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A B S T R A C T

A full-scale dissimilar metal weld safe-end mock-up, precisely replicating a critical component of a modern
nuclear power plant, was investigated. The brittle fracture behavior, carbide evolution and nanoscale elemental
segregation in the heat-affected zone (HAZ) of low alloy steel (LAS) were analyzed under both post-weld heat-
treated and thermally-aged conditions (400 ◦C for 15,000 h, equivalent to 90 years of operation) using analytical
electron microscopy and atom probe tomography. The observed increase in grain boundary (GB) decohesion and
intergranular cracking on the fracture surface and the decrease of fracture toughness are primarily attributed to P
and Mn segregation to GBs and the coarsening of carbides upon long-term thermal aging. The direct observations
of significant elemental segregation to GBs and the consequent reduction in fracture toughness in the HAZ are
unexpected for modern low-phosphorus LASs, highlighting potential concerns for evaluating the structural
integrity of modern nuclear power plants.

1. Introduction

Dissimilar metal welds (DMWs) are routinely employed to join bai-
nitic/ferritic low alloy steel (LAS) reactor pressure vessel with austenitic
stainless steel pipes using Ni-based filler metals [1–3]. The differing
chemical composition, crystal structure and mechanical properties at
the fusion boundary (FB) create a mismatch [4–7]. DMWs can become a
concern for the structural integrity in nuclear power systems, structures
and components (SSC). A couple of failures have been observed in
DMWs in nuclear power plants [8–10]. The knowledge on the fracture
behavior, cracking behavior and microstructural changes occurring at
the DMW interface upon long-term plant operation and aging is lacking.
Carbides formed in the heat-affected zone (HAZ) of LAS can serve as

fracture initiators, significantly impacting brittle fracture behavior
[11,12]. Furthermore, phosphorus segregation to grain boundaries
(GBs) and precipitates (e.g. carbides) can increase cracking suscepti-
bility, promote GB decohesion and intergranular fracture, and elevate
the ductile-to-brittle transition temperature (DBTT) [13–15]. Conse-
quently, the P content in modern reactor LASs has been limited to 0.008
wt%. Recently, Lindqvist et al. [16,17] reported that in a modern
SA508/Alloy 52 DMW, crack initiation and propagation in thermally-

aged T0 fracture toughness specimens occurred in the HAZ without
the crack deviating to the FB, resulting in a significantly lower fracture
toughness than for the specimens where the notch crack was placed near
the FB and the crack path deviated to the FB. Understanding the
elemental segregation and carbide evolution occurring in the HAZ of
modern reactor LASs upon long-term thermal aging is critical for eval-
uating structural integrity and ensuring the long-term operation of nu-
clear components [18–21]. However, such information is scarce in the
open literature [22–24].
In this paper, a full-scale DMW safe-end mock-up, precisely repli-

cating a critical component of a modern nuclear power plant, was
studied. The brittle fracture behavior, carbide evolution and nanoscale
elemental segregation in the LAS HAZ were analyzed under post-weld
heat-treated and thermally-aged conditions (equivalent to 90 years of
operation) using analytical electron microscopy and atom probe to-
mography (APT). The intrinsic interaction of nanoscale elemental
segregation and carbide coarsening with the GB decohesion and the
decrease of fracture toughness was discussed.
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2. Materials and method

In the present study, a 1:1 scale narrow-gap gas tungsten arc welding
(GTAW) DMW mock-up, joining an SA508 Gr.2 nozzle with a 316LN
safe-end using Alloy 52 filler metal, representative of a critical compo-
nent in a modern Nordic nuclear power plant [25–27], is studied. The
chemical composition of the materials is provided in Table 1. The mock-
up is welded one bead per layer by gas tungsten arc welding (GTAW).
The mock-up was post-weld heat treated at 550 ◦C for 15 h and 610 ◦C
for 7 h. The studied conditions include the as-received post-weld heat-
treated condition (“AR”) and the long-term thermally-aged condition
of 15,000 h at 400 ◦C (“TA”), purposely equivalent to 90 years of
operation at 288 ◦C in a nuclear power plant [15].
For characterization of the fracture toughness T0 reference temper-

ature for the DBTT region according to ASTM E1921, 5 × 10 × 50 mm
single edge-notched side-grooved bend (SE(B)) specimens were tested.
The cracks of the SE(B) specimens are nominally located in the HAZ of
the LAS, 0–350 μm from the FB. The cracks are parallel to the FB. Before
testing, the specimens were pre-cracked by fatigue to the initial crack
length over a specimen width ratio a0/W of 0.5, using a RUMUL resonant
testing machine. The maximum value of the applied stress intensity
factor, Kmax, was kept below 15 MPa√m during the fatigue pre-
cracking. The fracture toughness testing was performed using an MTS
universal servo-hydraulic testing machine equipped with a 10 kN load
cell. The crack mouth opening displacement (CMOD) was measured
using an Epsilon 3541-003 M-040 M-LHT clip gauge. After testing, the
specimens were soaked in liquid nitrogen and broken into two halves to
measure the crack lengths. The crack length and crack front straightness
were checked before calculation of T0. The quality of the results was
assessed after testing. All the T0 specimens fractured by the brittle
fracture mechanism and the brittle fracture initiated without significant
ductile crack growth.
The prior austenite grain (PAG) size was evaluated with electron

backscatter diffraction (EBSD). A Zeiss Crossbeam 540 scanning electron
microscope (SEM) with an EDAX HikariPlus EBSD detector was applied.
EBSD was performed with a working distance of 14–15 mm, a step size
of 150 nm and with the samples tilted at 70◦. The resulting EBSD inverse
pole figure (IPF) was analyzed with the TSL OIM Analysis 8.6 software.
The Vickers micro-hardness measurements with loads of 0.1 kg (HV0.1)
across the FB were performed using a Struers DuraScan-80 device.
To assess the microstructure and the carbides in the LAS HAZ,

lamellae were prepared using focused ion beam (FIB) with JEOL JIB
4700. The lamellae were investigated using a Thermo Fisher Talos
F200X analytical transmission electron microscope (TEM), equipped
with the Super-X Energy-dispersive X-ray spectroscopy (EDS) system,
operating at 200 kV. High-angle annular dark-field (HAADF) and bright
field (BF) images were recorded.
For nanoscale chemical analysis of GBs, APT was performed. EBSD

maps collected on a TESCAN GAIA3 equipped with an Oxford-
NordlysNano detector were used to investigate the GB misorientations
on AR and TA samples. This allowed to identify sites of interest for the
APT lift-outs – high-angle GBs with comparable misorientation angles
(55–60◦). Site specific APT sample preparation was conducted on a dual-
beam FIB-SEM FEI Versa 3D workstation. The back-scattered electron
signal was used to find the previously identified sites of interests, and to
guide during the tip sharpening step allowing to place the targeted GB in
the proximity of the needle apex. Transmission Kikuchi Diffraction
(TKD) was performed on the sharpened specimens to confirm the pres-
ence of the GBs and to verify their misorientation angles before APT

measurement. TKD was performed on a TESCAN GAIA3, in STEMmode,
equipped with Oxford-NordlysNano detector. All APT measurements
were conducted on a CAMECA LEAP 6000 XR in laser mode, at 50 K
specimen temperature, 50–70 pJ laser energy, 0.3 % evaporation rate.
Auto pulse frequency control was set to collect a minimum mass-to-
charge ratio of 150 Da. The CAMECA APT Suit 6 software was
employed to create reconstructions and evaluate the data.

3. Result and discussion

The EBSDmaps revealing the grain structure in the HAZ as a function
of the distance to the FB in the AR and TA samples are shown in Fig. 1.
The macrostructure of the DMW mock-up studied is presented in Fig. 2
(a). The HAZ adjacent to the FB is estimated to be about 2.5 mm wide.
Fig. 2(b) illustrates the variation in micro-hardness and PAG size as a
function of distance from the FB in the LAS HAZ under both AR and TA
conditions. The hardness reaches a maximum and the grain size a
minimum at 0.3–0.5 mm from the FB, i.e. in the grain-refined region. For
the T0 fracture toughness TA specimens, with crack propagation
occurring in the HAZ (~0.3–0.5 mm from the FB) without deviation to
the FB, a significantly lower (~1/3) fracture toughness was observed in
comparison to specimens where the notches were placed near the FB and
with the cracking path deviating to the FB. A summary of the T0 testing
results and representative cross-sectional characterizations is shown in
Fig. 2(c-e). While the FB in the DMW is typically considered the most
vulnerable location regarding fracture mechanical behavior, this study
revealed a much lower local brittle fracture toughness in the HAZ at a
distance of approximately 0.3–0.5 mm from the FB.
Representative fracture surfaces of the T0 fracture toughness speci-

mens in the AR and TA materials are shown in Fig. 3. The AR material
exhibits brittle fracture with cleavage facets, while the TA material
shows intergranular cracking. This reveals that long-term thermal aging
increases GB decohesion and intergranular cracking, resulting in a
decreased fracture toughness in the LAS HAZ of the TA specimens.
The carbide distribution in the HAZ (at a distance of approximately

0.3 mm from the FB) of the AR and TAmaterials is illustrated in Fig. 4. In
the HAZ, the volume fraction of carbide increases upon thermal aging.
Analytical scanning transmission electron microscopy (STEM), EDS
maps and extracted elemental line profiles (Fig. 4(a)) reveal two types of
carbides in the LAS HAZ of the AR material. The dominant and larger
carbides are (Fe, Mn, Cr)3C carbides (θ-M3C type), located both at GBs
and within grains, with lengths ranging from tens to 150 nm and widths
of 30–80 nm. Smaller carbides are Mo-rich (Mo2C), located at GBs with a
few tens of nm in size. In the HAZ of the TA material, the large carbides
remain (Fe, Mn, Cr)3C, with lengths extending up to 350 nm, as shown in
the STEM-EDS maps in Fig. 4(b). Most Mo-rich carbides are still with
sizes around a few tens of nm, though some exceed 100 nm. Thermal
aging did not alter the types of carbides but resulted in their coarsening
in the HAZ.
The effect of long-term thermal aging on the segregation of P and

other alloying elements in the HAZ of LAS was investigated with APT.
Given that the extent of segregation is closely linked to the misorien-
tation angle of the GBs [28,29], this study focuses on comparing the
elemental concentrations at high-angle GBs with similar misorientation
(55–60◦) located ~0.3 mm from the FB in both AR and TA conditions.
Site specific APT needles were prepared with the FIB lift-out technique
[30]. TKD was performed on the sharpened specimens to verify the GB
misorientation angles before APT measurements, with the resulting
representative maps shown in the Fig. 5.

Table 1
Chemical composition of the Alloy 52 weld and the DMW LAS nozzle (wt%).

C Al Si P S Ti Cr Mn Fe Ni Cu Mo

Alloy 52 0.023 0.66 0.15 <0.005 0.0007 0.54 29.9 0.26 10.4 Bal. <0.01 <0.01
SA508 0.18 0.02 0.19 0.005 0.001 0.002 0.12 1.49 Bal. 0.78 0.06 0.49
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Multiple APT measurements were conducted on both AR and the TA
materials. Representative reconstructions of APT measurements from
AR and TA materials are shown in Fig. 6(a-b). In the AR condition, there
is only a very limited tendency for P to segregate at GBs, whereas sig-
nificant P segregation is observed in the TA material. Other elements,
such as Mo, C, and Mn, are found to segregate at GBs in both AR and TA
materials. Fig. 7(a-b) display 1D concentration profiles across two GBs,
showing the absence of P in the AR GB but up to 0.3 at.% P in the TA GB.
Mo, Mn, and C are segregated in both AR and TA materials, but their
concentrations at TA GBs are markedly higher.
Moreover, more and larger carbides can be found at GBs in the TA

material in comparison to the AR material, as APT analysis of AR
specimens showed no visible carbides associated with GBs, whereas
significant carbides were observed in needles from TA specimens.
Similar observations were made by the STEM analysis. A proximity
histogram displaying the concentration of various elements at progres-
sive distances from the surface of the Mo-carbide is presented in Fig. 7
(c). This plot indicates the composition inside the carbide, with
approximately 60 at.% Mo and 30 at.% C, suggesting it is a Mo2C-type
carbide. Notably, Mo and C were found clustering along elongated
features (likely dislocations or disconnections [31]) in the AR material,
as visible in the right box in Fig. 6(a). This might highlight the tendency
of these two elements to react and form carbides, potentially repre-
senting a nucleation stage for the Mo2C carbides found in the TA ma-
terial. Additionally, Cu-rich clusters, as observed by Medouni et al. [32]
upon long-term aging, were not detected in this study. This discrepancy
may be due to the lower Cu content in the current study (0.06 vs. 0.098
wt%).
Gibbsian interfacial excess (Γ) [33] for P, C, Mo, and Mn segregating

at the GB of the AR and TA samples respectively has been calculated and
reported in Table 2. As displayed by the 1D profiles and the Gibbsian
interfacial excess, the segregation at the measured GBs is significant

already in the AR sample. After TA, all elements accumulate further,
particularly Mn and Mo. While C is expected to sit at interstitial sites, P,
Mo and Mn are likely to be substitutional [34,35]. Mo plus Mn atoms
reach a total value of Gibbsian interfacial excess around 16 atoms/nm2.
As comparison, the planar atomic densities of Fe-BCC (100) and Fe-FCC
(111) are 12.17 atoms/nm2 and 18.74 atoms/nm2, respectively. Overall,
after TA it is reasonable to imagine Mn and Mo forming a monoatomic
layer at the GB. This can influence the mechanical behavior of the GB
and affect the chemical environment potentially favoring the P
segregation.
The results are consistent with our previous study [27], showing that

the bulk P content in the HAZ grain interior is slightly higher in the AR
material compared to the TA material, due to P segregation from the
grain interior to GBs after thermal aging. The current APT analysis al-
lows for calculating an approximate concentration of P in the grain
interior, excluding contributions from GBs. These results, presented in
Table 3, support the previously proposed hypothesis [27], with both
studies reporting P concentrations in the same order of magnitude (tens
of atomic ppm). In the current measurements, the bulk concentration of
P in the AR material was around 20–50 ppm, aligning well with the
previously measured range. However, the bulk concentration of P in the
TA material measured in this work is lower than previously measured,
possibly due to the region of interest selected for this study. The bulk
composition presented in Table 3 was obtained by measuring P in re-
gions around the selected HAGBs. The proximity to the GB and the P
enrichment after thermal aging could be associated with a P depletion
zone in the surrounding area, explaining the low P values measured in
the supposed “bulk of the grain”. Interestingly, the nominal P concen-
tration for this alloy is around 90 atomic ppm, but both APT studies
measured significantly lower bulk amounts of P even before aging. This
might indicate some P segregation occurring before thermal aging,
potentially at the interface with M3C–type carbides, as suggested in our

Fig. 1. EBSD IPF and image quality maps (rotation angle 2–15o in red and ˃15o in blue) per distance to the FB in the AR and TA samples. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. (a) The investigated narrow-gap GTAW DMW mock-up. (b) The change in micro-hardness and PAG grain size in the HAZ of LAS adjacent to the FB. (c)
Summary of the T0 testing results for AR and TA materials. The representative cross-sectional characterizations of TA T0 testing specimens (d) with and (e) without
crack deviation to the FB. The deviation to the FB resulted in a much higher fracture toughness.

Fig. 3. Representative fracture surfaces of the T0 fracture toughness specimens in the AR and TA materials.
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Fig. 4. Carbides in the LAS HAZ of (a) AR and (b) TA materials. The illustrative images are BF images, HAADF images, STEM-EDS elemental maps and extracted
line profiles.

Fig. 5. Representative TKD maps of APT specimens: AR (left) and TA (right) material. High-angle GBs with comparable misorientation were selected.
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previous work [27].
The APT results on P and Mn segregation at GBs in AR and TA

samples suggest that Mn segregation occurs earlier than P, likely due to
the remarkably low P content in the material, consistent with previous
observations by Kuzmina et al. [36]. In a Fe-9Mn ferritic steel with a P
content less than 30 wppm, 10 min of tempering at 450 ◦C or 600 ◦C can
already induce Mn segregation at GBs, but no P segregation was revealed
by APT [36]. Mn segregation leads to a significant reduction in room-
temperature impact toughness. The sole segregation of Mn itself in AR
and TA samples should contribute to intergranular fracture, a known
embrittlement effect of Mn in ferritic and duplex steels [36,37]. In LASs,
Mn additions were observed to reduce the resistance to temper
embrittlement [38], though the exact mechanisms are under debate. The
proposed mechanisms are linked to the effect of Mn on the C activity,
potential co-segregation of Mn and P, and the change of P diffusivity
[38].
In terms of the interaction between Mn and P, Mn was found to in-

crease P diffusivity and substantially modify the kinetics of P segrega-
tion in iron and steels [39,40]. Mn was also observed to enhance P
segregation at GBs [41] and accelerate the temper embrittlement in

LASs with the same P content [42]. The simultaneous increase in the
segregation levels of P, C, Mn, andMo in the TA sample, compared to the
AR one, is consistent with previous experimental observations [43,44],
which is often ascribed to the co-segregation mechanism [45] based on
the presumed “attractive interaction” between P and other metal ele-
ments [43,46,47]. However, this contradicts ab initio results showing
repulsive interactions between P and other transition metals (and with C
as well) on a fundamental level [48–50]. As discussed by Suzuki et al.
[51], a positive correlation between GB segregation of elements alone
cannot prove co-segregation, which may also be attributed to the same
GB structure dependence of elemental segregation. It appears that the
segregation level at a GB is a competition between local GB structure,
alloying element segregation energy, and solute interactions.
Ab initio calculations revealed a stronger P segregation tendency at

general GBs (~ − 1.0 eV) compared to other transition metals such as
Mn, Ni and Mo (~ − 0.5 eV) [48–50]. The repulsive interactions of P-
Mn/Mo and P-C seem not strong enough to repel P atoms from segre-
gation towards GBs, given the significant number of GB sites available
and the low P content. Mai et al. [49] suggested that owing to the
repulsive interactions and segregation binding, the enrichment of P

Fig. 6. 3D reconstruction of APT data collected across a HAGB in (a) AR material and (b) TA material. Atom maps of Mo, C, P and Mn are plotted. In (a), segregation
of Mo, C and Mn (but no P) is evident from these maps. Segregation of Mo and C follows a pattern fitting enrichment at dislocations or disconnections arranged in a
tight array as visible in the boxes to the right (Mo isosurfaces shown in (i), C isosurfaces shown in (ii)). In (b), segregation of Mo, C, P and Mn is evident from these
maps. The presence of a Mo-carbide at the GB is evident, a detail of this feature is presented in the box to the right. The location and direction of 1D profiles (see
Fig. 7) are indicated by the dashed arrows.
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upon aging time results in a depletion of prior-segregated cohesion-
enhancing solute elements at GBs, which critically influence the P-
induced temper embrittlement. However, from the current experimental
results, it appears that the segregation of Mn, Mo and C in the AR con-
dition does not effectively repel P atoms from GB segregation upon
extended tempering. On the other hand, when the segregation energy of
one element is weak, such as Al in a ferritic steel, the strong repulsive
interactions of C-Al and B-Al were sufficient to repel Al from GBs [52].
Strong C segregation is usually considered to suppress P-induced
embrittlement, based on the C and P site competition mechanism, or the
C-enhanced GB cohesion mechanism. Moreover, Mo is considered an
element enhancing GB cohesion. In the present work, however, when C
segregates to GBs and facilitates the formation and coarsening of car-
bides, it seems to weaken the resistance to temper embrittlement.
The reduction in brittle fracture resistance of DMWs can arise from

inherent local inhomogeneities and increased constraint [22,53]. This

Fig. 7. 1D composition profile across HAGB in the AR material (a), main alloying elements are presented in the top plot while P is presented in the bottom plot. 1D
composition profile across HAGB in the TA material (b), main alloying elements are presented in the top plot while P is presented in the bottom plot. Proximity
histogram measured across the matrix–carbide interface for the carbide found in the TA material (c).

Table 2
Gibbsian interfacial excess (Γ) calculated for P, C, Mo, and Mn.

Specimen ΓP (atoms/
nm2)

ΓC (atoms/
nm2)

ΓMo (atoms/
nm2)

ΓMn (atoms/
nm2)

AR 0.00 2.84 2.43 4.75
TA 0.29 3.01 4.16 12.46

Table 3
Bulk P content of AR and TA materials measured with APT (GBs were
excluded).

P (ppm) P (wppm)

AR 32 ± 12 18 ± 7
TA 16 ± 4 9 ± 3
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indicates that in the TA specimens, where the crack propagation
occurred in the LAS HAZ at a distance of ~0.3–0.5 mm from the FB, the
elemental segregation and carbide coarsening upon thermal aging
contributed to the low resistance to brittle fracture. Long-term thermal
aging at 400 ◦C for 15,000 h leads to coarsening of carbide precipitates
and significant P and Mn segregation to GBs in the HAZ (despite a low
bulk P content in modern low-P LASs). The carbide coarsening and
segregation result in the presence of local brittle zones (additionally
associated with peak nano-hardness and minimal grain size in HAZ), a
higher degree of intergranular cracking and a low fracture toughness in
the HAZ at a distance of ~0.3–0.5 mm from the FB. The direct obser-
vations of significant elemental segregation to GBs and the resultant
reduction in fracture toughness in the HAZ are unexpected for modern
low-P LASs. This should be considered for evaluating the long-term
structural integrity of nuclear components.

4. Conclusions

The following conclusions can be drawn based on the obtained
results:

• Long-term thermal aging results in significant P and Mn segregation
to GBs (despite a very low bulk P content) and coarsens the carbides
in the HAZ, which enhances GB decohesion, leads to local brittle
zones, facilitates brittle crack propagation along GBs and ultimately
causes a low fracture toughness.

• P can segregate to GBs in LAS after long service times even when its
bulk content is very low. Simultaneously, Mn segregates at GBs and
contributes to the intergranular fracture. It is observed that when C
segregates to GBs and facilitates the formation and coarsening of GB
carbides, it weakens the resistance to temper embrittlement.
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