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Abstract. In recent years, there has been growing interest in lever-
aging human preferences for drug discovery to build models that cap-
ture chemists’ intuition for de movo molecular design, lead optimiza-
tion, and prioritization for experimental validation. However, existing
models derived from human preferences in chemistry are often black-
boxes, lacking interpretability regarding how humans form their prefer-
ences. Enhancing transparency in human-in-the-loop learning is crucial
to ensure that such approaches in drug discovery are not unduly affected
by subjective bias, noise or inconsistency. Moreover, interpretability can
promote the development and use of multi-user models in drug design
projects, integrating multiple expert perspectives and insights into multi-
objective optimization frameworks for de movo molecular design. This
also allows for assigning more or less weight to experts based on their
knowledge of specific properties. In this paper, we present a method-
ology for decomposing human preferences based on binary responses
(like/dislike) to molecules essentially proposed by generative chemistry
models, and inferring interpretable preference models that represent
human reasoning. Our approach aims to bridge the gap between human-
in-the-loop learning and user model interpretability in drug discovery
applications, providing a transparent framework that elucidates how
human judgments can shape molecular design outcomes.
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1 Introduction

Designing effective molecule scoring functions for drug discovery is a highly
complex and multifaceted challenge. This complexity arises from the need to
balance multiple objectives, such as potency, selectivity, toxicity and synthetic
accessibility (SA), each of which must be optimized simultaneously. Traditional
computational methods often struggle to integrate these diverse factors into
a single, coherent scoring function, making the discovery process both time-
consuming and uncertain. The dynamic nature of biological systems and the vast
chemical space further complicate the task, requiring innovative approaches to
accurately evaluate molecular efficacy beyond conventional manually-engineered
scoring functions.

Human-in-the-loop assisted drug discovery offers a promising solution by
incorporating the expertise and intuition of chemists directly into the computa-
tional workflow. Unlike static, manually-defined scoring functions, human-in-the-
loop learning approaches allow for real-time adjustments based on expert knowl-
edge and evolving insights. This dynamic interaction enables a more nuanced
evaluation of candidate molecules, leveraging human judgment to guide the dis-
covery process more effectively. By integrating human expertise, data-driven
methods can adapt to new information and improve the relevance and accuracy
of molecular predictions.

Several models have been developed to harness human input in drug discov-
ery. Notable among these are the works of Sundin et al. [15] and MolSkill [5].
While Sundin et al. focus on dynamically learning a scoring function from binary
human preference responses on proposed designs, MolSkill authors train a neural
network using pairwise comparisons between molecules to infer user preferences.
These models represent significant advancements in incorporating human pref-
erences into drug discovery, yet they often operate as black-box systems with
limited transparency.

The lack of interpretability in these user models is a critical concern. Black-
box user models can obscure the rationale behind chemist intuition, making it
difficult to trust and validate the outcomes. This may represent a bottleneck to
the effective integration of human expertise into the drug discovery process.

A previous study by Kutchukian et al. [10] has shown that medicinal chemists
simplify the complex task of identifying promising compounds by focusing on
a subset of parameters, despite the complexity involved. Moreover, the study
highlighted discrepancies between chemists’ reported decision criteria and the
actual parameters that influence their choices, emphasizing the need for more
transparent and interpretable user models in drug discovery.

To address these challenges, we propose inferring interpretable user models
by decomposing observed preference data into meaningful features or molecular
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descriptors. Feature decomposition [12] is a supervised learning strategy with the
potential to efficiently dissect user preference data and understand the underly-
ing factors influencing their decisions. This approach aligns with related work in
feature decomposition, which has been successfully applied in various fields such
as social science to enhance transparency and robustness of human behavioral
models [8]. By adopting a similar strategy, we aim to create interpretable user
models of chemist intuition that can be used for molecular design, optimization
or experiment prioritization, which can later be integrated in drug discovery
pipelines without the need for direct human intervention.

In this paper, we propose a methodology for decomposing human preferences,
presented as binary responses (i.e., like/dislike) to molecules either proposed by
generative chemistry models or from existing chemical libraries. Our approach
seeks to bridge the gap between user modelling and model interpretability for
human-in-the-loop assisted drug discovery. By providing a transparent frame-
work, we aim to elucidate how human judgments shape molecular design out-
comes, ultimately encouraging the reliance on user models and hybrid machine-
user models as scoring functions.

2 Methodology

We consider a setting where a user provides a binary response y € {0,1} to
a molecular design x, reflecting their preference for the design. We assume a
response model

y ~ Ber (sigmoid (w” g(x))) (1)

where the user’s binary response comes from a Bernoulli distribution, with the
probability given by a sigmoidal function of w’g(x). The function g(x) € RP
represents the features considered by the user in their decision, and w € RP
represents a linear weighting of these features. For example, the user might
consider the following descriptors

g(x) = (synthetizability (x), solubility (x), patentability (x), activity(x))

and weigh them by (0.5,0.3,0.4,0.7) respectively. Given that users may make
errors in their mental evaluation of descriptors, we assume g is an approximation
of some underlying true function g*

9(x) = g"(x) + e, €~ N(0,diag(c?)) (2)

For instance, a user might misjudge the solubility of a molecule.
Furthermore, we consider that each user has a different labelling function.
Let 7 index the labeller, and define its labelling function as

y; ~ Ber (sigmoid (w]-ng (x))) (3)
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Thus, by querying a collection of users (1,...,.J) about a single molecule,
we obtain a set of binary responses (yi,...,ys), each stemming from different
preference functions wf g;(x).

We assume a dataset of binary 'votes’ Y = (y;;) € RV*7, where y;; is the
label of the i-th molecule from the j-th user.

Our goal is to infer the mental variables {w;, g; }, but this task is unrealistic
in its current form, since we have no direct knowledge of the mental descriptors
g; or the weightings w; of the users.

Instead, we simplify the problem by assuming that all experts share the same
descriptors. More precisely, we assume that the set of descriptors used by any
expert is the union of all expert descriptors, with unused descriptors showing as
zeros in w. We thus reformulate the model as

y; ~ Ber (sigmoid (WJTg(x))) (4)

Given that fitting binary outcome variables directly might not yield a closed-
form solution, we consider using a probit link function instead of the logit (sig-
moid) function. The probit link can simplify the sampling process, resulting in
a straightforward Gibbs sampler when only the weights are learned. This modi-
fication is expressed as:

y; ~ Ber (45 (W]Tg(X))) (5)

where @ denotes the cumulative distribution function (CDF) of the standard
normal distribution.
Finally, our problem is to infer the posterior

p(W,g | Y) xp(Y | W,g)p(g) [ ] p(w;) (6)
J

where all weights w; share the same prior. We aim to determine the mental
descriptors g and the user preferences W = (wy, ..., wy) € R/*P. Prior knowl-
edge can be incorporated into this problem. First, the preferences w; are assumed
to be sparse, for instance, by employing a Horseshoe prior p(w;) = HS(w;). Sec-
ond, the descriptor function g can be fixed to a dictionary of known descriptors
(e.g., from chemoinformatics software) or can be the feature embedding of a
molecular deep learning network (e.g., MolBert). A more advanced approach
would be to treat these as the prior mean functions and infer slight fine-tuning
of them.

Given the expense of human evaluations, even if this model does not have a
closed-form solution, MCMC methods such as Hamiltonian Monte Carlo (HMC)
are likely feasible options. These methods can handle the complex posterior dis-
tributions involved in our problem and provide robust estimates of the parame-
ters.

In summary, while a closed-form solution would be ideal for computational
simplicity, the use of probabilistic methods like HMC offers a practical and effec-
tive route for inference in our setting. We will implement and compare both logit
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and probit models, evaluating their performance using real-world data to ensure
the robustness and applicability of our approach.

3 Experiments

We conducted experiments to infer interpretable user models for chemist pref-
erences in molecular design using Bayesian inference with a Stan model. Our
approach involved querying experts to provide binary preference responses
(like/ dislike) for a dataset of molecules represented by molecular descriptors.
The model assumes that each expert’s preference is influenced by a weighted
combination of these descriptors.

3.1 Experimental Setup

Data Collection. We collected a dataset consisting of binary responses (Y)
from J = 3 experts for N = 150 molecules generated using the molecular design
tool REINVENT [3]. The experts were asked to rate those molecules based on
how much they align with the molecular design objective of producing novel
binders for the Dopamine receptor D2 (DRD2). Feedback from experts was col-
lected in real-time through the Metis interface [9] by sampling (after a defined
number of reinforcement learning steps) molecules from the generative chem-
istry model implemented in REINVENT. This generative chemistry model was
trained to maximize predicted DRD2 probabilities by a Quantitative Structure-
Activity Relationship (QSAR) model. A screenshot of the interface is provided
in Figure S6, where structures of generated molecules are displayed alongside
their DRD2 activity probabilities. The experts were asked to express, on a scale
from 0 to 100, how much they liked the proposed DRD2 binders. Expert scores
were transformed into binary labels using a threshold value of 50 and included
in the initial training dataset of the DRD2 QSAR model, which was then used
to guide the generation of subsequent DRD2 binders by REINVENT. This itera-
tive process ensured that the generative chemistry model continually improved in
alignment with expert preferences. All three participating experts are co-authors
of this manuscript.

For the set of evaluated molecules, we calculated molecular descriptors using
RDKit [1], which include the molecular weight (MolWt), number of rotatable
bonds (NumRotaBonds), the logarithm of the octanol-water partition coefficient
or LogP (MolLogP), the number of aromatic rings (NumAromRings), the num-
ber of hydrogen bond acceptors (HBA) and donors (HBD), the topological surface
area (TPSA), and the structural alerts or undesirable substructures according
to the Quantitative Estimate of Drug-likeness (QEDAlerts) [2]. For the lat-
ter, we modified the standard QED implementation in RDKit by setting the
weights for all other properties (MolWt, MolLogP, HBA, HBD, TPSA, NumRotaBonds,
NumAromRings) to 0 and only keeping the weight for the presence of undesirable
substructures to 1. This ensures that the QED score solely reflects the presence
of structural alerts. Additionally, we used the SA score developed by Ertl et
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al. [7], as well as the probability of DRD2 bioactivity according to the classi-
fier developed by Olivecrona et al. [13], as descriptors that can explain the user
preference responses.

We analyzed the Pearson correlations among the molecular descriptors used
for this study (Figure S7). Notably, MolLogP shows the strongest positive correla-
tion (0.78) with TPSA. All correlations, ranging from -0.63 to 0.78, are indicative
of meaningful relationships between descriptors that can enhance model accu-
racy and interpretability.

Model Specification. The Bayesian model was implemented using the Stan
probabilistic programming language [4]. The model included:

— Parameters:
e 7: Global scale parameter controlling the overall sparsity of weights
assigned to the molecular descriptors.
e );: Local scale parameters for each expert j.
e w: Preference weights matrix, where each column represented the weights
for one expert across all descriptors.
— Priors:
e 7 ~ Cauchy(0, 79): Cauchy prior for global shrinkage.
e \; ~ Cauchy(0,1): Cauchy priors for local shrinkage.
e w ~ Normal(0, A; - 7): Normal priors for weights adjusted by local scales.
— Likelihood:
— Y,; ~ Bernoulli(logit(X - w.;)): Likelihood of expert j’s response based
on the linear combination of molecular descriptors weighted by w.;.

3.2 Implementation

The Stan model was compiled and fitted to the data using Hamiltonian Monte
Carlo (HMC) sampling (2000 iterations, 2 Markov chains with a maximum tree
depth of 15 and the parameter adapt_delta set to 0.99). This approach enabled
us to approximate the posterior distribution of parameters w and \;, which
represent the preference weights and local scale parameters, respectively.

Since the dataset is already very small (due to limited resource availability
for human data collection), we die not split it into training and testing, and chose
to fit the model to the entire dataset instead to reach the highest accuracy.

Convergence diagnostics, including the R statistic and the trace plots, were
performed to assess the model’s convergence and ensure reliable inference across
multiple chains. The R statistic, also known as the potential scale reduction fac-
tor, is a convergence diagnostic used to assess whether the Markov chains in the
MCMC sampling have converged to the target distribution (i.e., response labels).
Specifically, it compares the variance within chains to the variance between
chains. A value close to 1 (typically R < 1.1) indicates convergence, which is
what we have observed with our model. Trace plots are visual representations
that show how the Markov chain samples evolve over iterations, allowing to diag-
nose issues like non-stationarity and mixing problems. Our trace plots (Figure
S5) show that the Markov chains have mixed properly (low divergence).
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3.3 Benchmark

We compared our model against a non-probabilistic logistic regression (LogReg)
and a Random Forest Classifier (RFC), implemented using the Scikit-learn pack-
age [14]. The purpose is to demonstrate that our model is more transparent than
its non-probabilistic counterparts, allowing for direct interpretability of the rea-
soning process behind the human preferences, in addition to a reasonable classifi-
cation accuracy. The same set of molecular descriptors described in Sect. 3.1 was
used to train the LogReg and RFC models on the 150 human-rated molecules
by each expert, individually. The classification accuracy scores (i.e., percentages
of correctly classified molecules into liked or disliked) were calculated for each
individual user model, then the average accuracy scores were reported. To assess
the interpretability of the RFC models, Shapely values for tree-based algorithms
were computed [11]. For LogReg models, we analyzed feature importance.

4 Results

4.1 Interpretability of Human Preferences

We consider that a model is able to accurately interpret human preferences based
on how the participating experts described their reasoning. Our Stan model
effectively deciphered the human reasoning behind the preference dataset for the
DRD2 binders. The learned descriptor contributions are weights are illustrated
in Fig. 1.
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Fig. 1. Density plots of the molecular descriptor weights learned by the
Stan model for each expert. Each subplot corresponds to a different descriptor,
with density curves representing the weight distributions for Expert 1 (blue), Expert 2
(orange) and Expert 3 (green). These plots illustrate the variations in how each expert
weighted the descriptors, reflecting their individual preferences and reasoning. Notably,
the plots show that the DRD2 bioactivity descriptor was consistently important across
all experts, while other descriptors such as MolLogP, SynthAccess and QEDAlerts had
varying levels of importance depending on the expert. (Color figure online)
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When asked to describe their personal experiences from interacting with
DRD2 binders generated using REINVENT, Expert 1 highlighted their focus
on the structural characteristics of the generated molecules, rejecting many at
the initial stages of the interaction because they appeared too different and
"odd" compared to known DRD2 actives. This was accurately captured by the
Stan model, showing greater correlation between Expert 1 preferential feedback
and the QEDAlerts descriptor (Fig.2). The focus of Expert 1 on the presence
of structural alerts in the generated DRD2 binders has led to the generation
of more drug-like molecules, which can be observed through an increased QED
score (Table S1 where molecular generation performance metrics are reported for
top-scoring DRD2 binders generated by REINVENT after incorporating expert
preference feedback).

Conversely, Expert 3 described that they were more concerned with the
SA of the generated DRD2 binders. This preference was well captured by the
higher estimated weights for the SynthAccess descriptor (Fig.1) and correla-
tion between Expert 2 preferential feedback and SynthAccess (Fig.2). Expert 2
described that they rated the molecules based on how much they liked them as
a lead, aiming to select molecules that would be synthesizable, stable and with
reasonable lipophilicity to maximize their chance for being made and tested.
The Stan model’s learned weights revealed that Expert 2 indeed prioritized the
molecular LogP followed by synthetic accessibility, as indicated by the higher
weights for those descriptors (Fig.1) and stronger correlation with MolLogP
(Fig. 2). Moreover, a higher percentage of lead-like compounds according to the
rule of three (RO3) [6] for molecular LogP was identified based on feedback from
Expert 2 (Table S1). Expert 2 showed similarities with Expert 3 in their reason-
ing regarding DRD2 binders: they both acknowledged not having any particular
knowledge of the target or known binders.

Interestingly, the weights for the DRD2 bioactivity descriptor were high for
all three experts, indicating that the model successfully captured that the pref-
erence feedback was related to the rating of DRD2 binders. These findings are
consistent with the descriptions provided by the experts upon the completion
of the interaction exercise, validating the model’s ability to interpret and reflect
their reasoning accurately.

The interpretability analysis from the RFC models also highlighted the
importance of the DRD2 activity descriptor in explaining user preference feed-
back 3. For Expert 1, the RFC models accurately captured their preference
for more complex molecular structures but did not fully reflect their reliance
on the presence of structural alerts that could undermine drug likeness. For
Experts 2 and 3, MolLogP and SynthAccess were correctly identified as impor-
tant descriptors in explaining their feedback. However, MolWt was also identified
as significantly important, though it was not explicitly emphasized in the expert
feedback. Therefore, we consider the RFC models’ interpretations to be close to
the Stan model’s performance, with the latter being the most aligned with the
expert descriptions Fig. 3.
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Fig. 2. Correlation between each expert and molecular descriptors according
to the fitted Stan model. Heatmap matrix showing the relationship between each
expert’s feedback and the molecular descriptors used for fitting the Stan model. The
matrix highlights a higher correlation between Expert 1 and QEDAlerts, Expert 2 and
MolLogP, and Expert 3 and SynthAccess. All experts show a high correlation with the
DRD2 activity descriptor, indicating its importance to explain the expert preferential
responses.
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Fig. 3. SHAP summary plots for the Random Forest Classifier predictions,
illustrating the importance of various molecular descriptors for each expert. The plots
provide a visual explanation of how each descriptor contributes to the model’s predic-
tions, with distinct patterns emerging for each expert that align with their feedback
preferences.

Conversely, the LogReg models provided the least accurate interpretation of
descriptor importance. They failed to clearly capture Expert 1’s emphasis on
structural alerts and Expert 3’s focus on SA for the generated DRD2 binders
Fig. 4. This suggests that while the LogReg models can provide some insights,
they are not as reliable as the Stan and RFC models in reflecting the experts’
reasoning.
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Fig.4. SHAP summary plots for the Logistic Regression predictions, depict-
ing the significance of molecular descriptors in determining the experts’ feedback. These
plots highlight the differences in descriptor importance across experts and provide
insight into the Logistic Regression model’s interpretation of the data.

4.2 Accuracy in Predicting Human Preferences

We compared our model against a non-probabilistic logistic regression (LogReg)
and a Random Forest Classifier (RFC), implemented using the Scikit-learn pack-
age [14]. The primary goal of this comparison is to demonstrate the interpretabil-
ity of our model in contrast to its non-probabilistic counterparts, while also
showcasing its reasonable classification accuracy. The same molecular descrip-
tors were used to train the LogReg and RFC models on the 150 human-rated
molecules by each expert, individually. The classification accuracy scores (i.e.,
percentages of correctly classified molecules into liked or disliked) were calculated
for each individual user model, then the average accuracy scores were reported.

Despite the slight edge in predictive performance by the RFC model, the
Stan (Bayesian) model offers significant advantages in terms of interpretability.
Unlike its non-probabilistic counterparts, the Stan model provides posterior dis-
tributions for the learned weights of molecular descriptors. This feature not only
allows for a clear understanding of the importance of different descriptors but
also incorporates the uncertainties associated with these weights. Such prob-
abilistic insights are crucial for gaining a deeper understanding of the factors
driving experts’ preferences and ensuring that the model’s predictions are not
only accurate but also comprehensible and justifiable.

In summary, while the RFC model boasts the highest predictive accuracy,
the Stan model’s interpretability and ability to quantify uncertainties make it a
valuable tool for elucidating the rationale behind experts’ preferences in molec-
ular design. This dual benefit of accuracy and interpretability underscores the
potential of Bayesian models in explaining complex decision-making processes
such as human rating.

5 Discussion

In this work, we developed and evaluated models to decipher and predict human
preferences in molecular design, focusing on the interpretation of these prefer-
ences using various, known and self-explanatory molecular descriptors. The Stan
(Bayesian) model, Logistic Regression (LogReg), and Random Forest Classifier
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(RFC) were employed to fit the preference data provided by three experts on a
set of DRD2 binders proposed by a molecular design tool.

The posterior distributions of the Stan model provided insights into the
importance of different molecular descriptors for each expert, revealing distinct
patterns in their preferences. Expert 1 focused on the structural complexity of
molecules and presence of undesired structures for drug-likeness, as evidenced by
higher correlations with QED structural alerts. Expert 2’s preferences indicated
a focus on lipophilicity and synthetic accessibility, similar to Expert 3. Interest-
ingly, all three experts were characterized by high correlations with the DRD2
activity descriptor, aligning with the core objective of the feedback exercise which
is to rate DRD2 binders. Notably, the interpretations derived from the Stan
model aligned the closest with the reasoning process described by the experts
themselves, enhancing the model’s ability to accurately explain the expert pref-
erence data and decision-making.

The interpretability analysis from the RFC models also highlighted the
importance of the DRD2 activity descriptor. For Expert 1, the RFC model did
not capture the reliance on structural alerts. For Experts 2 and 3, the molecular
LogP and synthetic accessibility descriptors were correctly identified as impor-
tant, although the RFC model also highlighted molecular weight as a significant
factor, which was not explicitly mentioned in expert descriptions. The LogReg
models, however, provided a less accurate interpretation.

In terms of predictive accuracy, the RFC model achieved the highest perfor-
mance, followed by the Stan model and the LogReg model. Despite the superior
predictive accuracy of the RFC model, the Stan model’s ability to better cap-
ture the relationships between the human reasoning processes and the molecular
descriptors, and to quantify uncertainties through the posterior distributions,
makes it a more interpretable and insightful tool for understanding the reason-
ing behind experts’ preferences.

One of the main limitations of this study is the small amount of expert pref-
erence data available. This limited data set may not fully capture the variability
and complexity of experts’ decision-making processes. Consequently, the gener-
alizability of our models to new, unseen data remains an open question. Future
work should focus on collecting more extensive preference data from a larger
and more diverse group of experts. This would not only improve the robustness
and generalizability of our model but also provide a more comprehensive under-
standing of how different molecular descriptors influence human preferences in
molecular design.

Additionally, it would be valuable to validate the model on unseen data to
assess their predictive performance in real-world scenarios. This validation step
is crucial for ensuring their practical applicability in molecular design tasks.

In conclusion, while our preliminary model demonstrate high predictive accu-
racy and provide valuable insights into the reasoning behind experts’ preferences,
addressing the limitations related to data size and generalizability are essential
steps for future work.
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