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A B S T R A C T

Construction of large underground infrastructure facilities routinely leads to leakage of groundwater and
reduction of pore water pressures, causing time-dependent deformation of overburden soft soil. Coupled hydro-
geomechanical numerical models can provide estimates of subsidence, caused by the complex time-dependent
processes of creep and consolidation, thereby increasing our understanding of when and where deformations
will arise and at what magnitude. However, such hydro-mechanical models are computationally expensive and
generally not feasible at larger scales, where decisions are made on design and mitigation. Therefore, a
computationally efficient Machine Learning-based metamodel is implemented, which emulates 2D finite element
scenario-based simulations of ground deformations with the advanced Creep-SCLAY-1S-model. The metamodel
employs decision tree-based ensemble learners random forest (RF) and extreme gradient boosting (XGB), with
spatially explicit hydrostratigraphic data as features. In a case study in Central Gothenburg, Sweden, the met-
amodel shows high predictive skill (Pearson’s r of 0.9–0.98) on 25 % of unseen data and good agreement with the
numerical model on unseen cross-sections. Through interpretable Machine Learning, Shapley analysis provides
insights into the workings of the metamodel, which alignes with process understanding. The approach provides a
novel tool for efficient, scenario-based decision support on large scales based on an advanced soil model
emulated by a physically plausible metamodel.

1. Introduction

During construction and operation of underground infrastructure,
leakage of groundwater into these structures can cause a reduction of
groundwater heads and result in subsequent reduction of pore water
pressure. In areas with deformation-sensitive clays, this pore pressure
reduction is delayed, leading to time-dependent ground deformations.
Such deformations have the potential to cause significant damage to
buildings and other infrastructure as groundwater head decline may
occur at larger scales (district-, city-, or regional scale), where the
impact area is dependent on the hydraulic and stratigraphic features of
the soil (e.g., Burbey, 2002; Chaussard et al., 2014; Guzy and Mali-
nowska, 2020; Huang et al., 2012; Larsson et al., 1997; Zhu et al., 2012).
When planners of underground infrastructure assess subsidence

risks, physical process-based numerical models are generally applied
that combine groundwater flow with deformation analysis. With such

models the complex problems of subsurface variations (e.g., hydro-
stratigraphic, and geotechnical properties) across spatial scales, as
well as the time-dependent nature of the coupled hydro-geomechanical
processes can be addressed. For large-scale subsidence predictions,
where hydro-stratigraphic variations are represented, Finite Difference
(FD) methods are commonly used, such as MODFLOW coupled with the
MODFLOW SUB package (Harbaugh, 2005; Hoffmann et al., 2003) or
Finite Element (FE) methods such as FEFLOW (Trefry and Muffels,
2007). Other models (both FD and FE methods) that have been applied
on large scales combine groundwater flow and linear elastic or elasto-
plastic stress-strain relationship (Calderhead et al., 2011; Mahmoudpour
et al., 2016; Ochoa-González et al., 2018; Sundell et al., 2019a; Teatini
et al., 2006; Ye et al., 2016). Such applications have been demonstrated
for many subsidence problems with acceptable accuracy in relation to
historic piezometric and subsidence measurements (Galloway and Bur-
bey, 2011).
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However, in cases where highly deformable sensitive clays with large
thicknesses dominate, an advanced constitutive (soil stress-strain-
strength) relationship is needed due to the highly non-linear material
response. Creep, anisotropy of stress-strain response as well as degra-
dation of bonding are features which affect the compressibility of nat-
ural sensitive clays. Therefore, a rate-dependent model, which accounts
for these different features, such as Creep-SCLAY1S (Gras et al., 2017b;
Sivasithamparam et al., 2015), is required to accurately represent the
response soft sensitive clays. To the authors’ knowledge, no applications
of advanced constitutive models on large scale subsidence problems
currently exist. Presumably, the main reason for this is the associated
computational complexity, which is compounded by the need for the
high number of elements in the numerical models at large scales, short
time steps due to the high non-linearity of the in constitutive models, the
many iterations required for convergence, as well as small enough
element sizes for acceptable precision, mesh quality and the reduction of
smearing effects. In addition to that, applying coupled formulations in
advanced constitutive models is numerically complex.
When a physical process cannot be simulated with feasible

computing time, surrogate models or metamodels are increasingly used
(e.g., Fienen et al., 2018; Furtney et al., 2022; Kang et al., 2016). A
metamodel is an approximate mathematical model of the outcome that
is more computationally efficient than a more detailed numerical model
(e.g., Asher et al., 2015). Metamodels generally only emulate outcomes
and not processes, which means that models can at best only be as good
as the underlying numerical model and will generally only be valid for
the range of inputs over which the metamodel was trained on (Furtney
et al., 2022). However, metamodels can capture complex, nonlinear
behavior and be efficiently applied in larger scale assessments, given
that statistical stationarity holds between the training model and the
metamodel (e.g., Starn et al., 2021). To be able to emulate outcomes that
have complex, nonlinear relations to input variables, different under-
lying algorithms of metamodels have been used in geotechnics and hy-
drogeology, such as traditional statistical methods, e.g., polynomial
approaches using response surfaces (Obel et al., 2020; Zhang, 2020) or
polynomial chaos expansion (Zoccarato et al., 2021) and Machine
Learning and Artificial Neural Networks (Zhang, 2020). More
commonly, varying types of regression models are employed, including
Machine Learning models (Fienen et al., 2018; Furtney et al., 2022; Kang

et al., 2016). Furtney et al. (2022) show that metamodels can be more
than 99 % accurate and argue that they are generally underused in soil
and rock mechanics.
Here, we propose an approach for constructing a Machine Learning-

based metamodel for subsidence due to a pore-water pressure drop
under a soft sensitive clay layer at a large scale. Themetamodel emulates
the outcome, i.e., the magnitude of subsidence de at a given time, of the
Creep-SCLAY1S constitutive model, which is run as a coupled hydro-
geomechanical FE model in Plaxis 2D. The modeling strategy is
applied to a case study in Central Gothenburg, Sweden. Here, the con-
struction of a commuter train tunnel and station necessitates investi-
gating multiple scenarios of pore pressure drops in the clay layer. This is
crucial to determine acceptable levels of groundwater drawdowns over
time and space to minimize damages with timely mitigation measures.

2. Methodology

2.1. Approach

A three-stage strategy is proposed to predict pore pressure drawdown
induced ground deformation on large scales (Fig. 1). In the preliminary
stage, the required input data is collected over the entire domain of
interest, including hydro-mechanical properties, borehole logs, and
groundwater levels. The borehole logs and groundwater levels are pro-
cessed into a hydrostratigraphic model, with thicknesses and depths of
soil layers as well as a piezometric map (see Section 3.2). In the process
modeling phase I, a scenario of a pore-water pressure drop (groundwater
drawdown) is chosen, and a section of the domain (here, a 2D cross
section is proposed) is extracted from the hydrostratigraphy. Further,
representative soil data is prepared for process modeling (see Section
3.3). These cross-sections are then implemented in a numerical model,
and ground deformations (here, subsidence) resulting from the draw-
down are computed along the section. In phase II, a statistical learning
framework is used to train a machine learning-based metamodel on the
subsidence results of the simulated cross sections using features such as
hydrostratigraphy that are available for the entire domain (Section 2.2).
Finally, the learned relationships from the cross-section are used to
spatially predict subsidence on the entire model domain.

Fig. 1. Flowchart of the proposed metamodeling strategy.
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2.2. Machine learning-based metamodel

The relationship between soil properties, hydrostratigraphy, and
ground deformation under external stresses is complex, which requires a
metamodel that supports description of nonlinearity. While in principle
independent of any physical process modeling, for this task we examined
the use of regression by comparing two commonly used decision tree-
based ensemble machine learning for metamodel development,
namely extreme gradient boosting (XGB) (Friedman, 2001) and random
forests (RF) (Breiman, 2001). Both techniques have previously been
applied for complex metamodeling (Bjerre et al., 2022; Starn et al.,
2021) to model various environmental prediction problems involving
nonlinearity and interaction, such as in both studies of groundwater
quantity and quality (e.g., Haaf et al., 2023; Hou and Lu, 2018; Meray
et al., 2024) and geotechnics (Wang et al., 2021; Bharti et al., 2021;
Wang et al., 2020; Zhou et al., 2017; Zhu et al., 2021). Several authors
have shown that both XGB and RF outperform other machine learning
algorithms and neural networks in empirical modeling of subsidence,
with a slight advantage of XGB due to higher prediction accuracy (e.g.,
Kim et al., 2022; Zhang et al., 2021). When building regression trees,
decision trees are trained additively to a certain depth (i.e., the number
of nodes of the tree). Splitting of decision trees at nodes into new
branches is determined through an objective function. During the
training phase, all potential training features are tested at each split to
improve the prediction of the target variable. In XGB regression trees are
further “boosted” by training each tree on the residuals of the previous
tree sequentially. The RF algorithm on the other hand, builds multiple
decision trees in parallel, after which the mean prediction of the decision
trees is returned.
Here, the RF and XGB algorithms are used independently to predict

subsidence (target variable: the vertical displacement uy (cm)) based on
a data set containing training features, which in the proposed approach
are proxy variables derived from the hydrostratigraphic model (example
features in Table 1) along the cross-section. To improve model perfor-
mance, RF and XGB require model tuning, which is the process of
selecting the hyperparameters of the model that control the learning of
the model and overfitting. To limit underfitting (model too simple, not
using all information available) or overfitting (model too complex,
fitting noise), a cross-validation and tuning strategy for training is car-
ried out.
Two cross-validation techniques were employed in this study:

(i) Random Hold-Out (RHO): In RHO, the entire dataset, which in-
cludes all available cross-sections, is randomly divided into two
sets – a training set (75 % of the data) for model training and an
evaluation set (25 % of the data) for assessing the performance of
the model.

(ii) Leave-One-Cross-Section-Out Cross-Validation (LOCSO): For
LOCSO, one of the available cross-sections is held out entirely for
evaluation purposes, while model training is performed using the
remaining cross-sections.

While RHO is a conventional approach, LOCSO is applied in this
study to further demonstrate the quality of prediction of an entire cross
section not trained by the metamodel. The exact setup of the cross-
validation in the case study is shown in Section 3.5.
Before model fitting, hyperparameter tuning is performed using a

latin hypercube grid search (to reduce computational cost) based on
Root Mean Squared Error (RMSE) as an objective function. Here, we
used the R implementation of XGBoost and ranger for random forest
generation (Wright and Ziegler, 2017), with dials for hyperparameter
tuning (Kuhn and Frick, 2022) and tidymodels for setting up the model
workflow (Kuhn and Wickham, 2020). In the proposed metamodel,
prediction on cross sections (and the entire domain) is carried out
pointwise based on information at each grid point.
To understand the plausibility of the metamodel, both the impor-

tance of features and their contributions over the value range of the
features to the predictions of subsidence were estimated from Shapley
Additive Explanations (SHAP) values (Lundberg et al., 2020). SHAP
values can be used to understand the relationship between the model
features and the model output in statistical-learning models by esti-
mating the contributions of each feature to each prediction (for subsi-
dence uy, this is in units of cm). The method is based on the Shapley
value, which assigns a value to each model feature based on its contri-
bution to the overall output. Here, we show the relationship between
each model feature and subsidence by evaluating i), the mean absolute
SHAP value across all observations to investigate feature importance for
the entire model, ii), feature importance along the selected cross-section,
and iii), locally visualizing the value ranges of individual features versus
their SHAP values using the implementation kernelshap (Mayer and
Watson, 2023).

3. Case study, data sets and models

3.1. Problem and site description

The method is applied to a case in Gothenburg, a city of about
600,000 inhabitants located in Southwestern Sweden, where a
commuter train tunnel with multiple underground stations is being
built. The construction is expected to cause leakage of groundwater into
the subsurface construction causing pore pressure reduction in the
overburden soft soils over widespread areas, typically at district scale.
This reduction, in turn, may result in time-dependent ground de-
formations, potentially damaging buildings, and utilities. Mitigation of
such damages necessitates the formulation of damage scenarios covering
extensive areas, enabling planners to implement timely safety measures,
such as the installation of sealing in the tunnel or artificial infiltration
wells to sustain pore pressures. To be able to deliver such damage sce-
narios, a metamodel is constructed for an area in the city center of about
1.5× 1.5 km2 to evaluate different drawdown scenarios at different time
scales. More specifically, subsidence is estimated for scenarios, repre-
senting a major or a minor leakage of groundwater into the tunnel. From
experience, such leakages may result in pore pressure reduction below
the clay of between 10 kPa and 40 kPa. Here persistent drawdown re-
sponses for 1 year and 30 years were chosen to allow investigation of
short-term and long-term responses to minor and major groundwater
drawdown, resulting in four different scenarios (1y,10 kPa; 1y,40 kPa;
30y,10 kPa, 30y,40 kPa).
The topography of the site varies substantially in the study area with

a steep decline from a higher area in the southeast around 70 m.s.l. to
the canal (Rosenlund canal) at sea level. Then, elevation rises north of
the canal before reaching the low-lying areas along the Göta River
(Fig. 2a). The crystalline, predominantly metamorphic, bedrock on
which Gothenburg rests is part of the Southwestern Swedish gneiss
province and contains water-bearing fractures with mainly west-
northwest-southeast strike. In the high areas in the south, the bedrock
crops out, while it is covered with soils of varying thickness in the lower
areas around the watercourses and in the valleys. In general, above the

Table 1
Proxy variables for 2D cross sections, derivable from hydrostratigraphy and used
as training features for the metamodel. Compare Fig. 2b.

Training variables
(short name)

Description

t_soil Thickness of sediment (Depth to bedrock)
t_lyr0 Thickness of layer of filling material (upper aquifer)
t_lyr1 Thickness of layer of soft soil
t_lyr2 Thickness of layer of coarse material (lower aquifer)
gw_upp Depth of groundwater head in upper aquifer
gw_low Depth of groundwater head in lower aquifer
OCR_i Thickness of zone with uniform over-consolidation ratio

(OCR), i zone identifier
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bedrock, is a layer of coarse-grained soils, usually glacial till, and glacial
outwash, overlain by glacial and post-glacial marine clay, topped by a
mix of post-glacial beach deposits (mainly sands) and heterogenous
anthropogenic fill. The fill has a thickness of about 1 to 3 m, but locally
at the Rosenlund canal, may reach a thickness of 5 to 7 m. The thickness
of the clay varies considerably, with the largest depths of clay, ranging
between 40 and up to 100 m at Rosenlund/Haga. Three types of aquifers
can thus be found at the study site, a fractured rock aquifer, which is
partially connected to a confined aquifer in the coarse grained soil
located beneath the glacial clay layer, as well as an unconfined aquifer in
the post-glacial sand and fill materials (Agrell, 1979).

3.2. Geostatistical hydro-stratigraphic model

The stratigraphy is modeled using a comprehensive borehole data set
(ca 28.000 logs) with a geostatistical modeling procedure previously
presented in Sundell et al. (2016) and Sundell et al. (2017). The pro-
cedure simplifies the soil stratification into three continuous layers as
described above: coarse-grained fill (top-most), soft clay, and coarse-
grained material (glacial till and glacio-fluvial deposits) above crystal-
line bedrock (Fig. 2b). The model follows a stepwise procedure to take
advantage of all available information in the borehole data set. The
procedure results in grids of bedrock level, thickness of the non-cohesive
material, soft clay, and fill-up at 5-m resolution. The piezometric map of
groundwater heads is modeled with a steady-state MODFLOW-NWT
model (Niswonger et al., 2011) following the methodology described by
Sundell et al. (2019b). The model geometry is based on modeled stra-
tigraphy and calibrated on long-term averages of measured groundwater
levels in the confined aquifer.

3.3. Soil properties

The soft clays in the study area were deposited relatively recently,
during (glacial) and after (post-glacial) the last glacial period (Weich-
selian glaciation). Therefore, these natural clays are typically only
slightly over-consolidated with relatively high creep rates. This effect
has been further increased by urbanization since the foundation of
Gothenburg in 1621, including fill materials piled over the soft clay, as
well as the weight of the built environment, resulting in heterogeneous
soil conditions and background creep. Consequently, the stress history
across the study area is also heterogeneous, making it challenging to

retrieve a representative stiffness. Herein, a stress-dependent stiffness is
assumed, with the stiffness and rate of creep, controlled by the vertical
over-consolidation ratio (OCR).
The OCR values were initially retrieved from oedometer tests per-

formed on samples extracted via ST-II piston tubes, see Fig. 3b. How-
ever, due to poor sample quality at depths larger than 25 m at the Haga
site, the values had to be adjusted (Fig. 3c; Fig. S1, supplementary in-
formation). Therefore, for larger depths, incremental/depth-discrete
green-field displacements measured from 2011 and 2018 retrieved
from a bellow hose, see Fig. 3a, were used to tune the background creep
predicted by the model. A bellow hose is an instrument which measures
the incremental absolute settlements with depth (Andersson et al., 2015)
similarly to en extensiometer. By assuming that the measurements were
purely vertical, and that the ongoing settlements were natural (creep), as
well as representative of the model domain, back-calculations with a
Finite Element model (see Section 3.4) were made to retrieve a more
representative OCR = 1.5 at those depths. The large, measured dis-
placements at the surface layers can be attributed to excessive retraction
(during installation, the hose is stretched and eventually attached to the
soil while in stretched state) due to the lack of horizontal soil stresses
acting on the bellow hose. However, the ground displacement at this
point fits well with InSAR data at roughly the same location (Wikby
et al., 2023). Hence, the chosen final trend of OCR (Fig. 3c) is based on
the bellow hose in the deeper clay layers (notice the large difference
between the measured OCR and the trend), the oedometer test results in
the shallower layers, and InSAR measurements at surface level. A table
of the layering and its respective OCR values can be found in the sup-
plementary information (Table S2). The OCR profile yields a relatively
low pre-overburden pressure (POP) at the shallower layers, however,
increasing drastically after 30 m depth.
Fig. 3c shows the index properties over depth. Bulk density, ρ, is

shown to increase from around 1.6 t/m3 at ground level to around 1.8 t/
m3 at 50 m depth, whereas the natural water content, w, decreases from
80 % at the ground level to 40 % at 50 m depth. The sensitivity, St , like
w, decreases from around 20 to 10 with increased depth. The hydraulic
conductivity (vertical), k, was evaluated from Constant rate of strain
(CRS) oedometer tests, decreasing from 1e-9 m/s to 0.5e-9 m/s with
increased depth. Finally, derivedOCR values are shown to decrease from
around 1.5 at the top to 1.1 at 20–23 m, following an increase to 1.5 at
depths above 40 m. Apart from soil properties at the Haga station,
parameter values from the nearby, more well-characterized Göta tunnel

Rosenlund canal

100 m

Fill-up (t_lyr0)

Clay (t_lyr1)

t_soil

Friction (t_lyr2)

S

N

Rosenlund canal

Göta riverBedrock 
(shallow)

Bedrock 

a)

b)

SW
ED

EN

Gothenburg

Fig. 2. a) City map of downtown Gothenburg, Sweden. Study area indicated by dashed line. b) Stratigraphic model of study area (vertical scale ten times
exaggerated).
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project (Tornborg et al., 2021) were used. Due to the presence of till at
shallower depths at the Göta Tunnel site, deviations can be seen between
the sites at 20-30 m depths due to higher density and OCR, as well as
lower natural water content. Apart from that, the index properties are
similar enough, such that model parameters from Tornborg et al. (2021)
could be used. No hydraulic anisotropy was assumed, since it is not an
influential factor of the specific problem, as shown by Wikby et al.
(2023).

3.4. Hydro-mechanical modeling

The clay response was simulated using an in-house implementation
of Creep-SCLAY1S constitutive model (Gras et al., 2017a, 2017b; Kar-
stunen et al., 2005; Sivasithamparam et al., 2015; Wheeler et al., 2003).
In addition to creep, the rate-dependent model accounts for initial and
evolutionary anisotropy and bonding. Creep-SCLAY1S has been suc-
cessfully benchmarked against oedometer and triaxial tests on Scandi-
navian clays (Sivasithamparam et al., 2015), as well as embankments
(Amavasai et al., 2017; Amavasai et al., 2018), and deep excavations at
field scale (Tornborg et al., 2021; Bozkurt et al., 2023) thus proving its
representativeness for Gothenburg clay. Three model reference surfaces
define the constitutive relationship, the Intrinsic Compression Surface
(ICS), the Current Stress Surface (CSS) and the Normal Compression
Surface (NCS) (Fig. S2, supplementary information). Creep-SCLAY1S
calculates strain rates through an elastic term and a visco-plastic
(creep) term. The volumetric (Eq. (1)) and deviatoric (Eq. (2)) creep
strain rates are calculated as shown below:

ε̇cp = Λ̇
(∂ṕeq

∂pʹ

)

(1)

ε̇cq = Λ̇
(∂pʹeq

∂q

)

(2)

Λ̇ =
μ*i
τ

(
(1+ χ)pʹm,i

péq

)−

(
λ*i − κ*

μ*i

)

M2c − α20
M2

c − η20
(3)

where ṕeq is the equivalent mean effective stress defining the size of CSS,
μ*i is the intrinsic modified creep index, τ is the reference time, χ is the
initial amount of bonding (linking to the sensitivity), ṕm,i is the intrinsic
preconsolidation pressure defining the size of ICS, λ*i is the intrinsic
modified compression index, κ* is the modified swelling index.Mc is the
stress ratio at critical state in triaxial compression, α0 and η0 are the

initial rotation of the reference surfaces (representing initial anisotropy)
and the initial stress ratio, respectively, at normally consolidated state.
The second term in Eq. (3), is an inverse of OCR, thus when OCR (which
is the vertical component) is fed into the model, it calculates the initial
size of the NCS which differentiates large creep strains from small creep
strains.
The fill and the till, above and below the clay layer, respectively,

were both modeled using the Mohr-Coulomb material model, whilst the
bedrock was simulated using a linear elastic model. The model param-
eters for all layers can be found in Table S2 (supplementary
information).
Simulations were run using the finite element software PLAXIS 2D

(version 21) with full hydro-mechanical coupling. Three cross-sections
(AA, BB and CC) were chosen for the coupled hydromechanical ana-
lyses, with location and meshes shown in Fig. 4. The hydro-stratigraphic
levels are based on the results of the geostatistical hydro-stratigraphic
model (Section 3.2). The mesh fineness was chosen after carrying out
a sensitivity analysis to ensure mesh-independent results, by rerunning
the simulation and adjusting the mesh density from lower to higher.
Mesh-independence was found when the average element size was 4 m2

in the clay. Cross-sections AA, BB, and CC contain 22,384, 19,181, and
21,506 6-noded elements, respectively, with three stress integration
points per element. The displacements were fixed in the horizontal di-
rection at the boundary of the bedrock.
A global groundwater level (GWupper) was retrieved from the

groundwater flow model for the top clay/fill set as the hydraulic head of
the upper aquifer. For the friction material/till and bedrock, a local
groundwater level was set as the hydraulic head of the lower aquifer. For
initial conditions in the clay layer modeled with six sub-layers, a hy-
draulic interpolation function was used to interpolate the head in the
clay layer between the upper and lower aquifer heads. Thereafter, a
relatively instantaneous drawdown (GWlower,0 - > GWlower,1) and pore
water pressure (PWP) drop was simulated in the lower aquifer (under-
drainage), followed by delayed PWP drop in the clay starting at the
bottom, continuing upwards until full consolidation (PWPfinal) is
reached, as predicted by the coupled hydromechanical analyses. A sce-
nario of 10 kPa pressure drop (1 m drawdown) is shown in Fig. 5 for
times t1 and t2 where t2 > t1 > 0.
The underdrainage was created by using phases in PLAXIS. Firstly, an

initial phase was run using a linear elastic material to calculate the in
situ effective stresses. This was followed by a NIL step where the linear
elastic material was replaced with Creep-SCLAY1S for the clay (to
initialize the state parameters of the model correctly) and with Mohr-
Coulomb for the till and fill layers, and the strains were reset to zero
(model parameters can be found in Table S1 in the supplementary

0 20 40 60
Settlement [mm]

0

10

20

30

40

50

D
ep

th
 [m

]

2011 -18
FEM 2018
2011 -16
FEM 2016
2011 -14
FEM 2014
2011 -12
FEM 2012

(a) Bellow hose (b) Sample data location
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Fig. 3. a) Accumulated settlements between 2011 and 2018: Bellow hose measurements vs. back-calculated FEM results. b) Location of model domain, Haga station
and Göta tunnel samples, as well as the bellow hose. c) Index properties comparison between this study’s (Haga station) and Göta tunnel’s (Tornborg et al., 2021)
data. The trend line shows the selected value for each clay sublayer (shaded areas).
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information). The first two steps are thus only needed to simulate a
computationally sound initial stress state and the initialization of the
state variables for Creep-SCLAY1S. Following the NIL step, the actual
drawdown could be simulated in a plastic calculation phase. Finally, two
consolidation phases with full hydro-mechanical coupling were simu-
lated representing periods since the drawdown occurred (1 year and 30
years), emulating extreme cases in greenfield conditions if no measures
are taken.
Two drawdown scenarios were chosen, a small pressure drop of 10

kPa, and a more severe scenario of 40 kPa, resulting in a total of four
combinations of scenarios: 1y,10 kPa, 1y,40 kPa, 30y,10 kPa and 30y,40
kPa. Additionally, a zero-drawdown scenario (0 kPa) was set up with
equally many consolidation phases to calibrate the OCR values (see
Section 3.3). This scenario also enables to determin the contribution
from pure background creep for each drawdown scenario.

3.5. Metamodel evaluation setup

First, the training data set was created by extracting the subsidence
values computed with the coupled hydro-geomechanical model at

positions along the cross-section at corresponding grid points of the
hydrostratigraphic model. At the same locations, features were then
extracted from the hydrostratigraphic model and combined with the
computed subsidence values for each scenario and cross-section. To
comprehensively test the performance of the metamodel, twelve
different combinations of training and evaluation data were created. The
setups shown in Table 2 are designed to evaluate the model on all
combinations of cross sections with both RHO and LOCSO. For example,
evaluation number 1 in Table 2 is trained on 75 % of data available in
cross sections AA and BB. For RHO, evaluation of the relationship be-
tween observed and simulated subsidence with Pearson’s correlation
coefficient (R) and Root Mean Square Error (RMSE) against the nu-
merical model is carried out on the remaining 25 % of the data in cross-
sections AA and BB. For LOCSO, the model trained on the 75 % training
data is used to predict the entire cross section CC, based on the available
features of CC. All further evaluation numbers are the remaining com-
binations of model scenarios and cross sections. Each evaluation setup is
modeled with both Machine Learning techniques, resulting in a total of
12 trained metamodels for each RF and XGB. As described above, a
trained metamodel is evaluated twice (on RHO and LOCSO), leading to
48 evaluations (12 RF/RHO, 12 RF/LOCSO, 12 XGB/RHO, 12 XGB/
LOCSO). In addition, a comparison of average InSAR displacement data
for the period 2022–2024 with a metamodel trained on creep on the
entire domain was carried out, to compare metamodel performance for
areas of the study domain that were not represented by cross sections
(Supplementary material S6).

4. Results & discussion

4.1. Hydro-geomechanical model

Fig. 6 shows settlement results from all cross-sections. For all sce-
nario combinations, the largest settlements occur in the shallower layers
in the transitional zones between soft clay and frictional layer/ rock.
This is most likely due to the relatively low pre-overburden pressures at
the bottom boundary of the clay layer, resulting in low stiffness, as well
as faster rates of excess pore water pressure dissipation, due to smaller
drainage lengths (in 2D).
Creep is more significant in the thicker clay layers for the 30 years

consolidation cases (Fig. S3, supplementary information), which reflects
the bellow hose results in terms of which layers settle the most (0-30 m),
ca. 15 cm after 30 years (5 mm/year). This is very similar to values
found in InSAR measurements in the area.
For positions 200–730 m in cross-section CC, it is especially
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Fig. 5. Excess pore pressure dissipation process of a typical underdrainage
problem in clays bounded by an upper and a lower aquifer (modified from
Wikby et al. (2023)).
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noticeable that the settlements are highly sensitive to the clay thickness,
where extremely thin layers do not yield any significant settlements and
slightly thicker layers yield significantly higher settlements. Thereafter,
with increasing clay layer thickness, settlement magnitudes decrease.
Another factor that influences settlement magnitude is the initial level of
the groundwater head, which affects the pre-overburden pressure
(Fig. S4, supplementary information). Generally, at locations with high
groundwater heads, settlements are large, particularly when ground-
water heads are higher in the confined than in the unconfined aquifer.

4.2. Metamodel evaluation

Pearson correlation of the subsidence prediction on five-fold cross-
validated random hold-out data of the metamodel compared to the
numerical model was consistently high (0.87–0.98) across the three
different test sets (containing 25 % of data from sections AA+BB,
AA+CC or BB+CC), see non-hatched bars in Fig. 7. The bottom panel of
Fig. 7 also shows that prediction errors, as measured in RMSE, are small
compared to estimated prediction ranges (Fig. 8), with averages of 0.24
cm, 0.87 cm, 1.3 cm, and 4 cm for scenarios 1y,10 kPa; 1y,40 kPa;
30y,10 kPa; and 30y,40 kPa, respectively and normally distributed er-
rors (Fig. S4, supplementary information). Results do not vary sub-
stantially between the algorithms XGB and RF across the scenarios,

achieving generally slightly higher correlation and lower error with
XGB.
Compared to results from random hold-out, RF often outperforms

XGB substantially regarding Pearson correlation and prediction error of
entirely unseen cross sections. However, on unseen sections, the meta-
model shows lower skill than for random hold-out (hatched bars, Fig. 7).
This is particularly true for scenarios of small, short-term drawdowns (1
year, 10 kPa). The performance also differs across the test sections,
where the test section AA and BB yield results that generally are only
slightly below those of random hold-out test data (except for 1 year, 10
kPa). The cross-section CC on the other hand yields satisfactory results
for only one scenario (30 years, 10 kPa). A reason for this is likely the
different stratigraphy of CC compared to AA and BB. While AA and BB
are relatively similar with larger sections of thick clays and small sec-
tions of thin clay layers, section CC is dominated by a large area with
thin clay layers and shallow soil depth (compare Fig. 4).
The lower fit for the LOCSO evaluation is seen in Fig. 8, where for the

CC test section, values are consistently overestimated in the section with
shallow soils (180-700 m) and underestimated in deep clay deposits
(50–150 m). However, the general subsidence pattern across all cross-
sections is captured well by the metamodel. In scenario 1y,10 kPa for
example, the effect of significantly larger subsidence in transition zones
described in Section 4.1 is mainly exhibited in cross-section AA (e.g.,

Table 2
Evaluation setups for different drawdown scenarios, training, and evaluation strategies.

Evaluation number Scenario name Time [y] Drawdown [kPA] Training sections Total data Split [%] Evaluation

RHO LOCSO

Section #Data Section #Data

1 1y,10 kPa 1 10 AA+BB 567 75/25 AA+BB 190 CC 291
2 1y,10 kPa 1 10 AA+CC 510 75/25 AA+CC 171 BB 368
3 1y,10 kPa 1 10 BB+CC 492 75/25 BB+CC 164 AA 393
4 1y,40 kPa 1 40 AA+BB 567 75/25 AA+BB 190 CC 291
5 1y,40 kPa 1 40 AA+CC 510 75/25 AA+CC 171 BB 368
6 1y,40 kPa 1 40 BB+CC 492 75/25 BB+CC 164 AA 393
7 30y,10 kPa 30 10 AA+BB 567 75/25 AA+BB 190 CC 291
8 30y,10 kPa 30 10 AA+CC 510 75/25 AA+CC 171 BB 368
9 30y,10 kPa 30 10 BB+CC 492 75/25 BB+CC 164 AA 393
10 30y,40 kPa 30 40 AA+BB 567 75/25 AA+BB 190 CC 291
11 30y,40 kPa 30 40 AA+CC 510 75/25 AA+CC 171 BB 368
12 30y,40 kPa 30 40 BB+CC 492 75/25 BB+CC 164 AA 393
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Fig. 7. Pearson correlation and root mean square error (RMSE) for different time and drawdown scenarios, machine learning models and test (evaluation) data sets.
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Fig. 8. Subsidence magnitude estimated by RF and XGB-based metamodels compared with numerical model (Num) along unseen test (evaluation) cross sections.
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160 m, 400 m, 520 m, 600 m, 630 m, …), but is generally under-
estimated by the metamodel. This is likely due to the relatively few
transition zone data points for the metamodel to train on and the lack of
information being passed into the metamodel from neighboring grid
points, which could indicate the presence of a transition zone (e.g.,
strong incline of bedrock surface from one grid point to the next). Cross-
section BB contains fewer such transition zones, and the clay layer is
thicker, resulting in lower variability of subsidence, and therefore higher
overall performance in the 1y,10 kPa scenario. Similar effects can be
seen for the remaining scenarios, but with much lower relative predic-
tion errors, resulting in better overall correlation metrics.
In summary, the metamodel performs better when scenarios with

larger spatial contrasts in subsidence are simulated, while low impact (e.
g., 1y, 10 kPa) gives larger errors. For this scenario, the errors are mostly
due to small shifts along the alignment and thus are still useful for de-
cision support. Overall, very good correspondence can be achieved be-
tween the metamodel and the physical process-based numerical model,
particularly when the data stratigraphy used to train the metamodel is
representative of the area to be modeled.

4.3. Feature contribution to predictions

Across all metamodels, the most important features for prediction of
subsidence magnitude are the clay thickness and soil thickness as
quantified by mean absolute SHAP value, seen in Fig. 9. Soil thickness
and clay layer in this environment are correlated since the soil profile in
most areas is dominated by clay. However, the importance of clay
thickness is generally significantly higher than the overall soil thickness.
This is plausible since clay thickness is not only a proxy for sensitivity to
subsidence but has a role in controlling the drainage length for

dissipation of excess pore water pressure, and the soil stiffness at which
consolidation occurs. This unique relationship between effective stress
increase at different depths and the layer-dependent Over-Consolidation
Ratio (OCR) for a specific consolidation time is affecting the soil stiffness
and the resulting displacements, as described in detail by Wikby et al.
(2023). The other soil layer thickness features, of the glacial till between
bedrock and clay and fill are expected to have lower importance since
the predicted soil displacements in these layers are negligible.
Depth to the groundwater (GW depth confined), particularly in the

confined aquifer, is consistently important, controlling the initial pore
water pressures, and thus the initial effective stresses which will have
direct impact on the pre-consolidation pressures through OCR.While the
pattern of the importance of the features is relatively consistent across
the different scenarios, some differences can be seen. For instance, the
relative importance of the soil depth (and remaining soil layers) and
confined groundwater level depth is much higher. Furthermore, the
importance increases with the thickness of the zone of OCR3 over OCR2,
i.e., the OCR at higher clay depths, which is more often the zone of
excess pore water dissipation, when the drawdowns are larger. Finally,
while features have a very similar order of importance for both Machine
Learning metamodels, RF and XGB, feature importance is more broadly
distributed in the RF model. The XGBmodel on the other hand lays more
weight on the most important features overall (Soil layer thicknesses),
while RF gives more weight to the less important OCR features.
The contribution of features to the differences in predictions between

RF and XGB can be nuanced. Fig. 10 shows the relationship between the
contribution for a particular feature (here, clay and depth to ground-
water) and each individual point in the data set. RF metamodels have
very similar shapes and magnitudes of feature contribution across
trained models, i.e., when the scenario is the same but different data sets

1 y, 1 0 k Pa 1 y, 4 0 k Pa 30y, 10kPa 30y, 40kPa
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Fig. 9. Feature importance for prediction of subsidence (sorted by overall importance across models) based on mean absolute Shapley values.
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(combinations of cross sections are used). The change of contribution of
a feature across its value range also means that the effect of the features
is not constant but exhibits varying contributions to the prediction with
their physical quantity. Very low clay thickness results in a reduction of
subsidence (negative SHAP values), before rising sharply with thickness,
leading to an increase in the predicted subsidence with maxima between
10 and 20 m (Fig. 10A). After a peak, contribution falls again to zero or
leads to reduced subsidence with larger clay thickness, coinciding with
thicknesses with larger soil stiffness at 30–35m (compare OCR in Fig. 3).
The inflection points of the relationship between clay thickness and its
contribution to the prediction depends also on the scenario, i.e., the
actual drawdown scenario and the consolidation (and creep) period.
Also, the range of absolute SHAP values varies, since the SHAP value is
in units of the prediction value (cm subsidence), and consequently
greater for scenarios with larger drawdowns and consolidation periods.

In the example of clay thickness shown in Fig. 10A, the scenarios with
40 kPa drawdown show higher absolute SHAP values compared to 10
kPa with respective consolidation time, which is related to a higher
subsidence magnitude in these scenarios. The contribution of the depth
to groundwater head in the confined aquifer varies as well, where high
values relative to the surface level (negative values are equal to artesian
conditions, i.e., above ground surface level) results in higher subsidence
and vice versa in a mostly linear manner (Fig. 10B). This is expected
since groundwater head governs the initial pore pressure distributions,
which in turn govern the effective stresses (compare Fig. S5, supple-
mentary information). (See Fig. 10.)
In summary, both the relative importance of features to subsidence

prediction and the variation across the value range of the features is
coherent with process understanding, as demonstrated for clay thickness
and initial pore pressures. The two Machine Learning algorithms show
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groundwater head in the confined aquifer. The value range of depth to groundwater is different since CC contains more points with artesian conditions.
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similar results; however, RF learns from the importance of features more
equally and shows stronger consistence across different data sets, indi-
cating higher reliability, when predicting on data the metamodel has not
been trained on.

4.4. Metamodel for large scale prediction

When running the trained models on features of the entire study
area, mostly similar spatial patterns of subsidence emerge, both across
training data sets and scenarios, as seen in Fig. 11a. In both scenarios,
1y, 40 kPa and 30y, 40 kPa shown in, RF-based predictions show higher
predicted subsidence in areas with larger soil depth (Fig. 11b) and vice
versa. However, in transition zones, i.e., areas where the clay tapers off
from larger soil depths, the highest subsidence values are exhibited
analogous the numerical model (Section 4.1). The higher subsidence in
transition zones is more pronounced relative to other areas in the 30y
than in the 1y scenario, which has also been observed in the numerical
model (Fig. 6). However, this effect is also larger in cross sections AA
and BB than CC, due to a higher presence of thicker clay layers tapering
off. Therefore, metamodels trained on data from CC show a weaker
transition zone effect, which can be seen when comparing the spatial

patterns of the models trained on different cross sections in Fig. 11a. The
standard deviation plots also show this clearly, highlighting the differ-
ences between the models that were trained on different data sets, where
transition zones are the spatial features that exhibit the highest standard
deviations.
Apart from closely approximating the results of an advanced physical

process-based 2D numerical model, the proposed metamodeling
approach is computationally efficient, where prediction on a 2.3 km2

study site can be achieved in tens of seconds on a current mid-level PC.
In contrast, calculation, and setup for physical process-based subsidence
estimation at such large scales using a 3D numerical model would
require significant computational time that is not feasible for most ap-
plications. An alternative approach to subsidence estimation at this scale
is described by e.g., Sundell et al. (2019a) using a 1D semi-analytical
model, solved at each grid cell. However, semi-analytical solutions
that consider e.g., underdrainage, rate-dependency, degradation of
bonding as well as anisotropy or 2D pore water pressure dissipation in
clay are not available. Therefore, such semi-analytical solutions that do
not model the advanced constitutive relationship for the soft clay and 2D
processes will deliver potentially misleading results.

Fig. 11. a) Predictions with RF-metamodel on the entire modeling domain, based on different training data for scenarios 1y, 10 kPa (upper row) and 30y, 40 kPa
(lower row). b) Spatial distribution of the four most important features (clay, soil, friction layer thickness, and depth to groundwater head from the surface of the
confined aquifer) for prediction of subsidence.
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4.5. Uncertainties and outlook

Despite the metamodel demonstrating promise in emulating the
physical process-based model, model setup can be improved, and un-
certainties further considered. An important factor is the dependence of
the predictions on the hydrostratigraphic data and model. Because of
this, the training data for the metamodels must be chosen with diligence,
to ensure covering the value range of the features and their possible
combinations over the entire study area for representative modeling as
shown by the standard deviation plots and results in Section 4.2. Dili-
gence is further necessary to satisfy the assumption of spatial statio-
narity of tree-based metamodels (Fienen et al., 2018; Furtney et al.,
2022). In this study, cross sections were chosen according to expert
knowledge covering the major morphological features of the subsurface.
However, a more systematic spatial analysis and soil property sampling
strategy across the entire study domain would possibly improve the
robustness of the predictions (reducing standard deviations). Further-
more, using larger training data sets will also improve robustness and
predictive skill. Nevertheless, this study shows that despite using rela-
tively small training data sets (~500 data points), differences in the
magnitude between areas are generalized well by the metamodel with
small standard deviations relative to the FE predictions. Subsidence
magnitudes in the transition zones are, however, sometimes under-
estimated. As shown in Section 4.1, sharp changes in subsidence occur at
these transition zones, an effect seen covering a distance with multiple
prediction points. Therefore, this effect may be improved by including
relevant information to the set of features, which could be engineered
based on neighboring prediction points. An example of such an engi-
neered feature could be the slope of the bedrock between neighboring
cells to be able to more explicitly pick up on the presence of transition
zones. Such a step would turn the metamodel from an implicit 2D model
into an explicit 2D model. In summary, further increase in predictive
skill could be achieved by improving training data curation and selec-
tion and engineering of features.
Another uncertainty linked to the input data is the uncertainty of the

parameters of the hydro-geomechanical and stratigraphical models.
Regarding the hydro-geomechanical model, both the overall number of
samples and the quality of the CRS tests used to estimate soil stiffness in
this study was low, and representative prediction of the background
creep rate could only be carried out thanks to the measurements from a
bellow hose. While this proved effective in determining the represen-
tative stiffness and creep rate, only one bellow hose was available in the
study area, resulting in a model with deterministic soil properties. To
consider the heterogeneity and entailing uncertainty in soil parameters
across the study area, more measurement points are required, which
could be included in a probabilistic model setup, see e.g., Sundell et al.
(2019a); Wikby et al. (2023). Such a probabilistic model setup could also
include uncertainties regarding the hydrostratigraphic model, which is
here based on tens of thousands of boreholes, but still has uncertainties
(c.f. Sundell et al., 2016) that may play a role in e.g., the uncertainty of
the transition zone effect.
The metamodel is intended as a part of a model chain for risk-based

decision support in planning subsurface infrastructure in urban areas
(Merisalu et al., 2021). To inform decision makers on costs arising from
subsidence risk must be quantified. The next step in such a chain is to
feed the subsidence computed with the metamodel into a building
damage model (Wikby et al., 2024). Since the proposed model assumes
green-field conditions, it ignores any soil-structure interaction and may
overestimate settlements at building locations leading to overpredicted
damage. However, emulating coupled soil-structure interaction for
entire districts with a metamodel is currently out of reach. At this stage,
when using this model for decision support, the overestimation must be
considered, as well as the compounded errors of the geostatistical and
numerical model. In future work, the errors may be reduced by
improving the features and the metamodel setup (described above) but
also can be quantified by rerunning the computationally efficient

metamodel for many stochastic realizations of the geostatistical model.
Further, at a stage where more knowledge of the dimensions and con-
struction times of an underground structure is known, a hydrogeological
model could be used to integrate and train the metamodel on non-
uniform drawdown scenarios.

5. Conclusions

In this study, a metamodel is presented using a tree-based ensemble
Machine Learning solution, which shows high skill in emulating a
coupled hydro-geomechanical model, quantifying land subsidence due
to pore-pressure reduction. With the presented approach, subsidence
can be efficiently computed over large areas (2.3 km2) for different pore-
pressure reduction scenarios based on a spatially explicit hydrostrati-
graphic model accounting for the complex features of soft senstive clays.
The predictions of the metamodel are coherent with the understanding
of the physical processes as seen using the SHAP approach, which allows
attribution of subsidence magnitude to proxy variables, such as over-
consolidation Ratio and thus interpretation and plausibility checks. The
prediction of the magnitude of subsidence is strongly dependent on the
soil stratigraphy data, particularly clay depth and the drainage length
for consolidation. The largest magnitudes of subsidence arise in the so-
called transition zones, where the clay layer tapers off. Due to the lower
stiffness and shorter drainage lengths, the pore pressure changes have
rather immediate effect. The analysis has shown that this calls for more
comprehensive uncertainty analysis, as well as features engineered to
include information from neighboring cells, where the clay layer grad-
ually thins out, capturing the spatial dependence of the processes.
Together with uncertainty analysis and a building damage model, the
metamodel can inform planners in a time- and cost-efficient way to
carrying out risk-based decision and cost-benefit analysis in subsurface
infrastructure at large scales.
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