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Abstract: The Yangtze River’s substantial variation in water depth and current speeds means that
inland ships face diverse operational conditions within a single voyage. This paper discusses the
adoption of controllable-pitch propellers, which adjust their pitch to adapt to varying navigational
environments, thereby optimizing energy efficiency. We developed an optimization framework to
determine the ideal pitch angle and rotation speed (RPM) under different sailing conditions. The
energy performance model for inland ships was enhanced to account for the open-water efficiency of
CPPs across various pitch angles and RPMs, considering the impacts of current and shallow water,
among other factors. The optimization approach was refined by incorporating an improved genetic
algorithm with an annealing algorithm to enhance the initial population, applying the K-means
clustering algorithm for population segmentation, and using multi-parent crossover from diverse
clusters. The efficacy of the optimization method for CPP operations was validated by analyzing
three operational scenarios of a Yangtze sailing ship. Additionally, key components of the ship
performance model were calibrated through experimental tests, demonstrating an anticipated fuel
consumption reduction of approximately 5% compared to conventional fixed-pitch propellers.

Keywords: inland shipping; controllable-pitch propeller; fuel consumption; open-water efficiency;
genetic algorithm; energy efficiency; ship–engine–propeller match

1. Introduction

Inland shipping on the Yangtze River is an important mode of water transportation in
China, known for its low pollution, minimal land use, and large transport capacity. Due to
stricter regulations, a growing public awareness of emissions from inland vessels, and the
uncertainty of fuel prices, shipping companies operating in the Yangtze River are under
considerable pressure to enhance their ships’ energy efficiency and reduce energy con-
sumption. The majority of ships on the Yangtze today use fixed-pitch propellers. However,
the diverse hydrological conditions across different areas of the river and different seasons
lead to generally inefficient propulsion for most of the time. In contrast, controllable-pitch
propellers (CPPs) enable rotation of propeller blades through an integrated hub mecha-
nism, allowing adjustment of the angle between the propeller and the hub. Compared
to fixed-pitch propellers, changing the pitch angle of CPPs can help adjust sailing speed
and maintain propeller performance based on navigation conditions. Using CPPs helps
ships adapt better to changes in navigation environments and speeds, which can lower ship
fuel consumption and improve energy efficiency. The essence of optimal CPP operations
involves optimizing the alignment of the ship, engine, and propeller by adjusting the pitch
angle and rotation speed.
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The reliability of ship performance models is critical for such optimization methods.
Matínez-López et al. [1] analyzed the environmental performance of ship optimization
using the turbulent Reynolds average equation. Kim and Kinnas [2] introduced numerical
techniques based on potential flow theory for adjusting the propeller pitch, which involved
rotating the propeller blade. Jaurola et al. [3] reviewed ship system configurations and
power management strategies to maximize power system benefits. For assisting ship
operations, empirical formulas such as those by Holtrop and Mennen [4] have been widely
used to estimate a ship’s performance during navigation. These models were developed
further by Lang and Mao [5,6]. Kristensen and Lützen [7] built new empirical models based
on full-scale measurement data. With the advent of digitalization in shipping, substantial
data on ship performance monitoring have been employed for modeling using machine
learning techniques [8–10], with comparisons of different algorithms in Lang et al. [11].
Lang et al. [12] also combined empirical models with machine learning to increase the
accuracy of performance modeling.

In the realm of ship operational optimization, low-fidelity empirical models have
attracted attention due to their balance between computational speed and reasonable accu-
racy in predictions. Lu et al. [13] developed a low-fidelity optimization method based on
Kwon’s approach to minimize fuel consumption for an oil tanker. Tillig et al. [14] employed
the semi-empirical ship model ShipCLEAN to optimize ship speed and minimize fuel
consumption over given voyages, utilizing weather statistics from Monte Carlo simulations.
Yang et al. [15] applied the low-fidelity DTU-SDU model, achieving a relatively low error
rate in fuel consumption predictions per hour across various ship routes and optimizing
the case-by-case ship operation. Another study by Li et al. [16] explored the application
of ITTC ship models for container ships’ operation optimization, aiming to refine cost
optimization on specific routes. Fan et al. [17] utilized a generic model based on regres-
sion analysis that considered current speed to optimize cruise ship operations through
dynamic programming. Tzortzis and Sakalis [18] used a semi-empirical model to optimize
ship speed and minimize a container ship’s fuel consumption. Various methodologies
using low-fidelity models have been proposed for CPP optimization, including coupling
propeller design tools with nonlinear optimizers [19], employing Particle Swarm Optimiza-
tion algorithms to minimize fuel consumption [20], implementing sliding mode control
strategies to enhance CPP system performance [21], and developing joint controllers with
load protection for optimal matching control of engine speed and pitch [22]. To optimize
ship engine and propeller design, Ren et al. [23] conducted detailed studies on optimizing
pitch and ship–engine–propeller alignment, linking it to the Energy Efficiency Design Index
(EEDI) and demonstrating how the EEDI varies with changes in navigation parameters.
Tadros et al. [24] developed an optimization program for adjustable-pitch propellers to
optimize parameters such as propeller diameter, pitch, and speed with fuel consumption
as the target. Geertsma et al. [25] proposed a diesel engine propulsion model based on the
principle of equal value priority. This model incorporates a baseline control strategy that
utilizes a fixed combination curve, an acceleration limit, and pitch angle control, enabling
reliable predictions of the propulsion system’s behavior. Alessandri et al. [26] designed
PID controllers for adjusting a vessel’s heading and speed, optimizing parameters using a
linearized model, and testing against external disturbances. Altosole et al. [27] presented
the rapid prototyping and testing of a propulsion controller for an Italian aircraft carrier
using real-time hardware-in-the-loop (RT HIL) to predict the propulsion plant’s behavior
under different working conditions. Coraddu et al. [28] estimated the optimal efficiency
settings for a propulsion plant in real seaway conditions by integrating seakeeping and
powering simulations. Figari et al. [29] proposed a “dynamic set point” control strategy for
controllable-pitch propeller to reduce fuel consumption. Martelli et al. [30] developed a
controllable-pitch propeller numerical model to describe ship propulsion dynamics through
time-domain simulation. Michetti et al. [31] reported how a Navy multi-mission frigate
equipped with controllable-pitch propellers reduces operational costs in daily operations
while maintaining safety under various conditions.
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Most research on optimizing fuel consumption for CPP ships has focused on maritime
transport [32–34]. For inland shipping, it is crucial to consider factors such as the shallow-
water effect and hull–propeller interaction, as reported by Kulczyk and Tabaczek [35]. A
notable characteristic of inland waterways is that strong currents significantly influence
navigation, presenting unique operational conditions for downstream and upstream navi-
gation. Particularly for Yangtze shipping, the navigation conditions, such as water depth
and current, change markedly across different sections and seasons. This paper estab-
lishes a ship fuel consumption–propeller pitch–diesel engine speed relationship model.
An enhanced genetic algorithm optimization model was also developed to minimize fuel
consumption by finding optimal pitch and speed settings for various navigation conditions.
The structure of the remainder of this paper is as follows: Section 2 briefly describes per-
formance modeling for CPP ship operations. Section 3 introduces the proposed genetic
optimization method for CPP operations in Yangtze River navigation. Case-study ship and
demonstration scenarios are introduced in Section 4. Section 5 presents the optimization
results from the proposed method, compared across three predefined operational scenarios.
Section 6 summarizes key conclusions.

2. Performance Modeling of CPP Inland Ships

To study a ship’s fuel consumption, it is essential to correctly model the three subcom-
ponents of its energy system: the ship hull, propeller, and engine. The efficiency analysis of
a controllable-pitch propeller is more complicated than that of a fixed-pitch propeller due
to their open-water efficiency changing under different pitch angles.

2.1. Ship Resistance in Inland Waterways

The total resistance R of inland sailing ships can be divided into calm-water resistance
RCALM and added resistance ∆R:

R = RCALM + ∆R, (1)

where RCALM refers to the resistance of the underwater part of the ship to water and is
only affected by ship draft and sailing speed. The added resistance ∆R contains various
components, such as wind and waves. The sailing environments of inland waterways are
not as severe as those encountered in oceanic conditions; factors such as waves and wind
are comparatively mild. Consequently, the effect of the added resistance is not considered
in this study. The impact of shallow water on RCALM is substantial. This influence is
accounted for through a correction factor in the following modeling process.

Various empirical formulas are available to model the calm-water resistance of inland
vessels. In this study, the Holtrop and Mennen formulas [4], developed through full-scale
trials and model experiments with a series of ship types, have been employed to estimate
the calm-water resistance. The equation is defined as follows:

RCALM = R f (1 + k1) + Rr, (2)

where R f is the frictional resistance, estimated by the ITTC-1957 frictional correlation
line [36], and the empirical formulas are used to calculate the form factor 1 + k1. The
residual resistance Rr includes the resistance of the appendages, immersed transom, etc.

It is important to note that shallow-water effects are crucial in influencing fuel con-
sumption for inland shipping. Inland waterways, particularly natural river channels,
experience periodic changes in current with the seasons, which are important to consider
because the current speed affects the calculation between a ship’s speed through water
and speed over ground. As a ship navigates in shallow water, the water flow between
the bottom of the ship and the riverbed narrows, constraining the movement of water
molecules and increasing frictional resistance. The impact of shallow water on ship resis-
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tance is primarily related to ship speed and the ratio of water depth to ship draft. This
study estimates the shallow-water effect on total resistance as follows [37]:

R = KhR f + Rr, with Kh = 1 + 0.57(
h
d
)
−1.79

, (3)

where the total resistance R includes the shallow-water effect, h is the channel water depth,
and d is the ship draft. The validity range of this correction formula is h

d > 2.

2.2. Thrust and Torque of CPPs

During navigation, ship propellers convert the torque from the engine into thrust
via rotation. To maintain a constant speed V, the propeller propulsion compensates by
delivering the necessary torque to overcome the ship’s resistance R, enabling the propeller
to generate an equivalent thrust T = R. The propeller thrust T and torque Q are given
as follows:

T = KTρn2D4, Q = KQρn2D5, (4)

where KT and KQ are the thrust and torque coefficients, respectively; D is the propeller
diameter; and n denotes the propeller RPM. For fixed-pitch propellers, thrust and torque
can be estimated using regression calculations from efficiency charts [2]. However, the
calculation for a CPP involves more complex relationships between the thrust and torque
coefficients and the advance ratio and pitch angle.

In the absence of sufficient data to fit the CPP’s thrust and torque coefficients at various
pitches, this study utilizes the OpenProp code [38] to analyze the open-water performance
of the CPP. Open-water efficiency at different pitches is interpolated based on the original
pitch’s experimental curve. The CPP blade is modeled as a lifting line, with induced
velocity calculated by a vortex mesh, ensuring that the trailing vortex aligns with local flow
velocity. Each blade section’s properties are analyzed discretely along its radius, integrating
2D section loads across the blade width to compute the blade load. Va and Vt represent
the axial and tangential inflow velocities, while u*

a and u*
t denote the induced axial and

tangential velocities. r refers to the radius, as depicted in Figure 1.

Figure 1. Controllable-pitch propeller force diagram [38].

The corresponding pitch angle is calculated by β = arctan(Va + u∗
a /wr + Vt + u∗

t ).
Using the OpenProp code, the geometry of the CPP allows for an estimation of thrust
and torque by integrating across the propeller’s geometry. Subsequently, the open-water
efficiency of the propeller at a particular pitch can be estimated as follows:

η0 =
T·Va

Q·2π·n =
KT
KQ

· JS
2π

, JS =
Va

nD
, (5)

where JS is the advance ratio, a crucial parameter in describing the propeller’s operational
characteristics. It is defined as the ratio of the propeller’s forward travel to its diameter
during one complete rotation. The wake fraction ω, the thrust deduction factor t, and
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the relative rotative efficiency ηR are calculated by the well-known empirical formula for
twin-screw ships as proposed by Holtrop and Mennen [4].

2.3. Fuel Consumption Modeling

Building upon the established empirical models for ship resistance and CPP propulsion
efficiency, the simplified process of ship–engine–propeller matching is illustrated in Figure 2.
The Specific Fuel Oil Consumption (SFOC, expressed in g/kWh) of the ship engine is crucial
for estimating the total fuel consumption, and the fuel consumption per hour G in g/h is
calculated as follows [39]:

G = PB·SFOC =
PE

η0ηHηRηs
·SFOC. (6)

where ηH represents the hull efficiency, ηo is the open-water efficiency, and ηs is the shaft
efficiency. The effective power PE can be expressed as follows:

PE = R·V. (7)

Figure 2. The simplified CPP ship fuel consumption modeling process in this study.

Based on these calculations, a model can be established to explore the interdepen-
dencies among the propeller pitch, the engine, and the ship’s fuel consumption. First, the
modified inland navigation resistance formula determines resistance at specific draft d,
current speed u, and water depth h. Subsequent analysis of the performance of the CPP
facilitates the generation of open-water curve diagrams for varying pitches. These dia-
grams depict the functional relationship among the thrust coefficient KT , torque coefficient
KQ, open-water efficiency η0, advance coefficient JS, and pitch angle β. The ship’s fuel
consumption per nautical mile is then given as follows [39]:

G′ = 0.001·PB·SFOC/VSOG, (8)

where G′ is the fuel consumption rate in kg/mile and VSOG is the ship speed over ground.
This model establishes the relationship between ship fuel consumption and propeller pitch.
This study applies the SFOC curve at different engine loads provided by the ship owner.
However, certain pitch and RPM combinations may lead to issues such as thrust resistance
mismatch, negative thrust, and inadequate propeller structural strength Thus, in the
optimization process, the pitch–fuel consumption model cannot be applied directly. Instead,
a further optimization process and specific constraint conditions must be established to
achieve the lowest possible fuel consumption while ensuring stable operation of the CPP.
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3. Voyage Optimization Method Based on Improved Genetic Optimization
3.1. Description of the Voyage Optimization Problem

First, a ship voyage is discretized into m legs, and it is assumed that the ship sails with
the same propeller pitch angle β and RPM n for each leg where the water depth and current
remain unchanged. The control variables X to be optimized for an individual voyage are
denoted by the following:

X = [x1, x2, . . . , xi, . . . , xn], xi = [βi, ni], (9)

where βi and ni represent the propeller pitch angle and RPM at the ith leg of the voyage. In
this study, the optimization task is to find optimal X that can minimize the fuel consumption
for a specific sailing time as follows:

X̂ = arg min
X∈R

A1G(x1) + A2G(x2) + . . . + AnG(xn)

∑m
i=1 Ai

, (10)

where Ai is the optimization weight of a given leg.
The optimization process is illustrated in Figure 3. The operation optimization begins

with Step 1, which involves setting up all the parameters, such as the number of legs, initial
settings for each leg, and sailing time. The optimization algorithm used in this study, a
genetic algorithm (Step 2), takes all initial conditions to evaluate the ship’s performance in
Step 3 and to assess the cost function in Step 4. In Step 3, various components outlined in
Section 2 are analyzed to find the optimal match among ship speed, RPM, and propeller
pitch. The cost function for the control parameters is then evaluated in Step 4. The optimal
value is updated when the new input yields a lower objective function value. By repeating
this process, the optimal solution can be obtained.

Figure 3. The proposed CPP operation optimization method in this study.

3.2. Genetic Algorithm for Optimization

The genetic algorithm represents a refined suite of search optimization methods
inspired by the evolutionary principles of natural species. This algorithm mimics the pro-
cesses of natural selection, reproduction, and genetic variation, enabling the generation of
superior solutions [40], as illustrated in Figure 4. Initially, the genetic algorithm establishes
a population where individuals are encoded. It then proceeds by calculating fitness values
for these individuals using a predefined fitness function. The fittest individuals are selected
based on these values, and crossover and mutation operations are performed on them.
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Individuals with suboptimal fitness are eliminated, which facilitates the generation of a
new population. This cyclical process of selection, crossover, and mutation continues until
the stipulated criteria for population iteration are met, leading to the identification of an
optimal solution.

Figure 4. Conventional genetic algorithm optimization process.

However, traditional genetic algorithms encounter several challenges. They are heav-
ily dependent on the quality of the initial population, which can significantly influence
their efficiency and outcomes. Additionally, these algorithms often progress slowly in
optimization tasks and risk converging to suboptimal solutions due to their stochastic
nature and limited exploration capabilities.

3.3. Proposed Improvement to the Genetic Algorithm for Voyage Optimizations
3.3.1. Algorithm Initialization

To enhance the performance of the genetic algorithm, particularly by addressing its
inherent limitations, this study proposes integrating the simulated annealing algorithm
to generate the algorithm’s initial solutions. This integration is depicted in Figure 5 and
involves several key steps:

1. Initial setup: Set a sufficiently high initial temperature T to ensure acceptance of a
considerable number of transition states. Randomly generate the initial solution S,
and set the number of iterations at each temperature to L.

2. Iteration process: In each iteration, generate a new solution Si. Calculate the energy
change ∆E = Si+1 − Si. If the energy decreases, the state is accepted. Conversely, if

the energy increases, the state is accepted with a probability computed as e−
∆E
Ti , where

Ti is the current temperature.
3. Cooling schedule: Gradually decrease the temperature according to the formula

T(i + 1) = αT(i), where α is the cooling rate.
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4. Termination check: Determine whether the temperature has reached the termination
condition. If so, conclude the annealing process, and add the optimal generated
solutions to the initial population of the genetic algorithm.

Figure 5. The further improved method for generating the initial genetic algorithm population by
adding the annealing algorithm.

3.3.2. Elite Retention Strategy Based on Exponential Function

In the selection phase of the genetic algorithm, conventional methods such as tour-
nament or roulette selection present a risk of inadvertently removing the most capable
individuals from the population. This study introduces an innovative strategy to address
these challenges: a variable-proportion elite retention approach based on an exponential
function. The replication ratio is dynamically adjusted, increasing at a rate determined by
an exponential function and eventually reaching stability, as depicted in Equation (11):

K = 0.1 + ln(q)t, (11)

where t is the replication coefficient, q represents the number of evolutions, and K is the
proportion of the number of optimal elite individuals in the parent population that are
directly copied to the new offspring population relative to the total population. This
strategy effectively ensures the preservation of superior elite parental individuals over their
less advantageous counterparts.
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3.3.3. Multi-Parent Crossover Strategy Based on the K-Means Algorithm

In the default crossover strategy, deficiencies may arise when randomly selected
individuals possess very similar genetics. To address this issue, the integration of K-
means clustering and multi-parent crossover techniques is proposed. This process involves
segmenting the population into clusters based on low genetic similarity and then selecting
individuals from diverse clusters for crossover. This approach not only enhances the quality
of the crossover but also increases the overall genetic diversity within the population.

The chromosome length is assumed to be lchrom. Each chromosome is represented as a
vector in Euclidean space according to its distinct genes, denoted as x = (x 1, x2, . . . xlchrom),
and the Euclidean distance between it and another chromosome y = (y 1, y2, . . . ylchrom) is
defined as follows:

dxy =
√

∑n
k=1(xk − yk)

2. (12)

Based on the population size, an appropriate number of clusters is determined, and
individuals are randomly selected from the chromosome dataset as initial cluster centers.
Once the individuals are categorized, the distance from each individual to its cluster
center is calculated and compared. Using the minimum distance criterion, individuals are
classified into the cluster where the nearest center point is located. The cluster center is
then updated according to the following formula:

Z(w+1)
i =

1
Cw

i
∑

xj∈Ci

xj. (13)

where Z(w+1)
i is the cluster center point determined after the wth update and Cw

i is the
cluster set after the update. Categories are refreshed based on the updated cluster centers,
and if no change occurs in the cluster centers after two consecutive updates, the algorithm
is deemed to have converged, completing the clustering process. Subsequently, the multi-
parent genetic operator is employed, selecting three individuals at random from three
distinct clusters identified using the K-means algorithm, as illustrated in Figure 6.

Figure 6. Schematic diagram of the further developed crossover strategy.

3.3.4. Combination Mutation Strategy

In the mutation phase, the distinct advantages of various mutation operators are
leveraged to optimize the search process. This study employs a composite mutation
strategy, where a random integer within the range of [1,3] is generated for each generation.
The integer dictates the specific mutation operator to be applied:

• Gaussian mutation for 1, which focuses on local refinement,
• Uniform mutation for 2, offering a balanced approach to the search strategy,
• BGA mutation for 3, which is designed to enhance global exploration.
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This dynamic strategy adapts to the ongoing search process, facilitating effective
navigation of the solution space. By cycling through these mutation strategies, the algorithm
effectively balances exploration and exploitation, thereby enhancing the efficiency and
effectiveness of identifying optimal solutions.

4. Case-Study Ship and Demonstration Scenarios
4.1. Case-Study Ship and Division of Sailing Sections

This study used a 64TEU inland ship as the case-study ship (Taizhou Sanfu Heavy
Industry Group Co., Ltd., Taizhou, China). The ship’s resistance, open-water propulsion
efficiency, and engine load curve were modeled and validated through experimental tests.
Details of the modeling and validation processes are outlined in the subsequent subsections.
Table 1 displays the case-study ship’s main characteristics and propeller parameters. The
ship was equipped with two outward-rotating propellers. Detailed specifications of these
propellers are provided in the table below.

Table 1. Main parameters of the 64TEU inland case-study ship and the installed propellers.

Ship Parameter Value Propeller Parameter Value

Ship length 67.50 m Diameter 1.693 m
Waterline length 66.35 m Number of blades 5

Ship breadth 12.67 m Original pitch ratio 0.75
Molded depth 3.30 m Disk ratio 0.5

Propulsion power 2 × 240 KW Hub diameter 0.29 m
Spacing of fins 0.55 m Hub length 0.32 m

Gross tonnage (DWT) 990 tons Back angle 10◦

Experimental tests were also conducted to understand the resistance at varying speeds
for the case-study ship in this study. A comparison between the resistance estimated by
Equations (1) and (2) and those obtained from experimental tests revealed some discrepan-
cies. Consequently, the Holtrop and Mennen empirical formulas were calibrated for the
case-study ship’s resistance. Calibration factors were selected through a sensitivity analysis
focused on the parameters most affecting resistance, specifically the correction coefficients
related to the ship speed and Froude number. Polynomial regression was then applied to
calibrate the empirical formulas as follows:

RCALM = 9(0.162(V−4))Fr
−0.5(R f (1 + k1)+Rr). (14)

The resistance calculated using the calibrated formula, as depicted in Equation (14),
is compared with experimental data in Figure 7 for the case-study ship, which has a
draft of 2.4 m, representing 70% of its full load capacity. It is evident that, following
calibration, the empirical-formula-derived resistance closely matched the experimental
results. Consequently, this calibrated formula was employed in subsequent modeling and
simulations. The SFOC at different engine loads applied in this study is shown in Figure 8.

Based on the pitch–fuel consumption model outlined in Section 2, the propeller pitch
and RPM can be optimized to minimize the fuel consumption of the case-study ship for the
desired ETA. In this study, three distinct operational scenarios were applied for simulation:

• Scenario 1: The ship sails at a constant speed (7 knots) and draft (2.4 m).
• Scenario 2: The ship operates at variable speeds (4, 7, and 11 knots) while maintaining

a constant draft (2.4 m), specifically during downstream navigation (segments 7–14).
• Scenario 3: The ship maintains a constant speed (7 knots) with variable drafts (1.2 and

2.4 m) and is engaged in a round trip including downstream voyages (segments 7–14).
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Figure 7. Comparison of the ship resistance for the case-study ship, with a draft of 2.4 m; the blue
line is experimental data, and the red line is the results from the calibrated formula.

Figure 8. The SFOC at different engine loads as percentages of the maximum continuous rating
(MCR) for the case-study ship.

The optimization aimed to optimize fuel consumption for the equipped CPP case-
study ship operating along the Yangtze River trunk line. The division of the Yangtze
River trunk line is based on the relevant data published by the Yangtze River Channel
Bureau, “2023 Yangtze River Trunk Line Channel Maintenance Scale Standard”. The depth,
curvature, and other data are shown in Table 2.

Table 2. Division of the Yangtze River sections.

Segments Voyage Water
Depth (m)

Current
Velocity (m/s)

Bending
Radius (m) Mileage (km)

1 Yibin Hejiangmen–Chongqing Yangjiaotan 2.9 0.766 560 207
2 Chongqing Yangjiaotan–Fuling Lidu Yangtze River Bridge 3.5 0.472 800 60
3 Fuling Lidu Yangtze River Bridge–Ziguimiao River 5.5 0.467 1000 293
4 Ziguimiao River–Songzi Kuabaoshan 4.5 0.945 750 40
5 Songzi Kuabaoshan–Jingzhou Port 3.8 1.144 1000 42
6 Jingzhou Port–Yueyang Chenglingji 3.8 1.164 1000 135
7 Yueyang Chenglingji–Wuhan Yangtze River Bridge 4.5 1.222 1000 124
8 Wuhan Yangtze River Bridge–Anqing Jiyangji 6.0 1.16 1050 206
9 Anqing Jiyangji–Wuhu Gao’anwei 6.0 1.183 1050 106
10 Wuhu Gao’anwei–Wuhu Yangtze River Bridge 7.5 1.131 1050 20
11 Wuhu Yangtze River Bridge–Nanjing Yanziji 9.0 1.154 1050 55
12 Nanjing Yanziji–Nanjing Xinshengwei 10.5 1.036 1050 2
13 Nanjing Xinshengwei–Jiangyin Yangtze River Bridge 12.5 0.98 1500 98
14 Jiangyin Yangtze River Bridge–Yangtze River Estuary 12.5 0.8 1500 83

4.2. CPP Propulsion Efficiency Modeling for the Case Study Ship

A CPP with predefined geometry has hydrodynamic characteristics that are influ-
enced by the pitch and advance ratio. For the case-study ship, the propeller geometry
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was available and was utilized by the OpenProp software (version 3.3.4) to estimate the
propulsion efficiency across various pitch angles and advance ratios. Initially, to validate
the accuracy of the OpenProp model, the calculated open-water efficiency at the service
pitch angle of the case study ship was compared with experimental test results (provided
by the ship owner), as illustrated in Figure 9. The calculated thrust coefficient and torque
coefficient were slightly lower than the experimental outcomes. Additionally, when the
advance ratio was low, the open-water efficiency exceeded that measured; however, it
fell below the experimental results as the advance ratio JS increased. The overall error
margin was less than 6%. This discrepancy arose due to the theoretical simplifications
incorporated in the OpenProp calculations. While improving the precision of open-water
efficiency calculations is beyond the scope of this paper, this level of computational error is
unlikely to significantly impact the subsequent optimization results. In the future, we plan
to employ higher-fidelity CFD methods to minimize these errors.

Figure 9. Comparison of measured and calculated open-water efficiency: the black curve represents
the experimental measurements, while the curves in various colors correspond to calculations from
OpenProp software.

Subsequently, the OpenProp software was employed to analyze the open-water per-
formance of the propeller at various pitch angles (we assumed that all angles were truly
feasible in terms of the mechanical limits of the CPP’s actuating mechanism). The thrust
and torque curves for nine different pitch angles were assessed, including the service pitch,
service pitch ± 3 degrees, service pitch ± 5 degrees, service pitch ± 7 degrees, and service
pitch ± 10 degrees. Following the estimation of open-water efficiency for these predefined
pitch angles, the performance of the propeller at other pitch angles was predicted using lin-
ear interpolation analysis. Figures 10 and 11 display some of the estimated and interpolated
open-water curves for the controllable-pitch propeller.

Figure 10. Open-water efficiency for pitch angles of service pitch angle +3
◦

(left) and +7
◦

(right).



J. Mar. Sci. Eng. 2024, 12, 1579 13 of 21

Figure 11. Open-water efficiency for pitch angles of service pitch angle −5
◦

(left) and −3
◦

(right).

Figure 12 shows the open-water efficiency of the case-study CPP at different pitch an-
gles. The propeller’s open-water performance at higher speeds improves as the pitch angle
decreases. However, the propeller’s peak efficiency point is slightly below that observed at
larger pitch angles. Therefore, it is possible for CPP-equipped vessels to adjust the propeller
pitch angles and rotation speeds according to specific navigational conditions, enabling the
propeller to operate at its highest efficiency from a global optimization standpoint.

Figure 12. Open-water efficiency at different pitch angles for the case-study CPP; service pitch angles
of −3

◦
, +3

◦
, +4

◦
, +5

◦
, +6

◦
, and +7

◦
are presented from left to right.

4.3. Parameter Setting for the Improved Genetic Algorithm

As discussed Section 3.3, the improved genetic algorithm requires parameter settings at
each step. To enhance the transparency of this study, the detailed optimization process and
the parameter settings utilized in the improved genetic algorithm are outlined as follows:

1. Range of input values: The upper and lower limits for the pitch angle were determined
by OpenProp to be the original pitch angle ± 10 degrees. This restriction was imposed
because propeller efficiencies outside this range could cause the advance ratio to
exceed the operational range of the diesel engine. The speed range was set according
to the rated speed of the diesel engine, with the RPM variation range set between 500
and 1500, based on the characteristics of the case-study ship.

2. Algorithm initialization: The initial population was generated using the simulated
annealing algorithm, with an initial temperature set to 100 to allow acceptance of
more transition states. The number of iterations, L, was set to 100, with an annealing
rate of 0.9 to ensure rapid convergence. The termination temperature was set at 0, and
the initial population size was 505.

3. Selection: The selection process utilized the elite retention strategy as discussed in
Section 3.3, with a replication coefficient of 0.03.

4. Crossover: The crossover process employed a multi-parent crossover operator based
on the K-means algorithm, with the number of clusters set to 50. Three individu-
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als from different clusters were selected for random multi-parent crossover, with a
crossover probability of 0.7.

5. Mutation: The mutation phase used a single-point mutation method with a mutation
probability of 0.3. If offspring chromosomes generated during the crossover or muta-
tion processes failed to meet constraints, the mutation or crossover was repeated until
acceptable chromosomes were produced.

6. Termination condition: The stopping criterion for the algorithm was set such that the
optimization process terminated either when the number of iterations reached 500 or
if there was no decrease in the best fitness value across 10 subsequent iterations.

5. Results and Discussion
5.1. Optimization Results of Scenario 1

Based on the optimization model previously established, the optimization process for
the case study in scenario 1 is depicted in Figure 13. The optimization process of segment 3
is shown in Figure 13 as an example. The fitness value progressively converged by the 545th
generation. Figure 14 illustrates the optimized pitch angle and RPM across the 14 sections.

Figure 13. Optimization iteration for segment 3 of scenario 1; the blue dots are the mean fitness, and
the black dots indicate the best fitness.

Figure 14. Optimal pitch angle and RPM of scenario 1.
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Table 3 presents the specific values of the optimal pitch angle, RPM, and other pa-
rameters for each section. From these data, it is evident that the optimal pitch angles for
segments 1 (Yibin Hejiangmen-Chongqing Yangjiaotan), 2 (Chongqing Yangjiaotan-Fuling
Lidu Yangtze River Bridge), and 3 (Fuling Lidu Yangtze River Bridge-Ziguimiao River)
show substantial variations. This variation is attributable to the fluctuating upstream water
depths and relatively low water levels, which intensify the shallow-water effect during
navigation. Notably, the section from Yibin Hejiangmen to the Ziguimiao River (route
sections 1, 2, and 3) consistently exhibits the shallowest depths, necessitating additional
pitch angle adjustments to optimize propeller efficiency against changing resistance.

Table 3. Optimization results of different segments.

Voyage Segments Optimal Pitch Angle (Degrees) Optimum RPM Thrust (kN) Open-Water Efficiency

1 Original pitch angle + 5.13 1321.49 61.37 0.56
2 Original pitch angle + 4.89 1332.04 61.32 0.55
3 Original pitch angle + 4.75 1355.51 60.19 0.53
4 Original pitch angle + 7.47 1297.98 56.71 0.61
5 Original pitch angle + 7.09 1279.25 57.19 0.59
6 Original pitch angle + 7.04 1278.16 57.26 0.59
7 Original pitch angle + 6.85 1279.23 57.29 0.58
.8 Original pitch angle + 6.95 1283.17 56.63 0.58
9 Original pitch angle + 6.84 1283.53 57.52 0.57
10 Original pitch angle + 7.62 1294.16 57.91 0.63
11 Original pitch angle + 6.89 1295.98 57.61 0.58
12 Original pitch angle + 7.08 1273.98 57.32 0.55
13 Original pitch angle + 7.65 1259.79 57.15 0.61
14 Original pitch angle + 4.30 1359.43 59.17 0.56

Furthermore, the optimization outcomes reveal that larger optimal pitch angles typ-
ically require a corresponding decrease in diesel engine speed. This relationship arises
because the peak of open-water efficiency shifts towards a higher advance ratio with
changes in pitch. Given that the advance ratio is influenced solely by the RPM during
constant speed navigation, an increase in the advance ratio is achieved by slightly reducing
the RPM to accommodate the increase in pitch. However, variations in pitch angle also
impact the relative rotational efficiency, leading to a less pronounced correlation between
pitch angle and diesel engine speed in the optimization results.

The adjustment of the pitch angle maintains the propeller operation at a higher effi-
ciency level throughout the navigation, thus mitigating adverse effects from the naviga-
tional environment. According to Table 3, the open-water efficiencies exceed 50%, with
higher efficiency observed when the ship navigates through the midstream and down-
stream sections of the Yangtze River. This improvement is attributable to these sections
being better suited to the ship’s voyage, characterized by deeper water and milder cur-
rents. Additionally, the propeller achieves a higher maximum efficiency at larger pitch
angles, and its maximum efficiency point shifts towards a higher advance ratio as the pitch
angle increases.

Table 4 presents a comparison of the fuel consumption for the target ship before and
after optimization. Under identical sailing conditions, load, and draft parameters, the
ship’s fuel consumption per voyage has decreased by approximately 4.78%.

Table 4. Comparison of fuel consumption between optimal pitch and fixed pitch.

Pitch Allocation Fuel Consumption of Single Voyage (kg)

Fixed at the original pitch 5893.27
Optimal pitch setting 5611.67
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5.2. Optimization Results of Scenario 2

In scenario 2, the case-study ship is set to navigate at three distinct speeds: high speed
(11 knots), medium speed (7 knots), and low speed (4 knots), with equal navigation time
allocated for each speed. The fuel consumption rate is employed as the objective function.
As depicted in Figure 15, the fitness value progressively converged by the 65th generation
at a speed of 4 kn. Figure 16 illustrates the optimized pitch angle and RPM across the three
different speed settings.

Figure 15. Optimization iteration at a speed of 4 kn in scenario 2; the blue dots are the mean fitness,
and the black dots indicate the best fitness.

Figure 16. Optimal pitch angle and RPM for scenario 2.

As indicated in Table 5, the fuel consumption rate escalates sharply with increasing
sailing speed, yet the propeller operates more efficiently than when sailing at low speeds.
To further investigate the effect of sailing speed on the optimization outcomes, the ratio of
the three speeds was varied. The results of these adjustments are displayed in Table 6.
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Table 5. Optimization results of different speed settings.

Speed (kn) Pitch Angle (Degrees) RPM Thrust (KN) Open-Water
Efficiency

Fuel Consumption
Rate (kg/nm)

11 Original pitch angle + 9.37 1369.76 105.31 0.59 263.60
7 Original pitch angle + 7.96 798.64 37.65 0.56 75.35
4 Original pitch angle − 3.51 578.31 19.57 0.46 23.67

Table 6. Optimization results of speed settings with different time ratios in scenario 2.

Speed (kn) Proportion Pitch Angle (Degrees) Open-Water
Efficiency Thrust (KN) Fuel Consumption

(kg/nm)

Speed allocation 1
4 1/3 Original pitch angle − 3.51 0.50 19.57 23.67
7 1/3 Original pitch angle + 7.96 0.56 37.65 75.35
11 1/3 Original pitch angle + 9.37 0.59 105.31 263.60

Speed allocation 2
4 1/10 Original pitch angle − 2.03 0.47 19.02 25.26
7 1/2 Original pitch angle + 5.35 0.56 37.91 76.23
11 2/5 Original pitch angle + 9.19 0.57 106.25 261.35

Speed allocation 3
4 1/10 Original pitch angle + 1.03 0.43 17.36 23.76
7 4/5 Original pitch angle + 6.23 0.57 39.51 79.71
11 1/10 Original pitch angle + 9.59 0.60 103.17 260.19

As evidenced by Table 6, the propeller achieves higher open-water efficiency at the
lower speed in speed allocation 1 than in the other two allocations. In speed allocation 3,
where the vessel predominantly sails at medium speed, the improved genetic algorithm
tended to overlook the periods of high and low speed to some extent during optimization
in an effort to minimize fuel consumption. This is reflected in the thrust data shown in
Table 6; at a speed of 4 knots, the propeller generates a thrust of 23.76 KN, whereas the ship
encounters a resistance of 25.03 KN, with the thrust amounting to only 95% of the resistance.

5.3. Optimization Results of Scenario 3

Scenario 3 is dedicated to analyzing the effects of changing current directions and
variations in load on the optimization of CPP in the downstream waters of the Yangtze
River. The goal is to minimize fuel consumption throughout the round-trip voyage. In this
simulation, the ship travels downstream fully loaded (draft 2.4 m), whereas the return trip
is made in ballast (draft 1.3 m). The optimal pitch angle and RPM for each leg of the journey
are depicted in Figure 17. The outcomes of the optimization are presented in Table 7.

Figure 17. Optimization results of scenario 3.
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Table 7. Optimization results of scenario 3.

Direction Voyage Segments Pitch Angle (Degrees) RPM Open-Water Efficiency Thrust (KN)

Forward 7 Original pitch angle + 6.92 1353.16 0.56 57.26
8 Original pitch angle + 7.02 1357.93 0.59 57.75
9 Original pitch angle + 6.83 1367.35 0.58 57.91

10 Original pitch angle + 7.29 1359.36 0.62 57.19
11 Original pitch angle + 6.61 1357.39 0.59 59.67
12 Original pitch angle + 7.32 1355.23 0.54 59.16
13 Original pitch angle + 7.57 1363.59 0.55 27.15
14 Original pitch angle + 5.26 1359.26 0.59 57.63

Back 14 Original pitch angle + 1.02 1373.27 0.52 50.51
13 Original pitch angle − 2.06 1372.75 0.55 50.67
12 Original pitch angle − 2.37 1372.59 0.57 49.53
11 Original pitch angle − 1.73 1367.26 0.54 50.76
10 Original pitch angle − 1.97 1372.63 0.56 50.61
9 Original pitch angle − 1.73 1367.23 0.59 50.59
8 Original pitch angle − 2.63 1370.57 0.54 51.53
7 Original pitch angle − 2.16 1373.61 0.56 49.63

From Table 7, it is evident that the optimal pitch angle and RPM ranges for the two
voyages differ significantly. This variation is primarily due to the change in water current
direction, which alters the ship’s speed and consequently affects the balance among the
ship, engine, and propeller. Additionally, changes in the ship’s draft significantly modify
navigational resistance due to the shallower water effect. The results indicate that the
open-water efficiency of the propeller is consistently maintained at a high level after
optimization with the improved genetic algorithm. Table 8 displays the fuel consumption
for the entire voyage before and after optimization, showing a reduction of 5.35% in total
fuel consumption compared to sailing with a fixed-pitch propeller.

Table 8. Comparison of fuel consumption between controllable pitch and fixed pitch.

Pitch Allocation Fuel Consumption of Single Voyage (kg)

Fixed at the original pitch 4698.74
Optimal pitch setting 4964.34

5.4. Limitations of the Models Utilized

The proposed framework indeed possesses inherent limitations. First, the modeling
of ship resistance employs semi-empirical methods, which necessarily involve physical
assumptions and simplifications based on regression analysis using datasets from diverse
ship types. Consequently, predictions for a specific ship type at varying speeds inherently
encompass a certain degree of uncertainty. This uncertainty arises from the regression
process that averages data across different ship types, thereby leading to discrepancies when
predictions are applied to individual ships. These discrepancies explain minor deviations
such as those observed in Figure 7. Furthermore, the OpenProp software, an open-source
computational tool, integrates theoretical simplifications into its calculations. Despite
these simplifications, the software remains an appropriate tool for academic purposes,
especially useful for computing the performance curve of a particular propeller design.
The physical simplifications embedded within the software contribute to the prediction
discrepancies noted in Figure 8. However, the primary objective of this study is not to
design the propeller with high precision, but rather to optimize the operation of the CPP. The
framework effectively captures the physical trends of the propeller across various settings
for optimization purposes. In the subsequent phase, higher-fidelity CFD methods will be
employed to model and calculate the propeller’s performance and the ship’s resistance,
with the aim of mitigating the uncertainties observed in the current study.
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6. Conclusions

This study introduces a framework for modeling the performance of ships equipped
with controllable-pitch propellers operating in inland waterways, and an optimization
method to identify optimal pitch angles and RPM for various sailing conditions to enhance
energy efficiency. The performance model incorporates an experimentally calibrated empiri-
cal formula for resistance calculation, which is further adjusted to account for shallow-water
effects. OpenProp software was utilized to calculate the open-water efficiency for different
pitch angles and RPM settings. The optimization process was enhanced by integrating a
simulated annealing algorithm to improve the quality of the initial population, employing
a K-means clustering algorithm to segment the population, and selecting individuals from
different classes for multi-parent crossover. Three operational scenarios of a Yangtze sailing
ship were analyzed to validate the proposed optimization method for CPP operations. Key
components of the ship performance model were also validated through experimental tests,
demonstrating that the proposed method can achieve an approximate 5% reduction in
fuel consumption compared to conventional fixed-pitch propellers. However, this study
currently has limitations in simulation accuracy. Our model has the potential for appli-
cation across various inland waterways. However, our access was limited to data from
vessels operating on the Yangtze River, which guided our decision to conduct the case study
within this specific context. Future work will involve using actual ship data to validate
the effectiveness of the proposed framework. Additionally, we will employ higher-fidelity
CFD methods to reduce the uncertainty of open-water efficiency and to better understand
the hull-propeller interaction across various speeds and drafts.
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