Coecke, in
Quantum Computer Music: Foundations, Methods and Advanced Concepts
(Springer, Cham, Switzerland, 2022) pp. 313–356.

https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.1038/s41598-018-20403-3
https://doi.org/10.1117/12.2593720
https://doi.org/10.1117/12.2593720
https://doi.org/10.1038/s41534-020-0272-6
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1109/SMC.2017.8122616
https://doi.org/10.1109/SMC.2017.8122616
https://doi.org/10.1103/PhysRevA.101.032308
https://arxiv.org/abs/1805.11568
https://doi.org/10.1021/acs.jpca.0c09530
https://doi.org/10.1021/acs.jpca.0c09530
https://doi.org/10.4204/EPTCS.340.11
https://doi.org/10.4204/EPTCS.340.11
https://doi.org/10.1007/978-3-031-13909-3_13


80 Bibliography

[35] B. Coecke, G. de Felice, K. Meichanetzidis, and A. Toumi, “Foundations
for Near-Term Quantum Natural Language Processing”, arXiv:2012.03755
(2020).

[36] D. Kartsaklis, I. Fan, R. Yeung, A. Pearson, R. Lorenz, A. Toumi, G. de
Felice, K. Meichanetzidis, S. Clark, and B. Coecke, “Lambeq: An Efficient
High-Level Python Library for Quantum NLP”, arXiv:2110.04236 (2021).

[37] C. Gidney and M. Eker̊a, “How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits”, Quantum 5, 433 (2021).

[38] Z. Wang, N. C. Rubin, J. M. Dominy, and E. G. Rieffel, “XY mixers: Ana-
lytical and numerical results for the quantum alternating operator ansatz”,
Physical Review A 101, 012320 (2020).

[39] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and
R. Biswas, “From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz”, Algorithms 12, 34 (2019).

[40] M. Streif, M. Leib, F. Wudarski, E. Rieffel, and Z. Wang, “Quantum al-
gorithms with local particle-number conservation: Noise effects and error
correction”, Physical Review A 103, 042412 (2021).

[41] S. Yarkoni, A. Alekseyenko, M. Streif, D. Von Dollen, F. Neukart, et al.,
Multi-car paint shop optimization with quantum annealing (IEEE Computer
Society, 2021).

[42] D. Amaro, M. Rosenkranz, N. Fitzpatrick, K. Hirano, and M. Fiorentini,
“A case study of variational quantum algorithms for a job shop scheduling
problem”, EPJ Quantum Technology 9, 1–20 (2022).

[43] L. K. Grover, in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing - STOC ’96 (ACM Press, Philadelphia, Pennsyl-
vania, United States, 1996) pp. 212–219.

[44] A. K. Ekert, “Quantum cryptography based on Bell’s theorem”, Physical
Review Letters 67, 661–663 (1991).

[45] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and
A. Zeilinger, “Experimental quantum teleportation”, Nature 390, 575–579
(1997).

[46] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien, “Quantum computers”, Nature 464, 45–53 (2010).

[47] I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum
computation”, Reports on Progress in Physics 74, 104401 (2011).

https://arxiv.org/abs/2012.03755
https://arxiv.org/abs/2110.04236
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.1103/PhysRevA.101.012320
https://doi.org/10.3390/a12020034
https://doi.org/10.1103/PhysRevA.103.042412
https://doi.org/10.1109/QCE52317.2021.00019
https://doi.org/10.1140/epjqt/s40507-022-00123-4
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1038/37539
https://doi.org/10.1038/37539
https://doi.org/10.1038/nature08812
https://doi.org/10.1088/0034-4885/74/10/104401


Bibliography 81

[48] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play”, Science 362, 1140-1144 (2018).

[49] M. Alansari, O. A. Hay, S. Javed, A. Shoufan, Y. Zweiri, and N. Werghi,
“GhostFaceNets: Lightweight Face Recognition Model From Cheap Opera-
tions”, IEEE Access 11, 35429–35446 (2023).

[50] T. Mare, G. Duta, M.-I. Georgescu, A. Sandru, B. Alexe, M. Popescu, and
R. T. Ionescu, “A realistic approach to generate masked faces applied on
two novel masked face recognition data sets”, arXiv (2021), 2109.01745 .

[51] W. Huang, X. Wu, Q. Zhang, N. Wu, and Z. Song, in 2014 13th International
Conference on Control Automation Robotics & Vision (ICARCV) (IEEE)
pp. 10–12.

[52] M. Reda, A. Onsy, A. Y. Haikal, and A. Ghanbari, “Path planning al-
gorithms in the autonomous driving system: A comprehensive review”,
Robotics and Autonomous Systems 174, 104630 (2024).

[53] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-
guage models are unsupervised multitask learners” (2019).

[54] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”, ArXiv
e-prints (2018), 1810.04805 .

[55] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforcement
learning”, Nature 518, 529–533 (2015).

[56] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the
game of Go with deep neural networks and tree search”, Nature 529, 484–
489 (2016).

[57] M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, and
W. Tebbutt, “A Differentiable Programming System to Bridge Machine
Learning and Scientific Computing”, arXiv (2019), 1907.07587 .
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[89] Bernard. W. Silverman, Density Estimation for Statistics and Data Analysis
(Taylor & Francis, Andover, England, UK, 2017).
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[115] B. Uria, M.-A. Côté, K. Gregor, I. Murray, and H. Larochelle, “Neural
Autoregressive Distribution Estimation”, Journal of Machine Learning Re-
search 17, 1–37 (2016).

[116] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, in Advances in Neural Information Processing
Systems, Vol. 2017-Decem (2017) pp. 5999–6009, arxiv:1706.03762 .

[117] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel,
and Y. Bengio, “Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention”, arXiv:1502.03044 [cs] (2016).

[118] M.-T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to
Attention-based Neural Machine Translation”, arXiv:1508.04025 [cs] (2015).

[119] K. He, X. Zhang, S. Ren, and J. Sun, in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2016) pp. 770–778.

[120] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization”,
arXiv:1607.06450 [stat.ML] (2016).

[121] L. Wu, P. Cui, J. Pei, and L. Zhao, eds., Graph Neural Networks: Founda-
tions, Frontiers, and Applications (Springer Nature Singapore, Singapore,
2022).

[122] A. Daigavane, B. Ravindran, and G. Aggarwal, “Understanding Convolu-
tions on Graphs”, Distill 6, e32 (2021).

https://doi.org/10.1103/PhysRevA.104.032610
https://doi.org/10.1088/2632-2153/ac362b
https://doi.org/10.1088/2632-2153/ac362b
https://doi.org/10.1103/PhysRevLett.130.236401
https://doi.org/10.1103/PhysRevLett.130.236401
https://arxiv.org/abs/2311.16889
https://arxiv.org/abs/2406.00091
https://jmlr.org/papers/v17/16-272.html
https://jmlr.org/papers/v17/16-272.html
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1508.04025
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://doi.org/10.1007/978-981-16-6054-2
https://doi.org/10.1007/978-981-16-6054-2
https://doi.org/10.23915/distill.00032


Bibliography 87

[123] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko, “A Gentle
Introduction to Graph Neural Networks”, Distill 6, e33 (2021).

[124] T. N. Kipf and M. Welling, in 5th International Conference on Learn-
ing Representations, ICLR 2017 - Conference Track Proceedings (2017)
arxiv:1609.02907 .

[125] G. Carleo and M. Troyer, “Solving the quantum many-body problem with
artificial neural networks”, Science 355, 602-606 (2017).

[126] H. Lange, A. Van de Walle, A. Abedinnia, and A. Bohrdt, “From Architec-
tures to Applications: A Review of Neural Quantum States”, arXiv (2024),
2402.09402 .

[127] E. Merali, I. J. S. De Vlugt, and R. G. Melko, “Stochastic Series Expansion
Quantum Monte Carlo for Rydberg Arrays”, arxiv:2107.00766 (2023).

[128] “Understanding the Metropolis-Hastings Algorithm on JSTOR”, [Online;
accessed 6. Sep. 2024] (1995).

[129] X. He, F. Xue, X. Ren, and Y. You, “Large-scale deep learning optimiza-
tions: A comprehensive survey”, arXiv:2111.00856 [cs.LG] (2021).

[130] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,
arXiv (2014), 1412.6980 .

[131] C. J. Li, A. Yuan, G. Gidel, Q. Gu, and M. I. Jordan, in International
Conference on Machine Learning (2022).

[132] Y. Nesterov, “A method for solving the convex programming problem with
convergence rate O(1/kˆ2)”, Proceedings of the USSR Academy of Sciences
(1983).

[133] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, in Proceedings of the
30th International Conference on Machine Learning , Proceedings of Ma-
chine Learning Research, Vol. 28, edited by S. Dasgupta and D. McAllester
(PMLR, Atlanta, Georgia, USA, 2013) pp. 1139–1147.

[134] S. Ruder, “An overview of gradient descent optimization algorithms”,
arXiv:1609.04747 [cs.LG] (2017).

[135] J. Domke, “Automatic Differentiation and Neural Networks” (2011).

[136] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
second edition ed., Adaptive Computation and Machine Learning Series
(The MIT Press).

https://doi.org/10.23915/distill.00033
https://arxiv.org/abs/1609.02907
https://doi.org/10.1126/science.aag2302
https://arxiv.org/abs/2402.09402
https://arxiv.org/abs/2107.00766
https://www.jstor.org/stable/2684568
https://arxiv.org/abs/2111.00856
https://arxiv.org/abs/2111.00856
https://arxiv.org/abs/2111.00856
https://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:260897626
https://api.semanticscholar.org/CorpusID:260897626
https://www.semanticscholar.org/paper/A-method-for-solving-the-convex-programming-problem-Nesterov/8d3a318b62d2e970122da35b2a2e70a5d12cc16f
https://www.semanticscholar.org/paper/A-method-for-solving-the-convex-programming-problem-Nesterov/8d3a318b62d2e970122da35b2a2e70a5d12cc16f
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://people.cs.umass.edu/~domke/courses/sml2011/08autodiff_nnets.pdf


88 Bibliography

[137] F. J. R. Ruiz, T. Laakkonen, J. Bausch, M. Balog, M. Barekatain, F. J. H.
Heras, A. Novikov, N. Fitzpatrick, B. Romera-Paredes, J. van de Wetering,
A. Fawzi, K. Meichanetzidis, and P. Kohli, “Quantum Circuit Optimization
with AlphaTensor”, arXiv (2024), 2402.14396 .

[138] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R. Ruiz, J. Schrittwieser, G. Swirszcz,
D. Silver, D. Hassabis, and P. Kohli, “Discovering faster matrix multiplica-
tion algorithms with reinforcement learning”, Nature 610, 47–53 (2022).

[139] D. J. Mankowitz, A. Michi, A. Zhernov, M. Gelmi, M. Selvi, C. Padu-
raru, E. Leurent, S. Iqbal, J.-B. Lespiau, A. Ahern, T. Köppe, K. Millikin,
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