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Abstract
In this note, we study the delooping of spaces and maps in homotopy type theory.
We show that in some cases, spaces have a unique delooping, and give a simple
description of the delooping in these cases. We explain why some maps, such as
group homomorphisms, have a unique delooping. We discuss some applications to
Eilenberg–MacLane spaces and cohomology.

Keywords Homotopy type theory · Loop spaces · Stabilisation

1 Introduction

The loop space functor � is an operation on pointed types and pointed maps between
them. In this note, we study the delooping of types and maps: given a pointed type
X , when can we find a pointed type whose loop space is equivalent to X? And given
a pointed map f : �A →pt �B, when can we find a map A →pt B whose looping
equals f ? The general answer is rather complicated [9], involving group operations
and an infinite tower of coherences, but according to the stabilisation theorem [1], the
answer becomesmuch simpler if we put some connectivity and truncation assumptions
on A and B. The purpose of this note is to give a direct, type-theoretic account of these
simple special cases. We also explain how to use these results to set up the theory
of Eilenberg–MacLane spaces and cup products. We assume only basic familiarity
with homotopy type theory, as developed in [12]. We will not need to assume the
Freudenthal suspension theorem, nor will we make use of any higher inductive types
other than propositional truncation.
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358 D. Wärn

Notation

As in [12], wewrite a = b for the type of identifications between a and b, refla : a = a
for the reflexivity identification, : (a = b) → (b = c) → (a = c) for path
concatenation, ap f : (a = b) → ( f a = f b) for the action of a function on paths, U
for a univalent universe, and ‖A‖ for propositional truncation.Wewrite (a : A) → B a
for the �-type �a:A B a, and (a : A) × B a for the �-type �a:A B a. We write Upt
for the type (X : U) × X of pointed types. For A : Upt, we will write |A| : U for its
underlying type, and ptA : |A| for its point. For A, B : Upt, we write A →pt B for
the type ( f : |A| → |B|) × ( f ptA = ptB) of pointed functions. For f : A →pt B,
we write | f | : |A| → |B| for the underlying function, and pt f : | f | ptA = ptB
for the proof that it is pointed. For A : Upt, we write �A : Upt for the loop space
(ptA = ptA, reflptA

). For f : A →pt B we write � f : �A →pt �B for the action on
loops, p : ptA = ptA �→ pt−1

f ap| f | p pt f : ptB = ptB . We write A �pt B for the
type ( f : A � B) × f ptA = ptB of pointed equivalences.

2 Delooping types

Let X : Upt be a pointed type, and suppose we want – without further inputs – to
construct a delooping of X . That is, we want to find a pointed type whose loop space
is equivalent to X . One way would be to use the suspension �X [8], which is freely
generated by a map X →pt ��X and so necessarily maps to any delooping of X .
Instead, we will use a cofree construction, which necessarily has a map from any
delooping of X . Similar ideas are discussed in [4].

Definition 1 For X : Upt, the type T X of X-torsors is given by1

T X := (Y : U) × ‖Y‖ × (y : Y ) → X �pt (Y , y).

Intuitively, an X -torsor is a type which looks like X at every point, and merely has a
point, even though we might not have access to any particular point.

Theorem 2 If the type ((Y , h, μ) : T X) × Y of pointed torsors is contractible, then
T X is a delooping of X. That is, we have a point ptT X : T X with an equivalence
�(T X , ptT X ) �pt X. Moreover, T X is the unique connected delooping of X in this
case.

Proof For the first part, we apply the fundamental theorem of identity types [11,
Theorem 11.2.2] to the type family over T X given by (Y , h, μ) �→ Y . Say (Y , h, μ) :
T X and y : Y . We then point T X by ptT X := (Y , h, μ). Note that X �pt (Y , y) by
μ(y). The fundamental theorem tells us that (Y , h, μ) = (Y ′, h′, μ′) is equivalent to
Y ′ for any (Y ′, h′, μ′) : T X , where the map from (Y , h, μ) = (Y ′, h′, μ′) to Y ′ is

1 A priori, since U is a large type, so is T X . However, we could just as well quantify over Y : BAut |X | in
the definition of T X , where BAut |X | � (Y : U) × ‖Y � |X |‖. It is reasonable to assume that BAut |X |
is small, either by the replacement principle from [10], or by simply postulating the existence of enough
small univalent type families. In the rest of the note we ignore universe issues and assume T X : U .
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Eilenberg–MacLane spaces and stabilisation... 359

given by transporting y. That is, saying a torsor is trivial is equivalent to saying that
it is pointed. In particular (ptT X = ptT X ) �pt (Y , y) �pt X as claimed. We can also
see that T X is connected in this way: for (Y ′, h′, μ′) : T X we have h′ : ‖Y ′‖ and so
‖ptT X = (Y ′, h′, μ′)‖.

We now show uniqueness. Consider another delooping Z : Upt, e : �Z �pt X
with Z connected. We first define a map f : |Z | → T X . For z : |Z |, we take the
underlying type of f z to be z = ptZ . This is merely inhabited since Z is connected,
and for any p : z = ptZ we have (z = ptZ , p) �pt �Z �pt X by induction on p.
This finishes the definition of f . We have f ptZ = ptT X since f ptZ is pointed by
reflptZ and hence trivial. The action of f on paths (z = ptZ ) → ( f z = ptT X ) must
send p : z = ptZ to the proof f z = ptT X corresponding to the point p of f z, by
induction p. By unfolding definitions it can be seen that the action �Z →pt �T X
on loops corresponds to the identity X →pt X . In particular it is an equivalence. By
Whitehead’s principle [12, Corollary 8.8.2], f itself is an equivalence. By univalence,
the delooping (Z , e) equals the one given by T X . ��
The following lemma provides an alternative description of the type of pointed X -
torsors, which will make it feasible to determine when it is contractible.

Lemma 3 We have an equivalence of types

((Y , h, μ) : T X) × Y � (μ : (x : |X |) → X �pt (|X |, x)) × (μ ptX = idX ).

More concretely, the right-hand side can be understood as the type of left-invertible
cohererent H-space structures on X in the sense of [4]. That is, it is equivalent to the
type

(μ : |X | → |X | → |X |) × (μl : (x : |X |) → μ(ptX , x) = x)

×(μr : (x : |X |) → μ(x, ptX ) = x)

×(μl(ptX ) = μr (ptX )) × (x : |X |) → isEquiv(y �→ μ(x, y)).

Proof We have

((Y , h, μ) : T X) × Y � (Y : U) × ‖Y‖ × ((y : Y ) → X �pt (Y , y)) × Y

� (Z : Upt) × (μ : (z : |Z |) → X �pt (|Z |, z))

� (Z : Upt) × (μ : (z : |Z |) → X �pt (|Z |, z))

× (p : X �pt Z) × (μ ptZ = p)

� (μ : (x : |X |) → X �pt (|X |, x)) × (μ ptX = idX ).

In the first line, we simply unfold the definition of T X , and in the second line we
do some simple rearrangement, dropping the redundant assumption ‖Y‖. In the third
line, we use contractibility of singletons to add two redundant fields p : X �pt Z and
μ ptZ = p. And in the final line, we use univalence and contractibility of singletons
to remove two redundant fields Z and p. ��
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360 D. Wärn

The following lemmawill be ourmain tool to determinewhen types are contractible.
It is a special case of Lemma 8.6.1 from [12], and has a direct proof by induction.

Lemma 4 If A : Upt is an n-connected2 pointed type, B : |A| → U is a family of
(n + m + 1)-truncated types, and ptB : B ptA, then the type of ‘pointed sections of
B’,

( f : (a : |A|) → B a) × ( f ptA = ptB),

is m-truncated.

Corollary 5 If A : Upt is n-connected and B : Upt is (n + m + 1)-truncated, then
A →pt B is m-truncated. If A and B are both n-connected and (n +m +1)-truncated,
then A �pt B is also m-truncated.

Proof The first claim is a direct consequence of Lemma 4. For the second, we have
an equivalence between A �pt B and the type ( f : A →pt B) × (g h : B →pt
A)× ( f ◦ g = idB)× (h ◦ f = idA) of biinvertible pointed maps. This is m-truncated
since m-truncated types are closed under � and identity types. ��

Corollary 6 If X is n-connected and (2n + m + 2)-truncated, then the type of pointed
X-torsors is m-truncated.

Proof Combining Lemma 3, Lemma 4, and Corollary 5. ��

Corollary 7 If X is n-connected and 2n-truncated, then T X is the unique connected
delooping of X.

A different proof that such X have unique connected deloopings is in [1, Theorem 6].

Proof In this case, the type of pointed X -torsors is (−2)-truncated, so Theorem 2
applies. ��

Corollary 8 If X is n-connected and (2n+1)-truncated, then T X is merely inhabited if
and only if X has a delooping, and in this case T X is the unique connected delooping
of X.

Proof In this case the type of pointed X -torsors is (−1)-truncated, i.e. a proposition.
If T X is merely inhabited, then there also merely exists a pointed X -torsor. A merely
inhabited proposition is contractible, so Theorem 2 applies. Conversely, if X has a
delooping Z , then we can define a map |Z | → T X as in the proof of Theorem 2, so
that T X is merely inhabited. ��
2 While there are several equivalent definitions of connectedness, this note is most easily understood with a
recursive definition: every type is (−2)-connected, and a type is (n + 1)-connected if it is merely inhabited
and its identity types are n-connected.
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Eilenberg–MacLane spaces and stabilisation... 361

3 Deloopingmaps

Suppose A, B : Upt are pointed types, and f : �A →pt �B is a pointed map on loop
spaces. When can we find F : A →pt B such that f = �F? More precisely, we want
a useful description of the type �−1 f := (F : A →pt B) × ( f = �F). For example,
it is necessary that we have f (p q) = f (p) f (q).

Lemma 9 We have an equivalence of types

�−1 f � (a : |A|) → (b : |B|) × C a b

where C : |A| → |B| → U is given by

C a b := (h : (a = ptA) → (b = ptB)) × ((p : a = ptA) → f = D(h, p))

and we define D(h, p) : �A →pt �B for h : (a = ptA) → (b = ptB) and
p : a = ptA by

|D(h, p)|(q) = (h p)−1 h(p q),

pointed in the obvious way.

Wecan think ofC as a proof-relevant relation approximating a function F : |A| → |B|;
it would be a function if only (b : |B|) × C a b were contractible for all a : |A|.
Proof We have

�−1 f � (F : |A| → |B|) × (ptF : F ptA = ptB)) × ( f = �(F, ptF ))

(a : |A|) → (b : |B|) × C a b � (F : |A| → |B|) × (a : |A|) → C a (F a).

So it suffices to show that for F : |A| → |B|, we have

(ptF : F ptA = ptB) × ( f = �(F, ptF )) � (a : |A|) → C a (F a).

We can compute

(a : |A|) → C a (F a) � (h : (a : |A|) → (a = ptA) → (F a = ptB))

× (a : |A|) → (p : a = ptA) → f = D(h a, p)

� (h : (a : |A|) → (a = ptA) → (F a = ptB))

× ( f = D(h ptA, reflptA
)).

In the first line, we commuted� and�, and in the second line, we used the fact that the
type (a : |A|)× (p : a = ptA) is contractible with centre of contraction (ptA, reflptA

).
Again using this fact, we have ((a : |A|) → (a = ptA) → (F a = ptB)) � (F ptA =
ptB). Thus it suffices to show that if h corresponds to ptF under this equivalence, then
D(h ptA, reflptA

) = �(F, ptF ). This holds essentially by definition of D and of the
action of � on maps, using that h a q = apF (q) ptF if h corresponds to ptF . ��
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362 D. Wärn

Corollary 10 Suppose |A| is n-connected and |B| is (2n + m + 2)-truncated, where
n ≥ 0 and m ≥ −2. Then �−1 f is m-truncated.

Proof Since truncated types are closed under products, it suffices to show that for any
a : |A|, the type (b : |B|)×C a b is m-truncated. Since to be truncated is a proposition
and |A| is at least 0-connected, it suffices to consider the case where a is ptA. In this
case we have

(b : |B|) × C ptA b � (b : |B|) × ((h, t) : C ptA b) × (q : b = ptB) × (h reflptA = q)

� ((h, t) : C ptA ptB) × (h reflptA = reflptB )

� (h : �A →pt �B) × (p : ptA = ptA) → ( f = D(|h|, p)),

by first adding two redundant singleton fields, and then contracting away the pair of
singleton fields b, q. One can prove E(h) : h = D(|h|, reflptA

) using unit laws, so we
further have

(b : |B|) × C ptA b � (h : �A →pt �B) × (t : (p : ptA = ptA) → ( f = D(|h|, p)))

× (q : f = h) × (t reflptA E(h)−1 = q)

� (t : (p : ptA = ptA) → f = D(| f |, p)) × (t reflptA
= E( f )),

by first adding two redundant singleton fields, then contracting away the pair of sin-
gleton fields h, q, and finally using that t reflptA

E( f )−1 = refl f is equivalent to
t reflptA

= E( f ). We have now described (b : |B|) × C ptA b as the type of pointed
sections of a pointed type family over ptA = ptA. The fibres are identity types in
�A →pt �B, which is (n + m + 1)-truncated by Corollary 5. Since the fibres are
(n + m)-truncated and the base ptA = ptA is (n − 1)-connected, the type of pointed
sections is m-truncated by Lemma 4, as claimed. ��
Corollary 11 If |A| is n-connected and |B| is 2n-truncated, then � is an equivalence

(A →pt B) � (�A →pt �B).

This is part of the stabilisation theorem:� is fully faithful when restricted to spaces
that are n-connected and 2n-truncated. Given f : �A →pt �B where A and B are
n-connected and 2n-truncated, it is natural to ask for a concrete description of the
delooping F : A →pt B of f . Our construction does not describe F directly, but
rather its graph. By the proof of Lemma 9, we have C a (F a) for all a : |A|. Since
(b : B) × C a b is contractible by the proof of Corollary 10, this means that F a = b
is equivalent to C a b, using the fundamental theorem of identity types.

Corollary 12 If |A| is n-connected and |B| is (2n + 1)-truncated, then � identifies
A →pt B with the subtype of �A →pt �B consisting of f : �A →pt �B such
that (b : |B|) × C ptA b, which is logically equivalent to C ptA ptB, and hence to
(p q : ptA = ptA) → f (p q) = f (p) f (q).
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4 Applications

In homotopy type theory, we define the ordinary cohomology group Hn(X; G) of
a type X with coefficients in a an abelian group G as the set-truncation ‖X →
K(G, n)‖0, where K(G, n) is an Eilenberg–MacLane space. The algebraic structure
of these cohomology groups comes from various operations at the level of Eilenberg–
MacLane spaces, which we now discuss.

4.1 K(G, n)

Let G be a group, so that in particular G is a 0-truncated type. One can define a
0-connected pointed type K(G, 1) : Upt with �K(G, 1) �grp G as a type of torsors
[2]. This is similar to but not exactly the same as our T X : K (G, 1) is equivalent to
the type of (Y , h, μ) : T G such that the action μ satisfies an associativity condition
μ(y, g · g′) = μ(μ(y, g), g′). We will explain this phenomenon in greater generality
in later work. Note that K(G, 1) is necessarily 1-truncated. By Corollary 12, we have
that if B is 1-truncated, then (K(G, 1) →pt B) � (G →grp �B); we think of this as
an elimination principle for K(G, 1). From this elimination principle, it follows that
if X : Upt is another 0-connected, 1-truncated pointed type, then (K(G, 1) �pt X) �
(G �grp �X).

When can we find K(G, 2) : Upt with�K(G, 2) �pt K(G, 1)? By Corollary 8, this
is equivalent to

(μ : (x : |K(G, 1)|) → K(G, 1) �pt (|K(G, 1)|, x)) × (μ pt = id),

or equivalently

(μ : (x : |K(G, 1)|) → G ∼=grp (x = x)) × (μ pt = id).

Given a dependent elimination principle for K(G, 1), we could analyse this type of
pointed sections directly. Alternatively, we can think of pointed sections as pointed
maps into a �-type with extra structure, and apply our non-dependent elimination
principle. The loop space of the �-type (x : |K(G, 1)|) × G ∼=grp (x = x) is the
centre Z(G) of G, and so we are left to ask when the inclusion Z(G) →grp G has
a section. This happens precisely when G is abelian. So K(G, 1) has a delooping if
and only if G is abelian, in which case the delooping is unique. As soon as we have
K(G, 2), Corollary 7 gives K(G, n) : Upt for every n with�K(G, n+1) �pt K(G, n).
We also get an elimination principle by repeated application of Corollary 11: for any
n ≥ 1 and any n-truncated type B, we have (K(G, n) →pt B) � (G →grp �n B).
Moreover, for n ≥ 0 we have the following explicit description of K (G, n + 2):

K(G, n + 2) � (Y : U) × n−connected(Y ) × (y : Y ) → G ∼=grp �n+1(Y , y).

To see this, first note that

K (G, n + 2) � T K (G, n + 1) � (Y : U) × ‖Y‖ × (y : Y ) → K (G, n + 1) �pt (Y , y).
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364 D. Wärn

For any y : Y , if K (G, n + 1) �pt (Y , y) then in particular Y is n-connected. If
Y is n-connected, then K (G, n + 1) �pt (Y , y) is equivalent to G ∼=grp �n+1(Y , y)

(which in particular means that Y is (n +1)-truncated), using the elimination principle
of K (G, n + 1).

4.2 �n(Sn)

While we have systematically avoided talking about higher inductive types, we can
still say something about them. Recall that the n-sphere Sn : Upt is defined as a
pointed type with (Sn →pt B) � �n B. If B is n-truncated for n ≥ 1, we have
�n B � (Z →grp �n B), since Z is the free group on one generator, which as we have
seen is equivalent to K(Z, n) →pt B. Thus (Sn →pt B) � (K (Z, n) →pt B) for any
n-truncated B. It is direct to see that this equivalence is natural in B, in the naive sense
that for any map B → B ′ one has a commuting naturality square. It follows that the
equivalence is given by precomposing with the map Sn →pt K (Z, n) corresponding
to the identity K (Z, n) →pt K (Z, n).3 Thus K (Z, n) has the universal property of the
n-truncation of Sn . In particular, πn(Sn) �grp �n(‖Sn‖n) �grp �n(K(Z, n)) �grp Z,
and πk(Sn) = 0 for k < n.

More generally, this argument shows that ‖A‖2n �pt ‖��A‖2n when A is n-
connected. To see this, note that for B be an arbitrary 2n-truncated type,��A →pt B
is equivalent to �A →pt �B by the � � � adjunction, which is in turn equivalent to
A →pt B by Corollary 11, and this is all natural in B. If moreover A is 2n-truncated,
then we can apply the same fact to the delooping T A of A, to see that T A �pt
‖� A‖2n+1. Taking loop spaces of both sides, we get A �pt ‖�� A‖2n . Dropping the
assumption that A is 2n-truncated, we still have ‖� A‖2n+1 �pt ‖�‖A‖2n‖2n+1, by a
direct Yoneda-style argument, so that

‖�� A‖2n �pt �‖� A‖2n+1 �pt �‖�‖A‖2n‖2n+1 �pt ‖��‖A‖2n‖2n �pt ‖A‖2n .

This is part of the Freudenthal suspension theorem.

4.3 The cup product

Corollaries 11 and 12 can be used to understand cohomology operations. As an exam-
ple, we consider cup products. Given a bilinear map L →grp M →grp N , we define a
cup product4

� : K(L, n) →pt K(M, m) →pt K(N , n + m),

3 This is essentially an invocation of the Yoneda lemma, but we have to be careful since the pointed types
do not form a 1-category.
4 Bilinear maps are often understood as maps L ⊗ M →grp N from the tensor product, and the cup product
as a map K (L, n) ∧ K (M, n) →pt K (N , n + m) from the smash product. In type theory it seems more
natural to work on the right side of the tensor-hom and smash-hom adjunctions.

123



Eilenberg–MacLane spaces and stabilisation... 365

similar to the definition in [3] and [5, Definition 2.26]. Note that we ask for the cup
product to be bi-pointed, corresponding to 0 � y = x � 0 = 0; without this
extra piece of specification, the definition would not work. Indeed, K(M, m) →pt
K(N , n + m) is n-truncated by Corollary 5, so the elimination principle of K (L, n)

applies5:

K(L, n) →pt K(M, m) →pt K(N , n + m) � L →grp �n(K(M, m) →pt K(N , n + m))

� L →grp K(M, m) →pt �nK(N , n + m)

� L →grp K(M, m) →pt K(N , m)

� L →grp M →grp N .

The forward maps in this composite are given explicitly by iterated looping, so we
arrive at a definition of the cup product as the unique bi-pointed map whose looping
gives back the bilinear map we started with.

With this characterisation, algebraic properties of the cup product follow from
analogous properties of looping. Consider for example graded commutativity of the
cup product. For any pointed types X , Y , Z , we have an equivalence

(X →pt Y →pt Z) � (Y →pt X →pt Z),

which informally flips the first two arguments. Similarly, for a bilinearmapμ : L →grp
M →grp N , we can flip it to obtain a bilinear map μ′ : M →grp L →grp N . We
would like to know that the corresponding cup products K (L, n) →pt K (M, m) →pt
K (N , n + m) and K (M, m) →pt K (L, n) →pt K (N , n + m) are flips of each other,
up to a sign change of (−1)nm . This then recovers the usual graded commutativity
of the cup product over a commutative ring, since if R is a commutative ring then
the multiplication map R →grp R →grp R is invariant under flipping the first two
arguments.

Instead of working with the cup product directly, we work with looping. It can
be seen using Eckmann–Hilton that the looping maps used to define the cup prod-
uct commute with the natural negation operations on K (L, n) →pt K (M, m) →pt
K (N , n + m) and L →grp M →grp N . Thus in order to prove graded commutativity
it suffices to show that the composite rectangle in the following diagram commutes
up to a sign change of (−1)nm , where the vertical maps are given by looping and the
horizontal equivalences are given by flipping arguments.

K (L, n) →pt K (M, m) →pt K (N , n + m) K (M, m) →pt K (L, n) →pt K (N , n + m)

L →pt K (M, m) →pt K (N , m) M →pt K (L, n) →pt K (N , n)

L →pt M →pt N M →pt L →pt N

∼

∼

∼

5 Formally this argument assumesm, n ≥ 1, but it can be adapted to define the cup product for allm, n ≥ 0.
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366 D. Wärn

It is direct to see that the following diagram commutes. The difference with the above
diagram is the order in which the arguments are looped in the right vertical arrows.

K (L, n) →pt K (M, m) →pt K (N , n + m) K (M, m) →pt K (L, n) →pt K (N , n + m)

L →pt K (M, m) →pt K (N , m) K (M, m) →pt L →pt K (N , m)

L →pt M →pt N M →pt L →pt N

∼

∼

∼

It remains to verify that the square

K (M, m) →pt K (L, n) →pt K (N , n + m) M →pt K (L, n) →pt K (N , n)

K (M, m) →pt L →pt K (N , m) M →pt L →pt N

commutes up to a sign change of (−1)nm . The difference between the two composites
in the square is the order in which the arguments are looped: either loop the first
argument m times and then the second n times, or loop the second n times and then the
firstm times. This can be understood as a composite of nm transpositions, so it suffices
to show that for any pointed types X , Y , Z , the following square anticommutes.

X →pt Y →pt Z �X →pt Y →pt �Z

X →pt �Y →pt �Z �X →pt �Y →pt �2Z

In this square, the top map is given by looping (X →pt Y →pt Z) → (�X →pt
�(Y →pt Z)) followed by the equivalence �(Y →pt Z) �pt (Y →pt �Z), and the
others are defined similarly. All that is left now is to construct, given f : X →pt Y →pt
Z , an identification between a certain pair of bi-pointedmaps�X →pt �Y →pt �2Z .
Applying a result of Evan Cavallo [4, Lemma 2.7] twice, it is enough to construct for
any pair of loops p : �X , q : �Y an identification between a certain pair of elements
in �2Z . Chasing definitions, it can be seen that these two elements are given by the
following commutative squares, together with the fact that the boundaries are trivial
by bi-pointedness of f .

f (ptX , ptY ) f (ptX , ptY ) f (ptX , ptY ) f (ptX , ptY )

f (ptX , ptY ) f (ptX , ptY ) f (ptX , ptY ) f (ptX , ptY )

f (p,ptY )

f (ptX ,q) f (ptX ,q)

f (ptX ,q)

f (p,ptY ) f (p,ptY )

f (p,ptY ) f (ptX ,q)

Wewrite f (p, ptY ) for ap f (−,ptY ) p and similarly with f (ptX , q). The commutativ-
ity of the above square in turn comes from the general commutativity of the following
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squares for p : x = x ′, q : y = y′.

f (x, y) f (x ′, y) f (x, y) f (x, y′)

f (x, y′) f (x ′, y′) f (x ′, y) f (x ′, y′)

f (p,y)

f (x,q) f (x ′,q)

f (x,q)

f (p,y) f (p,y′)
f (p,y′) f (x ′,q)

The commutativity of the above squares is direct by path induction. Similarly it is
direct by path induction that these commutativity proofs are inverse as paths f (x, q)

f (p, y′) = f (p, y) f (x ′, q), f (p, y) f (x ′, q) = f (x, q) f (p, y′). This is essentially
what had to be shown.

5 Concluding remarks

Our Lemma 9 can be compared with the construction of functors out of a Rezk com-
pletion in [12, Theorem 9.9.4] and the construction of maps K(G, 1) →pt K(H , 1) in
[2, Lemma 4.10.1], due to Thierry Coquand. Variants of the relation C a b are used in
all cases. The idea can be understood as a type-theoretic analogue of the arguments in
[6, Sections 5.2−5.3].

The arguments in this note are well-suited to formalisation. Indeed, many parts
have already been formalised twice: first by Louise Leclerc [7], and later by Axel
Ljungström in order to develop the theory of Steenrod squares.

In upcoming work, we take the ideas of this note much further to give an exact,
infinitary description of higher groups—as well as higher equivalence relations more
generally—and morphisms between them. In fact the description of morphisms is in a
precise sense obtained mechanically from the descriptions of objects, explaining the
similarity between the second and third sections of this note (compare for example
Corollaries 6, 7, 8 with Corollaries 10, 11, 12).
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