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1 Introduction

The quantification of uncertainties associated with neural network predictions
can facilitate optimal decision-making and accelerate workflows where time and
resource efficiency are essential. In drug discovery, computational tools exist that
estimate predictive uncertainties to enable the assessment of costs and risk in
the discovery and development pipeline [11]. There are various sources of uncer-
tainty in machine learning. A common classification found in literature is the
distinction between aleatoric uncertainty, which originates from uncertainty in
the data, and epistemic sources, which quantifies uncertainty inherent in the
choice of model. We refer to Hüllermeier & Waegemann [6] and Gruber et al.
[3] for a deeper discussion of uncertainty sources. It is important to point out
that modern neural networks often fail to give realistic estimates of the uncer-
tainty associated with a prediction in classification tasks, resulting in poorly
calibrated models [4,11]. There are various calibration methods for classification
models, that aim to obtain better uncertainty estimates by fitting a calibrating
model to a separate dataset in a post-hoc manner. Another strategy to achieve
more reliable predictions is the incorporation of model uncertainty, by taking into
account model variance, which increases when the model is overfitting or the test
instance lies outside the domain of the training data. This work compares the
performance of single-task classification models trained on industry-scale assay
data in a temporal analysis. In contrast to random or cluster-based strategies
to split the data, temporal splits simulate most accurately the drug discovery
pipeline in pharmaceutical companies [16]. A temporal splitting strategy enables
model training on older data and prediction on subsequent folds. We use tem-
poral splits to compare the performance and calibration of Random Forest (RF)
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models for classification tasks with and without post-hoc calibration using two
different calibration approaches. Furthermore, we investigate whether the inclu-
sion of data uncertainty in the form of probabilistic labels improves uncertainty
estimation. Finally, we use the temporal setting to investigate how the temporal
evolution of the test set affects model calibration.

2 Methods

We evaluate single-task classification models on data from ten assays and two
assay categories, including ’Panel’ and ’Other’ assays [5]. The assays are labeled
using the assay category combined with a number from 1 to 5, e.g. ’Panel-1’.
The ’Panel’ category comprises cross-project assays such as undesired off-target
effects, whereas ’Other’ includes project-specific assays from on-target activity
screens. The data solely includes affinity data with pIC50 or pEC50 as end-
points. The assays were chosen to be representative, exhibiting various assay
sizes and active ratios. Figure 1[A] summarizes the number of measurements and
the ratio of actives for all assays used in our study. Standardized SMILES were
obtained using the method described in the MELLODDY-TUNER [1] package
and extended connectivity fingerprints (ECFPs) of size 1024 and radius 2 were
generated with RDKit [8]. Given that the date of each measurement is available,
a real temporal split was performed. After ordering the data according to the
measurement date, the data was split into five folds of equal size, so that each
fold represented a specific period in the assay history. For generating single-task
classification models, two label types were used to assess if the incorporation
of aleatoric uncertainty improves model performance. First, hard labels were
generated using a pIC50/pEC50 threshold of 6 for assigning active or inactive
labels based on the result. This specific threshold was chosen because the mod-
els will be deployed in the early stages of the drug discovery pipeline, in which
the desired binding affinity of drug candidates is in the micromolar range (10−6

molar concentration) corresponding to a pIC50/pEC50 of 6. Second, the same
threshold was applied and the assay-specific measurement error, corresponding
to the standard deviation of the control compound measurements, was used to
obtain probabilistic labels. In detail, a normal distribution X ∼ N (μ, σ2) was
generated, where μ corresponded to the chosen threshold and σ2 to the standard
deviation of the control compound of the respective assay. In this step, the con-
trol compound corresponded to the compound with the most measurements in
the respective assay. Subsequently, the CDF of these assay-specific distributions
was used to obtain the probabilistic label [9]. Figure 1[B] shows the standard
deviation (Std) of the control compound as well as the available number of mea-
surements to calculate the Std for every assay.
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Fig. 1. Overview over Assay data. Assays from two categories, ’Other’ and ’Panel’,
were used. [A] The number of measurements (#Compounds) of each assay as the sum
of active and inactive compounds (pIC50/pEC50 threshold = 6) is shown. [B] shows
the standard deviation (Std) and the number of measurements (in brackets) of the
control compound for every assay.

2.1 Model Generation

Random Forest (RF) models were generated using scikit-learn. The maximum
depth of the trees and the required number of estimators were tuned using a
validation dataset. Probability-like outputs were generated by taking the ratio
of decision trees in an RF that voted for a specific test instance to be active.
Furthermore, Probabilistic Random Forests (PRF) [15] were generated using
probabilistic labels as ground truth. A detailed description of the PRF training
procedure can be found in Mervin et al. [9]. Post-hoc probability calibration
techniques fit a calibration model to the raw scores of a classifier using a sepa-
rate calibration dataset. In our work, we use the validation dataset for this step.
Two uncertainty calibration approaches were used, namely Platt scaling [14] and
Venn-ABERS (VA) predictors [18]. Platt scaling [14] involves fitting a logistic
regression to the classification scores to counteract over- or underfitted uncer-
tainty estimations. For calibration with VA predictors [18] two isotonic regression
functions are trained on the validation data and the test instance, representing
the two possible hypotheses that the test instance is active versus inactive. As
such, two different probabilities are obtained from the isotonic regression mod-
els, corresponding to a lower and an upper bound on the probability, which are
subsequently condensed to a point estimate as proposed by Tocatelli et al. [17].
For more detail on VA predictors we refer to Mervin et al. [10].

3 Results

3.1 Incorporation of Aleatoric Uncertainty Using Measurement
Errors

Table 1 summarizes the Binary Cross Entropy (BCE↓) loss and the Adaptive
Calibration Error (ACE↓) [12] for five model repeats of all model types trained
on two example datasets, namely the Panel-1 and Other-3 assays. The first
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Table 1. Overview over RF model performance based on two example
assays. Averages over five model repeats are shown. The best results for each metric
are marked in bold, while not significantly worse scores are indicated in italics.

Method Panel-1 Other-3

BCE ↓ ACE ↓ BCE ↓ ACE ↓
Hard Labels

RF 0.187 ± 0.005 0.032 ± 0.001 0.312 ± 0.009 0.192 ± 0.008

RF-Platt 0.182 ± 0.004 0.029 ± 0.002 0.235 ± 0.007 0.117 ± 0.006

RF-VA 0.183 ± 0.002 0.037 ± 0.001 0.211 ± 0.007 0.089 ± 0.006

Probabilistic Labels

PRF 0.181 ± 0.002 0.032 ± 0.002 0.307 ± 0.01 0.187 ± 0.008

PRF-Platt 0.181 ± 0.001 0.03 ± 0.001 0.229 ± 0.005 0.112 ± 0.004

PRF-VA 0.185 ± 0.002 0.038 ± 0.002 0.212 ± 0.006 0.092 ± 0.006

three folds were used for model training, while the last fold was used for testing.
Using probabilistic labels instead of hard labels improves the calibration error
and the BCE loss of the RF and RF-Platt models trained on Other-3 assay data.
Models for the Panel-1 assay do not show any improvements when incorporating
aleatoric error. This result could be explained by the difference in standard devi-
ations shown in Fig. 1[B], which are used for generating the probabilistic labels.
Given that the measurement error of the Panel-1 assay is smaller compared to
the Other-3 assay the normal distribution used for generating the probabilistic
labels is narrower, resulting in probabilistic labels that are more similar to the
hard labels, thus leading to similar results of RF and PRF models. The post-hoc
calibration methods improve the BCE loss and ACE scores of Other-3 models,
with RF-VA performing best in terms of both metrics, with a BCE and ACE of
0.211 ± 0.007 and 0.089 ± 0.006, respectively. The results for the Panel-1 assay
show that in terms of ACE the RF-Platt model performs slightly better than the
uncalibrated RF model, while the PRF models did not improve after calibration.
In general, the control compounds of the Panel assays exhibit smaller standard
deviations than those of the Other assays, as illustrated in Fig. 1[B]. The results
of the assays omitted from Table 1 reveal that using probabilistic labels generally
leads to better BCE scores for Other assays. In contrast, such clear improvements
can not be observed for Panel assays. This could be a result of the differences
mentioned above in standard deviations of the control compounds between the
assay categories. However, there are also exceptions from this trend, such as the
Other-1 assay, which does not show improvements when including probabilistic
labels, despite the large standard deviation of its control compound. Hence, we
conclude that it is required to look at the model performance on the individual
assay to find the best calibration method for that specific dataset. For all assays,
the same model performs best in terms of BCE scores when comparing models
trained with hard labels versus probabilistic labels. This is also true in terms of
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the ACE results, except for the Other-1 assay, for which the RF model performs
best for hard labels and the VA-calibrated model is best for probabilistic labels.
However, the difference between PRF and PRF-VA is not significant. A more
elaborate study is required to understand the effect of probabilistic labels on
probability calibration in detail, which will be the object of our future research
but is outside the scope of this abstract.

3.2 Probability Calibration Across Evolving Test Sets

Figure 2 shows the performance of five model repeats of different RF models
across all ten assays and test sets in terms of ACE. The models were trained
on one fold and then used for separately predicting three test folds representing
subsequent time spans in the assay history. Test set 1 corresponds to the fold
closest in time to the training fold, while test set 3 represents the fold furthest
away. The ACE for test set 1 is the smallest across all models for the majority
of assays as shown in Fig. 2, indicating that the models are better calibrated
for compounds measured closer in time to the training fold. This pattern can
also be observed in some assays when comparing test sets 2 and 3, however, the
tendency is not as clearly visible as for test set 1. One of the reasons for the
observed behavior could be a distribution shift in training and test data that
increases as we progress in time, which is supported by a paper by Ovadia et al.
[13], in which an increasing distribution shift was reported to impair probability
calibration.

Fig. 2. Model calibration over time. The Adaptive Calibration Error (ACE) is
shown for five model repeats across all assays. The models were trained on one training
fold. Test Set 1 is closest in time to the training set, whereas Test Set 3 is furthest
away.
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4 Conclusion and Outlook

In this study, we showed that using probabilistic labels in combination with
probability calibration approaches can improve uncertainty estimation in RF
models. In addition, we present a comprehensive analysis of how model cali-
bration changes over time using temporal splits of internal data from a phar-
maceutical company. Based on these preliminary results, we will take further
steps to understand model calibration in a temporal setting. Furthermore, we
will extend our study to other model architectures, including multi-layer per-
ceptrons (MLP), to investigate if the same conclusions can be drawn for other
model types. Finally, we will explore uncertainty estimation methods to account
for model uncertainty, including deep ensembles [7] and Monte-Carlo Dropout
[2], to analyze if these approaches improve probability calibration.
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