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Abstract: We aimed to investigate the use of free glycosaminoglycan profiles (GAGomes) and cfDNA
in plasma to differentiate between lung cancer and benign lung disease, in a cohort of 113 patients
initially suspected of lung cancer. GAGomes were analyzed in all samples using the MIRAM®

Free Glycosaminoglycan Kit with ultra-high-performance liquid chromatography and electrospray
ionization triple quadrupole mass spectrometry. In a subset of samples, cfDNA concentration and
NGS-data was available. We detected two GAGome features, 0S chondroitin sulfate (CS), and 4S CS,
with cancer-specific changes. Based on the observed GAGome changes, we devised a model to predict
lung cancer. The model, named the GAGome score, could detect lung cancer with 41.2% sensitivity
(95% CI: 9.2–54.2%) at 96.4% specificity (95% CI: 95.2–100.0%, n = 113). When we combined the
GAGome score with a cfDNA-based model, the sensitivity increased from 42.6% (95% CI: 31.7–60.6%,
cfDNA alone) to 70.5% (95% CI: 57.4–81.5%) at 95% specificity (95% CI: 75.1–100%, n = 74). Notably,
the combined GAGome and cfDNA testing improved the sensitivity, compared to cfDNA alone,
especially in ASCL stage I (55.6% vs 11.1%). Our findings show that plasma GAGome profiles can
enhance cfDNA testing performance, highlighting the applicability of a multiomics approach in lung
cancer diagnostics.

Keywords: cfDNA; GAGome; glycosaminoglycans; lung cancer; multiomics

1. Introduction

The use of high-throughput sequencing to analyze genomes and their aberrations has
advanced diagnostics, predictive testing, and monitoring for many types of cancer. To
avoid the challenges of obtaining tissue biopsies for cancers like lung cancer (LC), liquid
biopsy has emerged as a promising alternative. Numerous articles have been published
on the sequencing of circulating cell-free DNA (cfDNA) for such cancers [1]. Despite
technical advances, which have improved the sensitivity of genomics-only liquid biopsy
assays, many cancers remain undetected. This can be due to technical as well as biological
reasons, since the amount of circulating tumor DNA released is very heterogeneous between
different tumors [2]. To overcome this limitation, the field has moved beyond genomics to
a combination of different omics techniques, referred to as multiomics, including combined
information from genomics, transcriptomics, proteomics, methylomics, metabolomics,
extracellular vesicles, and circulating tumor cells, among others [3–8].

Glycosaminoglycans (GAGs) are unbranched linear polysaccharides that can be di-
vided into four main classes: chondroitin sulfate, heparan sulfate, keratan sulfate, and
hyaluronic acid [9]. The sulfation and glycosylation patterns in GAG chains can vary
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widely, leading to very high structural and functional diversity in the resulting GAG
molecules [10]. GAGs play crucial roles in cellular functions, including maintaining the
extracellular matrix structure and providing hydration to cells. They are also integral to
the immune response [11,12] and tissue homeostasis, as well as cell growth, proliferation,
differentiation, and adhesion [13]. Notably, GAGs have been implicated in different aspects
of cancer development and progression due to their involvement in the tumor microen-
vironment through their interactions with growth factors, growth factor receptors, and
cytokines [14]. The disaccharide compositions of GAGs in tumor tissue, plasma, and urine
have been shown to be altered in several cancer types such as breast, prostate, gastric, and
renal cell carcinoma [15–19]. Conversely, only a few studies have measured the structural
profiles of GAG disaccharides (or GAGome) in tissue or liquid biopsies in LC [20,21],
indicating the need for further research.

This study aimed to explore the plasma GAGome’s potential for differentiating LC
from non-malignant lung diseases via liquid biopsy. Additionally, we investigated whether
combining GAGome and cfDNA data could increase the sensitivity and specificity of
LC detection.

2. Results
2.1. Cohort Characteristics

The cohort comprised patients referred to the clinic under suspicion of LC (n = 113).
Of these, 85 cases were subsequently diagnosed with LC and were further stratified into
non-small cell LC (NSCLC, n = 77) or small cell LC (SCLC, n = 8). Patients diagnosed with
a benign lung disease (n = 28) served as controls (Table 1, Figure 1). Cases were slightly
older than controls (mean 70.4 vs. 67.0 years) and more evenly distributed among the
sexes (52.9% females vs. 60.7% females), with neither characteristic showing a significant
difference. A history of smoking was more prevalent among cases compared to controls
(85.9% vs. 60.8%, p = 0.047). The predominant tumor stage was stage IV (61.2%), with a
mean tumor size of 4.48 cm.

Table 1. The clinical characteristics of the cohort. Cases include patients diagnosed with lung cancer,
irrespective of histology, and controls include patients diagnosed with different benign diseases of
the lung. NA: not applicable.

Case
(n = 85)

Control
(n = 28)

Case vs. control,
p-Value

Overall
(n = 113)

Age
Mean (SD) 70.4 (8.5) 67.0 (14.4) 0.246 69.6 (10.3)

Gender
Female 45 (52.9%) 17 (60.7%) 0.473 63 (55.3%)
Male 40 (47.1%) 11 (39.3%) 51 (44.7%)

Smoking
Smoker 30 (35.3%) 5 (17.9%) 0.047 35 (31.0%)
Ex-Smoker 43 (50.6%) 12 (42.9%) 55 (48.7%)
Never-Smoker 12 (14.1%) 9 (32.1%) 21 (18.6%)
Missing 0 (0%) 2 (7.1%) 2 (1.8%)

Tumor size (cm)
Mean (SD) 4.5 (2.4) NA (NA) 4.5 (2.4)
Median [Min, Max] 4.0 [0.9, 12.5] NA [NA, NA] 4.0 [0.9, 12.5]
Missing 4 (4.7%) 28 (100%) 32 (28.3%)

IASLC stage
I 9 (10.6%) 0 (0%) 9 (8.0%)
II 6 (7.1%) 0 (0%) 6 (5.3%)
III 18 (21.2%) 0 (0%) 18 (15.9%)
IV 52 (61.2%) 0 (0%) 52 (46.0%)
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Figure 1. Study overview. (A) Cohort inclusion for GAGome and cfDNA analysis. (B) Development
of scores using GAGome and cfDNA.

2.2. Correlation between Plasma GAGomes and Lung Cancer Diagnosis

The plasma GAGome, which comprises the structural characterization of 17 different
GAG disaccharides, was analyzed successfully in all samples (n = 113). 4S CS and 0S CS
were the only GAG disaccharides with a median detected concentration above 0.1 µg/mL.
Therefore, we focused the subsequent analysis on these two independently measured
features and the corresponding four derived features (Section 4 Materials and Methods,
Table S2, Figure 2).
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Compared to the controls, the cases with cancer had a nominally higher median con-
centration of 0S CS, and a lower concentration of 4S CS (Figure 2, Table S2). Concomitantly,
we found that the composition of CS in cases with cancer shifted towards a lower 4S CS
fraction and a higher 0S CS fraction (Figure 2).

Using Bayesian linear regression and equivalence testing, we determined that two
plasma GAGome features were credibly associated with LC after adjustment for batch
effects and sample age (Figure S1). Specifically, an increase in the plasma concentration
of 0S CS and a reduction in the fraction of 4S CS were credibly correlated with LC after
adjustment for confounders.

2.3. GAGome and cfDNA Score

We next sought to develop a plasma GAGome LC score (or simply, GAGome score)
for discriminating between LC cases and controls. We fitted a Bayesian logistic model to
predict cancer (Figure S2, Supplementary Materials), where the model’s output, referred to
as the GAGome score, corresponded to the log-odds ratio of having LC.

The GAGome score had a 41.2% sensitivity (95% CI: 9.2–54.2%) to LC at a 96.4%
specificity (95% CI: 95.2–100%) with an AUC of 0.67 (95% CI: 0.56–0.77, Figure 3, Table S3).
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Figure 3. The performance of the GAGome score in discriminating between cases and controls in
(A) the whole cohort and (B) by IASLC stage. Controls are shown in blue (NControl = 28) and cases in
orange (NCase = 85; NStageI = 9, NStageII/III = 24, NStageIV = 58). IASLC: International Association
for the Study of Lung Cancer.

Next, cfDNA data was analyzed. Neither cfDNA concentration nor the number of
cfDNA variants were correlated with the GAGome features included in the GAGome
score (0S CS concentration and 4S CS fraction, Figure S3). A cfDNA score was generated
in the subset samples for which both cfDNA concentration and the number of variants
were available (n = 74). Specifically, we fitted a Bayesian logistic model to predict case
vs. control, using cfDNA concentration and the number of cfDNA variants as predictors.
The model’s output, referred to as the cfDNA score, corresponded to the log-odds ratio of
having LC. We treated samples where cfDNA concentration was available but insufficient
for cfDNA variant analysis (n = 7) as cfDNA score negative when evaluating the cfDNA
score performance. The cfDNA score had an AUC of 0.80 (95% CI: 0.685–0.903) and 42.6%
sensitivity (95% CI: 31.7–60.6%) at 100% specificity (Figure 4A).
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is: controls (blue), stage I (yellow), stage II/III (green), and stage IV (red). IASCL: International
Association for the Study of Lung Cancer.

We envisioned a diagnostic pathway that relies on sequential cfDNA and GAGome
measurements in plasma, specifically using the GAGome score for potential cfDNA score
false negatives. This combined test would be positive if either the cfDNA or the GAGome
score was positive. We allowed for one false positive and set the threshold for cfDNA
positivity at 100% specificity and GAGome score positivity at 95% specificity (Figure 4A).
The sensitivity of the combined test increased to 70.5% (95% CI: 57.4–81.5%) at a specificity
of 95% (95% CI: 75.1–100%, Figure 4B). Notably, in this diagnostic pathway with 95%
specificity overall (one false positive), the GAGome score contributed to a higher sensitivity
towards stage I (55.6% vs. 11.1% for cfDNA alone, Table S4) and stage II–III (40% vs. 20%
for cfDNA alone, Table S4), and could correctly reclassify 17 out of 19 cases that were falsely
marked as negative when using the cfDNA score alone (Table S5).

3. Discussion

In this study, we aimed to use GAGomes to discriminate between LC and benign lung
diseases and to explore whether the addition of cfDNA data could further increase the
sensitivity of the developed score. We used the detected features, 0S CS and 4S CS, to build a
GAGome score that reached 41.2% sensitivity at 96.4% specificity. We next envisioned a test
that combines the GAGome score with cfDNA data to increase the diagnostic potential for
LC. In the subset of patients with cfDNA data available, the combined test could diagnose
LC with 70.5% sensitivity at 95% specificity. To the best of our knowledge, this is the first
study to develop a multiomics test for cancer combining GAGs and cfDNA.

Research on GAGs in LC has been limited, with most studies focusing on tissue-
based analysis. An increase in total CS has been observed in tumor tissue compared to
normal lung tissue [20–22]. However, the results regarding CS sulfation patterns have been
inconsistent. Pál et al. and Balbisi et al. reported lower 0S CS and higher 4S CS in tumors,
while Li et al. found the opposite for 4S CS. Discrepancies between tissue and plasma
can be explained by the cell origin of the molecules analyzed. Mattox et al. investigated
the contribution of different cells to cfDNA in plasma and found that, even in cancer
patients, over 70% of cfDNA originated from leukocytes, and only 2.2% of the fragments
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in LC patients originated from the lung [23]. They concluded that these results reflect the
systemic effect of the tumor on the body, suggesting that what is detected is not primarily
the tumor itself, but the effect it causes. This concept can be applied to other circulating
biomarkers, such as GAGs, indicating that plasma tests should be interpreted separately
from tissue tests. Circulating GAGs in plasma have only been reported once previously,
where an elevated 0S CS concentration and a lower 4S CS fraction were detected in LC
cases compared to controls [24].

We found that the GAGome alone had a sensitivity of 40% for detecting LC, which
was comparable to the 42.6% sensitivity of cfDNA. Given that GAGomes were uncorrelated
with cfDNA measurements and that the GAGome score had a similar sensitivity across all
IASLC stages, we speculated that the two scores could be used in a combined multiomics
test for LC. By combining scores derived from cfDNA and GAGs into a multiomic test, the
sensitivity of differentiation between LC and non-malignant lung diseases could increase
to 70.5%, highlighting the potential of a multiomics approach.

The effectiveness of using multiomics for cancer detection was notably proposed
by Cohen et al. through CancerSEEK, which analyzes mutations in cfDNA and protein
levels [3]. They reported an overall sensitivity of 70% across all tumor types and about
59% for LC specifically. Since then, several other studies have explored the potential of
multiomics as a diagnostic tool.

For instance, Wang et al. [4] tested a combination of cfDNA variants, proteins, and
fragmentomics on a cohort of colorectal, esophageal, gastric, liver, lung, and ovarian can-
cers [25]. At 98% specificity, cfDNA variants alone showed a sensitivity of 46%. This
increased to 60% with the addition of proteins, and further to 66% with fragmentomics.
However, for LC alone, the sensitivity of the combined model only reached 38.5%. Chen
et al. combined a mutational score, methylation, and serum CEA levels to distinguish
between LC and benign lung nodules, achieving 76.9% sensitivity at a modest speci-
ficity of 58.3%. At the 95% specificity level used in our study, the sensitivity dropped to
around 30% [6]. D’Ambrosi et al. reported a promising 68% sensitivity at 95% specificity
for diagnosing LC using platelet-derived circRNA and mRNA [26]. Notably, their con-
trol group primarily consisted of asymptomatic individuals, similar to Wang et al. and
CancerSEEK [3,25]. Our study differed in design by using patients referred to the clinic
with lung-related symptoms qualifying for LC evaluation, rather than selecting a specific
control group. This enhances the clinical relevance of our findings, as it better reflects
real-world diagnostic challenges. Although our control cohort was more suitable com-
pared to several other multiomics studies, it is important to note that most of these studies
had a skew towards the lower stages of LC, which may have negatively impacted their
reported sensitivity.

The only detectable plasma GAGome features in this cohort were 0S CS and 4S CS.
This is consistent with previous findings using this kit, both in healthy individuals and
cancer patients [24,27]. Other studies have detected additional GAGs, such as HA, in
plasma [28]. However, the methods used in those studies included proteolytic digestion,
while the method used here is degradation-free, detecting only GAGs that circulate freely
in the analyzed liquid. Saito et al. tested the affinity of plasmatic proteins to different GAGs
and showed that approximately 7.5% of the proteins are bound to HS and dermatan sulfate,
while only 0.25% are bound to CS [29]. This suggests that CS has a higher probability of
circulating freely in plasma, supporting our findings.

The limitations of our study include the relatively small sample size and lack of
external cohorts for validation. A methodological limitation is that blood was collected in
tubes optimized for the stabilization of cells and extracellular RNA, and not immediately
processed, as the stabilization reagents are effective for several days. However, GAGs are
primarily degraded by highly substrate-specific enzymes in the lysosome [30]. Since the
tubes’ main function is to stabilize cells, lysosomal activity in the plasma fraction of the
sample is unlikely. While an unspecific degradation in plasma cannot be ruled out, the
cancer-specific alterations to the GAGomes were resistant to adjustment for sample age.
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In conclusion, we have shown that free CS can be detected in the plasma of LC patients.
From this, we developed a highly specific and sensitive multiomics score by combining
these data with cfDNA data from NGS analysis, effectively differentiating between LC
and benign lung diseases. We envision this score as a natural companion diagnostic to
radiography, as a broad NGS is highly relevant for LC due to the increasing number of
targeted therapies available for this condition. Adding a GAGome analysis would be
comparatively inexpensive, easily performed on a small aliquot of the same blood sample
used for NGS analysis, and could specifically increase sensitivity towards lower stages of
cancer without affecting the false positive rate.

4. Materials and Methods
4.1. Study Design and Cohort Characteristics

This study was reported in compliance with the Standards for Reporting of Diagnostic
Accuracy (STARD) guidelines [31] (Table S1). Study participants were enrolled into the
study during routine clinical investigation at the lung clinic at Örebro University Hospital
between February 2016 and February 2019. Patients investigated for suspected LC were
included in the study and formed a consecutive series. To ensure the most accurate
diagnosis, all LC cases were histologically confirmed using tumor tissue. Patients who
were diagnosed with cancer originating somewhere other than the lung, whose samples
were not collected prior to the start of treatment, or who had inadequate tumor material
for diagnosis were excluded from the study. Participants gave written informed consent
before inclusion and the study was approved by the regional ethics committee board in
Uppsala (Approval 2015-400, 2021-01478).

Tumors were staged and histologically classified according to the guidelines of the
International Association for the Study of Lung Cancer (IASLC) and the World Health
Organization nomenclature, respectively [32,33]. Patients with benign lung diseases mainly
consisted of those with different pulmonary obstructive diseases, inflammatory conditions
in the lung, fibrosis in the lung, or benign lung nodules.

4.2. Plasma Collection and Isolation

Blood was collected in Cell-Free RNATM BCT tubes (Streck, Omaha, NE, USA)
and plasma was retrieved by two-step centrifugation at 2000× g for 10 min followed
by 16,000× g for 10 min. Plasma was stored at −80 ◦C until preparation for analysis.
Samples were thawed on ice and an aliquot of each sample was taken for further analysis.

4.3. GAGome Measurements

Plasma GAGome measurements were performed retrospectively in a single-blinded
Good Laboratory Practice (GLP)-compliant central laboratory using the MIRAM® Free Gly-
cosaminoglycan Kit (Product No. FRUOV1, Elypta AB, Solna, Sweden), which is a standard-
ized kit for GAG extraction, detection, and quantification by ultra-high-performance liquid
chromatography (UHPLC), coupled with an electrospray ionization triple quadrupole mass
spectrometry system (ESI-MS/MS, Acquity I-class Plus Xevo TQ-S micro, Waters® Corpo-
ration, Milford, MA, USA). A single UHPLC column equipped with a pre-column guard
(Waters® ACQUITY UPLC BEH C18 VanGuard Pre-column) was sufficient to analyze all
samples in this study, with no quality deterioration observed over time. The analytical
performance characteristics of the kit have been previously described [34].

In short, the kit is based on a method by Volpi et al. [35]. The assay consists of the
enzymatic depolymerization of GAGs from the sample into disaccharides by Chondroiti-
nase ABC and Heparinase I-II-III. The method omits proteolytic digestion, thereby limiting
the derived depolymerized GAGs to the protein-free fraction, or free GAGs. Following
depolymerization, disaccharides are labeled using 2-aminoacridone and injected into an
UHPLC-MS/MS for separation and detection. The peaks of the 17 disaccharides are ac-
quired using multiple reaction monitoring analysis, implemented in the mass spectrometry
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software (Waters® TargetLynx). The chromatographic conditions and MS configuration are
set in accordance with the kit’s instructions for use.

Each sample was measured singly. The so-measured GAGome consisted of the ab-
solute concentrations of seventeen GAG disaccharides, corresponding to eight different
sulfation patterns of chondroitin sulfate (CS) and heparan sulfate (HS), and one hyaluronic
acid (HA) disaccharide. Specifically, we quantified eight CS disaccharides (0S CS, 2S CS,
6S CS, 4S CS, 2S6S CS, 2S4S CS, 4S6S CS, and TriS CS) and eight HS disaccharides (0S
HS, 2S HS, 6S HS, NS HS, NS6S HS, NS2S HS, 2S6S HS, and TriS HS). We expanded the
GAGome to include an additional 22 calculated features informative of GAG biology:
(a) the total CS and total HS concentration as the sum of the corresponding disaccharide
concentrations; (b) the CS charge [-] and HS charge [-] as the weighted sum of the sulfated
disaccharides, where the weight is the count of sulfo groups in each disaccharide; (c) two
ratios (4S CS/0S CS and 6S CS/0S CS); and (d) the relative concentration (or mass fraction,
in µg/µg%) of each of the sixteen CS and HS disaccharides, found by normalizing each
absolute concentration by the total CS and HS concentration, respectively. For each sample,
the GAGome consisted maximally of 39 features.

We considered a GAGome feature detectable in plasma if the median concentration
across all samples was above 0.1 µg/mL [34]. GAGome features that did not fulfill this
criterion were excluded from downstream analyses.

4.4. cfDNA Data

For 81 of the 113 samples, cfDNA concentration measurement was available. The
cfDNA was extracted from 4 mL plasma using the QIAsymphony DSP Circulating DNA
kit on the QIAsymphony SP system (Qiagen, Hilden, Germany) according to the man-
ufacturer’s instructions. The concentration was measured using a dsDNA HS assay kit
(Thermo Fisher, Waltham, MA, USA) on a Qubit 2.0 Fluorometer (Thermo Fisher). Out
of the samples with available cfDNA concentration measurements, 74 samples also had
NGS data available, which have been published previously [36]. The NGS panel used was
the AVENIO ctDNA Surveillance kit (Roche Diagnostics, Rotkreuz, Switzerland), which
includes 197 cancer-relevant genes.

4.5. Statistical Analysis

Continuous data were presented using mean and median values, while categorical
data were presented using absolute and relative frequencies. Differences between LC
patients and controls in terms of general clinical characteristics were investigated using
χ2-tests for categorical variables and Student´s t-tests for continuous data.

4.5.1. GAGome Analysis

We compared the levels of each detectable GAGome feature in cancer versus control
participants using Bayesian estimation with practical equivalence testing [37]. First, we
fitted a Bayesian linear regression model where each individual GAGome feature was
standardized and modelled as a normally distributed response variable and the disease
state (case vs. control) was the only binary predictor. Second, we controlled the correlation
between GAGome measurements in cancer vs. controls for technical variation by fitting
Bayesian linear models as above, but including an experimental batch (binary) and sample
age (continuous, in months) as predictors. We used a t-distribution centered on 0 with
7 degrees of freedom, and a scale = 2 for all the priors in all the Bayesian models. We
fit the models using the rstanarm package (ver 2.21.3) in R (ver. 4.2.1). The convergence
and stability of the Bayesian sampling was assessed using R-hat, which should be below
1.01 [38], and Effective Sample Size (ESS), which should be greater than 1000 [39]. The same
convergence criteria were used for all Bayesian models.

A GAGome feature was considered credibly associated to case–control status if the
95% confidence interval (CI) of the difference in means did not include zero, and no more
than 10% of the CI passed into the Region of Practical Equivalence (ROPE) [37]. The ROPE-
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interval was defined as [−0.1, 0.1] of the standardized mean, corresponding to a negligible
effect size [40]. GAGome features that were credibly associated with case–control status
after adjusting the linear regression model for experimental batch and sample age were
further analyzed as predictors of cancer during the GAGome score development.

4.5.2. GAGome Score Development

A Bayesian logistic model was fitted to predict case vs. control using the absolute
concentration of 0S CS (in µg/mL) and the fraction of 4S CS (in µg/µg%) as predictors.
The predictors were batch-normalized before fitting the model. Markov chain Monte Carlo
(MCMC) sampling was performed with four chains of 10,000 iterations and a warmup of
5000. The output of the model is referred to as the plasma GAGome LC score, or simply
GAGome score.

Model metrics were investigated using a bootstrap analysis with 5000 bootstraps,
under a constraint of minimum 95% specificity, which was deemed potentially clinically
useful. The final model’s performance in detecting case vs. control was evaluated by
calculating sensitivity at 95% specificity and the area under the curve (AUC) of the model.

4.5.3. cfDNA Score Development

Bayesian logistic models (estimated using MCMC sampling) were fitted to predict
case–control status using cfDNA concentration (logarithmic) in combination with the
number of cfDNA variants. The output of the model is referred to as the cfDNA score.

4.5.4. Combined GAGome and cfDNA Test Pathway

A combined test was envisioned as a diagnostic pathway that sequentially uses the
cfDNA score and the GAGome score to render a diagnostic decision, i.e., “combined test
positive” vs. “combined test negative”. To cumulatively retain the 95% specificity for the
combined test, as was rationalized for the GAGome score, the GAGome specificity was kept
at 95% while the specificity for the cfDNA score was set to 100%. Specifically, the GAGome
score, when positive, could be used to reclassify cfDNA score false negative samples as
“combined test positive”. The testing procedure is as follows: (1) calculate the cfDNA score
cut-off at which a minimum of 100% specificity is achieved; (2) calculate the GAGome score
cut-off at which a minimum of 95% specificity is achieved; (3) for each sample, consider
it positive for the cfDNA score if the sample score is above the cut-off—this also applies
for the GAGome score; (4) for each sample, consider it positive for the combined test if at
least one between the cfDNA and GAGome score is positive; (5) mark samples which are
cfDNA score negative but GAGome score positive as “reclassified positive”.
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