
Mapping Building Heights at Large Scales Using Sentinel-1 Radar Imagery
and Nighttime Light Data

Downloaded from: https://research.chalmers.se, 2024-11-16 00:07 UTC

Citation for the original published paper (version of record):
Kakooei, M., Baleghi, Y. (2024). Mapping Building Heights at Large Scales Using Sentinel-1 Radar
Imagery and Nighttime Light Data. Remote Sensing, 16(18). http://dx.doi.org/10.3390/rs16183371

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Citation: Kakooei, M.; Baleghi, Y.

Mapping Building Heights at Large

Scales Using Sentinel-1 Radar Imagery

and Nighttime Light Data. Remote

Sens. 2024, 16, 3371. https://doi.org/

10.3390/rs16183371

Academic Editor: Dino Ienco

Received: 25 June 2024

Revised: 7 September 2024

Accepted: 9 September 2024

Published: 11 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Mapping Building Heights at Large Scales Using Sentinel-1
Radar Imagery and Nighttime Light Data
Mohammad Kakooei 1,* and Yasser Baleghi 2

1 Department of Computer Science, Chalmers University of Technology, 41258 Gothenburg, Sweden
2 Department of Electronic Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Iran;

y.baleghi@nit.ac.ir
* Correspondence: kakooei@chalmers.se

Abstract: Human settlement areas significantly impact the environment, leading to changes in both
natural and built environments. Comprehensive information on human settlements, particularly
in urban areas, is crucial for effective sustainable development planning. However, urban land
use investigations are often limited to two-dimensional building footprint maps, neglecting the
three-dimensional aspect of building structures. This paper addresses this issue to contribute to
Sustainable Development Goal 11, which focuses on making human settlements inclusive, safe, and
sustainable. In this study, Sentinel-1 data are used as the primary source to estimate building heights.
One challenge addressed is the issue of multiple backscattering in Sentinel-1’s signal, particularly
in densely populated areas with high-rise buildings. To mitigate this, firstly, Sentinel-1 data from
different directions, orbit paths, and polarizations are utilized. Combining ascending and descending
orbits significantly improves estimation accuracy, and incorporating a higher number of paths
provides additional information. However, Sentinel-1 data alone are not sufficiently rich at a global
scale across different orbits and polarizations. Secondly, to enhance the accuracy further, Sentinel-1
data are corrected using nighttime light data as additional information, which shows promising
results in addressing multiple backscattering issues. Finally, a deep learning model is trained to
generate building height maps using these features, achieving a mean absolute error of around 2 m
and a mean square error of approximately 13. The generalizability of this method is demonstrated
in several cities with diverse built-up structures, including London, Berlin, and others. Finally, a
building height map of Iran is generated and evaluated against surveyed buildings, showcasing its
large-scale mapping capability.

Keywords: deep learning; radar multiple-backscattering correction; Sentinel-1 polarization; nighttime
light; SDG 11

1. Introduction

The growth of urbanization has brought about significant effects on the planet. Despite
the small surface area that urban areas occupy on the earth, they contribute to a large portion
of global energy consumption and carbon emission. According to [1], 80% of global energy
consumption and 75% of carbon emissions can be attributed to urban areas. Thus, it is
essential to obtain more detailed data from urban areas to better understand their impact
on the environment. The 3D structure of urban areas, which encompasses the vertical
dimension and building height in addition to the horizontal footprint, plays a crucial role
in this regard. Studies have shown that the vertical structure of urban areas is a key factor
in modeling the urban environment [2] and has a significant impact on various aspects
such as weather, biophysics, economy, and social properties [3]. For instance, the density of
urban patterns can increase greenhouse gas emissions and the heat island effect [4], while
the 3D structure of urban areas can be used as an index to interpret energy consumption [5],
greenhouse gas emissions [6], heat islands [7,8], and population distribution [9]. The
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combination of both the horizontal and vertical information of buildings in a specific area is
known as the occupation density [10]. Therefore, to better understand the impact of urban
areas on the environment and achieve Sustainable Development Goals such as SDG 11, it is
crucial to consider the 3D structure of urban areas in addition to their horizontal footprint.

Buildings are the key structures in human settlement areas. Over the years, verti-
cal urban analysis and the investigation of vertical urban expansion have been carried
out at various resolutions, ranging from local [11] to global scales [12]. These analyses
have utilized a variety of data sources, including DSMs derived from Cartosat-1, Ikonos,
WorldView-2, LIDAR, and others [11], as well as MODIS-based change detection meth-
ods [12]. However, because urban analysis is a multifaceted process, relying solely on
two-dimensional vertical building footprints as an independent variable is not sufficiently
informative. As a result, there has been a growing trend in using urban height maps
for studying local areas [13] and in cities across the world [14,15]. For example, Kedron
et al. [13] utilized LIDAR data to study pre- and post-Hurricane Katrina conditions, while
Zhang et al. [15] employed Landsat series data to analyze both horizontal and vertical
urban growth on a larger scale.

The level of detail (LOD) required for 3D human settlement (HS) information varies
depending on the application. Remote sensing (RS) technology is commonly used to extract
building information, but its effectiveness is limited by the remote sensor specifications,
such as spatial resolution, spectral bands, and coverage area [16]. The CityGML standard
outlines different LODs for building modeling, which are illustrated in Figure 1. LOD0,
the lowest LOD, depicts the building footprint. LOD1 assumes the building is a cube with
height information [17]. Subsequent LODs, starting from LOD2, provide more detailed
information on the building structure and type. For example, LiDAR is deployed to
generate higher LODs, but it can be expensive and time-consuming to obtain LiDAR data
on a large scale [18].

Figure 1. Different levels of detail (LODs) of building models according to Groger et al. [19].

Human-made structures and buildings have various horizontal and vertical properties,
and their patterns differ from one country to another [20]. For example, a recent study
showed the urban development pattern is distributed in the USA, while it is high-rise
and dense in Europe [21]. Therefore, it is hard, time-consuming, and expensive to extract
reliable features to generate a fine-resolution height map on a large scale. The purpose of
this study is finding robust features from RS data for building height map generation at a
large scale, which has the potential to be applied on a country scale. So, the RS data are
limited to non-commercial ones that are accessible in the public domain. Therefore, the
target is generating the building height map at LOD1. It is worthwhile to mention that
the LOD2 level and higher levels require VHR data, Biljecki et al. (2016) [22], which is
out of this paper’s scope. In Section 2, we review some studies in height map generation,
mentioning their pros and cons. Section 3 includes the description of the study areas and the
utilized dataset. Section 4 describes the methodology used to find the robust features and
large-scale map generation. Section 5 includes the discussion and conclusion. Furthermore,
some tables and extra analysis are included in Appendices A–D for interested readers.
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The goal of this work is to utilize publicly available data to generate a level of detail
1 (LOD1) building height map that can be produced at a large scale. To achieve this, it is
essential to use RS data that are globally available and offer sufficient spatial resolution to
distinguish neighborhood areas. Sentinel-1 data have shown high potential for building
height estimation, where each 10 m resolution pixel represents the average building height
in a neighborhood, demonstrating a positive correlation between the backscattered signal
and building height [23]. We analyze the potential of Sentinel-1 SAR data for building
height estimation by exploring different polarizations (VV, VH, HH, HV), orbit paths, and
directional paths (ascending and descending). However, Sentinel-1 data alone lack the
necessary richness at a global scale in terms of polarization, orbit, and direction path to
generate a comprehensive building height map. The contribution of this paper lies in fusing
multi-source RS images to estimate building heights and generate a large-scale building
height map. To achieve this, we combine Sentinel-1 data with the building footprint density
and nighttime light data, and deploy an encoder–decoder deep model based on U-Net
architecture [24].

2. Literature Review

Recent studies have examined the importance of the horizontal and vertical structure
of settlement areas. Specially in urban areas, building height is an important piece of
information that is hard to generate. Therefore, most previous works on producing building
height maps are limited to local and regional scales [25]. Four main categories are found in
RS-based building height estimation, which are,

1. Using adjacent shadow information in optical imagery [26]. But the accuracy of optical
imagery decreases in dense areas with many overlapping shadows due to adjacent
shadow information [27].

2. High-resolution stereo images [28] that require special imagery instruments.
3. LiDAR data that are known as the most accurate and reliable source. But their usage

is limited to a local region as it is costly [29].
4. Radar data, especially Informatory SAR (InSAR), have a high potential in height

mapping [30]. But, they have some issues such as noisy data, foreshortening, and
shadowing problems [31].

In addition, data fusion has become a popular method to utilize the strengths of
different RS platforms for estimating building heights. For example, Geiß et al. [32]
proposed a hierarchical method to fuse TanDEM-X and Sentinel-2 data in order to extract
3D structure of buildings. There are also some works that estimated building volume
by fusing LiDAR and radar data. Despite providing an accurate map, this fusion is not
applicable in large-scale studies [25,33].

Furthermore, fusing SAR and optical data is informative for 3D object reconstruction
in urban areas [34]. The main challenge in fusing optical and SAR data is finding the
disparity map using a matching algorithm. For example, Hirschmuller [35] deployed the
classic SGM algorithm to find the disparity map. In another work, Bagheri et al. [25]
proposed a procedure including rational polynomial coefficients (RPCs) extraction for each
image, block-based multi-sensor direction adjustment based on RPCs, and searching for
matching points by assuming images are at the same plan to fuse SAR and optical data.

Deploying radar data for height mapping has been reported in a number of publica-
tions, including Rajpriya et al. [36], who proposed a fusion of Cartosat-1 and Ikonos DEMs
to generate a 3D model of buildings at LOD1. In another work, Marconcini et al. [37] pro-
posed a method to deploy TanDEM-X to estimate building height. Furthermore, there are
some studies that deployed available DEMs (e.g., SRTM DEM) to reconstruct 3D building
map, such as Misra et al. [38], which utilized different data sources including SRTM, ASTER,
AW3S, and TanDEM-X, and compared their performance in building height estimation.

Height estimation on large scales has been studied in some recent studies. Li et al. [39]
proposed an index by combining VV and VH polarization of Sentinel-1 backscattering
signals to develop a building height model. As a result, they generated a 500 m resolution
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building height map of seven USA cities including New York, Chicago, and Los Angeles.
In another work, Li et al. [40] proposed random forest-based models and generated the
first 3D building map at a continental scale (China, USA, and EU) with 1 km resolution.
This map includes height and volume information of buildings in addition to a 2D vertical
building footprint. Moreover, Frantz et al. [41] fused Sentinel-1 and Sentinel-2 data by
support vector machine models to generate a building height map of Germany in 10 m
resolution. This study shows the potential of Sentinel data in large-scale building height
map generation in a fine spatial resolution. Although these works show the potential of RS
data for large-scale building height estimation, their proposed methods are not powerful
enough to generate accurate maps.

In summary, this approach highlights the importance of integrating multiple data
sources for accurate global building height mapping while maintaining a limited number
of input features and a lightweight deep model for simplicity and applicability. Although
Sentinel-1 data are effective for building height estimation, their limitations in polarization,
orbit, and direction hinder comprehensive global coverage. To overcome these challenges,
we combined Sentinel-1 with additional data sources such as building footprint den-
sity and nighttime light data, enhancing the accuracy and scalability of building height
map generation.

3. Dataset and Study Area

The aim is deploying free RS data with appropriate spatial resolution to estimate
building heights. There are hundreds of RS satellites in service today, but only a few satisfy
these requirements, such as the Sentinel-1 satellite in the European Copernicus program [42],
which includes Sentinel series satellites, which has an attractive potential for estimating
building heights (e.g., Sentinel-1 SAR data). The Sentinel-1 mission consists of two satellites,
Sentinel-1 A and Sentinel-1 B, orbiting on the same path with a six-day revisiting time.
Data from Sentinel-1 are acquired at band C at 10 m spatial resolution regardless of weather
conditions or day/night times. With Sentinel-1, the mostly used image acquisition mode is
IW (Interferometric Wide Swath), covering a width of 250 km. There are also other modes
such as EW (Extra Wide Swath), and SM (Strip Map). Traditionally, backscattered data
have been provided in two polarizations, VV and VH, but, lately, HH and HV polarizations
have become available in many places [43]. However, Sentinel-1 data are noisy due to
the backscattering feature of signals in urban areas, and the combination of single bounce
and either double bounce or triple bounce [44]. Furthermore, the relationship between the
backscattering signal and building height can be affected by the building direction and its
material [45].

3.1. Sentinel-1 as Independent Variable

The main independent variables are Sentinel-1 data, for which a one-year pixel-based
median value of 2020 is calculated. The data are accessed through the Google Earth Engine
(GEE) platform [46], where Sentinel-1 data are preprocessed through the following steps,

1. Removing thermal noise;
2. Radiometric calibration;
3. Geometric correction using SRTM 30 data [47].

Data are also separated according to different orbits and paths, and their orbit direction
including ascending or descending. Despite Koppel et al.’s [23] recommendation to combine
different directions, our investigation shows this separation can contribute to a higher
accuracy of height estimation.

Table 1 shows the coverage of Sentinel-1 in IW and EW modes over Stockholm, Sweden.
According to this table in the IW mode, path numbers 29 and 102 include 45 and 47 images,
respectively. Further, there are two paths with 27 and 30 images in the descending direction.
Additionally, each ascending or descending direction in the EW mode includes four orbit
paths, each of which has 12 to 30 images.
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Table 1. Number of available images in different paths in Stockholm, Sweden, 2020.

Mode and Bands Orbit Direction Path Number (Number of Images)

IW—(VV, VH) Ascending 29 (45), 102 (47)
Descending 22 (46), 95 (44)

EW—(HH, HV) Ascending 29 (14), 102 (14), 131 (12), 175 (15)
Descending 22 (30), 95 (14), 124 (23), 168 (15)

Figure 2 shows how Sentinel-1 data cover Stockholm, Sweden in 2020. As aforemen-
tioned in Table 1, in IW mode, there are two paths in the ascending direction and two
paths in the descending direction. Furthermore, in the EW mode there are four paths in the
ascending direction and four paths in the descending direction.

(a) (b) (c)
Figure 2. Different Sentinel-1 coverage modes over Stockholm, with the city’s boundary overlaid on
the raster images. The path number is indicated on each median image. (a) Sentinel-1 path orbits
in IW mode, displayed in false color (VV, VV, VH). (b) Sentinel-1 path orbits in EW mode in the
ascending direction, displayed in false color (HH, HH, HV). (c) Sentinel-1 path orbits in EW mode in
the descending direction, displayed in false color (HH, HH, HV).

3.2. Nighttime Light as Independent Variable

Monthly VIIRS nighttime light data in the infrared band are used in this study. These
data are globally available and, if there is no cloud coverage problem, these data are
available each month. As a pre-processing step, VIIRS nighttime light is corrected by Mills
et al.’s method [48] to reduce errors and the light saturation problem. Figure 3 shows the
VIIRS nighttime light data mean value in 2020 over Stockholm, Sweden.

Figure 3. Nighttime light data for Stockholm, Sweden (2020) display varying levels of light intensity.
The color palette indicates the intensity values of nighttime illumination.

3.3. Copernicus Land Monitoring Service as Dependent Variable

To train and validate the proposed method, we use data sources from European capi-
tals’ building height map, provided by Copernicus through the land monitoring service
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program [49]. These data are in 10 m spatial resolution and are produced using a stereo
images IRS-P5 and datasets including DSM, DEM, and normalized DSM. This dataset just
includes building height, and other things (such as trees) are not included. This dataset is
available for 38 cities including Tirana (Albania), Vienna (Austria), Brussels (Belgium), Sara-
jevo (Bosnia and Herzegovina), Sofia (Bulgaria), Zagreb (Croatia), Nicosia (Cyprus), Prague
(Czech Republic), Copenhagen (Denmark), Tallinn (Estonia), Helsinki (Finland), Paris
(France), Berlin (Germany), Athens (Greece), Budapest (Hungary), Reykjavík (Iceland),
Dublin (Ireland), Rome (Italy), Pristina (Kosovo), Riga (Latvia), Luxembourg City (Luxem-
bourg), Valletta (Malta), Podgorica (Montenegro), Amsterdam (Netherlands), Skopje (North
Macedonia), Oslo (Norway), Warsaw (Poland), Lisbon (Portugal), Bucharest (Romania),
Belgrade (Serbia), Bratislava (Slovakia), Ljubljana (Slovenia), Madrid (Spain), Stockholm
(Sweden), Bern (Switzerland), Ankara (Turkey), and London (United Kingdom).

This dataset is a proper source for building height modeling because these data are
combined with an urban area map and just include the building height; other vertical
objects are removed. These data are at LOD1, in which each building is supposed to be
a cube without any rooftop structure. Figure 4 shows this dataset for Rome, Paris, and
Stockholm, and their corresponding ground truth high-resolution map is illustrated.

Figure 4. Building height map from Copernicus land monitoring service program [49]. The high-
resolution optical images are at the top and the height maps are in the second row. (a,b) Rome, Italy.
(c,d) Paris, France. (e,f) Stockholm, Sweden.

3.4. Building Height Surveying in North of Iran as Test Data

The goal of this surveying is providing a new test dataset to evaluate the deep models
in a different region. This survey includes about 2000 buildings in two cities in the north of
Iran (1000 samples per city). The free Android software CartoDruid version 0.60.4 is used to
register the building height information gathered through surveying. This software enables
the user to define the region of interest by point or polygon. To reduce the surveying
geolocation error, surveys are defined at the center of building rooftops.

3.5. Global Human Settlement Layer as Additional Data

Similar to the work that was carried out by [39,40], the analysis is limited to the human
settlement areas provided by the JRC Global Human Settlement Layer (GHSL), which was
produced in 2020. This map is used to mask non-human settlement areas and to generate
the density of built-up areas in a neighborhood as an independent variable.
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4. Methodology

The methodology in Figure 5 is divided into two phases: first, shallow models are used
to identify how different features are informative for building height estimation, followed
by a deep learning model for generating building height. Since deep models cannot be
interpreted as easily as shallow models, shallow models are used during the first phase to
test the building height estimation accuracy of each configuration.

Figure 5. Flowchart of the methodology used in this study. The upper part shows the first phase that
studies how different features are informative for the building height estimation. The lower part
shows the second phase, which a deep model trained to generate a building height map.

4.1. Feature Analysis Using Shallow Models

During the first phase, the following questions are answered:

1. How much information is there in Sentinel-1’s different paths, orbits, and directions
for building height estimation?

2. How can the fusion of Sentinel-1 data with other RS data provide higher estimation
accuracy?

From another point of view, shallow regression algorithms are used in the first phase
to reduce the model uncertainty as much as possible and focus on finding how different
configuration of features are informative for building height estimation by comparing
different scenarios. In this regard, Ridge Regression (RR), Support Vector Regression with a
Linear kernel (SVRL), Multi-Layer Perceptron Neural Networks (NNs), Gradient Boosting
(GB), Random Forest (RF) with 100 tree estimators, and Voting (VOT) are deployed as
regressors of this phase. Furthermore, the input features to these models are,

• VVasc, VHasc, HHasc, and HVasc are Sentinel-1 VV, VH, HH, and HV bands, respec-
tively, in the ascending direction.
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• VVdesc, VHdesc, HHdesc, and HVdesc are Sentinel-1 VV, VH, HH, and HV bands, respec-
tively, in the descending direction.

• UM50, UM100, UM150, and UM200 are the densities of the vertical building map in
circles with radii of 50, 100, 150, and 200 m, respectively.

• NL reveals the nighttime light dataset.

These are defined in various combinations that could be informative in this problem.
Then, 9 combinations of these features are listed in Table 2, along with their acronyms.
The first four features are dedicated to VV and VH bands of Sentinel-1 in ascending and
descending directions. Although Sentinel-1 data have HH and HV polarizations, they are
not included in the X1 to X4 feature sets because they are available for limited locations.
Furthermore, feature set X5 is similar to X4 but is separated for each path and polarizations.
The densities of the vertical building map in circles with radii of 50, 100, 150 and 200 m are
included as an input feature in feature sets X6 and X7. These features can be informative to
correct double bouncing and triple bouncing, which happen in urban areas where multiple
high-rise buildings exist in a neighborhood. In feature sets X8 and X9, the VIIRS nighttime
light data are used as additional data that may also be informative to correct the Sentinel-1
data in urban areas.

Table 2. Various combinations of input feature sets are tested with shallow models to assess the
informativeness of each feature for building height estimation.

Feature Set Input Features

X1 VVasc
X2 VVasc + VHasc
X3 VVasc + VVdesc
X4 X3 + VHasc + VHdesc
X5 X4 + HHasc + HHdesc + HVasc + HVdesc
X6 X5 + UM50
X7 X6 + UM100 + UM150 + UM200
X8 X5 + NL
X9 X7 + NL

Eventually, different combinations of input features are deployed along with different
regression methods to find out how much information these features have, such as

• Feature X1 includes just the VV band in the ascending direction, which is used as the
base feature for comparison.

• Feature set X2 includes VV and VH polarization, which makes it possible to investigate
the importance of various polarizations.

• Feature set X3 includes VV polarization in both ascending and descending orders,
which makes it possible to investigate the importance of deploying Sentinel-1 data in
different directions.

• Feature set X4 includes VV and VH directions in both ascending and descending or-
ders. This feature set is compared with the X3 feature set to investigate the importance
of deploying different polarizations.

• Feature set X5 includes all available Sentinel-1 data within the study area. For example,
if in that study area Sentinel-1 data with different paths or polarizations (e.g., HH
and HV) are available, they all are included to investigate their impact. This set is the
richest set of Sentinel-1 dataset for further investigations.

• Feature set X6 includes all features in X5 and the vertical density building map in
a circle with radius 50 m. Therefore, it can be investigated if Sentinel-1 data can be
corrected using the vertical building map.

• Feature set X7 includes all features in X6 and the density of the vertical building
map in circles with radii of 100, 150 and 200 m. Therefore, more features are in-
cluded from the vertical building map to investigate its effect in correcting Sentinel-1
backscattering signals.
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• Feature set X8 includes all features within X5 and nighttime light data. Both nighttime
light and Sentinel-1 data have a high intensity in dense built-up areas. For nighttime
light data, this is due to light saturation, and for Sentinel-1 data it is due to double
and triple bouncing. So, it is expected to achieve a higher estimation accuracy by
combining these two sources.

• Feature set X9 includes all aforementioned features. It means this feature includes all
features within X7 and nighttime light data.

4.2. Building Height Map Using Deep Learning

In the second phase, the selected features are used to train a deep model to generate
the building height map. Although it will be shown all aforementioned features are
informative in the building height estimation problem, the five selected features are VV
and VH polarizations of Sentinel-1 data in ascending and descending directions, and the
nighttime light data as the additional data to refine the Sentinel-1 backscattering signals.
Selecting this feature set is to keep the generalizability of the model to be applicable in
different areas, specially in low- and middle-income countries, whose architecture is shown
in Figure 6 and is detailed in Appendix D Table A4. It is worth mentioning that it is a
lightweight architecture with 409,857 parameters.

Figure 6. U-Net-based deep model for building height estimation consisting of two main blocks.
Block 1 includes two convolutional layers with a dropout layer to prevent overfitting. Block 2
comprises two transposed convolutional layers with an additional dropout layer. MaxPooling is
used to reduce the tensor dimensions, while Block 2 restores the dimensions. Residual connections
between the encoder and decoder parts are implemented to maintain spatial resolution throughout
the network.

To create the building height map, we employ a deep learning model based on the
U-Net architecture [24]. U-Net is a convolutional neural network designed specifically for
image segmentation tasks. It takes an input image and produces an output of the same
size, typically transforming a raw image into a segmented version where each segment
corresponds to a specific category or value. The architecture is called “U-Net” because of its
U-shaped structure, which includes two main paths: a contracting path and an expanding
path. As shown in Figure 6, this design enables the network to capture both detailed
local features and broader contextual information within the image, making it particularly
effective for segmenting complex images [50]. The contracting path uses convolutional
layers combined with pooling to identify and condense key features, progressively reducing
the image size. The expanding path then upsamples the condensed image while merging it
with high-resolution features from earlier layers, effectively restoring spatial details and
improving segmentation accuracy.

The selection of a lightweight deep model builds on our findings from feature analysis
using shallow models, where we observed a strong correlation between the selected feature
set and building height, even with different shallow models. This indicates that extracting
features does not necessitate a complex deep model. In fact, using more complex models
could exacerbate overfitting and reduce reliability. Additionally, lightweight deep models
are particularly advantageous in developing countries and regions in the Global South,
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where data scarcity and infrastructure limitations are common. These models are better
suited to operate efficiently under such constraints.

To train our model, we utilized the mean square error (MSE) loss function, a popular
and reliable choice for regression problems. The selection of an optimizer significantly
affects model performance; for this study, we chose the Adam optimizer [51]. Unlike
Stochastic Gradient Descent (SGD) [52], Adam uses a momentum-based approach that
helps to smooth out the training curve by minimizing oscillations and enhancing stability.
Moreover, Adam is easy to implement and generally less sensitive to hyperparameters,
facilitating the achievement of optimal results. We set a learning rate of 0.001 and used a
batch size of 32. Over the course of 100 epochs, we tracked the validation MSE after each
epoch, ultimately selecting the model with the lowest validation MSE as the final one.

Wan et al. [53] investigated the effects of model size on hyperparameter sensitivity by
proposing a lightweight deep model. Their findings suggest that smaller models tend to be
less affected by changes in hyperparameters. This reduced sensitivity arises from a simpler
loss landscape and a lower number of parameters, which minimizes the likelihood of
problems such as vanishing or exploding gradients and overfitting. As a result, lightweight
models generally require less extensive hyperparameter tuning and sensitivity analysis
than their larger counterparts. The stability and reduced complexity of these models also
make the training process more straightforward and less susceptible to the instabilities
often encountered with more complex networks.

4.3. Accuracy Assessment

In the first phase of our analysis, we generate data samples for each city available
in our dataset. Each city’s dataset is treated as independent from the others, allowing
us to analyze the performance metrics on a per-city basis. This approach ensures that
our results are consistent across various cities and provides a deeper understanding of
informative features.

For each dataset, a five-fold cross-validation process is employed. This involves
training the shadow model on four of the five folds and testing it on the remaining fold,
with this process being repeated until each fold has served as the test set once. The
average evaluation metrics, including the R2 score and mean absolute error (MAE), are
then calculated. The standard deviation across the five folds is also computed to assess the
stability of the model’s performance.

In the next section, we visualize these results using bar plots to facilitate comparison
and discussion. Detailed information on the average R2 scores, MAE, and their standard
deviations from the five-fold cross-validation are available in the Appendices A–C.

The R2 score in Equation (1) is a key evaluation metric, which provides a measure of
how well the predicted values approximate the actual values, with a score of 1 indicating
perfect predictions, defined as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (1)

where yi is the actual building height, ŷi is the predicted building height, ȳ is the mean of
the actual building height, and n is the number of predictions.

We also use the MAE in Equation (2) as a secondary evaluation metric to gain insight
into the accuracy of the predictions in terms of absolute meters. The MAE provides a direct
interpretation of the error magnitude in the same units as the output variable, making it
particularly useful for understanding how far off the predictions are in practical terms. The
MAE is defined as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (2)

where n is the number of predictions, yi is the actual value, and ŷi is the predicted value.
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For evaluating the building height map, in addition to the MAE, we specifically use
the mean square error (MSE) in Equation (3), which is calculated as:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

This formula measures the average squared difference between the building height
ground truth and the generated height map, providing a robust assessment of the model’s ac-
curacy in generating the building height map. By combining these metrics, we can thoroughly
evaluate the performance and reliability of the deep model in mapping building heights.

5. Discussion and Results

Based on different feature sets and shallow models, different scenarios were defined
in the previous section and evaluated accordingly. For this section, only some evalua-
tion is provided, while the full results on both training and test data can be found in
Appendices A–C. First, the importance of combining different polarizations is discussed.
Second, the importance of separating ascending and descending directions are examined,
which is followed by an examination of deploying data from different orbits. Additionally,
the performance of combining Sentinel-1 data with vertical building density and nighttime
light data are evaluated.

5.1. Combination of Polarizations

Investigating the importance of combining different polarizations of Sentinel-1 data
(VV and VH) in a definite orbit path is based on comparing X1 with X2, and X3 with
X4. Feature set X1 just includes VV polarization in the ascending direction and is com-
pared with feature set X2 that includes both VV and VH polarizations in the ascending
direction. Similarly, X3 includes VV polarization in both ascending and descending direc-
tions and is compared with X4 that includes VV and VH polarizations in ascending and
descending directions.

Figure 7 illustrates comparison between X1 and X2, and also between X3 and X4 in test
data points of Rome, Italy. The plots verify that the combination of the two polarizations
VV and VH in all regression methods results in a higher R2 coefficient of determination.
Therefore, it is necessary to combine all available polarizations of Sentinel-1 for building
height estimation.

(a) (b)
Figure 7. Examining the impact of using combined polarizations at test points in Rome, Italy.
The vertical axis represents the R2 value, while the horizontal axis shows the different models:
(a) comparing X1 with X2, and (b) comparing X3 with X4. The results indicate that integrating both
VV and VH polarizations across all regression methods yields a higher R2 coefficient of determination.

5.2. Combination of Ascending and Descending Paths

The goal of this subsection is investigating the importance of combining ascending
and descending directions. As aforementioned, in contrast to Koppel et al. [23] who
merged ascending and descending images to achieve the maximum spatial coverage, here
each ascending and descending directions of the Sentinel-1 data are deployed as separate
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independent variables. In this regard, feature sets X1 and X3 are compared, in which X1
includes VV polarization in the ascending direction and X3 includes VV polarization in
both ascending and descending directions.

Figure 8 shows the comparison between X1 and X2 in Rome, Italy, and Paris, France.
As a result, the combination of using ascending and descending directions increases the
building height estimation accuracy. This also matches with the inherent specification of
radar data in which the backscattering signal is dependent on different factors, and thus
combining the data samples that are gathered from different backscattering angles increases
the building height estimation accuracy.

(a) (b)
Figure 8. Assessing the significance of merging different directional paths by comparing X1 and
X3 at test points in (a) Rome and (b) Paris. The vertical axis represents the R2 value, while the
horizontal axis displays the different models. The findings show that incorporating both ascending
and descending directions improves the accuracy of building height estimation.

5.3. Combination of Different Orbit Paths

To show combining different orbit paths is informative for building high estimation,
feature sets X4 and X5 are compared in Paris and the Stockholm in Figure 9. Figure 9a shows
X4- and X5-based height estimation in Paris, where Sentinel-1 data has one ascending and
two descending directions. It shows a little increase in the estimation accuracy, but it is
not significant. Figure 9b shows a significant increase in the coefficient of determination in
Stockholm, which is rich in having different orbit paths (12 orbit paths according to Table 1).
In conclusion, using different direction paths increases the building height estimation
accuracy, and the more paths there are available, the higher is the estimation accuracy.

(a) (b)
Figure 9. Examining the effect of combining different orbit paths by comparing X4 and X5 at test
points in (a) Paris and (b) Stockholm. The vertical axis denotes the R2 value, while the horizontal axis
represents the different models. The results suggest that incorporating multiple directional paths
enhances the accuracy of building height estimation, with greater accuracy achieved as more paths
are included.

5.4. Built-Up Density as Addition Data

The goal of this section is investigating the importance of the vertical building density
in refining Sentinel-1 backscattering signals. In this regard, feature sets X6 and X7 are
compared with feature set X5, which includes Sentinel-1 data in all available paths and
directions. Feature set X6 includes all features that are included in X5 and the vertical
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building density in a circle with radius 50 m. Feature set X7 is similar to feature set X6 but
includes some variations in the radius of the circle of built-up density in which the radius
varies by 50, 100, 150 and 200 m.

Figure 10 shows the comparison between feature sets X6 and X7 with X5 in test points
in Rome and Stockholm. The built-up density is very informative in Rome, but it does not
show a meaningful trend in Stockholm. It is concluded due to a rich availability of Sentinel-
1 orbit paths in Stockholm that they themselves can correct the Sentinel-1 backscattering
signal for building height estimation, and thus it does not require additional data such as
building density for the refinement step. On the other hand, Sentinel-1 data are not rich
enough in Rome to refine themselves and thus the vertical building density is much more
informative for building height estimation.

(a) (b)
Figure 10. Analyzing the impact of built-up density as additional data by comparing X5, X6, and
X7 at test points in (a) Rome and (b) Stockholm. The vertical axis shows R2, while the horizontal
axis represents different models. The built-up density is highly informative in Rome but less so in
Stockholm, where the abundant Sentinel-1 orbit paths already provide sufficient data for accurate
building height estimation. In contrast, Rome’s less comprehensive Sentinel-1 coverage benefits
significantly from the inclusion of built-up density data.

5.5. Nighttime Light as Addition Data

This section investigates the potential of nighttime light data as an additional source
to refine Sentinel-1 backscattering signals. To this end, feature set X8 is compared with
X5, and feature set X9 is compared with X7. Feature set X5 contains all orbit paths of
Sentinel-1 data, while X8 includes both the nighttime light data and the features from X5.
Similarly, X7 consists of all available Sentinel-1 paths combined with the vertical building
density at various radii, while X9 integrates nighttime light data with the features of X7.
As observed with the built-up density in Section 5.4, the inclusion of nighttime light data
significantly improves the results in Rome (Figure 11), but shows only a slight enhancement
in Stockholm (Figure 12).

(a) (b)
Figure 11. Analyzing the impact of nighttime light data as an additional feature by comparing
((a) X5 with X8 and ((b) X7 with X9 at test points in Rome. The vertical axis represents R2, while the
horizontal axis indicates different models. Nighttime light data prove to be highly valuable in Rome,
where the limited Sentinel-1 coverage benefits greatly from their inclusion.
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(a) (b)
Figure 12. Examining the role of nighttime light data as an additional feature by comparing (a) X5
with X8, and (b) X7 with X9 at test points in Stockholm. The vertical axis denotes R2 values, while the
horizontal axis displays various models. In Stockholm, where the extensive coverage from Sentinel-1
already delivers sufficient data, the additional contribution of nighttime light data is minimal.

5.6. Evaluating Building Height Map

Here the building height estimation using the deployed deep model is evaluated. To
this end, some visual investigations are provided and estimation accuracies are compared
in London (England), Berlin (Germany), and Babol and Amirkola (Iran), according to mean
absolute error (MAE) and mean square error (MSE) metrics. Furthermore, the London
(England) height map is compared with Wang et al.’s [54] proposed map in which combined
Landsat and DSM data generate a building height map of England. Moreover, the Berlin
(Germany) map is compared with Frantz et al.’s [41] proposed map in which combined
time serious Sentinel-1 and Sentinel-2 data generate a building height map of Germany in
10 m resolution. Finally, the estimation accuracy of the proposed map is evaluated in Babol
and Amirkola (Iran) using the surveyed points.

Figure 13 Shows different building map areas in London. This figure shows an overall
view in the first column and two zoomed areas in the second and third columns. The first
row shows the high-resolution optical image. The second row shows the ground truth
map that is taken from the EU Copernicus program. The building height that is generated
by Wang et al. [54] is shown in the 3rd row, and the last row shows the generated map.
This figure verifies that the generated building map has a high resolution in 10 m in which
the building blocks are detectable. It is worthwhile to mention that the visual comparison
verifies the higher resolution of our generated map. It is very important to consider that
using low-resolution nighttime light data does not ruin the final product spatial resolution
while it increases the estimation accuracy by refining the Sentinel-1 backscattering values.

Table 3 shows the estimation accuracy comparison of the proposed method in different
locations. Compared with Wang et al.’s [54] method, the proposed method is more accurate
and provides a higher spatial resolution map. Compared with Frantz et al.’s [41] method,
the proposed method relies on the nighttime light data instead of multispectral Sentinel-2
data. However, the nighttime light data with a coarse spatial resolution are not informative
themselves for building height estimation and are used as additional data to correct the
Sentinel-1 signal. So, the proposed method does not achieving a much higher estimation
accuracy than Frantz et al.’s [41], but achieves a little higher estimation accuracy with fewer
data. Furthermore, investigating the height map in Babol and Amirkola (Iran) is of great
important and verifies the generalizability of the proposed method, as the reported MAE
and MSE show similar values in London and Berlin.
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Figure 13. Building height maps in London. The first row shows a high-resolution optical image
of the study areas. The second row shows the ground truth. Wang et al.’s [54] generated maps are
shown in the third row, following by the generated map in the last row. The first column shows the
large-scale image, and the next two columns show two zoomed areas for visual investigation.

Table 3. Comparing the generated height maps in London, Berlin, Babol, and Amirkola.

Location Method Dataset Mean Absolute
Error

Mean Square
Error

London (England)
Wang et al. [54] Landsat, DSM 4.22 31.36

Proposed Sentinel-1,
Nightlight 2.32 13.02

Berlin (Germany)
Frantz et al. [41] Sentinel-1,

Sentinel-2 2.76 29.89

Proposed Sentinel-1,
Nightlight 2.38 15.74

Babol (Iran) Proposed Sentinel-1,
Nightlight 2.63 12.24

Amirkola (Iran) Proposed Sentinel-1,
Nightlight 2.3 10.25

5.7. Scalability

The scalability and applicability of this method for large-scale building height mapping
can be discussed from several perspectives:

1. Input data availability: the method primarily relies on the VV and VH bands of
Sentinel-1 data in both ascending and descending orders, along with nighttime light
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data. These datasets are widely available on a global scale, making it feasible to
generate large-scale building height maps across various regions.

2. Efficient use of Sentinel-1 data: although we initially analyzed multiple paths, orbits,
and directions of Sentinel-1 data to determine their usefulness in generating building
height maps, the final model utilizes only the ascending and descending directions.
By focusing on these two directions, we significantly reduce the computational load
and the variety of data needed for height map generation. Additionally, using both
directions helps mitigate issues related to shadowing and foreshortening [55], which
are common in mountainous areas. However, due to the limited representation of
mountainous regions in the dataset, caution is advised when applying this approach
in such areas.

3. Prioritizing nighttime light data: the decision to prioritize nighttime light data over
human settlement density maps is strategic. Settlement maps are often derived from
satellite data and may have varying levels of accuracy, particularly in developing
countries and regions in the Global South, where these maps tend to be less reliable.
Using nighttime light data as a refinement tool for Sentinel-1 enhances the accuracy
of building height estimation in these areas.

4. Model efficiency: the deep model selected for this task is intentionally lightweight to
ensure it can be run on moderate hardware. This consideration enhances the model’s
applicability in resource-limited environments. The rationale behind the choice of
model architecture is further detailed in the methodology section.

6. Conclusions

The focus of this study is to investigate the potential of Sentinel-1 data in combination
with other data sources for building height estimation. Different combinations of indepen-
dent variables are explored and analyzed to find how much information they can provide
for accurate building height estimation. The findings suggest that combining different
polarizations of Sentinel-1 data significantly improves the estimation accuracy. Therefore,
VV and VH polarizations are used in generating the large-scale building height map. In
addition, it is highly recommended to deploy HH and HV polarizations where available.

The analysis also reveals that combining ascending and descending orbit paths of
Sentinel-1 can significantly lead to higher building height estimation accuracy. However, a
high number of orbit paths are required to achieve a significant increase in estimation accu-
racy. For instance, using two or three orbit paths does not yield a significant improvement,
while deploying 12 orbit paths results in a much more accurate building height estimation.
Moreover, it is found that the vertical building density has a high potential in refining
Sentinel-1 backscattering signals and increasing building height estimation accuracy. How-
ever, when a large number of orbit paths are used (e.g., 12 orbit paths), deploying vertical
building density information does not provide much additional information.

Furthermore, this study demonstrates that nighttime light data have a high potential
in refining Sentinel-1 backscattering signals and increasing building height estimation
accuracy. Therefore, a deep learning method is developed to combine Sentinel-1 and
nighttime light data for generating building height maps. Sentinel-1 backscattering signals
are relatively high in highly dense built-up areas due to the double and triple bouncing
phenomena. Additionally, nighttime light data are saturated in highly dense built-up areas,
which can lead to incorrect high values in those locations. Therefore, using nighttime light
data as a proxy data to refine Sentinel-1 data is an innovative approach. The mean absolute
error (MAE) and mean square error (MSE) of the generated maps are approximately 2 and
13, respectively. The generated maps are compared with previous studies conducted in
London and Berlin. Finally, the large-scale applicability of the method is demonstrated by
producing building height maps for human settlement areas in Iran.

The usability of the proposed method may be limited in locations with diverse specifi-
cations due to certain constraints of Sentinel-1 data. Particularly, in mountainous regions,
the presence of layover, foreshortening, and shadow issues in Sentinel-1 data poses signif-
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icant challenges when applying the proposed method. Moreover, the paper introduced
a novel approach to separate ascending and descending orbit data, thereby reducing the
applicability of Sentinel-1 in mountainous areas. This limitation does not substantially
impact the proposed method in predominantly urban and rural regions, as the utilization
of a human settlement layer effectively filters and refines the predictions. Nevertheless,
for the overarching objective of generating global-scale building height maps, careful
consideration of mountainous areas is essential.

Author Contributions: Conceptualization, M.K. and Y.B.; Methodology, M.K.; Investigation, M.K.;
Writing—original draft, M.K.; Writing—review & editing, Y.B.; Supervision, Y.B.; Funding acquisition,
Y.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Iran National Science Foundation (INSF) through the
Grant program No. 99022825.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Shallow Models in Rome

Implementation in Rome, Italy, is shown in Table A1. This dataset includes 10,860
training data and 2716 test data points.

Table A1. Estimation accuracy of test data in different scenarios in Rome, Italy.

Regression Metrics X1 X2 X3 X4 X5 X6 X7 X8 X9

RR
R2 0.084 ± 0.008 0.1 ± 0.013 0.132 ± 0.006 0.164 ± 0.011 0.169 ± 0.012 0.215 ± 0.01 0.243 ± 0.012 0.278 ± 0.013 0.28 ± 0.013

MAE 5.99 ± 0.04 5.93 ± 0.06 5.76 ± 0.03 5.61 ± 0.045 5.58 ± 0.044 5.347 ± 0.05 5.207 ± 0.05 5.09 ± 0.045 5.075 ± 0.044

SVRL
R2 0.003 ± 0.003 0.025 ± 0.01 0.076 ± 0.004 0.12 ± 0.008 0.123 ± 0.008 0.186 ± 0.008 0.215 ± 0.009 0.25 ± 0.009 0.256 ± 0.01

MAE 5.71 ± 0.05 5.66 ± 0.076 5.53 ± 0.065 5.42 ± 0.07 5.4 ± 0.07 5.236 ± 0.069 5.107 ± 0.06 5.008 ± 0.05 4.989 ± 0.05

NN
R2 0.094 ± 0.006 0.108 ± 0.014 0.15 ± 0.004 0.17 ± 0.016 0.185 ± 0.014 0.219 ± 0.015 0.251 ± 0.01 0.299 ± 0.014 0.308 ± 0.012

MAE 5.908 ± 0.04 5.83 ± 0.04 5.65 ± 0.06 5.59 ± 0.14 5.456 ± 0.101 5.33 ± 0.16 5.125 ± 0.12 4.893 ± 0.12 4.862 ± 0.055

GB
R2 0.086 ± 0.008 0.101 ± 0.008 0.145 ± 0.003 0.18 ± 0.01 0.193 ± 0.012 0.234 ± 0.01 0.264 ± 0.013 0.318 ± 0.012 0.322 ± 0.011

MAE 5.94 ± 0.05 5.87 ± 0.06 5.65 ± 0.038 5.486 ± 0.05 5.42 ± 0.05 5.21 ± 0.057 5.066 ± 0.06 4.82 ± 0.042 4.799 ± 0.044

RF
R2 0.092 ± 0.006 0.107 ± 0.01 0.15 ± 0.005 0.18 ± 0.01 0.194 ± 0.11 0.229 ± 0.013 0.256 ± 0.01 0.307 ± 0.01 0.312 ± 0.01

MAE 5.92 ± 0.04 5.85 ± 0.06 5.64 ± 0.04 5.489 ± 0.065 5.43 ± 0.06 5.255 ± 0.06 5.12 ± 0.065 4.886 ± 0.04 4.86 ± 0.046

VT
R2 0.091 ± 0.007 0.107 ± 0.01 0.148 ± 0.004 0.183 ± 0.01 0.195 ± 0.011 0.235 ± 0.011 0.265 ± 0.012 0.314 ± 0.011 0.319 ± 0.012

MAE 5.94 ± 0.04 5.87 ± 0.06 5.668 ± 0.036 5.51 ± 0.05 5.45 ± 0.05 5.246 ± 0.054 5.098 ± 0.058 4.88 ± 0.04 4.86 ± 0.044

Appendix B. Shallow Models in Paris

Implementation in Paris, France. This dataset includes 26,098 training data and
6525 test data points.

Table A2. Estimation accuracy of test data in different scenarios in Paris, France.

Regression Method Metrics X1 X2 X3 X4 X5 X6 X7 X8 X9

RR
R2 0.11 ± 0.007 0.159 ± 0.01 0.149 ± 0.007 0.21 ± 0.01 0.216 ± 0.01 0.215 ± 0.01 0.22 ± 0.01 0.245 ± 0.01 0.245 ± 0.01

MAE 4.85 ± 0.05 4.64 ± 0.026 4.695 ± 0.04 4.444 ± 0.03 4.423 ± 0.03 4.42 ± 0.03 4.42 ± 0.03 4.34 ± 0.027 4.34 ± 0.028

SVRL
R2 −0.02 ±

0.007 0.049 ± 0.008 0.026 ± 0.006 0.11 ± 0.006 0.122 ± 0.007 0.122 ± 0.007 0.125 ± 0.007 0.152 ± 0.006 0.152 ± 0.006

MAE 4.35 ± 0.05 4.26 ± 0.04 4.28 ± 0.05 4.15 ± 0.04 4.131 ± 0.04 4.13 ± 0.041 4.126 ± 0.04 4.087 ± 0.04 4.087 ± 0.041

NN
R2 0.12 ± 0.006 0.17 ± 0.01 0.162 ± 0.006 0.226 ± 0.009 0.23 ± 0.01 0.23 ± 0.01 0.24 ± 0.01 0.255 ± 0.012 0.26 ± 0.01

MAE 4.8 ± 0.07 4.44 ± 0.035 4.62 ± 0.057 4.24 ± 0.06 4.258 ± 0.146 4.29 ± 0.187 4.103 ± 0.05 4.188 ± 0.126 4.17 ± 0.085

GB
R2 0.11 ± 0.009 0.17 ± 0.009 0.156 ± 0.01 0.221 ± 0.006 0.235 ± 0.008 0.234 ± 0.008 0.24 ± 0.016 0.277 ± 0.01 0.276 ± 0.011

MAE 4.79 ± 0.05 4.5 ± 0.03 4.59 ± 0.05 4.25 ± 0.03 4.21 ± 0.035 4.2 ± 0.037 4.16 ± 0.03 4.077 ± 0.03 4.058 ± 0.03

RF
R2 0.12 ± 0.007 0.17 ± 0.008 0.162 ± 0.01 0.22 ± 0.007 0.23 ± 0.01 0.23 ± 0.01 0.23 ± 0.008 0.26 ± 0.01 0.258 ± 0.01

MAE 4.78 ± 0.05 4.5 ± 0.026 4.58 ± 0.05 4.26 ± 0.036 4.23 ± 0.04 4.22 ± 0.04 4.21 ± 0.039 4.133 ± 0.04 4.13 ± 0.037

VT
R2 0.118 ± 0.007 0.17 ± 0.01 0.163 ± 0.008 0.226 ± 0.007 0.226 ± 0.007 0.24 ± 0.007 0.243 ± 0.01 0.274 ± 0.008 0.274 ± 0.01

MAE 4.8 ± 0.05 4.52 ± 0.027 4.6 ± 0.05 4.28 ± 0.03 4.284 ± 0.03 4.24 ± 0.037 4.22 ± 0.034 4.131 ± 0.03 4.123 ± 0.03
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Appendix C. Shallow Models in Stockholm

Implementation in Stockholm, Sweden. These data includes 4764 training data and
1192 test points. Sentinel 1 data provide various imagery in paths and polarizations over
Stockholm. Therefore, this shows the power of Sentinel 1 data in building height estimation.
In VV and VH polarization, Sentinel 1 data include two orbit paths in ascending directions
and two orbit paths in descending directions. Furthermore, in HH and HV polarizations,
Sentinel 1 data have four ascending paths and four descending over Stockholm.

Table A3. Estimation accuracy of test data in different scenarios in Stockholm, Sweden.

Regression Method Metrics X1 X2 X3 X4 X5 X6 X7 X8 X9

RR
R2 0.233 ± 0.005 0.279 ± 0.01 0.324 ± 0.015 0.361 ± 0.02 0.4 ± 0.016 0.4 ± 0.016 0.404 ± 0.016 0.417 ± 0.014 0.420 ± 0.016

MAE 4.907 ± 0.137 4.677 ± 0.121 4.478 ± 0.144 4.275 ± 0.127 4.068 ± 0.114 4.068 ± 0.114 4.05 ± 0.12 4.02 ± 0.112 4.014 ± 0.118

SVRL
R2 0.209 ± 0.004 0.257 ± 0.01 0.313 ± 0.013 0.348 ± 0.02 0.394 ± 0.015 0.394 ± 0.015 0.396 ± 0.015 0.41 ± 0.014 0.412 ± 0.015

MAE 4.74 ± 0.144 4.538 ± 0.123 4.397 ± 0.149 4.199 ± 0.117 4.02 ± 0.113 4.021 ± 0.112 4.014 ± 0.112 3.97 ± 0.108 3.96 ± 0.11

NN
R2 0.266 ± 0.012 0.307 ± 0.014 0.349 ± 0.021 0.374 ± 0.017 0.363 ± 0.028 0.37 ± 0.022 0.378 ± 0.021 0.397 ± 0.03 0.39 ± 0.02

MAE 4.74 ± 0.16 4.536 ± 0.164 4.389 ± 0.13 4.199 ± 0.108 4.2 ± 0.11 4.135 ± 0.078 4.14 ± 0.119 4.101 ± 0.101 4.16 ± 0.0107

GB
R2 0.25 ± 0.018 0.301 ± 0.018 0.345 ± 0.03 0.383 ± 0.025 0.418 ± 0.02 0.421 ± 0.017 0.425 ± 0.016 0.453 ± 0.025 0.455 ± 0.028

MAE 4.768 ± 0.161 4.524 ± 0.161 4.331 ± 0.154 4.143 ± 0.137 3.949 ± 0.11 3.923 ± 0.112 3.932 ± 0.114 3.865 ± 0.104 3.854 ± 0.117

RF
R2 0.26 ± 0.014 0.313 ± 0.012 0.351 ± 0.026 0.381 ± 0.018 0.412 ± 0.025 0.414 ± 0.026 0.411 ± 0.022 0.437 ± 0.03 0.438 ± 0.03

MAE 4.744 ± 0.157 4.491 ± 0.142 4.304 ± 0.153 4.16 ± 0.106 4.005 ± 0.105 4.0 ± 0.102 4.011 ± 0.112 3.94 ± 0.11 3.94 ± 0.125

VT
R2 0.26 ± 0.009 0.31 ± 0.011 0.353 ± 0.022 0.387 ± 0.02 0.423 ± 0.016 0.424 ± 0.016 0.427 ± 0.016 0.45 ± 0.02 0.454 ± 0.02

MAE 4.779 ± 0.147 4.523 ± 0.14 4.339 ± 0.149 4.151 ± 0.124 3.964 ± 0.104 3.95 ± 0.107 3.947 ± 0.112 3.88 ± 0.11 3.87 ± 0.12

Appendix D. Deep Model

A detailed description of the deep model is provided in Table A4.

Table A4. Detailed description of deep model for building height estimation.

Layer Input Output Parameters

Input layer - (224, 224, 5) 0
Conv2D + dropout (224, 224, 5) (224, 224, 32) 1472

Conv2D + MaxPooling (224, 224, 32) (112, 112, 32) 9248
Conv2D + dropout (112, 112, 32) (112, 112, 32) 9248

Conv2D + MaxPooling (112, 112, 32) (56, 56, 64) 9248
Conv2D + dropout (56, 56, 64) (56, 56, 64) 18,496

Conv2D + MaxPooling (56, 56, 64) (28, 28 64) 36,928
Conv2D + dropout (28, 28 64) (28, 28 64) 36,928

Conv2D (28, 28 64) (28, 28 64) 36,928
Conv2DTranspose + Dropout (28, 28 64) (28, 28 64) 36,928

Conv2DTranspose (28, 28 64) (56, 56, 64) 36,928
Concatenate (56, 56, 64) (56, 56, 128) 0

Conv2DTranspose + Dropout (56, 56, 128) (56, 56, 64) 73,792
Conv2DTranspose (56, 56, 64) (112, 112, 64) 36,928

Concatenate (112, 112, 64) (112, 112, 96) 0
Conv2DTranspose + Dropout (112, 112, 96) (112, 112, 32) 27,680

Conv2DTranspose (112, 112, 32) (224, 224, 32) 9248
Concatenate (224, 224, 32) (224, 224, 64) 0

Conv2DTranspose + Dropout (224, 224, 64) (224, 224, 32) 18,464
Conv2DTranspose (224, 224, 32) (224, 224, 32) 9248

Conv2D (224, 224, 32) (224, 224, 32) 1056
Conv2D (224, 224, 32) (224, 224, 32) 1056
Conv2D (224, 224, 32) (224, 224, 1) 33

Total params = 409,857

Appendix E. Height Map

Here, more visualizations of the building height map over Iran are provided.



Remote Sens. 2024, 16, 3371 19 of 21

(a) (b)
Figure A1. Building height map in Babol (Iran). (a) High-resolution optical image, (b) height map.

(a) (b)
Figure A2. Building height map in Tehran (Iran). (a) High-resolution optical image, (b) height map.
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