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Abstract. Uncertainty quantification is emerging as a critical tool in
high-stakes decision-making processes, where trust in automated pre-
dictions that lack accuracy and precision can be time-consuming and
costly. In drug discovery, such high-stakes decisions are based on mod-
eling the properties of potential drug compounds on biological assays.
So far, existing uncertainty quantification methods have primarily been
evaluated using public datasets that lack the temporal context necessary
to understand their performance over time. In this work, we address the
pressing need for a comprehensive, large-scale temporal evaluation of
uncertainty quantification methodologies in the context of assay-based
molecular property prediction. Our novel framework benchmarks three
ensemble-based approaches to uncertainty quantification and explores
the effect of adding lower-quality data during training in the form of
censored labels. We investigate the robustness of the predictive perfor-
mance and the calibration and reliability of predictive uncertainty by
the models as time evolves. Moreover, we explore how the predictive
uncertainty behaves in response to varying degrees of distribution shift.
By doing so, our analysis not only advances the field but also provides
practical implications for real-world pharmaceutical applications.

Keywords: uncertainty quantification · temporal evaluation ·
distribution shift · deep learning · drug discovery · molecular property
prediction

1 Introduction

Uncertainty quantification enables safer and more reliable deployment of
machine learning models in real-world applications by increasing the confidence
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of humans in the models [2]. The effects are particularly important in high-
stakes decision-making processes that rely on machine learning as they allow
users to judge results based on the predicted uncertainty quantification before
basing critical decisions on the results [11]. Drug discovery is a complex field
of research where experiments are time-consuming, expensive, and high-risk,
therefore wrong decisions regarding which experiments to make can be highly
wasteful [29]. Additionally, the early stages of drug discovery rely on modeling
the complex chemical space where data availability is typically limited, another
effect of the time-consuming and costly experiments needed to generate data.
As such, there is a continuously increasing need to develop application-specific
uncertainty quantification methods in molecular property prediction and mod-
eling of quantitative structure-activity relationships (QSAR) [15].

Approaches that quantify uncertainty in machine learning for regression
tasks can be classified into Bayesian learning [7], ensemble-based [12,25,36,38],
distance-based [4,40], mean-variance-estimation [6,8,31], evidential learning [1],
etc. Several recent efforts have been made to compare and benchmark the avail-
able methods on publicly available datasets related to molecular property pre-
diction or QSAR modeling [10,16,18,23,42,47]. However, no consensus has been
reached regarding a single method that consistently outperforms the other meth-
ods across evaluation metrics and tasks [48]. Hirschfeld et al. [18] stress the need
for a more realistic evaluation, such as a temporal data split, to gain insights into
the real implications and nuances between the approaches. Additionally, Yin et
al. [47] point out that public benchmarks do not allow proper temporal eval-
uation as they lack relevant information and sufficient replications for reliable
statistics.

Prior work that uses temporal evaluation on public data for molecular prop-
erty prediction can be misleading [27]. The reason is that the available informa-
tion regarding the time of data points in public data does not relate to the real
evolution of experiments in a pharmaceutical company, which is what makes a
temporal evaluation truly useful in real drug discovery. Earlier work on inter-
nal pharmaceutical assay-based data from Merck compares a temporal splitting
strategy with random and structure-based splitting strategies [39]. Sheridan [39]
concludes that the temporal option best approximates the true predictive per-
formance, but they do not explore uncertainty quantification.

Uncertainty quantification can be disentangled to detail the underlying
sources behind the uncertainty, which gives a more comprehensive understand-
ing of the factors that contribute to the total predictive uncertainty. In machine
learning, the two main sources of uncertainty can be derived from are the
aleatoric and the epistemic parts [2,20,22]. Aleatoric uncertainty is the inherent
stochastic variability in experiments, also considered irreducible as it cannot be
reduced with additional data or changes to the model. Epistemic uncertainty
includes all remaining sources, such as lack of knowledge and model limitations.
The epistemic uncertainty can be reduced with additional data or changes to the
model, but understanding which adjustments are needed requires further dissec-
tion of the predicted uncertainty [13]. Awareness of the aleatoric uncertainty in
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molecular property prediction can lead to better risk management by recogniz-
ing and quantifying the unpredictable nature of certain properties or parts of
the chemical space [46]. Quantified epistemic uncertainty, on the other hand, can
be used during drug discovery to guide the search through the chemical space
by redirecting data collection [16]. If the parts of the epistemic uncertainty that
relate to missing data or distribution shift can be effectively separated from the
remaining model uncertainty, it can also aid in developing the machine learning
model.

In this work, we provide a sought-after comparison of available methods for
uncertainty quantification in a temporal evaluation of assay-based QSAR mod-
eling for real pharmaceutical data. We focus the analysis on ensemble-based
approaches that quantify predictive uncertainty and attempt to further dis-
entangle the uncertainty between distributional uncertainty and model uncer-
tainty such that the results are most useful in guiding the real-world search for
new drugs. Additionally, we explore the effects of including lower-quality data
through censored labels during training.

2 Methods

Our analysis has been performed on data from ten internal biological assays dif-
ferentiated by the categories proposed by Heyndrickx et al. [17], namely Panel,
Other, and ADME assays. The Panel category includes cross-project assays
related to undesired off-target effects. The Other category includes on-target
activity from project-specific assays. The ten assays presented in this work belong
to these two categories. Larger assays of the ADME type, related to Absorption,
Distribution, Metabolism, and Excretion, are left for future work. The respec-
tive distributions of observed experimental labels for each assay are shown in
the bottom half of Fig. 1.

All but one of the assays model pIC50 values, while the Other 3 assay models
pEC50. Due to the infeasibility of performing an unlimited number of experi-
ments to find exact experimental results, such as pIC50 values, significant pro-
portions of the data are provided as censored labels. Censored labels define a
threshold below or above which the true results lie, e.g. the censored label < 3
pIC50 means that the true pIC50 value is below three. In some cases, the cen-
sored labels have been included in model training, as explained further in the
following section. However, note that the available censored labels are highly
imbalanced, as for all but two assays less than 1% of the censored labels are
lower bound, i.e. >. The Other 2 assay has just above 1% of > censored labels
and the Other 4 assay has 2%, while the < labels typically make up between
30–60% of each assay’s total number of results. There are two assays without
any censored labels, namely Other 5 and 7. Data points that are not censored
are called observed labels in the remainder of this work.

Duplicated measurements for molecular compounds in the data are aggre-
gated using the median of the result and the standard deviation is stored for
later reference. Each molecular compound is then encoded with RDKit [26]
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Fig. 1. Five-fold temporal split. (Upper left) Five folds and how they are used to
create three temporal settings, each with more training data. For each setting, the first
subsequent fold is used for validation and calibration, and the second subsequent fold is
used for testing. (Upper right) Training data size for each assay and temporal setting,
with and without including available censored labels. (Lower) Distribution of observed
labels across the temporal folds for two example assays, one from each category.

from SMILES strings [43] to Morgan Fingerprints [30] of size 1024 and radius 2.
Other. More advanced ways to encode molecular compounds exist, such as the
graph-based ChemProp model [46] and the pre-trained language-based CDDD
model [44]. Models based on the resulting embeddings from these neural network
encoders have been compared and shown improvements in prior work [10,18,27].
Specifically, Dutschmanm et al. [10] showed that fingerprints perform best in
combination with RF and are close second to CDDD in combination with neural
networks. While the fingerprint representations are used in our study for sim-
plicity, we encourage considering state-of-the-art, learned representations before
deploying the proposed methods in practical applications.

Temporal Split. The main contribution of our work relates to evaluating the
uncertainty quantification of molecular property prediction in a temporal evolv-
ing setting. As such, we simulate realistic assay-based modeling of pharmaceuti-
cal projects by splitting the data of each assay into five folds based on the date
of the experiment. Where duplicated measurements were aggregated, the first
experiment date of all measurements was used. The upper left panel in Fig. 1
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illustrates the folds and resulting three settings that can be used to evaluate
trained models as time evolves. The time intervals are chosen to create roughly
equally sized folds regarding the number of observed labels. The resulting sizes
of training sets for each assay are shown in the top right panel of Fig. 1. The
solid lines show only observed results while the dashed lines include the censored
labels. Note that the size of the setting with one train fold also corresponds to
the size of the validation and test sets respectively, as individual, subsequent
folds are used for these.

As previously mentioned, the lower part of Fig. 1 illustrates the distribution
of observed labels in each fold of every assay. Note particularly, the shift in dis-
tributions between folds in the Other assays compared to the highly similar label
distributions over time in the Panel assays. The assays are ordered according to
the overall dataset size throughout this work.

2.1 Ensemble-Based Modeling

We compare three ensemble-based approaches for regression QSAR modeling
of several internal biological assays. As such, we consider each assay t as an
individual single-task dataset Dt := {(xn, yn

t )}Nn=1 of molecular compounds rep-
resented by a one-dimensional numerical embeddings xn ∈ R

e and continuous
activity labels yn

t ∈ R. An ensemble is defined as a set of K base estimators
ŷn
t = f(xn). We consider two base estimators, a decision tree regressor and a

multi-layer perceptron (MLP), i.e. fully connected deep neural network. We take
the average of the individual base estimators’ predictions as the final prediction
by the ensemble μt and define the variance of the predictions as an estimate of
the predictive uncertainty σ2

t , as follows

μt(xn) =
1
K

K∑

k=1

fk(xn), σ2
t (x

n) =
1
K

K∑

k=1

(fk(xn))2 − (μt(xn))2. (1)

The ensemble of decision tree regressors results in a Random Forest (RF) model
[38] while we use the MLP base estimator to create a Deep Ensemble (DE)
as proposed by Lakshminarayanan et al. [25] and an MC-Dropout model as
proposed by Gal & Ghahramani [12]. Prior work has compared similar methods
for variability in QSAR modeling [41]. The DE combines base 50 MLPs trained
from different weight initialization whereas the MC model generates 500 samples
from a single trained base MLP with dropout turned on during inference.

In a Bayesian framework, the uncertainty in model parameters ω results in
the predictive uncertainty of the model p(yn

t |xn, ω). The true posterior distri-
bution of model parameters for a given dataset can be described as p(ω|Dt),
such that the predictive uncertainty of the Bayesian model average is defined
by p(yn

t |xn,Dt) =
∫
Ω

p(yn
t |xn, ω̃)p(ω̃|Dt)dω̃ [11,20]. As shown by both Lakshmi-

narayanan et al. [25] and Gal & Ghahramani [11], the variance in ensemble pre-
dictions provides an approximation of the epistemic part of this true posterior
distribution. Figure 2 gives an overview of the three ensemble-based methods
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considered in our work. The remainder of this section gives details about the
training procedures used in the evaluation of the three methods.

Training Details. The Random Forest is implemented using scikit-learn [34]
and the two neural network-based models are trained with PyTorch [32]. All
models are initially trained with a Mean Squared Error (MSE) loss only on
data points with observed labels. However, in addition, we include versions of
the neural network-based models for which censored labels are also included in
the training data. We denote these models as DE+ and MC+ in the result.
Note that these extended models are not provided for the Other 5 and 7 assays,
which do not include censored labels. Training these extended models requires
adjustments to the loss function, as censored labels only give a one-sided view
of the true result. We adopt the CensoredMSE defined by Arany et al. [3] with
a one-sided squared error applied for the censored labels as follows

L(xn, yn
t ) =

1
N

N∑

n=1

⎧
⎪⎨

⎪⎩

min (yn
t − μt(xn), 0)2 , if censored label < yn

t ,

(yn
t − μt(xn))2, if observed label yn

t ,

max (yn
t − μt(xn), 0)2 , if censored label > yn

t .

(2)

To compare the models trained on censored labels fairly against the ones trained
only on observed labels we only include the censored labels in the training sets.
Thus, the validation and test sets are identical between the models. We believe
this could hinder the censored models somewhat, especially due to the imbalance
between lower and upper-bound labels.

We optimize the hyperparameters for each base estimator detailed in Table 1
of the Appendix for each assay and each temporal setting individually using a
grid search based on the validation MSE loss. It would not be computationally
feasible to optimize the DE model in terms of any score that incorporates the
calibration of uncertainty estimates due to the large number of models that
would need to be trained. Therefore, we do not consider this option for any of
the models to ensure a fair comparison. However, such optimization schemes
should be considered for practical applications.

Evaluation. While the MSE loss is used to evaluate the performance of the pre-
dictions made by the models, other metrics are required to evaluate the accuracy
and calibration of the predicted uncertainties. We consider two types of ways to
evaluate predicted uncertainty, ones that evaluate only the accuracy or calibra-
tion of the uncertainty and ones that evaluate predictive performance intertwined
with how well-calibrated the predicted uncertainty is. A detailed way to evaluate
the predicted uncertainties by themselves is by comparing the confidence-based
calibration curve to the identity function which corresponds to perfect calibration
[16,19,42,45]. The confidence-based calibration curve is obtained by computing
the z% confidence interval (CI) for every predicted uncertainty in the test set.
Next, the observed fraction of errors within each CI is calculated for several
expected fractions between 0 and 1.
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Fig. 2. Ensemble-based models. Three approaches to ensemble-based modeling
including uncertainty quantification.

Furthermore, the Gaussian Negative Log Likelihood (NLL) [49] and the
Expected Normalized Calibration Error (ENCE) [28] are two global metrics that
evaluate the intertwined predictive performance and calibration of uncertainties.
The Gaussian NLL is defined as,

NLL =
1

2N

N∑

n=1

(
ln(2π) + ln(σ2

t (x
n)) +

(yn
t − μt(xn))2

σ2
t (xn)

)
. (3)

The ENCE metric is derived from the error-based calibration plot proposed by
Levi et al. [28] which is made from a binned representation of the Root MSE and
the Root Mean Variance (RMV), i.e. predicted uncertainty. Computationally, the
errors and corresponding predicted uncertainties are ordered based on increasing
predicted uncertainty and split into a set B of bins. For each bin b of size |b| the
RMSE and RMV are calculated as,

RMSEb =

√
1
|b|

∑

i∈b

(yi
t − μt(xi))2, RMVb =

√
1
|b|

∑

i∈b

σ2
t (xi). (4)

Finally, the bins are summarized to give the ENCE metric as follows,

ENCE =
1

|B|
∑

b∈B

|RMSEb − RMVb|
RMVb

. (5)

Several additional metrics have been proposed and used to evaluate uncer-
tainty estimates in drug discovery applications, such as Spearman’s Rank Cor-
relation Coefficient between predicted uncertainties and corresponding errors
[10,18,42,47]. However, this score has been criticized due to the stochasticity
and unreliability of the result [35]. Statistically, a data point with high pre-
dicted uncertainty can still result in a prediction with low error and vice versa.
Therefore, we discard the metric from our analysis.

Recalibration. Several post hoc alternatives have been proposed to recalibrate
predicted uncertainties by ensemble-based models [21,28,35], as the original esti-
mates have been found to underestimate the epistemic uncertainty [9,37]. Janet
et al. [21] recalibrate the uncertainty estimates based on a maximum-likelihood
estimation strategy on the NLL, while Levi et al. [28] propose a re-scaling of
the predicted uncertainty based on the NLL similar to temperature scaling [14].
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Fig. 3. Error-based recalibration. Linear recalibration of uncertainty estimates
based on the validation set.

Most recently, Rasmussen et al. [35] instead proposed to recalibrate the pre-
dicted uncertainty using the fit of the RMSE versus RMV curve described above
as the error-based calibration plot. The latter is the strategy that we adopt in
this work and Fig. 3 illustrates an example of a recalibration on the validation
set of one of our datasets. A linear regression is fitted to the binned RMSE versus
RMV results on the validation set, resulting in parameters aval for the slope and
bval for the intercept. During inference the predicted standard deviation is then
shifted according to σcal = aval · σ + bval.

3 Experiments

In the experimental setup, we first analyze and compare the performance of
the models averaged over ten repeated experiments on all assays and temporal
settings. The global evaluation scores are shown in Fig. 4 and the confidence-
based calibration curves are shown in Fig. 5. We then provide a more in-depth
case study of the predictions by one of the best-performing models on the Other 6
assay, which exhibits a particularly challenging distribution shift in terms of both
the feature and label space. Here, we illustrate how the predicted uncertainties
relate to the distribution shift in the feature space and suggest how the model’s
predictions could have practical implications for future decisions in the given
drug discovery project.

Model Comparison. Figure 4 presents an overview of the MSE and recali-
brated NLL and ENCE scores. Note that the recalibration step only affects the
predicted uncertainties and therefore does not affect the MSE. In the figure, the
models can be compared in several ways: 1) as the training set size increases
over time for each assay with increasing #Train folds, 2) as the overall size of
the assay increases, going from smallest assays in the left-most columns to larger
assays in the right-most columns, 3) in terms of the varying amounts of label
shifts between the Panel and Other assays, or 4) in terms of the different metrics.

The first observable trend is that predictive performance is higher for the
Panel assays compared to the Other assays. This is not surprising given the
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Fig. 4. Benchmarking overview. Results for each assay and temporal setting aver-
aged over ten repeated experiments. DE+ and MC+ are trained with censored labels
as supplementary lower-quality data. However, these models do not apply to Other 5
and 7 as they do not include censored labels.

constant distribution over time as illustrated in Fig. 1. A similar trend can be
observed in the NLL but not in terms of ENCE. As the Gaussian NLL includes
the squared error term, a likely conclusion is that distribution shifts do not
generally hurt the calibration of uncertainty estimates. This conclusion is also
reasonable as the predictive uncertainty from ensemble-based approaches model
specifically the epistemic uncertainty which should cover distribution shifts. In
general, the ranking of the methods from the MSE scores are often the same in
the NLL while they can vary in terms of the ENCE. For example, for the Other
1 assay the DE is always among the best models for all three temporal settings
in terms of the MSE and NLL scores, while in terms of the ENCE score, it is
outperformed by the RF model in the first two temporal settings.

For the most part, the performances of the two MLP-based models are usually
indistinguishable from each other for the cases trained with and without censored
data respectively. On the contrary, there are no general trends regarding whether
the RF model or the MLP-based models are best. This changes depending on
the assay, metric, and even temporal setting. However, the versions of the neural
network-based models trained with supplementary censored labels, DE+ and
MC+, do not generally improve the predictive performance or the calibration
of uncertainty estimates over their respective base versions. Only one instance
occurs where the DE+ is better than the DE model and all other models for
all three scores, namely the Other 2 model trained on 2 folds. However, as this
result is not consistent across the other two temporal settings of the assay, it is
more likely the result of statistical variability. The non-competitive results with
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Fig. 5. Confidence-based calibration over time. Discrete visualization of the
observed fraction of results for each expected confidence interval based on the pre-
dicted uncertainty. The black, solid lines illustrate perfect calibration.

the censored models require further analysis, but we believe it could be due to
the uneven nature of the censored labels available. As described in Sect. 2, the
vast majority of the censored labels are upper bound (<). Given that all models
are evaluated only on observed labels for a fair comparison, the imbalance in the
censored labels may shift the models’ understanding of the label distributions.

In light of the overall poor performance of the models trained with censored
data, we have omitted these models from the confidence-based calibration curves
presented in Fig. 5. The curves are shown for each assay and temporal setting
with error bands illustrating the confidence from the ten repeated experiments.
A majority of calibration curves are not far away from being perfectly cali-
brated. This indicates that most models produce useful uncertainty estimates.
The possibility of such intuitive interpretations of the calibration curves is not
as easily derived from the scores presented in Fig. 4. The reason for this is that
the ENCE score is unbounded, such that it can be hard to determine whether
achieved scores are useful or not. For the calibration curves in Fig. 4 it is clear
that they are significantly closer to being perfectly calibrated than to the extreme
cases of completely over- or under-calibration. On the other hand, it is harder
to compare the models and temporal settings in terms of the calibration curves,
as many of the curves are indistinguishable. However, in practical applications
where perhaps a particular confidence is of interest, a closer evaluation of the
calibration curves can be crucial to distinguish between the models.

Case Study. Finally, we provide a practical case study of one of the Other
assays, Other 6, which exhibits a particularly challenging evolution of the data
throughout time. Our case study aims to test the top-performing model from
the model comparison above in this demanding setting to determine in detail
how well the predictive uncertainties perform, and how individual predictions
can be used in practice to impact future decisions of the drug discovery project.
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Fig. 6. Practical temporal evaluation. A t-SNE projection of the Other 6 assay,
colored by temporal fold. The left panel illustrates the full dataset, where a distribution
shift can be seen throughout time. The remaining panels in the right column, show
individual test sets with predicted uncertainty by the RF model presented as the size
of data points.

The leftmost part of Fig. 6 illustrates the feature space of the compounds
tested on the assay decomposed to two t-SNE projections and colored by the five
temporal folds. A clear distribution shift in the feature space can be observed in
the t-SNE projection where the second fold tends more toward the bottom right
corner of the feature space and the last two folds shift drastically to the left side
of the plot. Similarly, highly varying label distributions were seen between the
same folds in the lower part of Fig. 1 in Sect. 2. Also, the label distribution does
not shift continuously over time, but instead first shifts greatly toward higher
pIC50 values in the second fold and then back toward more extreme lower values
by the last two folds. In the remaining three plots to the right in Fig. 6, the t-
SNE projections of each test set, i.e. folds 3, 4, and 5, are repeated separately.
Here, the size of the data points is determined by the recalibrated predicted
uncertainty of the RF model trained on the three temporal settings respectively,
i.e. with an increasing number of training folds. The RF model is chosen for
this analysis due to being best-performing on the Other 6 assay in terms of the
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ENCE score. Note that the legends of these plots detail the respective minimum
and maximum predicted uncertainties on the given test set.

We observe that the model trained on the least amount of data namely on
only the first fold and tested on fold 3, seen in the top panel of the right column
in Fig. 6, indicates overall high uncertainty for most test compounds. A likely
explanation is that the amount of training data was insufficient for the model
to learn from, meaning that it overfitted and could not generalize well to the
test compounds. The described scenario is also corroborated by the relatively
poor MSE score seen for RF trained on one fold of assay Other 6 in Fig. 4
compared to the same model trained on two and three folds respectively. For
the models trained on two and three folds, the span of predicted uncertainties
is notably much smaller, 0.11 and 0.13, compared to the first model, 0.51. As
a result, we can observe more distinct patterns in the predicted uncertainty
between different regions of the feature space. The regions with high uncertainty
predicted by the model trained on two folds seem uncorrelated with proximity
to training data. However, when the third and final training fold is included, it
is clear that the clusters with the highest predicted uncertainty are also located
furthest away from the training data. The same trend is reflected in the ENCE
scores presented in Fig. 4 where the calibration error of the model trained on
two folds is significantly worse than the one achieved by the model trained on
three folds.

Given the distribution shift present in the feature space, and that the
ensemble-based model’s predicted uncertainty accounts for epistemic uncer-
tainty, it follows our expectation that the distribution shift should be reflected
in the estimated uncertainty. As such, our analysis provides empirical evidence
to support this claim, but it also illustrates that the uncertainty estimates cover
additional sources of uncertainty related to the model itself such as overfitting.
It is important to understand all sources of uncertainty when basing future high-
stakes decisions on them, such as in drug discovery. Considering the identified
cases in this case study, we provide practical suggestions on how the identi-
fied sources can impact the continued drug discovery process. If overfitting is
determined, such as through overall high uncertainty estimates and low perfor-
mance seen in the model train on one fold, the modeling requires overall more
data before deployment. Another alternative would be to reconsider the choice
of model, but our temporal split shows that the RF continues to be the best
choice in the future when more data is included. When distribution shifts are
instead identified, such as seen later in the given project for the model trained
on three folds, more data exploration is needed in the chemical spaces where the
uncertainty estimates are high before deployment.

Further research is necessary to disentangle the sources of epistemic uncer-
tainty between distribution shifts and other model-related sources, such that
more reliable measurements of these situations can be obtained. One alterna-
tive approach would be to quantify the distribution shift using other means,
either with distance-based approaches, such as the average Tanimoto similarity
[40] between an inference compound and compounds in the training set, or the
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interpretable method proposed by Kulinski and Inouye [24]. Additionally, more
advanced pre-training procedures can be used, that are trained to incorporate
distribution shift more effectively [5]. After the distribution shift has been inde-
pendently quantified, the predicted epistemic uncertainty could be re-evaluated
such that the remaining model uncertainty is disentangled from this information.

4 Conclusions

In this comparison between three ensemble-based uncertainty quantification
approaches evaluated temporally on data from multiple biological assays, we
have shown varying results between the assays emphasizing the impact of indi-
vidual assay characteristics on predictive outcomes. No single model was consis-
tently best across evaluation metrics or assays, but some conclusions could be
drawn for particular assays. Specifically, we analyzed the results in light of the
varying presence of shifts in label distributions and feature space distributions
in the assays over time. While doing so we found that predictive performance
and calibration of uncertainty can be robust and reliable for assays without
distribution shifts and that the method can be used to identify data points out-
side of the training distribution when distribution shifts are present. As such,
we give insights and provide practical advice on how uncertainty estimates by
ensemble-based models can be used to impact future decision-making in high-
stakes situations such as drug discovery. Incorporating lower-quality data in the
form of censored labels did not yield improvements in the predictive performance
of the models. Suggestions were given as to why this could be the case, such as
the uneven nature of the censored labels and the evaluation strategy. Future
work can explore other ways to include the censored labels or extend the anal-
ysis to other modeling approaches that allow censored labels, such as Censored
Quantile Regression [33]. Overall, this study has gained valuable insights into
how distribution shift affects uncertainty quantification in assay-based QSAR
modeling, which can impact real-world pharmaceutical drug discovery.
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Appendix

Table 1 presents the hyperparameters explored in the model selection for the RF
model and the base MLP used for both the DE and MC models. A grid search



Temporal Evaluation of Uncertainty Quantification 145

was used to find the optimal hyperparameters for every assay and temporal
setting based on the validation MSE loss. Additionally, the MLPs were trained
using the Adam optimizer with a weight decay of 0.0005, the learning rate was
reduced when plateauing with a patience of 50 epochs, and a batch size of 64
was used.

Table 1. Model selection. Considered hyperparameter space for model selection of
RF and base MLP during grid search based on validation MSE loss.

Base Model Hyperparameter Explored space

RF n estimators {50, 100, 250, 500, 1000}
min samples leaf {2, 10, 0.25, 0.5, 0.75}
min samples split {1, 25, 50, 100, 250, 500}

MLP Learning rate {0.00005, 0.0001, 0.0005, 0.001}
Scheduler Factor {0.1, 0.5}
Number of hidden layers {2, 3, 4}
Hidden dimension {64, 128, 256, 512}
Decreasing dimension {False, True}
Dropout {0, 0.25, 0.5, 0.75}
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44. Winter, R., Montanari, F., Noé, F., Clevert, D.A.: Learning continuous and data-
driven molecular descriptors by translating equivalent chemical representations.
Chem. Sci. 10(6), 1692–1701 (2019)

https://doi.org/10.5281/zenodo.6961488
https://doi.org/10.5281/zenodo.6961488
http://www.rdkit.org


148 E. Svensson et al.

45. Yang, C.I., Li, Y.P.: Explainable uncertainty quantifications for deep learning-
based molecular property prediction. J. Cheminf. 15(1), 13 (2023)

46. Yang, K., et al.: Analyzing learned molecular representations for property predic-
tion. J. Chem. Inf. Model. 59(8), 3370–3388 (2019)

47. Yin, T., Panapitiya, G., Coda, E.D., Saldanha, E.G.: Evaluating uncertainty-based
active learning for accelerating the generalization of molecular property prediction.
J. Cheminf. 15(1), 105 (2023)

48. Yu, J., Wang, D., Zheng, M.: Uncertainty quantification: can we trust artificial
intelligence in drug discovery? iScience 25(8), 104814 (2022)

49. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision
trees and naive bayesian classifiers. In: International Conference on Machine Learn-
ing, pp. 609–616. PMLR (2001)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Temporal Evaluation of Uncertainty Quantification Under Distribution Shift
	1 Introduction
	2 Methods
	2.1 Ensemble-Based Modeling

	3 Experiments
	4 Conclusions
	References


