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A B S T R A C T

A novel machine learning based method is proposed to automatically identify steady operations of hydropower
plants (HPPs) in this study. The approach applies the Pruned Exact Linear Time (PELT) algorithm to obtain the
number of segments (steady operations & transients) for each working period by multiple change points
detection in the HPP power output time series. An adaptive Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm, capable of self-adjusting its hyperparameters according to the PELT-defined seg-
ments, is then deployed for identification of steady operations. This adaptive characteristic can outperform other
clustering methods in diverse HPP operational patterns through extensive comparison based on a three-year HPP
measurement dataset and statistical tests. Based on the identification from the proposed method, the statistics of
the HPP’s upper guide bearing vibrations during both steady operations and transients before and after a known
maintenance are compared, and an apparent bearing performance degradation can be revealed during signals
from steady operations. It indicates that the proposed method can help to plan optimal bearing maintenance
based on data of steady operations, and shows the potential for other practical applications for predictive
maintenance of the different components of the HPP.

1. Introduction

In the development of global energy systems, the integration of
renewable energy sources is a key aspect of modern energy strategies.
This shift is largely driven by increasing dependence on variable
renewable energies like wind and solar power [1]. However, the natural
variability of these sources poses challenges for grid stability and reli-
ability. Within this framework, hydropower plants (HPPs) play a new
role in stabilizing and supporting the electrical grid by frequency
regulation [2,3].
When HPPs are not involved in frequency regulation, their operation

typically shows long periods of stability, marked by consistent guide
vane openings and runner blade angles. Transients mainly occur during
system start-up and shut-down, or when changing between different
power settings during these phases [4,5]. However, as the role of HPPs
expands from just generating electricity to also including frequency
regulation and grid support, this shift has led to the integration of
numerous transients into their operations. The dynamic properties of
steady versus transient operations in hydropower plants significantly
affect various operational aspects. For example, during transient

conditions, the operation of hydraulic turbines over a wide range can be
impeded by self-induced instabilities [6,7]. Additionally, transient op-
erations are associated with fluctuating operational costs and varying
environmental impacts [8,9]. During transients, the turbine runner may
also experience severe pressure fluctuations [10–12] and intense vi-
brations [13,14], which can lead to fatigue in the turbine and other
mechanical components [15,16]. More crucially, during transient pha-
ses, measured power outputs exhibit substantial fluctuations. Unlike
steady operations where power generation is relatively stable, allowing
for the prediction of energy output and subsequent assessment of per-
formance degradation, transient conditions complicate predictive
maintenance strategies [17,18]. This instability makes it challenging to
maintain efficient operations and to predict and manage maintenance
effectively, impacting the overall reliability and cost-effectiveness of
hydropower production.
Therefore, differentiating operational patterns in HPPs, especially

identifying steady operations and excluding transients, is crucial for
effective HPP monitoring and predictive maintenance strategies [19].
This differentiation allows operators to extract and analyze steady
operation patterns from raw data, providing a reliable depiction of the
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plant under stable conditions. Utilizing data from steady states aids in
the early detection of potential faults and anomalies, filtering out the
noise caused by transient instabilities, thus facilitating timely mainte-
nance actions that can lead to significant cost reductions [20,21].
Analyzing measurements during steady operations is also vital for
assessing performance degradation. It is essential for evaluating the
operational efficiency and long-term sustainability of HPPs, as it elimi-
nates the impact of power output fluctuations caused by transient con-
ditions [22,23]. Additionally, using steady operation data for
component modeling in HPPs allows for precise adjustments to the
operational parameters, optimizing efficiency and minimizing equip-
ment wear and tear [24]. Identifying steady operations not only sup-
ports maintenance and efficiency but also plays a critical role in the
optimal scheduling and dispatch of hydropower resources. This ensures
efficient and reliable power generation, aligning energy production with
demand patterns and contributing to the overall stability of the power
grid [25]. This strategic approach to operation management enhances
the adaptability and responsiveness of HPPs in the dynamic energy
market.
With the advent of digitalization, an increasing number of sensors

are being installed to monitor the operation of HPPs [26]. Based on real
measured data, advanced techniques have been applied to process time
series signals for monitoring the operational status of HPP units. Key
developments include a deep learning model employing a
sequence-to-sequence framework for making precise predictions in
hydro turbine [27]. Additionally, a hybrid model combining wavelet
transform with support vector machines effectively addresses the
nonlinear and nonstationary attributes of hydro turbine units [28].
Moreover, a multidimensional feature extraction method enhances vi-
bration signal characterization by integrating time-frequency analysis
with unsupervised learning, improving trend forecasting [29]. An
energy-based wavelet de-noising technique also plays a crucial role in
reducing noise in hydrologic time series, thereby establishing a more
reliable analysis framework [30]. However, much of the existing and
state-of-the-art research relies on short-term, labeled datasets. For
continuously operating HPPs, the challenge remains in developing a
method to automatically identify and extract steady operations from
ongoing data streams. Currently, only a few research initiatives have
proposed methods to distinguish between steady and transient opera-
tions from long-term data, primarily using statistical signal filters [31].
These approaches, however, have significant limitations in practical
HPP operations. As HPP operation patterns evolve, the criteria for signal
filters need to be adjusted according to the changing patterns of different
working periods. Furthermore, such methods may result in frequent
alternations between transients and steady operations, especially in
scenarios where HPPs are involved in frequency regulation tasks.
This frequent regulation complicates the operational management

and maintenance scheduling of HPPs, leading to inefficiencies and po-
tential downtime. There is a critical need for more adaptive, real-time
analysis tools that can dynamically adjust to changing operational pat-
terns without human intervention. Developing such tools would not only
improve the accuracy of operational monitoring but also enhance the
efficiency and sustainability of HPP management. In response to this
ongoing challenge, this study proposes an innovative framework for the
segmentation and clustering of steady operation periods using actual
operational data from HPPs. The Pruned Exact Linear Time (PELT) al-
gorithm is central to this framework, which facilitates precise segmen-
tation by detecting when changes between operating conditions occur
within time series data. This methodology is integral to enhancing the
effectiveness of subsequent clustering processes. By comparing different
unsupervised machine learning algorithms, an optimized Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm was
proposed in this study to align with the unique attributes of HPP oper-
ational data. The present work also includes an in-depth analysis of
upper guide bearing vibrations based on identification of steady oper-
ations. The results offer detailed insights into the upper guide bearing

vibration performance degradation for a HPP case study by conducting a
comparative analysis of the clustered steady operations. Such analytical
endeavors are pivotal in advancing the understanding of operational
management in HPPs, thereby enhancing hydropower production effi-
ciency and reliability.
The remaining part of this paper is organized as follows. Section 2

delineates the specifics of the selected case study, focusing on a partic-
ular hydropower plant, and elaborates on the methodologies employed
in data processing. Section 3 provides an exhaustive exposition of the
proposed methodology, encompassing detailed discussions on the seg-
mentation of time series data and the intricacies of the clustering algo-
rithms utilized. Section 4 presents the results of applying these
methodologies, followed by a critical discussion of their implications.
Section 5 is dedicated to conducting a rigorous statistical analysis of
upper guide bearing vibrations within the clustered steady and transient
operations. Section 6 summarizes the key findings and conclusive re-
marks, encapsulating the essence of the research and highlighting its
contribution to the field.

2. HPP case study and full-scale measurements

2.1. Data acquisition

The measurement data used in this study was sourced from a hy-
dropower plant in northern Sweden. The station is equipped with a
Francis turbine. Data acquisition spanned three years of measurements,
with a sampling frequency of 0.1 Hz (every 10 s). The recorded mea-
surements include turbine speed, guide vane opening, power genera-
tion, and vibration of various bearings. Table 1 lists the measured data
referenced in this study, including their corresponding units.
The turbine speed and guide vane opening measurements are

recorded as percentages of the designed rotation speed and maximum
opening. The measured generator active power unit is megawatts (MW);
however, due to confidentiality reasons (to prevent disclosure of the
specific unit), these values are also represented as a percentage of the
designed maximum power. The upper guide bearing vibration was ac-
quired via an accelerometer with a frequency response ranging from 0 to
100Hz. Then the Root Mean Square (RMS) was calculated for every 10-s
period (0.1 Hz) to encapsulate the aggregate vibrational energy
quantitatively.

2.2. Data preprocessing

Within the extensive dataset extending over three years and three
months, the operational conditions of a hydropower plant are discern-
ible, alternating between working conditions and non-working states.
Fig. 1, with its red scatters delineated against the left y-axis, presents
turbine speed measurements over approximately one week. This
depiction methodically illustrates the hydraulic turbine’s cyclical start-
up from initiation to attaining its designed rotation speed (100 %) and
subsequently to its shut-down and entry into a non-working state.
A pivotal initial step in data processing is the extraction of periods

corresponding to working states to delineate and identify the steady
operations within the working conditions. The methodology adopted in
this study is predicated upon the signal of the thrust bearing pump on/

Table 1
Measurement signals referenced in this study and corresponding
units.

Parameter Unit

Turbine speed %
Guide vane opening %
Generator active power %
Pump thrust bearing on/off –
Upper guide bearing vibration RMS mm/s2
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off. This signal is integral to the operation as: the pump starts operation
slightly before the turbine becomes active, persisting until the bearing
accrues a sufficient oil film for lubrication; the pump activates shortly
before the planned shut-down of the unit and continues until the turbine
achieves a full standstill or marginally longer, to guarantee ample
lubrication. Correspondingly, the blue line in Fig. 1, anchored to the
right y-axis, delineates the thrust bearing pump’s on/off signal cycles
within the hydropower plant case study. These signal transitions from
0 to 1 and back to 0 succinctly indicate the system’s start-up and sub-
sequent shut-down phases. By harnessing the thrust bearing pump on/
off signals, discrete working segments have been extracted.
Fig. 2 presents a working period extracted via the above-mentioned

method, showcasing the turbine speed, guide vane opening, and
generator active power. This segment was selected due to its short
duration, approximately 1 h, which allows for precise observation of the
variations in the three signals. As depicted, the turbine speed rapidly
ascends to 100 %, the guide vanes commence opening in tandem with
the turbine’s start-up, rising gradually, and the power generation simi-
larly increases with the guide vane opening. After attaining a relatively
stable state in turbine speed and guide vane opening, the generator
active power exhibits minor transient fluctuations before stabilizing into
steady operation. During the shut-down sequence, as the guide vane
opening begins to decrease, the generator active power diminishes
correspondingly, with the turbine speed starting to decelerate only after
the cessation of power generation when the guide vanes have
completely closed. Fig. 1 first corroborates the efficacy of the prior
extraction methods. Secondly, it reveals that the generator active power
fluctuates in response to the guide vane opening settings. Consequently,
the determination of the steady operating intervals is predicated on the
presence of a stable generator active power output. Therefore, within
the context of this study, the time series measurement of the generator
active power will serve as the signal for identifying steady operations.
The raw dataset spanning three years and three months, encom-

passing all working conditions, contains more than 10 million data.
After the extraction of working periods, approximately 3.5 million data
points remained. Fig. 3 presents the frequency distribution of turbine
speed, guide vane opening, and generator active power under all

extracted working periods, including steady operations and transients.
As indicated in the figure, due to transients attributable to start-up and
shut-down sequences, instances of zero are also observable. The guide
vane opening is predominantly concentrated in the 50 %–100 % range,
whereas the generator active power is principally clustered between 70
% and 100 %.

2.3. Different operation patterns

During over three years of operation, the HPP case study experienced
variations in its a specific date. Consequently, the clustering of steady
operation in this research must consider three distinct operational pat-
terns. Fig. 4 presents three typical working periods, each vividly delin-
eating the different operational patterns. To ensure clarity in the visual
representation of the fluctuations, the y-axis is configured to display a
range from 40 % to 100 %.
The top figure in Fig. 4 illustrates the first pattern, where, aside from

the start-up and shut-down sequences, the generator active power
maintains a constant setting throughout the working period. The middle
figure represents the second pattern, characterized by segments of
differing constant generator active power settings. The bottom figure
depicts the third operational pattern, where, due to the initiation of
frequency regulation, the guide vane opening is frequently adjusted in
response to the power grid’s demands, resulting in a continuously var-
iable generator active power across the entire working period. The
methodology proposed in this study is designed to effectively identify
steady operations across all three patterns, demonstrating the adapt-
ability and robustness of the approach in varying operational contexts.

3. Methodology

This section introduces the proposed methodology, incorporating
multiple change points detection and unsupervised machine learning
techniques for clustering steady operations. The method is specifically
tailored for non-stationary generator active power time series as input.
Fig. 5 delineates the workflow of the proposed framework.
The workflow of the proposed methodology consists of three distinct

Fig. 1. Turbine speed (left y-axis) and thrust bearing pump on/off (right y-axis) measurements (in 0.1 Hz) for the hydropower plant case study over an example one-
week period.

Fig. 2. Turbine speed (top), guide vane opening (middle), and generator active power (bottom) measurements for one extracted working period.
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steps. In step I, raw data is smoothed to remove noise from the mea-
surement signals (preprocessing), enhancing data clarity. Step II in-
cludes two concurrent procedures. The first is determining the number
of segments (steady operation and transients) by applying a multiple
change points detection algorithm to identify change points within the
smoothed 1-D time series signal. This segment quantity is important due
to the prerequisite of most clustering methodologies, which necessitate
either an a priori specification of the number of clusters or parameter

adjustments based on cluster quantity. Given that working conditions
duration and operational patterns in HPP real data vary a lot, the count
of these identified segments provides a crucial reference for the auto-
mated adaptation of clustering method parameters. Concurrently, non-
overlapping temporal windows are generated from the smoothed data,
and statistics within each time window produce a set of descriptive
features in step II. In Step III, both the temporal features and the segment
count are utilized as inputs to the clustering algorithm, which then

Fig. 3. Frequency distribution histograms of turbine speed, guide vane opening, and generator active power from the extracted working period over more than three
years of measurements.

Fig. 4. Three distinct operational patterns: temporal continuous constant setting (top), temporal discontinuous constant setting (middle), and temporal continuous
varying setting (bottom).

Fig. 5. Proposed methodology utilizing multiple change points detection and unsupervised machine learning for clustering of steady operations.
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classifies the data into steady operations and transients.
The rationale and discussion concerning the selection of various

methodologies are detailed as follows. Section 3.1 outlines the appli-
cation of multiple change points detection, a technique used for seg-
mentation. The analysis of statistics within temporal windows and the
implementation of clustering algorithms are clarified in Sections 3.2 and
3.3, respectively.

3.1. Multiple change points detection for segmentation

Given the smoothed 1-D time series data of generator active power,
represented as y1:n =

(
y1, y2, ⋯, yn

)
, it is assumed that there exists a

number of change points, m, along with their respective positions
denoted by τ = (τ1,τ2,⋯,τm). Each change point is an integer between 1
and n − 1 inclusive, and is structured such that 0 = τ0 < τ1 < τ2 < ⋯ <

τm < τm+1 = n. The change points are ordered that τi < τj if, and only if,
i < j. Consequently, them change points divide the series data intom+ 1
segments, where the j-th segment is denoted as y(τj− 1+1):τj . Change points

detection can be formulated as an optimization problem finding a
feasible sequence segmentation τ that minimizes the function given by

∑m+1

j=1
C
(
y(τj− 1+1):τj

)
+ βg(m), (1)

where C is the cost function for a segment, and βg(m) is a penalty factor
that considers the complexity of the segmentation against overfitting.
This study employs the PELT algorithm to minimize Eq. (1), as intro-
duced by Killick et al. [32], which utilizes dynamic programming to
efficiently search for optimal change points, balancing computational
cost and accuracy. Its computational efficiency is primarily enhanced by
pruning non-optimal solution paths, and theorems that justify the
removal of these solution paths are detailed in Ref. [32]. A key
assumption of PELT algorithm is that the penalty factor is linear with the
number of change points, i.e., βg(m) = βm. The optimal segmentation is
given by the objective function G(n), defined as

G(n)=min
τ

{
∑m+1

j=1

[
C
(
y(τj− 1+1):τj

)
+ β

]
}

. (2)

Here, the minimization strategy involves conditioning on the last
identified change point, τm, to optimize segmentation up to that point,
described as

G(n)=min
τm

{

min
τ|τm

∑m

j=1

[
C
(
y(τj− 1+1):τj

)
+ β

]
+C

(
y(τm+1):n

)
}

. (3)

This recursive conditioning can be applied sequentially to change
points from the second to last, third to last, and so on. The recursive
aspect of this process is evident, that the inner minimization aligns with
Eq. (2), leading to rewrite Eq. (2) as

G(n)=min
τm

{
G(τm)+C

(
y(τm+1):n

)}
. (4)

The calculation begins with G(1) and progresses recursively through
G(2), …, G(n). Throughout this procedure, the algorithm stores the
optimal segmentation for each step up to τm + 1, effectively tracking the
quantity and positions of all identified change points. The step-by-step
minimization, covering all previous values for τm. Finally, the number
of segments N = m+ 1 is obtained through the PELT algorithm. In this
study, the cost function C is defined as the L2-norm expressed by

C
(
y(τj− 1+1):τj

)
=

∑τj

i=τj− 1+1

(
yi − y(τj− 1+1):τj

)2
, (5)

where y(τi− 1+1):τi represents the mean of the segment sequence
y(τj− 1+1):τj . In PELT, the penalty factor is determined by a Sensitivity

parameter (in the range of [0,1]), calculated as β =

(0.25n)(1− Sensiticity) • 2 log(n), where n is the length of the 1-D sequence. A
higher Sensitivity corresponds to a lower penalty, enhancing the algo-
rithm’s ability to detect change points. In this study, we set Sensitivity to
1, resulting in a penalty of 2 log(n), equivalent to using the Bayesian
Information Criterion (BIC) for determining the penalty factor β [32].
This setting aims to improve the detection of change points in the
analysis.

3.2. Temporal windows statistics for feature generation

In parallel to obtaining the number of segments N, the unsupervised
machine learning clustering algorithms also need the input features. In
this study, the considered features are the statistics, i.e., mean (μ) and
standard deviation (σ) of each non-overlapping temporal window of the
smoothed 1-D time series signal. Each temporal window is discrete and
spans 1 min, due to the measurement frequency being 0.1 Hz, thus
including six data points per window. The feature for the i-th window, f i,
is defined by

f i =
[
μ
(
y(6i− 5):(6i)

)
, σ
(
y(6i− 5):(6i)

)]
. (6)

It should be noted that the final data window, if it comprises fewer
than six data points, is excluded from consideration. The ensuing clus-
tering process will then utilize each temporal window as a sample for the
clustering analysis. These features are then synthesized into feature F =

[f1, f2,…] for subsequent clustering.

3.3. Unsupervised machine learning clustering algorithms

Unsupervised machine learning clustering algorithms are commonly
categorized into compactness-based and connectivity-based methods.
Compactness-based clustering ensures data points within the same
cluster by a certain distance measure. In contrast, connectivity-based
clustering focuses on the idea that data points that are closer in the
data space (adjacent data points) are more related and should be in the
same cluster [33]. In this study, the feature F = [f1, f2,…] generated
from the temporal window exhibits temporal continuity, meaning that
data points close in time are more likely to belong to the same cluster.
This distinct attribute renders connectivity-based methods particularly
suitable. This study compares compactness-based and
connectivity-based methods to ensure a comprehensive analysis, and
elucidates the most effective clustering strategy for identifying HPP
steady operations. The k-means algorithm and the Bayesian Gaussian
mixture model is applied for compactness-based clustering. Concur-
rently, hierarchical clustering and DBSCAN are adopted for
connectivity-based clustering. Here is a brief description of those clus-
tering algorithms examined in this study:

• K-means is a centroid-based algorithm that divides a dataset into a
predefined number of clusters according to the distances to their
centroids. It assigns data points to the closest centroid, representing
each cluster’s center, and iteratively updates these centroids based
on the newly assigned points [34].

• Bayesian Gaussian mixture assumes that the data points are pro-
duced by combining a predefined number of Gaussian distributions
(clusters). The algorithm uses the Expectation-Maximization (EM)
approach to estimate the parameters of the Gaussian distributions
and applies Bayesian inference to update the model parameters [35].

• Hierarchical clustering divides data based on similarity or
dissimilarity, generating a tree-hierarchical structure of clusters, also
known as a dendrogram. The agglomerative approach begins with
each data point as an individual cluster and progressively merges the
closest pair of clusters. This process repeats until only one cluster
remains [36].

• DBSCAN is density-based clustering algorithm that groups points in
a space by identifying areas of high density, where points have many
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nearby neighbors, and labels as outliers those points in low-density
areas, far from their nearest neighbors. Although primarily recog-
nized for its density-based clustering due to its focus on regions of
high data point density, DBSCAN also embodies elements of
connectivity-based clustering. For points to be considered part of the
same cluster, they must be connected by a path of densely packed
points [37].

Methods such as the k-means algorithm, Bayesian Gaussian mixture
model, and hierarchical clustering only require the number of segments
N, and the temporal feature F = [f1, f2,…] as their primary input.
Conversely, for DBSCAN, the required two critical parameters are
MinPts, the minimum number of points to form a cluster, and ε, the
maximum distance between two points for neighborhood consideration.
The input and output of the considered clustering algorithms are listed
in Table 2. DBSCAN also exhibits robustness against noise in data [35], a
significant advantage when discerning operational states. Its output
commonly classifies transients as noise or outliers, effectively isolating
them from primary clusters. The clusters identified by DBSCAN thus
represent the distinct steady operations.
However, the variation inMinPts and ε significantly impacts DBSCAN

clustering outcomes. Given the heterogeneity of operational patterns
and durations within a case study’s extensive dataset, a single set of
MinPts and ε cannot effectively cluster all working periods. Manual
iteration over various parameter combinations for large-scale auto-
mated data processing is impractical. Hence, this study proposes an
adaptive DBSCAN approach for identification of HPP steady operations.
Since the input features are calculated based on per-minute temporal
windows, and we assume that only data sequences lasting 5 min or
longer can be classified as steady operations, the MinPts (the minimum
number of points to form a cluster) is assumed to be 5. For the proposed
DBSCAN algorithm, each working period’s clustering involves an opti-
mized ε adjustment range [ε1, ε2⋯εK]. The optimization process com-
mences by counting the number of segments exceeding 5 min in
duration from the N segments determined by PELT algorithm, denoted
as S. Then ε is fine-tuned based on the criteria of the number of clusters
derived from the adaptive DBSCAN equals (or is closest to) S. The al-
gorithm below shows the implementation process for steady operations
identification using the proposed PELT segmentation based adaptive
DBSCAN clustering. In this study, the applied ε adjustment range is
[0.05,10], with an interval of 0.01.

Algorithm. Identification of steady operations using PELT segmenta-
tion based adaptive DBSCAN
Input: N segmentation from PELT, temporal feature F, MinPts, value list [ε1, ε2⋯εK ] of

ε.
Output: Steady operations with clusters labels [ω1,ω2⋯ωT].
1: Count the number S of segments with duration >5 min
2: Initialize εopt to None and min_distance to infinity
3: for each εk in [ε1, ε2⋯εK ] do
4: Use εk and minPts to perform DBSCAN clustering on F
5: Return the number T of clusters excluding the noise (transients)
6: if T = S then
7: Set εopt to εk

(continued on next column)

(continued )

8: break
9: else if |T − S| < min_distance then
10: Update εopt to εk and min_distance to |T − S|
11: continue
12: Perform DBSCAN with εopt and MinPts on F
13: Return [ω1,ω2⋯ωT]

4. Identification of steady operations based on different
clustering methods

Building upon the methodology for identifying steady operations as
previously outlined, this section initiates a comparative evaluation of
various unsupervised machine learning clustering methods. The goal is
to determine the most effective algorithm for identifying steady opera-
tions within the practical framework of the case study HPP based on
measured active power. This comparative analysis includes an in-depth
review of three distinct operational patterns, i.e., temporal continuous
constant, temporal discontinuous constant, and temporal continuous
varying setting. The comparison is based on the clustering outputs from
individual working period. Each operational pattern undergoes two case
studies (distinct working periods) to visualize the final clustering results
by the four different algorithms. For each working period’s clustering
output, different colors are used to represent each 1-min temporal
window, indicating the cluster it belongs to. Finally, we conduct
Augmented Dickey-Fuller (ADF) tests on the raw 1-D active power time
series (0.1 Hz, unsmoothed) of each cluster (within one working period)
for different algorithms. This statistical test verifies whether the seg-
ments of each algorithm’s clusters are steady and quantifies the model
performance of each algorithm.

4.1. Temporal continuous constant pattern

In the first pattern under consideration, the HPP operates with a
temporal continuous constant setting, where, apart from the start-up
and shut-down sequences, the generator’s active power remains con-
stant throughout the remaining operational interval. This pattern
effectively represents a situation where the number of steady operations
is one. Fig. 6 illustrates a short working period, approximately half an
hour, which clearly depicts the clustering outcomes for each 1-min
temporal window. The chromatic representation within the temporal
window signifies the categorical delineation of clusters. For the pro-
posed DBSCAN method, the segments rendered in white are designated
as noise or outliers, signifying their exclusion from any cluster

Table 2
List of considered clustering algorithms, and the corresponding input and
output.

Method Type Input Output clusters

K-means Compactness N, F Steady operations,
transients

Bayesian Gaussian
mixture

Compactness N, F Steady operations,
transients

Hierarchical
clustering

Connectivity N, F Steady operations,
transients

DBSCAN Density &
Connectivity

MinPts, ε,
F

Steady operations

Fig. 6. Comparative clustering outcomes of steady operations by four diverse
algorithms over a brief working period (approximately half an hour) in pattern
1 with temporal continuous constant setting.
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formation.
As observed in the figure, the adaptive DBSCAN algorithm success-

fully identifies the regions of fluctuating generator active power during
start-up and shut-down sequences as noise points or anomalies, thus
accurately isolating a single correct steady operation. The Bayesian
Gaussian mixture model can also identify the middle steady operation as
a single cluster. However, it erroneously includes a few temporal win-
dows where the generator’s active power fluctuates before and after the
identified steady operation. Conversely, k-means and hierarchical clus-
tering methods fragment the central stable steady operation into mul-
tiple segments.
Subsequently, a working period of approximately 4 h was selected as

the second case study for this pattern in Fig. 7. Analogous to the previous
example, the DBSCAN algorithm adeptly differentiated the start-up and
shut-down sequences, accurately clustering the intermediary steady
operation. However, once again, both k-means and hierarchical clus-
tering methods erroneously segmented the steady operation into
discrete segments. Similarly, the Bayesian Gaussian mixture model
included parts of the start-up tail and the shut-down onset within the
steady operation clustering (see zoom-in frame), suggesting a less pre-
cise demarcation of boundaries.

4.2. Temporal discontinuous constant pattern

For the second pattern, the HPP operates under a temporal discon-
tinuous constant setting, wherein, aside from the start-up and shut-down
sequences, there are adjustments in guide vane opening, resulting in
power generation with varying constant settings over different periods.
Consequently, in this pattern, the number of steady operations exceed
one. A working period of approximately 8 h is utilized to assess the
capabilities of the four clustering algorithms, as demonstrated in Fig. 8.
This case includes two distinct constant power settings, leading to two
steady operations.
As depicted in Fig. 8, the proposed adaptive DBSCAN, consistent

with its performance in the first pattern, adeptly identifies the start-up
and shut-down sequences and accurately discriminates the transients –
when the generator’s active power shifts from one constant to another,
thereby correctly clustering two distinct steady operations. In this case,
the Bayesian Gaussian mixture model again exhibits suboptimal
boundary delineation. This deficiency is evident in the start-up and shut-
down phases. It is more pronounced during the transients associated
with guide vane opening adjustments, mistakenly clustering these
transitions as part of the adjacent steady operations. Similarly, k-means
and hierarchical clustering methodologies also falter in accurately
clustering these transients, erroneously integrating them into the prior

steady operation.
In the subsequent analysis, a working period characterized by more

frequent constant power setting changes was selected as the second
comparative case study for pattern 2, as depicted in Fig. 9. This period
experienced six alterations in guide vane opening, in addition to the
start-up and shut-down sequences, theoretically resulting in six distinct
steady operations. As illustrated in the figure, DBSCAN accurately
clustered the entire working period into six separate steady operations,
effectively excluding all transients from these classifications.
Once again, the k-means and hierarchical clustering methods erro-

neously segmented regions that should have been classified as a single
steady operation into multiple clusters. Conversely, the Bayesian
Gaussian mixture model accurately distinguished the primary steady
operations; however, the persisting issue was the inaccurate classifica-
tion of boundaries of transients, with several transients erroneously
included within the steady operations.
For the first two patterns, the proposed adaptive DBSCAN has

demonstrated the most proficient capability in identification of steady
operations, with the Bayesian Gaussian mixture model following closely.
The primary shortcoming of the Bayesian Gaussian mixture approach is
its tendency to incorporate the beginnings and endings of transients into
adjacent steady operations.

Fig. 7. Comparative clustering outcomes of steady operations by four diverse
algorithms over a brief working period (approximately 4 h) in pattern 1 with
temporal continuous constant setting.

Fig. 8. Comparative clustering outcomes of steady operations by four diverse
algorithms over a brief working period (approximately 8 h) in pattern 2 with
temporal discontinuous constant setting.

Fig. 9. Comparative clustering outcomes of steady operations by four diverse
algorithms over a brief working period (approximately 15 h) in pattern 2 with
temporal discontinuous constant setting.

X. Lang et al. Renewable Energy 236 (2024) 121463 

7 



4.3. Temporal continuous varying pattern

In the most challenging pattern 3, the studied HPP embarked on
frequency regulation, where power generation settings were adjusted
according to the requirements of power grid. Two distinct case studies
were conducted to evaluate the efficacy of various clustering methods:
one covering a working period of approximately 10 h with minor
adjustment frequencies, and the other spanning around 19 h with more
substantial frequency adjustments.
Fig. 10 presents the case with lesser adjustment frequencies. In this

operation pattern, characterized by a higher prevalence of transients, k-
means and hierarchical clustering methods appeared to falter signifi-
cantly. These algorithms subdivided the entire working period into
numerous short, disparate clusters, with few continuous segments. On
the other hand, the Bayesian Gaussian mixture model veered towards
the opposite extreme. Consistent with observations from the first two
patterns, it struggled with clustering transient boundaries. Now, under a
high-transient frequency operation pattern, the Bayesian Gaussian
mixture model concatenated transients and steady operations into a
single cluster, failing to distinguish between them effectively. In
contrast, DBSCAN maintained its superior clustering performance,
accurately identifying start-up, shut-down sequences, and transients
generated due to guide vane opening adjustments between adjacent
steady operations.
In the case of involving a higher frequency of guide vane opening

adjustments in Fig. 11, k-means and hierarchical clustering continued to
partition the entire interval into numerous small, discontinuous seg-
ments. Meanwhile, the Bayesian Gaussian mixture model persisted in
erroneously concatenated the transients with steady operations. In
contrast, DBSCAN demonstrated a relative proficiency in discerning
continuous stable operations amidst the frequently fluctuating pattern,
effectively clustering them as steady operations. However, DBSCAN also
has limitations for this very high-frequency adjustment case. For
example, the green cluster in the third zoom-in frame, a segment clus-
tered into a steady operation, still contains a slight fluctuation at the
beginning of the segment. But it is much more minor than other seg-
ments from clusters of transients.
In addition to the visualization case comparisons for distinct working

periods across the three operational patterns, the ADF statistical test is
also applied to quantify the model performance of each clustering al-
gorithm. For each clustering algorithm, the ADF test is conducted on the
raw 0.1 Hz measured active power data (without smoothing) within the
same clusters produced in each working period output. Finally, the
average ADF p-value results from all working periods within each
operational pattern for the different algorithms are calculated and listed

in Table 3.
As shown in Table 3, for the first operational pattern, where only one

steady operation is included in a working period, the average p-value of
the proposed adaptive DBSCAN is 4.87E-08, which is significantly below
the 0.05 threshold required by the ADF test to confirm stationarity, thus
proving the algorithm’s effectiveness. In contrast, the average p-value
for the other three clustering algorithms all exceed 0.05, as they tend to
cluster some transients (start-up & shut-down) as steady operations and
divide segments from the same steady operation into different clusters.
For operational pattern 2, only the output from DBSCAN satisfies the
ADF test’s criterion for stationarity, although its average p-value has
increased to 2.76E-02. The average p-value for the other clustering
methods have also increased. This suggests that when a working period
includes several constant power generation settings, the transients,
which increase due to adjustments in settings such as guide vane
openings, lead to more transient parts being clustered into adjacent
steady operations. In the third pattern, after frequency regulation, there
are higher frequency changes in guide vane openings, causing more
transients. For k-means, the Bayesian Gaussian mixture model, and hi-
erarchical clustering, their average p-value decrease. This is because
they segment the working period into many smaller clusters, and the
p-value calculated for each small cluster is lower than in patterns 1 and
2, but the mean of the average p-value is still well above 0.05, indicating
that the segments are not steady operations. Meanwhile, for the pro-
posed adaptive DBSCAN, the average p-value is 4.84E-02, still meeting
the ADF test criteria for stationarity. However, this value is close to 0.05,
suggesting that some clusters might have p-value above this threshold,
which corroborates the discussion in Fig. 11 that there are still clusters
with slight fluctuations, not entirely steady operations.
Based on the comparative analysis across three operational patterns,

the proposed method employing the adaptive DBSCAN clustering tech-
nique shows good robustness and reliability in identifying steady oper-
ations and transients from the HPP generator active power

Fig. 10. Comparative clustering outcomes of steady operations by four diverse
algorithms over a brief working period (approximately 10 h) in pattern 3 with
temporal continuous varying setting.

Fig. 11. Comparative clustering outcomes of steady operations by four diverse
algorithms over a brief working period (approximately 19 h) in pattern 3 with
temporal continuous varying setting.

Table 3
Average ADF p-value results for clustering algorithms across different opera-
tional patterns.

Operation
pattern

K-
means

Bayesian
Gaussian
mixture

Hierarchical
clustering

Adaptive
DBSCAN

Pattern 1 3.33E-
01

2.21E-01 3.65E-01 4.87E-08

Pattern 2 3.93E-
01

4.80E-01 4.05E-01 2.76E-02

Pattern 3 2.24E-
01

2.33E-01 2.15E-01 4.84E-02
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measurements. This method outperforms the other clustering algorithms
applied in the study, demonstrating its effectiveness in accurately seg-
menting data even in complex operational scenarios.

5. Upper guide bearing vibrations in steady operations and
transients

Building on the proposed adaptive DBSCAN methodology for clus-
tering steady operations based on the power output time series, this
section presents an exhaustive statistical analysis of RMS values of upper
guide bearing vibrations within the HPP case study in steady operations
and transients. The vibrational RMS data often serves as an important
indicator of operational integrity. It is a composite reflection of the
vibrational forces, encompassing, but not limited to, misalignment,
imbalance, and structural resonances. A comprehensive analysis of these
RMS values can thus preemptively signal the onset of wear or fatigue,
facilitating timely maintenance interventions. Moreover, a consistent
upward trend in RMS values may portend the deterioration of bearing
performance, warranting immediate inspection and remedial actions to
prevent progressive degradation.

5.1. Vibrations change due to maintenance

Among the 852 working periods extracted by the method introduced
in Section 2.2, approximately the first 60 periods lack measured vibra-
tion data. Subsequently, certain anomalies were identified in the
remaining periods where data is available, characterized by instances of
zero vibration or prolonged periods of unvarying measurements.
Consequently, these periods were excluded from the dataset prior to
conducting statistical analyses. The final analysis includes 521 working
periods. This systematic exclusion the reliability of the statistical
evaluation.
Fig. 12 systematically presents the upper guide bearing vibrations

RMS across the 521 working periods, arranged in chronological order.
Portions where data are absent within Fig. 12 correspond to the
excluded working periods. The first vertical line denotes the
commencement of starting frequency regulation, while the second ver-
tical line represents a period of planned maintenance.
A meticulous clustering of steady operations was then performed for

the all 521 working periods through the proposed adaptive DBSCAN
based on 1-D power output signal. This process resulted in the identi-
fication of both transients and steady operations. Subsequent to this
clustering, a comprehensive statistical analysis was conducted on the
vibration RMS for each working period within the transients and steady
operations. Firstly, the process entailed the calculation of the mean
value (μRMS) and the standard deviation (σRMS) of the vibration RMS
under the transients and steady operations for each working period.
Following this, Figs. 13 and 14 systematically illustrate the distribution
of μRMS and σRMS pertaining to the RMS measurements within the
identified transients and steady operations across each working period
before and after planned maintenance. Also, the mean value of each
statistic is presented in those figures.
During transients, which are typically punctuated by fluctuations

due to start-up or shut-down sequences, as well as other operational
adjustments, the μRMS and σRMS distributions articulate a pronounced
pattern of variability. This increased dispersion is emblematic of the

dynamic loads and stresses imposed upon the bearing during these
phases of operational transition, contributing to the observed vari-
ability. In contrast, steady operations are emblematic of a stabilized
operational regime, wherein the machinery’s performance is anticipated
to be more uniform. Histograms representing the steady operations
consistently exhibit more concentrated μRMS values and constricted σRMS
distributions before and after maintenance. This indicates that, under
steady operation conditions, the vibrations of the upper guide bearing
are substantially attenuated.
The impact of maintenance interventions on the vibrational attri-

butes of the upper guide bearing is discernibly illustrated in Figs. 13 and
14. It is evident that both transients and steady operations experience a
substantial reduction in vibration after maintenance. Prior to mainte-
nance, the μRMS values of transient states spanned an interval of [0.33,
1.06] with a mean of 0.53. Following maintenance, the μRMS values for
transient states were observed to lie within a narrower range of [0.23,
0.4], culminating in a reduced mean of 0.28. This represents an
approximate 90 % improvement in vibrational behavior.
Similarly, for the μRMS of steady operations, the pre-maintenance

distribution ranged from [0.30, 0.60] with a mean of 0.49, while post-
maintenance, the range tightened significantly to [0.23, 0.29], with
the mean diminishing to 0.27, denoting an improvement of around 80
%. These substantial reductions in RMS values after maintenance un-
derscore the efficacy of the maintenance procedures implemented,
confirming their crucial role in mitigating vibrational impacts and
enhancing the operational longevity of hydroelectric machinery.

5.2. Vibrations in transients

Subsequently, within the transients, individual working periods were
meticulously categorized, dividing transients into start-up sequences
(the initial continuous clustered transient state), shut-down sequences
(the final continuous clustered transient state), and other transients
instigated by operational activities, such as guide vane opening adjust-
ments. The distributions of μRMS values across diverse working periods
under the aforementioned transient conditions are systematically pre-
sented in Figs. 15 and 16, delineating the comparative vibrations before
and after the execution of maintenance procedures.
As shown in Figs. 15 and 16, start-up sequences are characterized by

the most severe vibrations of the upper guide bearing concerning tran-
sient conditions. Before maintenance, the mean value of μRMS across
various working period start-up sequences was measured at 0.57,
whereas the mean value of μRMS for both shut-down and other transient
sequences was at 0.5. Start-up sequences also have the highest frequency
μRMS distribution occurring between 0.6 and 0.8. After maintenance, a
notable mitigation in vibration intensity was observed, with the mean
value of μRMS for start-up and shut-down sequences reduced to 0.3,
marking a 90% and 67% decrease, respectively. The mean value of μRMS
for other transients decreased to 0.27, constituting an approximate 85 %
reduction.
Overall, within the transients, the vibrational intensity during start-

up and shut-down sequences was notably more pronounced than other
transients. However, it is imperative to highlight that, after mainte-
nance, the shut-down sequences exhibited a greater distribution at
higher μRMS values, indicating a prevalence of instability in vibrations
during these sequences. This observation warrants further in-depth
investigation to understand better and mitigate the underlying causes
of vibrational irregularities during shut-down procedures.

5.3. Vibrations trend detection in steady operations

As discerned from Fig. 12, prior to maintenance, the original vibra-
tions RMS measurements inclusive of start-up, shut-down, and other
transient sequences exhibited relative stability, lacking a consistent
upward trend in original RMS, and it cannot indicate alterations in

Fig. 12. The upper guide bearing vibration RMS measurements across the
measurement period.
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bearing performance. Consequently, the rationale for conducting
maintenance was not apparent from the original vibrational RMS data
alone.
To facilitate a more detailed temporal analysis, the mean value of

vibration RMS, μRMS for start-up, shut-down, and other transient se-
quences, as well as for steady operations across each working period,
were computed and are sequentially presented in Figs. 17 and 18.
Within these figures, the first and second vertical lines demarcate the
initiation of frequency regulation and the execution of maintenance
activities, respectively.
Fig. 17 provides a revealing insight into the vibrational behavior of

bearings during start-up and shut-down sequences, illustrating a sig-
nificant reduction in μRMS after maintenance without any discernible
temporal trends preceding this change. In the left figure of Fig. 18, the
μRMS within other transients also does not exhibit a clear pattern indic-
ative of bearing performance deterioration prior to maintenance.
Conversely, the μRMS associated with steady operations, as depicted

in the right figure of Fig. 18, is markedly more concentrated, distinctly
manifesting the consistent upward trend requisite for inferring the
deterioration of bearing performance. This trend remains relatively
unaltered throughout the subsequent frequency regulation operations,
only decreasing substantially after the maintenance. Such findings

Fig. 13. Frequency distribution histograms of μRMS and σRMS under transients (top) and steady operations (bottom) across each working period before planned
maintenance.

Fig. 14. Frequency distribution histograms of μRMS and σRMS under transients (top) and steady operations (bottom) across each working period after planned
maintenance.
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underscore the imperative of discounting the transient effects when
evaluating bearing performance degradation, thereby affirming the
value and significance of the identification of steady operations meth-
odology proposed earlier in this study. Employing vibrations of steady
operations provides a robust method to monitor upper guide bearing
performance and lays the groundwork for subsequent modeling and
predictive maintenance strategies. This approach potentially preempts
mechanical failures and extends the bearings’ operational longevity.
Moreover, it is noteworthy that within the region demarcated by the

two vertical lines, indicative of the frequency regulation operations
before maintenance, there is no observed augmentation in the RMS of
the upper guide bearing vibrations, whether in transient or steady op-
erations. However, this period is too short, and more data are needed to
study whether the third operation pattern has essential impacts on the
RMS of vibrations for the upper bearing guide. In addition, the influence
of frequency regulation operations on the radial displacement of the
upper guide bearing, vibrations of the turbine guide bearing and thrust
bearing merits further investigation. This future research will be
grounded on the steady operations identification methodology proposed
in this study, aiming to provide a more comprehensive understanding of

the operational effects on these critical components.

6. Conclusion

This paper proposes an innovative methodology for the automated
identification of steady operations within the operational regimes of
actual hydropower plants. The methodology is established and demon-
strated using a dataset spanning over three years from a real HPP. The
presented approach utilizes the PELT algorithm for multiple change
points detection by power generation time series signal, which ascer-
tains the number of segments (steady operations and transients) for each
working period. Concurrently, an innovatively adaptive DBSCAN algo-
rithm is proposed for steady operations identification. This algorithm
exhibits the capacity to autonomously fine-tune its hyperparameter in
response to the PELT-generated segmentation across disparate opera-
tional periods. This characteristic enables it to surpass other clustering
methodologies in terms of clustering efficacy across a variety of opera-
tional patterns. This work addresses the current critical need for more
adaptive, real-time analysis tools that can automated adjust to changing
operational patterns without human intervention.

Fig. 15. Frequency distribution histograms of μRMS in start-up (left), shut-down (middle) and other transient (right) sequences across each working period before
planned maintenance.

Fig. 16. Frequency distribution histograms of μRMS in start-up (left), shut-down (middle) and other transient (right) sequences across each working period after
planned maintenance.

Fig. 17. Start-up (left) and shut-down (right) sequences μRMS in each considered working period.

Fig. 18. Other transient (left) and steady operations (right) sequences μRMS in each considered working period.
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Employing the proposed method, a thorough analysis of the upper
guide bearing’s vibration was conducted. This analysis considers tran-
sients, steady operations, and periods of maintenance. The method
developed in the present work identifies that the planned maintenance
resulted in a significant reduction in the severity of vibrations, by 90 %
during transients and 80 % during steady operations. Specifically, vi-
brations during start-up and shut-down sequences were markedly more
severe than those experienced during transient power setting adjust-
ments. Further, temporal analysis of the vibration data revealed that
excluding transients allows for a clearer observation of performance
degradation in the upper guide bearing when utilizing steady operations
data.
The proposed method would not only improve the accuracy of

operational monitoring but also boost the efficiency and sustainability of
HPP management. By leveraging the data on steady operations derived
from the proposed methodology, future research could focus on
modeling various bearings and other components within the HPP. Such
models would facilitate the detection of performance variations over
time, enabling predictive maintenance and the identification of faults
and anomalies. This proactive approach is anticipated to reduce the
reliance on reactive maintenance measures and ensure more efficient
and reliable power generation.
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