
Registries in Machine Learning-Based Drug Discovery: A Shortcut to Code
Reuse

Downloaded from: https://research.chalmers.se, 2024-11-06 01:15 UTC

Citation for the original published paper (version of record):
Hartog, P., Svensson, E., Mervin, L. et al (2025). Registries in Machine Learning-Based Drug
Discovery: A Shortcut to Code Reuse. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14894 LNCS: 98-115.
http://dx.doi.org/10.1007/978-3-031-72381-0_9

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Registries in Machine Learning-Based
Drug Discovery: A Shortcut to Code

Reuse

Peter B. R. Hartog1,3(B) , Emma Svensson2,3(B) , Lewis Mervin4 ,
Samuel Genheden3 , Ola Engkvist3,5 , and Igor V. Tetko1

1 Institute of Structural Biology, Molecular Targets and Therapeutics Center,
Helmholtz Munich-Deutsches Forschungszentrum für Gesundheit und Umwelt

(GmbH), 58764 Neuherberg, Germany
2 ELLIS Unit Linz, Institute for Machine Learning, Johannes Kepler University Linz,

4040 Linz, Austria
3 Molecular AI, Discovery Sciences, R&D, AstraZeneca Gothenburg, 431 83

Gothenburg, Sweden
{peter.hartog,emma.svensson1}@astrazeneca.com

4 Molecular AI, Discovery Sciences, R&D, AstraZeneca Cambridge,
Cambridge CB2 0AA, UK

5 Department of Computer Science and Engineering, Chalmers University
of Technology, 412 96 Gothenburg, Sweden

Abstract. Computer-aided drug discovery gradually builds on previous
work and requires reusable code to advance research. Currently, research
code is mainly used to provide further insights into the original research
whilst code reuse has a lower priority. Modularity, the segmentation of
code for independent modules, promotes good coding practices and code
reuse. The registry pattern has been proposed as a way to call functional-
ities dynamically, but it is currently overlooked as a shortcut to promote
code reuse. In this work, we expand the registry pattern to better suit
computer-aided drug discovery and achieve a unified, reusable, and inter-
changeable interface with optional meta information. Our reformulated
pattern is particularly suitable for collaborative research with standard-
ized frameworks where multiple internal and external modules are used
interchangeably and coding is more focused on fast iteration over low-
debt technical code, such as in machine learning-based research for drug
discovery. In a workflow, we exemplify the usage of the design patterns.
Additionally, we provide two case studies where we 1) showcase the effec-
tiveness of registration in a larger collaborative research group, and 2)
overview the potential of registration in currently available open-source
tools. Finally, we empirically evaluate the registry pattern through pre-
vious implementations and indicate where additional functionality can
improve its use.

Keywords: registration · design pattern · modularity · code reuse ·
drug discovery · machine learning

c© The Author(s) 2025
D.-A. Clevert et al. (Eds.): AIDD 2024, LNCS 14894, pp. 98–115, 2025.
https://doi.org/10.1007/978-3-031-72381-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72381-0_9&domain=pdf
http://orcid.org/0000-0001-6406-6234
http://orcid.org/0000-0001-5598-0286
http://orcid.org/0000-0002-7271-0824
http://orcid.org/0000-0002-7624-7363
http://orcid.org/0000-0003-4970-6461
http://orcid.org/0000-0002-6855-0012
https://doi.org/10.1007/978-3-031-72381-0_9


Registries in Machine Learning-Based Drug Discovery 99

1 Introduction

The development of computer-aided drug discovery relies on previous research
from multiple fields to bridge the knowledge gap between domain experts and
computer scientists [41]. As such, software development in the field is often built
up of a combination of open-source tools, collaborative developments, and inde-
pendent research. Currently, research code is mainly used to provide further
insights into the original research rather than to use in future research [6]. There
is also a reproducibility problem [3] of code that stems from the low priority
of code reuse, as noted by Nature Computational Science (“But is the code
(re)usable?” [Editorial]. 2021, 23 July). Benureau and Rougier [5] proposed that
research code should adhere to particular requirements for stable and reliable
results. Code should be replicable, to obtain the same results as the original
paper; be able to run without problems; repeatable (i.e., deterministic); repro-
ducible (i.e., deterministic over multiple runs); and, finally, reusable. However,
research code is different from production software because its goals are focused
mostly on replication, where reuse is often an afterthought.

Code reuse is dependent on the concept of modularity [4]. Modular code is
code that is grouped with related code and mostly independent of other parts
of the code, named high cohesion and low coupling, respectively [33,46]. This
results in code that is interchangeable, replaceable, and can be updated and
used without issue [23,25,39]. Modular code also avoids the need to repeat code
segments [17] and forces code modules to achieve single objectives over multiple
responsibilities [26].

Machine learning (ML) workflows are inherently modular (Fig. 1). The work-
flow of ML is usually segmented into separate steps, such as data generation and
model creation, regardless of implementation. ML approaches are becoming more
prominent for research in drug discovery [7,11,42]. Computational research, like
all scientific research, builds on the knowledge from previous discoveries and uti-
lizes known methods and coding frameworks to create new tools, apply methods
to new fields, or investigate new problems. ML researchers use the available tools
to compare their novel models to previous approaches [9,22,45] and to stream-
line their pipeline [14,47]. There are also tools designed explicitly for ML in drug
discovery, some of which focus on aiding new practitioners in quickly finding and
comparing state-of-the-art approaches [10,24,28,34,40,44]. Other similar tools
can function to bridge the knowledge gap between natural scientists and com-
puter scientists. The latter can be achieved either by supplying domain-specific
knowledge to ML workflows [16,21,27,31] or by making common ML frameworks
[1,32] more accessible through higher-level abstractions [8,15,43]. Although tools
are created to be used by others, and therefore surpass research code in reusabil-
ity, tools are often semi-rigid, made to work out of the box for a fixed domain,
purpose, or type of method. This means there is often a high bar to add new
functionalities in open-source tools [4].

In this work, we identify registries [12] as a shortcut to code reuse for ML-
based drug discovery. We introduce the registry design pattern to those unfamil-
iar and suggest additional capabilities. Furthermore, we identify situations where



100 P. B. R. Hartog et al.

Fig. 1. Overview of model generation pipeline and applicability of tools for
each step. Repository tools are primarily used for reproducibility and to benchmark
new approaches against the existing state-of-the-art. Data tools bridge the knowledge
gap between domain experts and ML practitioners. Finally, ML frameworks add
workflow abstractions that accelerate the ML pipeline. Multidisciplinary collaborations
rely on the use of a combination of tools from these categories, as illustrated in the
leftmost panel.

the cheminformatics community can benefit from registries to easily make their
code more reusable as well as more replicable [5]. We provide an open-source
implementation of the generic registry design pattern through the Python Pack-
age Index. While the fast pace of drug discovery research can result in bad
coding practices, the simplicity of our proposed registry is meant to encour-
age improved coding practices with minimal effort for the researchers. The use
of registries during codebase design can additionally serve as an easy way to
enforce desired behaviors, such as a factory pattern or test adherence, which
in turn helps contributors adhere to the desired coding standards. Finally, we
identify where previous implementations of registries have succeeded and failed,
and discuss the reasons behind successful implementations in both research code
and software tools. Our contributions are summarized as follows.

– We extend previous explanations of the registry with capabilities for use by
researchers.

– We outline several use cases of where and when registries can be a shortcut
for reuse in computer-aided drug discovery research.

– We identify previous implementations of registries and note their positive and
negative implications.

2 Methods

The registry design pattern has been proposed as a tool for dynamic instance
creation of object-oriented classes [12]. Best practices in object-oriented pro-
gramming are often formalized as design patterns. A software design pattern



Registries in Machine Learning-Based Drug Discovery 101

provides a template for a general and reusable way that solves a recurring prob-
lem in software engineering [13]. We reformulate the registry as a method to
retrieve similar modules with similar functionalities or uses. Consider a set of
modules M supplying the same type of functionality but with different impli-
cations to a workflow. Given that the modules follow the Liskov substitution
principle [23], i.e. that f : X → Y,∀f ∈ M where X and Y are the set of
inputs and outputs respectively, it is commonly known that they can be used
interchangeably through inheritance. A problem with inheritance is that each
module still has to be initialized individually. The standard design pattern to
interchange such modules is the factory pattern (Fig. 2 left). However, this app-
roach requires strict inheritance from an abstract class.

The registry design pattern uses call and set functions, usually renamed to
get and register, to dynamically set and retrieve objects from a unified storage
location. Registry systems are often initialized at run-time and used in combi-
nation with alias-based retrieval. As such, a registry follows the factory design
pattern in that it provides a common interface for categorically similar function-
alities without the explicit need for concrete classes. Furthermore, the registry
encapsulates each alternative module, hiding individual details behind a unified
set of function calls.

Formally, we reformulate the existing registry design pattern [12] as
a means to collect interchangeable modules with encapsulated functionali-
ties retrievable using a unified command. Additionally, the registry pattern
is dynamic in its application. We provide our proposed design pattern to
the cheminformatics community through the Python Package Index as the
registry-factory package under the MIT license [29], which specifies the imple-
mentation of a collection of registries. The open-source code is available at
https://github.com/aidd-msca/registry-factory.

3 Results

3.1 Workflow: Creating a Registry and Registering Modules

An overview of the process of creating a registry is illustrated in Fig. 3. A new
registry is either imported from the package or is instantiated from a factory
class. No instance of a registry needs to be created to use it. First, a section of
code is separated from the framework. This is then converted into a function
or class and registered into the registry. All subsequent scripts and external
collaborators are then able to call upon the registry for this code.

When a registry is outlined as above it promotes and allows specific actions
to be performed more fluently: 1) A registry provides a framework to exchange
modules with similar functions. This switch is also stable in execution and flexible
in application, depending on how strictly the registry is set up. 2) The registry
setup allows control over how modules should be set up. More strict setups will
force standardized modularity and interfaces, whilst more flexible setups allow
faster extension and broader application. 3) Due to the standardization, more
internal and external modules can use the same execution framework to function.

https://pypi.org/project/registry-factory/
https://github.com/aidd-msca/registry-factory


102 P. B. R. Hartog et al.

Fig. 2. Unified Modeling Language (UML) diagram of the factory design
pattern and our proposed Registry design pattern. Left: UML of the fac-
tory pattern. The ShapeFactory functions as an interface where all subclasses of the
Shape superclass can be called by the client. Right: UML of the registry pattern. The
ShapeRegistry functions as an interface where any object no matter their superclass
can be registered dynamically and called by the client.

Fig. 3. Workflow of creating and using a registry. 1) Part of the code framework
is identified which can be separated from the rest. 2) This section is modularized to
be independent of the rest of the code. 3) A registry is created. Here, the choice of
additional meta information such as versioning, accreditation, and arguments are set
as well as the choice to share modules and force a specific class pattern. There is also
the option to add post-registration checks, both custom and those that reference a
testing script. 4) New modules are registered to the registry. 5) Finally, the modules
are called in the main workflow using the registry.



Registries in Machine Learning-Based Drug Discovery 103

3.2 Enhanced Functionality and Expanded Capabilities

Minimal usage of registries can be limited in their application. As a result, addi-
tional capabilities can increase the application options of registries, even in more
advanced architecture designs. In this paper, we advocate for a non-exhaustive
selection of additional capabilities and have implemented them into a separate
package that will be made available upon acceptance (Fig. 3).

Upon creation, the specifications of the registry are instantiated and a selec-
tion of additional capabilities can be included. Firstly, to increase ease of use,
inter-registry module sharing and argument registration are implemented. Sec-
ondly, the following features are implemented to allow for better control in a
codebase setting, factory pattern forcing, versioning, and automatic testing upon
registration. Finally, to accommodate the research community when contribut-
ing to packages, we have implemented accreditation which can be retrieved when
calling registered objects.

3.3 A Shortcut to Modularity and Reusability

The main reason for the integration of registries is the passive enforcement of
modularity. Experienced programmers will inherently shift to modular code and
separate classes and functions into coherent modules and packages. However,
research code and practitioners from other fields in the cheminformatics com-
munity will often focus on fast iteration over low-debt technical code. As such,
the use of registries aims to passively enforce the usability of sections that the
researcher will need repeatedly without the need for that code to be of high
standard. Similarly, registries allow researchers to share code more easily, both
internally during a project and externally after the research has been published.
Contrary to common Python principles the use of registries gives a more flexi-
ble way of sharing code such that certain parts can be reused while others are
updated or changed entirely. For example, this can be achieved by using the
registries as hooks, allowing researchers to add functionalities without altering
the code.

Case Study: Codebase Design and Collaboration. Registries are ideal for
collaborative work, as they signify which part of the code is reusable to col-
laborators. The field of cheminformatics is multidisciplinary by definition and
researchers often work collaboratively or using shared codebases. In these set-
tings, low-quality code can prohibit collaboration.

By utilizing registries in collaborative work, researchers can specify before-
hand what parts of code can be easily shared between collaborators. It also stops
collaborators from having to dive into messy code and instead be able to just
extract the segments of interest.

Furthermore, codebase designers and maintainers can use registries together
with our added capabilities to automatically check and control suggested code
submissions. Using automatic testing, registered modules are submitted to test-
ing upon entering the registry, whereas custom controls can enforce desired



104 P. B. R. Hartog et al.

behaviors, such as consistent input variables. This approach not only eliminates
redundancy but also enhances code readability and maintainability.

Case Study: Registries in Cheminformatics Tools. The usage of chemin-
formatics tools can also benefit from registries. Table 1 gives a non-exhaustive list
of available tools often used in ML for drug discovery. These tools are essential in
their respective domains but they can be difficult to combine or use interchange-
ably. Many of them are internally built in a modular way but less so developed
to be adjusted by the users. The registry design pattern can be used on different
levels together with these tools to create adaptability and interchangeability,
which in turn allows for code reuse.

Firstly, including registration can allow the individual tools to open up the
possibility for users to contribute with their own functionalities or include other
open-source packages. Users can test out new functionalities directly in the tool
environment using registries, without the need to download and add to the pack-
age code. Model repository tools can benefit from registries by allowing users
to register additional models in the collection. One can imagine entire libraries
of models and data collections being allowed in ML pipeline tools or workflow
systems, such that different collections can be used interchangeably.

Additionally, tools can open up internal capabilities using registries. Often-
times, modules from cheminformatics tools are built with a specific functionality
in mind. However, most modules contain multiple useful functionalities inside
which can be used outside of that specific module. The use of registries allows
users to easily extract internal capabilities and use them in their own code.

Finally, allowing users access to internal sections allows them to switch parts
of the internal characteristics of tools. In the field of ML, this can include func-
tionalities such as custom loss functions, weight initialization schemes, layers, or
activation functions. In a more general sense, framework tools can create reg-
istries by specifying the sections that can be altered, and controlling how these
sections operate in a unified interface.

Consequently, implementation of registries in open-source code allows for
quick benchmarks, inherently supports contribution to tools, and promotes code
reuse.

3.4 Empirical Evaluation: Application and Impact in Previous
Implementations

Previous packages have been implemented with versions of the registry that we
propose. Here, we assess their impacts and analyze possible limitations in the
implementations. Here, we analyze two model repositories and one ML pipeline
package that have internal registries, the graph-based TorchDrug [49], the model
training GT4SD package [24] and the ML pipeline package MLFlow [47]. We also
compare these packages with how the highly cited and often-used Hugging Face
package [45] operates. The Hugging Face package uses an online repository sys-
tem to collect machine learning models and benchmarking datasets. For this, the



Registries in Machine Learning-Based Drug Discovery 105

Table 1. Overview of tools. Non-exhaustive overview of open-source tools used for
ML and/or drug discovery.

Software Description

Data tools

CDK [38] Chemistry development kit with methods for
molecular informatics.

RDKit [21] Extensive toolkit for cheminformatics logic and
functionalities.

OpenBabel [31] Toolbox with functionalities for chemical
languages.

TDC [16] Collection of benchmarks in several drug
discovery applications.

DataMol [27] Library for intuitive manipulation of molecules.

Datasets [22] HuggingFace collection of natural language
dataset.

...

Model repositories

OCHEM [40] ML framework for the collection of QSAR
models.

Transformers [45] HuggingFace collection of language models.

bio embedding [10] State-of-the-art language models for protein
encoding.

solo-learn [9] Collection of self-supervised models for
representation learning.

GT4SD [24] Generative modeling environment for material
discovery.

...

ML pipelines

ODDT [44] Traditional ML methods applied to drug
discovery.

TensorFlow [1] General tool for deep learning logic.

MLFlow [47] Standardized ML workflow.

PyTorch [32] General tool for deep learning logic.

DeepChem [34] High-level ML framework for drug discovery.

AMPL [28] High-level ML framework for drug discovery.

MetaFlow [14] Standardized ML workflow.

TorchDrug [49] Geometric deep learning for drug discovery.

...

Workflow systems

KNIME [36] Graphical user interface for data analytics with
components for ML.

AZOrange [37] Graphical environment for high-performance
ML-based QSAR models.

...



106 P. B. R. Hartog et al.

package uses an alias resolver similar to registry calls to map string names to
model instances and classes. As such, it has no obvious relation to the registry
design pattern but it does use many of the same functionalities. TorchDrug is
a package that uses a registry as an alias resolver analog as well, but that also
actively uses it for registration purposes. Here, models and datasets are regis-
tered to be easily retrieved by users using simple string representations. It then
further supports changing models and datasets within their internal pipeline,
opening up the interface to other users. In GT4SD, the available algorithms are
stored in a registry that can be called upon to retrieve each algorithm. Here,
the registry is used to combine the interfaces of different molecular representa-
tion and prediction models and collections, including those from TorchDrug and
Hugging Face. This is a good example of how to use registries to combine mod-
els from different classes. Finally, the MLFlow package uses online registration
of models with version tracking and aliasing. It uses registries, but its registry
is online or saved to a local log file. This is primarily used for model training,
versioning, and benchmarking.

Both TorchDrug and GT4SD use registries internally built in a modular way
but are less useful for user adjustments. As mentioned, registries can be used
on different levels to create adaptability and interchangeability. TorchDrug uses
its registry to allow users to add datasets to their selection and then use these
new datasets similarly to their ways, seamlessly integrating new data into the
workflow. GT4SD uses its registries more to standardize the interface between
the model libraries of other packages. While Hugging Face uses the basic alias
call function, but not the registry function itself, it is clear that it values the
capabilities of registries, though prefers the higher-level modularity that allows
users to publish code in a GitHub fashion over code snippets.

4 Discussion

In this work, we have introduced the idea of using the registry design pattern
to promote code reuse, as well as other good coding practices. In the following
section, we discuss previous adoptions, specify important aspects to consider
when employing registries, and outline the advantages and disadvantages of reg-
istries implemented for research.

4.1 Adoption in Previous Implementations

The three current implementations of registries in packages that we have ana-
lyzed, in TorchDrug [49], GT4SD [24] and MLFlow [47], indicate promise usage
of registries, but these implementations lack the simple integration of opening
up internal modules to changes and only use it to change external models. Hug-
ging Face mentions as much in their description of the Transformers package
[45], where models are exclusively used for comparison and simple optimization,
not for further refinement. This means that the registries, or registry-like sys-
tems, are limited in their applicability. GT4SD does something more interesting,



Registries in Machine Learning-Based Drug Discovery 107

in that it uses its registry to combine the different registered objects from both
Hugging Face and TorchDrug. They achieve a large library of models however, it
means that the package is somewhat limited in its integration of further models
by users. Both TorchDrug and GT4SD have the issue that registries are mostly
used internally to resolve and gather different models, rather than a method of
code reuse. This can limit external contributions to the package. We also note
that models are more often submitted to Hugging Face compared to packages
whose registry systems are more code-based rather than online. One of the rea-
sons might be that Hugging Face has a very clear way and tutorials regarding
how to contribute to the Transformers package, as well as allowing local inte-
gration. A second reason for the mismatch between TorchDrug, GT4SD, and
Hugging Face is the broader view as well as the adoption of Hugging Face as a
platform, meaning that a critical mass may have been achieved for the Hugging
Face package that promotes registering models there over other systems. How-
ever, note that TorchDrug also has a significant amount of external contributions
and users of more than the implemented models.

4.2 Registration as a Design Pattern

Design patterns are software generic solutions to problems that often arise [13].
When registration is implemented at the start of the project, it enforces mod-
ular code. If it is instead adopted into preexisting code, it allows users to use
any standardized framework and switch a segment out to replace it with exter-
nal code. There is an ongoing debate on the effectiveness of design patterns in
general, criticizing the relative lack of empirical evidence of effectiveness [2,48].
However, meta-studies conclude that the original design patterns [13] are mostly
correlated with system complexity [19], which in turn is positively correlated
with system design quality [18]. This leads to the suggestion that registries as a
design pattern might be best used in complex systems, or, in the case of ML for
drug discovery, in highly consistent systems where the calls to the registry are
sparse.

Jaspan et al. have found that coding speed depends on code visibility [20].
Due to the ability to register any object using registries, registration introduces
some encapsulation and information hiding because it makes major module
logic inaccessible from the execution program. Despite promoting good soft-
ware design principles, including decoupling [30], this also introduces a layer of
invisibility for the programmer. Moreover, the layer of invisibility can impede
speed by making it harder to track source code. However, the main advantage of
encapsulation is the ease of interchanging modules without knowledge about the
encapsulated function. Therefore, the trade-off is the need to inspect the inter-
nal logic of encapsulated modules, and researchers should consider this when
deciding which objects to keep in a registry.



108 P. B. R. Hartog et al.

4.3 Advantages and Considerations of the Registry

Our reformulation of the registry design pattern offers several advantages for
software development, including increased modularity and reusability, improved
interchangeability, enhanced code clarity, increased stability, and ease of future
extensions. In the following section, these advantages and considerations are
discussed in more detail.

Modularity. Registration allows researchers to easily list and call objects to
standardize workflows and switch out modules in a structured and flexible man-
ner. Researchers can register any object, from small modular functionalities to
entire scripts. As a result, total flexibility in the scale of modularity is possible,
which crucially also allows the integration of external tools. The dependency of
registration on modularity is through their execution mechanism where mod-
ules require similar input-output regimens, which inherently pushes for modular
design choices in research code. There are two things to consider when making
modular design choices.

The first consideration for modular design is composability. The composabil-
ity of a system refers to the relationships between modules in the execution.
Following the classification described by Sarjoughian et al. [35], modules can be
composed to follow one another hierarchically (mono) or be used within high-
level modules (super). Additionally, there are the meta and poly composability
options. These options are higher-level systems to translate the mono system,
where the execution runs on the transformed modules in the higher-level system.
Due to their complexity, these latter composability options are often avoided in
ML. The use of registries helps to make the composability clear to anyone using
the system and spells out what can and should be modified.

The second consideration is that modularity can be coded on different scales
of abstraction. Module abstraction describes the scope that a module has. Code
can be modular on a small scale of minimal functionalities or large scales, e.g., in
the case of ML, it can be one step of data analysis or the entire data preparation.
The scale of modularity and abstraction influences the amount of effort needed.
Small-scale modularity allows programmers to use the individual parts of the
model but requires a more specific framework to combine the code. In compari-
son, modularity on a larger scale allows for more flexibility in the framework but
less reuse of specific code. Consequently, there is a time trade-off between code
reuse and time spent on modularity. Registries often use meta-coding principles,
the meta composability, to register and call modules. This is to limit compu-
tational overhead, but registries are still susceptible to computational overhead
in frequent calls when the assignment is often overwritten or is not a pointer
assignment.

Reusability. Starting from scratch or reconstructing previously written code
is an inefficient way to build on previous research. Reusable code instead allows
researchers to bypass this initial stage and directly build upon previous research.



Registries in Machine Learning-Based Drug Discovery 109

When previous work contains an implemented registration system, new work can
automatically use the entire system and easily adapt or exchange any registered
module [24]. Furthermore, previously registered modules can be called from a
new system. In contrast, previous research can also be refactored to support
registration, either by modularizing the specific functionalities of interest or by
modularizing and registering the section of the execution that requires change.
Consequently, registered modules are easily reused in new research and new
research can easily build upon old implementations. Both forward-implemented
and backward-implemented registries bypass initial avoidable time commitments
and allow researchers to focus on the new research immediately.

Interchangeability. Registries for models also help to streamline the process
to benchmark various methods. Similarly, a registry of datasets aids the pro-
cess of applying the same method to varying benchmarks. Easily switching
between implementations can increase experimentation speed in writing code
connected with new research. Modularity allows researchers to experiment more
easily with various options for code applications. Registration, in turn, further
allows researchers to variate, update, adapt, and modify modules because regis-
tered modules are inherently modular. This automatically forces code to adhere
to the five R’s of published work [5], as discussed in the introduction. Depending
on the abstraction level of the modules, other researchers can variate and use the
coding framework, as well as easily replace and reuse parts of it. Furthermore, it
increases code longevity as outdated code can be easily updated. Similarly, due
to increased reuse by other researchers, citations and longevity increase as the
original author is no longer the only one with a vested interest in the original
code.

Tools. Registration of modules inside the toolkit can allow users to retrieve
modules and generate new applications following tool specifications. The latter
decreases the threshold for new functionalities to be suggested to the main tool.
Moreover, registries allow researchers to build functionalities in private reposito-
ries using the framework set out by the toolkit and then easily upload those, once
the original work has been published. As previously stated, some available tools
already provide versions of the registration feature [24,47,49]. However, their
scope is mostly limited to the registration of ML models. The main advantage of
our proposed generic registration, which is missing in previous implementations,
is the flexibility to make specific design choices.

Clarity. Research collaborations in multidisciplinary fields, such as drug discov-
ery, rely on integrating code from various sources and contributors, thus requir-
ing deliberate forethought and coordination. As such, a standardized workflow
is of particular importance and written code should be modular to avoid code
instability when working on different interdependent code sections. The reg-
istration system creates a clear structure to use the registered modules, thus



110 P. B. R. Hartog et al.

allowing researchers or project coordinators to standardize their workflows and
call functionalities through registries where code can be varied. Consequently,
registration increases the efficiency of research collaborations.

Stability. The stability of a codebase can be affected when new modules are
added. As new functionality is introduced, the potential for interactions and
conflicts with existing code increases. This can lead to defects and unexpected
behavior. Additionally, adding new modules to a codebase can increase its com-
plexity and make it more difficult to maintain and understand, which can lead to
issues in the long term. To mitigate these risks, it is important to have a thorough
testing process in place before new modules are added and to thoroughly review
and test the entire codebase after the new modules are integrated. A registry
can be used to increase the stability of code through specified points to integrate
new modules as well as the ability to introduce post-registration checks. These
post-checks can then be used to enforce adaptation of external code to the exist-
ing framework, such as passing a set of tests or adherence to meta information,
such as versioning and factory patterns. As an example, registries can be set up
to handle different versions of the same module such that modules are registered
together with their version. This way users can more easily track the influence
of changing modules. Additionally, the modularity of new functionality ensures
minimal impact on the existing codebase.

4.4 Codebases for Efficient Coding in Research

Codebases focus more on the software development process. As such, a codebase
should particularly ease continuous development, aid code stability, and allow for
incremental addition of modules. Due to the multidisciplinary field, ML research
focused on drug discovery uses multiple external tools. The usage of tools ranges
from the curation and processing of data to the general setup and deployment
of models. While the ML pipelines are primarily created for individual projects
separately, the developed functionalities can often be helpful for other projects
or researchers in the same field. Functionalities from individual projects are
often presented with an irregularity in the level of modularity and, therefore,
accessibility and usability.

For collaborations or big projects, a choice is made between keeping multi-
ple single-application repositories or creating a bigger shared codebase. There
is an open discussion on the advantages and disadvantages of codebases over
multiple single-project repositories [20]. Codebases represent an opportunity for
collaborators to standardize their workflows as well as share and reuse code
with particular functionalities. In general, more standardized workflows allow
for more specific coding criteria. Modular code or modular tools are parts of the
workflow that can be easily updated with or interchanged for applications with
similar functionality. More modular codebases increase collaborator contribu-
tion [4] and allow for more use of external tools within its framework. By using
registries when designing a codebase, active choices can be made to promote



Registries in Machine Learning-Based Drug Discovery 111

modularity in the project. The benefits of choosing a high level of modular-
ity include code longevity, reuse, and increased potential for collaboration and
research speed. Therefore, using a codebase can widen the scope of single, mul-
tidisciplinary research projects, making them more modular and reusable for
other projects or researchers.

On the other hand, there are disadvantages to coding in a codebase environ-
ment: 1) Even though the level of modularity is flexible, this level should be static
during research development to prevent unnecessary overhead. It can otherwise
be costly to uphold the modularity and maintain backward compatibility. 2)
Codebases can restrict reproducibility. Reproducibility requires specific version-
ing, which can be more fluid in the continuous development within codebases.
3) Codebases can introduce irrelevant functionalities that obscure crucial func-
tionalities in open-source publications. 4) Although coding in a codebase can
speed up research long-term, setting up research using modular code is more
time-consuming.

However, we advocate for a more general perspective on codebases where any
published code can be considered a codebase. This interpretation of published
code is less dependent on actual features of codebases, as most code in research
often does not require active design, nor intricate design patterns to function
properly. Instead, we view the act of writing code as actively assuming others
will reuse parts of the code, which will then promote the idea of modularity and
reusability, including the use of registries where warranted. This view is more
flexible in its application and gives the scientist a base from which to work.

4.5 Future Work

The capabilities of registries can be further explored. For example, future
research can further investigate how registration aids reproducibility in practice
through experiments or surveys. As previously mentioned, continuous develop-
ment and non-contributing code can impede reproducibility and clarity. Simi-
larly to the accreditation system, versioning, and optional factory patterns, other
modules could be attached to registered modules in the registry to aid stabil-
ity and reproducibility. One can even imagine a generative functionality of the
registry to produce a single repository of only the necessary modules from a
codebase for a specific application.

A common issue that can occur when combining modules from different
sources is that versions can be incompatible. Registries, as proposed here, would
not immediately solve problems with dependency conflicts but one can imagine
an extension where the registration of modules is accompanied by dependency
requirements that are automatically checked and installed upon execution. This
in turn will not deal with situations where different parts of the code use different
versions of third-party dependencies. However, it would allow for the registration
of modules that depend on conflicting versions into the same registry where only
one at a time is used during execution.

Furthermore, future research might analyze how their effectiveness depends
on using a generic registry. While higher usage promotes modularity, it also



112 P. B. R. Hartog et al.

removes a level of visibility. An analysis of the overall usage and the usage
focused on specific groups of modules will give a better understanding of the
best practices of registries. Likewise, one can investigate the trade-off between
code visibility and coding speed as noted by Jaspan et al. [20]. Ultimately, col-
laborating researchers should investigate whether using registries and codebases
instead of multiple repositories is advantageous for their research goals and try
to design their code to best suit their needs.

5 Conclusions

To conclude, we highlight the importance and promise of the registry design pat-
tern, especially in the field of ML development for drug discovery. Registries can
promote code reuse through their modular nature. Modularity is the indepen-
dence of a module from the rest of the code and is crucial for reuse. A registry also
promotes other important coding practices and includes the possibility to eas-
ily switch between custom functionalities and functionalities from open-source
tools. We introduce a method to flexibly register objects and add additional
functionalities such as accreditation and versioning. Additionally, we outline the
advantages and considerations of registries and stress that registries clarify the
usually concealed abstraction and composability of a system. Finally, registries
promote clarity, experimentation speed, good coding practices, and code reuse.

Acknowledgements. We thank our colleagues and reviewers for their valuable feed-
back. Additionally, the authors thank BioRender for the publication of the figures
generated with BioRender authorized under the subscription plan of Peter Hartog.
This study was partially funded by the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk�lodowska-Curie Actions grant agreement
“Advanced machine learning for Innovative Drug Discovery (AIDD)” No. 956832.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pp. 265–283. USENIX Association (2016)

2. Almadi, S.H., Hooshyar, D., Ahmad, R.B.: Bad smells of gang of four design pat-
terns: a decade systematic literature review. Sustainability 13(18), 10256 (2021)

3. Baker, M.: Reproducibility crisis. Nature 533(26), 353–66 (2016)
4. Baldwin, C.Y., Clark, K.B.: The architecture of participation: does code archi-

tecture mitigate free riding in the open source development model? Manage. Sci.
52(7), 1116–1127 (2006)

5. Benureau, F.C., Rougier, N.P.: Re-run, repeat, reproduce, reuse, replicate: trans-
forming code into scientific contributions. Front. Neuroinform. 11, 69 (2018)



Registries in Machine Learning-Based Drug Discovery 113

6. Cadwallader, L., Hrynaszkiewicz, I.: A survey of researchers’ code sharing and
code reuse practices, and assessment of interactive notebook prototypes. PeerJ 10,
e13933 (2022)

7. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T.: The rise of deep
learning in drug discovery. Drug Discov. Today 23(6), 1241–1250 (2018)

8. Chollet, F., et al.: Keras (2015). https://keras.io
9. da Costa, V.G.T., Fini, E., Nabi, M., Sebe, N., Ricci, E.: solo-learn: a library of

self-supervised methods for visual representation learning. J. Mach. Learn. Res.
23(56), 1–6 (2022)

10. Dallago, C., et al.: Learned embeddings from deep learning to visualize and predict
protein sets. Curr. Protoc. 1(5), e113 (2021)

11. Dara, S., Dhamercherla, S., Jadav, S.S., Babu, C., Ahsan, M.J.: Machine learning
in drug discovery: a review. Artif. Intell. Rev. 55(3), 1947–1999 (2022)

12. Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R.: Patterns of
Enterprise Application Architecture. Addison-Wesley Professional (2002)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Deutschland GmbH, Munich (1995)

14. Goyal, S.: More data science, less engineering: a Netflix original. In: 2020 USENIX
Conference on Operational Machine Learning (2020)

15. Howard, J., Gugger, S.: FastAI: a layered API for deep learning. Information 11(2),
108 (2020)

16. Huang, K., et al.: Therapeutics data commons: machine learning datasets and
tasks for drug discovery and development. In: Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

17. Hunt, A., Thomas, D.: The Pragmatic Programmer. Addison-Wesley, Boston,
United States (1999)

18. Hussain, S., Keung, J., Khan, A.A.: The effect of gang-of-four design patterns usage
on design quality attributes. In: 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pp. 263–273. IEEE (2017)

19. Hussain, S., Keung, J., Khan, A.A., Bennin, K.E.: Correlation Between the Fre-
quent Use of Gang-of-four Design Patterns and Structural Complexity. In: 2017
24th Asia-Pacific Software Engineering Conference (APSEC), pp. 189–198. IEEE
(2017)

20. Jaspan, C., et al.: Advantages and disadvantages of a monolithic repository: a case
study at Google. In: Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, pp. 225–234 (2018)

21. Landrum, G.: RDKit: Open-Source Cheminformatics (2006). https://doi.org/10.
5281/zenodo.6961488, http://www.rdkit.org

22. Lhoest, Q., et al.: Datasets: a community library for natural language processing.
In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 175–184. Association for Computational
Linguistics (2021)

23. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

24. Manica, M., et al.: Accelerating material design with the generative toolkit for
scientific discovery. NPJ Comput. Mater. 9(1), 69 (2023)

25. Martin, R.C.: The dependency inversion principle. C++ Report 8(6), 61–66 (1996)
26. Martin, R.C.: Design principles and design patterns. Object Mentor 1(34), 597

(2000)
27. Mary, H., et al.: Datamol: molecular manipulation made easy (2022). https://doi.

org/10.5281/zenodo.6856321, https://datamol.io/

https://keras.io
https://doi.org/10.5281/zenodo.6961488
https://doi.org/10.5281/zenodo.6961488
http://www.rdkit.org
https://doi.org/10.5281/zenodo.6856321
https://doi.org/10.5281/zenodo.6856321
https://datamol.io/


114 P. B. R. Hartog et al.

28. Minnich, A.J., et al.: AMPL: a data-driven modeling pipeline for drug discovery.
J. Chem. Inf. Model. 60(4), 1955–1968 (2020)

29. Gnu general public license, version 3. https://opensource.org/licenses/MIT.
Accessed 17 January 2022

30. Mo, R., Cai, Y., Kazman, R., Xiao, L., Feng, Q.: Decoupling level: a new metric
for architectural maintenance complexity. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp. 499–510. IEEE (2016)

31. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison,
G.R.: Open Babel: an open chemical toolbox. J. Cheminf. 3(1), 1–14 (2011)

32. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

33. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. Palgrave
Macmillan, Gurgaon, India (2005)

34. Ramsundar, B., Eastman, P., Walters, P., Pande, V.: Deep Learning for the Life
Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and
More. O’Reilly Media, Sebastopol (2019)

35. Sarjoughian, H.S.: Model composability. In: Proceedings of the 2006 Winter Sim-
ulation Conference, pp. 149–158. IEEE (2006)

36. Sieb, C., Meinl, T., Berthold, M.R.: Parallel and distributed data pipelining with
KNIME. Mediterr. J. Comput. Netw. 3(2), 43–51 (2007)

37. St̊alring, J.C., Carlsson, L.A., Almeida, P., Boyer, S.: AZOrange - high performance
open source machine learning for QSAR modeling in a graphical programming
environment. J. Cheminf. 3(1), 1–10 (2011)

38. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.:
The Chemistry Development Kit (CDK): an open-source java library for chemo-
and bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003)

39. Sullivan, K.J., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value of
modularity in software design. ACM SIGSOFT Softw. Eng. Notes 26(5), 99–108
(2001)

40. Sushko, I., et al.: Online Chemical Modeling Environment (OCHEM): web platform
for data storage, model development and publishing of chemical information. J.
Comput. Aided Mol. Des. 25(6), 533–554 (2011)

41. Tomar, V., Mazumder, M., Chandra, R., Yang, J., Sakharkar, M.K.: Small molecule
drug design. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.)
Encyclopedia of Bioinformatics and Computational Biology, pp. 741–760. Aca-
demic Press, Oxford (2019)

42. Vamathevan, J., et al.: Applications of machine learning in drug discovery and
development. Nat. Rev. Drug Discov. 18(6), 463–477 (2019)

43. William, F.: PyTorch Lightning (2019). https://doi.org/10.5281/zenodo.3828935,
https://www.pytorchlightning.ai

44. Wójcikowski, M., Zielenkiewicz, P., Siedlecki, P.: Open Drug Discovery Toolkit
(ODDT): a new open-source player in the drug discovery field. J. Cheminf. 7(1),
1–6 (2015)

45. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics (2020)

46. Xiang, Y., Pan, W., Jiang, H., Zhu, Y., Li, H.: Measuring software modularity
based on software networks. Entropy 21(4), 344 (2019)

47. Zaharia, M., et al.: Accelerating the machine learning lifecycle with MLflow. IEEE
Data Eng. Bull. 41(4), 39–45 (2018)

https://opensource.org/licenses/MIT
https://doi.org/10.5281/zenodo.3828935
https://www.pytorchlightning.ai


Registries in Machine Learning-Based Drug Discovery 115

48. Zhang, C., Budgen, D.: What do we know about the effectiveness of software design
patterns? IEEE Trans. Softw. Eng. 38(5), 1213–1231 (2011)

49. Zhu, Z., et al.: TorchDrug: A powerful and flexible machine learning platform for
drug discovery. arXiv preprint arXiv:2202.08320 (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2202.08320
http://creativecommons.org/licenses/by/4.0/

	Registries in Machine Learning-Based Drug Discovery: A Shortcut to Code Reuse
	1 Introduction
	2 Methods
	3 Results
	3.1 Workflow: Creating a Registry and Registering Modules
	3.2 Enhanced Functionality and Expanded Capabilities
	3.3 A Shortcut to Modularity and Reusability
	3.4 Empirical Evaluation: Application and Impact in Previous Implementations

	4 Discussion
	4.1 Adoption in Previous Implementations
	4.2 Registration as a Design Pattern
	4.3 Advantages and Considerations of the Registry
	4.4 Codebases for Efficient Coding in Research
	4.5 Future Work

	5 Conclusions
	References


