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A. Oguz Kislal

Department of Electrical Engineering
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Abstract
This thesis focuses on the fundamental performance of ultra-reliable low-
latency communication (URLLC) systems, particularly in terms of achievable
error probabilities. Since low latency necessitates the use of short data pack-
ets, understanding the trade-off between blocklength and reliability is crucial.
This thesis provides design guidelines for URLLC systems, including those
with multiple antennas, imperfect time synchronization, and error detection,
based on three key papers.

In Paper A, we present a numerically efficient method for evaluating the ran-
dom coding union bounds with parameter s for the error probability achievable
by a pilot-assisted transmission method on a block-fading channel. Our ap-
proach, which uses the saddlepoint approximation with respect to the number
of fading blocks, significantly reduces the number of Monte Carlo samples re-
quired to accurately estimate the achievability bound for the error probability,
particularly in scenarios with multiple diversity branches.

In Paper B, we investigate the achievable error probability in the finite
blocklength regime for a pilot-assisted transmission scheme operating over an
imperfectly synchronized, memoryless block-fading waveform channel. Nu-
merical experiments show that the number of pilot symbols needed to estimate
the fading channel gains with the accuracy required for URLLC is also suffi-
cient for synchronization when delays are modeled as fully dependent across
fading blocks.

In Paper C, we explore a URLLC system with an erasure decoder and
investigate the trade-off between the total error probability and the proba-
bility of undetected errors in the short blocklength regime by developing two
achievability bounds. These bounds are tighter than Forney’s error exponent
bound for the additive white Gaussian noise channel and can be evaluated for
practically relevant channels.

Keywords: Ultra-reliable low-latency, short packets, mismatched decoding,
imperfect CSI, imperfect synchronization, multiuser massive MIMO, erasure
decoding.
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CHAPTER 1

Introduction

Since the emergence of the initial iteration of analog wireless cellular systems,
the past five decades have witnessed swift advancements in communication.
With the introduction of next-generation wireless communications, new ap-
plications, that fall under the Internet of Things (IoT) paradigm, are enabled.
In the context of IoT, it is anticipated that next-generation wireless com-
munication systems will facilitate interconnection of a wide range of devices.
These devices will span from vehicles or drones, functioning within dynamic
and high-mobility environments, to autonomous machines or stationary sen-
sors, operating within static or low-mobility settings [1]. To accommodate
diverse performance needs and facilitate a range of services, 5G has identified
three primary service categories: enhanced mobile broadband (eMBB), which
aims to deliver high data rates and spectral efficiency; massive machine-type
communication (mMTC), designed to enable connectivity for a large volume
of machine-type devices; and ultra-reliable and low latency communication
(URLLC), intended to support services where the data throughput is low
(e.g., 50 Mbit/s) but the transmission needs to satisfy the stringent require-
ments in terms of reliability (e.g., 99.999%) and latency (e.g., 1 ms) [2], [3].
This thesis aims to provide a practically relevant framework for benchmarking
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Chapter 1 Introduction

URLLC systems.
URLLC plays a crucial role in enabling mission-critical services and holds

the potential to revolutionize various industries. Here are some major exam-
ples:

• Industrial automation [4], [5]: URLLC is anticipated to be implemented
in factories to automate mission-critical processes such as robot motion
control and tactile interaction. Utilizing this technology can potentially
decrease the operational costs significantly.

• Intelligent transportation [6], [7]: URLLC facilitates the swift and reli-
able exchange of information among vehicles, infrastructure, and pedes-
trians, thereby contributing to improved road safety and enhanced traf-
fic efficiency. Typical usage scenarios encompass automated overtaking,
cooperative collision avoidance, and traffic management.

• Augmented reality (AR) [8]: AR is an approach to enhance the percep-
tion of the real-world environment by incorporating computer-generated
information, including audio, video, and geographic data. This applica-
tion imposes highly stringent demands on latency and reliability, where
the use of URLLC could alleviate the discomfort caused by prolonged
delays between actions and responses.

URLLC systems cover all these use cases with the key features like: short
transmission time [9], error detection and feedback schemes, e.g. automatic
repeat request (ARQ) [10], [11], the channel codes designed for short-packets
[12], and exploitation of diversity [13]. Diversity here is especially important
to satisfy the reliability constraints. The use of time diversity, which is popular
in traditional communication systems, may not be practical in URLLC due
to latency requirements [14, Ch. 1]. Therefore, in URLLC, different sources
of diversity must be utilized, such as frequency diversity, which consists of
transmission over a bandwidth spanning multiple coherent bandwidths, or
spatial diversity [15].

Obtaining channel state information (CSI) is another important process
for communication systems. Traditionally, the resources required to obtain
CSI have rarely been accounted for. In fact, one can estimate the channel
using pilot-assisted transmission (PAT) without significantly degrading the
performance of the system for long packets. However, when communicating
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with short packets, the impact of pilots can be significant and should be taken
into account.

Traditional wireless communication systems were designed relying on the
guidelines provided by information-theory analyses based on ergodic and out-
age capacity. Ergodic capacity is the maximum coding rate achievable with
vanishing error probability when the blocklength tends to infinity, and the
outage capacity, which is also called ϵ-capacity, is the maximum coding rate
achievabile, given that the probability of a certain outage probability is smaller
than ϵ. Due to the infinite blocklength assumption in their definitions, both
of these capacities do not provide insightful benchmarks when the blocklength
is short [1], [16]. In this case, a characterization of the maximum coding rate
achievable as a function of the blocklength and the error probability is needed.

This thesis aims to analyze the fundamental performance, specifically focus-
ing on the achievable error probability of communication systems operating
over block-fading channels within the URLLC regime. In particular, we aimed
to answer three research questions, all concerning URLLC systems, as follows:

1. The use of nonasymptotic achievability bounds within URLLC optimiza-
tion routines, such as resource allocation and scheduling algorithms, is
challenging due to their time-consuming nature. Therefore, how can we
develop a numerically efficient method to evaluate these achievability
bounds?

2. The timing synchronization is typically assumed to be perfect in the
analyses available in the literature. This assumption is validated for
traditional communication systems through the use of many pilot sym-
bols. However, this argument does not hold for URLLC due to the use
of short packets. So, what is the impact of timing synchronization error
in URLLC systems?

3. The reliability of URLLC systems is often quantified by the block error
probability at the decoder output. However, for certain mission-critical
applications, this measure alone is insufficient. In such cases, it is im-
portant to distinguish between two kinds of decoding errors: detected
and undetected errors. Given this distinction, how does a URLLC sys-
tem utilizing such a decoder perform in terms of both undetected and
detected errors?

5



Chapter 1 Introduction

1.1 Thesis Organization
This thesis is divided into two parts. In Part I, an overview of finite-blocklength
information theory is presented. We delve into the critical differences between
traditional communication systems and URLLC systems mentioned in the in-
troduction and explore the basics of the finite-blocklength tools we used in
our papers. Part I reviews the models and tools used in the appended papers
in Part II.

In particular, Chapter 2, presents a review of the nonasymptotic achievabil-
ity bounds on the error probability. Chapter 3 presents practically relevant
system models describing the propagation of the channel and provide the
background for imperfect CSI, mismatched decoding and massive multiple-
input multiple-output (MIMO) communication systems. Chapter 4 reviews
the asymptotic expansions of random coding union bound with parameter s.
Chapter 5 reviews the erasure decoding and the fundamental trade-off between
erasure probability and undetected error probability. Chapter 6 contains the
concluding remarks for the first part of the thesis including an outline of the
contributions and future work.

1.2 Notation
We denote random vectors and random scalars by upper-case boldface letters
such as X and upper-case standard letters, such as X, respectively. Their
realizations are indicated by lower-case letters of the same font. To avoid
ambiguities, we use another font, such as R for rate, to denote constants that
are typically capitalized in the literature. The circularly-symmetric Gaussian
distribution is denoted by CN (0, σ2), where σ2 denotes the variance. The
superscript (·)H denotes Hermitian transposition. We write log(·) to denote
the natural logarithm, ∥·∥ stands for the ℓ2-norm, P[·] for the probability of
an event, E[·] for the expectation operator, Var[·] for the variance of a random
variable, 1 {·} is the indicator function, and Q(·) for the Gaussian Q-function.
Finally, N0 to denote the set of natural numbers including 0, (a)+ stands for
max(a), and for two functions f(n) and g(n), the notation f(n) = o(g(n))
means that limn→∞ f(n)/g(n) = 0 and the notation f(n) = O(g(n)) means
that lim supn→∞ |f(n)/g(n)| <∞.
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CHAPTER 2

Finite-Blocklength Achievability Bounds

In this chapter, we review some of the main tools used in finite blocklength in-
formation theory analysis. The discussion focuses on the achievability bounds
over the codes with a fixed blocklength, which relate to the results in Paper
A, Paper B and Paper C.

2.1 Overview
In URLLC, devices communicate at low data rates, aiming for an error prob-
ability of 10−5 or less, while meeting strict latency requirements. This is
generally achieved by transmitting short packets. Since capacity and outage
capacity are traditionally defined under the assumption of infinite blocklength,
it is necessary to provide a more precise characterization of the maximum cod-
ing rate versus blocklength.

We consider an arbitrary discrete-time memoryless communication chan-
nel that maps input symbols from the set X to output symbols from the
set Y. Specifically, let x = [x1, . . . , xn] ∈ Xn be the input vector and
Y = [Y1, . . . , Yn] ∈ Yn be the output vector of the channel. The channel
is characterized by its transition probability PY |X(y|x). To simplify the no-
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Chapter 2 Finite-Blocklength Achievability Bounds

tation, we define the transition probability using the conditional probability
mass function PY |X(y|x), which assumes that the set Y has finite cardinality.
Nevertheless, most analysis here is general and applicable to channels with
continuous input and output. In such cases, PY |X(y|x) should be replaced
by the conditional probability density function. For memoryless channels,
PY |X(y|x) factorizes as

PY |X(Y |X) =
n∏

i=1
PYi|Xi

(Yi|Xi). (2.1)

We next define the notion of a channel code.

Definition 2.1. An (n,M, ϵ)-code for the channel PY |X(Y |X) consists of:

• An encoder f : {1, . . . ,M} → Xn that maps a message W , which we
assume to be uniformly distributed on {1, . . . ,M}, to a codeword in the
set C = {x1, . . . ,xM} ⊂ Xn.

• A decoder g : Yn → {1, . . . ,M}, that maps the received vector to a
message Ŵ = g(Y ) The decoder satisfies the average error probability
constraint

P
[
Ŵ ̸= W

]
≤ ϵ (2.2)

The performance of (n,M, ϵ)-code is typically assessed, for a fixed block-
length n and average error probability ϵ, via the maximum coding rate as

R∗(n, ϵ) = log(M∗(n, ϵ))
n

(2.3)

where
M∗(n, ϵ) = sup{M : ∃(n,M, ϵ)-channel code} . (2.4)

The supremum in (2.4) is over all encoder/decoder pairs that form a (n,M, ϵ)
channel code. Since the exact characterization of R∗(n, ϵ) is generally NP-
hard [17], non-asymptotic information-theoretic analyses typically focus on
establishing bounds for R∗(n, ϵ) and their asymptotic expansions. Note that
we shall refer n as blocklength, R as rate in nats per channel use1. Then the
size of the codebook is M = enR.

1With an abuse of notation, we will use R to denote also the rate measured in bits per
channel use when presenting numerical results throughout the thesis.
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2.2 Non-asymptotic Bounds

For a fixed codebook C, it is (in general) very hard to compute the error
probability. To overcome this problem, we will use the argument of random
coding. To do so, we consider the average error probability over an ensamble of
codebooks (for instance the set of all Gaussian codebooks). The key idea here
is to select the message W and the codebook ensemble uniformly so that each
symbol is independent. Assuming that we draw each symbol of a codeword
from a particular distribution PX , each symbol is i.i.d. with PX , which greatly
simplifies our analysis. We also assume that we have a maximum likelihood
(ML) decoder, i.e., that the receiver searches for the codeword in the codebook
that is closest to the received signal.

Next, we will review commonly used non-asymptotic bounds in the litera-
ture, focusing on the random coding union (RCU) bound and the RCU bound
with parameter s (RCUs). Then, starting from RCUs bound, we will also de-
rive Gallager’s Random Coding Bound (also known as Gallager Bound). The
analysis in Paper A and Paper B are based on the RCUs bound, and Paper
C uses both the random coding bound and the RCU bound.

2.2 Non-asymptotic Bounds
By determining an upper limit for the maximum coding rate, the achiev-
able rate for a certain error probability and blocklength can be characterized.
The dependence testing (DT) and the beta-beta bounds are two such non-
asymptotic bounds which are given as:

• DT bound: A threshold decoder sequentially consider all codewords
and, for each codeword, evaluates the information density ı(x; y), which
is given as

ı(x; y) =
PY |X(y|x)
PY (y) (2.5)

where
PX,Y (X,Y ) = PX(X)PY |X(Y |X) (2.6)

and PY is the resulting marginal distribution. Then, the decoder out-
puts the first codeword whose information density exceeds a certain
threshold. We obtain DT bound after an analysis of the error probabil-
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Chapter 2 Finite-Blocklength Achievability Bounds

ity using this decoder as [16], [18]

ϵ ≤ E
[
e(ı(X,Y )−log M−1

2 )+]
. (2.7)

• Beta-beta bound: In [19], the authors have extended the so-called golden
formula, which expresses the mutual information of two random vari-
ables as the difference of two relative entropies involving an auxiliary
distribution [20], to the finite-blocklength regime. To this end, using
the random coding argument and a suboptimal decoder based on the
Neyman-Pearson test between PX,Y and PXQY , where QY is the aux-
iliary output distribution, the beta-beta bound is given as [19]

M
2 ≥ sup

0<τ<ϵ

(
βτ (PY , QY )

β1−ϵ+τ (PX,Y , PXQY )

)
(2.8)

where βα(P,Q) is the classic Neyman-Pearson function given as

βα(P,Q) = min
∑

x

PZ|X(1|x)Q(x) (2.9)

where Z ∈ {0, 1} is a randomized test between P and Q with Z = 0
indicates that the test chooses Q. In (2.9) minimum is over all tests
satisfying ∑

x

PZ|X(1|x)P (x) ≥ α. (2.10)

The DT and beta-beta bounds are intractable for the practical system mod-
els we will consider in this thesis (see Chapter 3 for more details). The RCUs
bound, which we review in detail next, is tractable even when applied to
practical system models.

2.2.1 RCU and RCUs Bounds
As usual, we use a random coding argument and analyze the average error
probability under ML decoding, averaged over all possible codewords gener-
ated from the distribution PX . Under ML decoding, an error occurs if the
transmitted codeword has a lower posterior probability than one of the other
codewords. Mathematically, the error probability for a given realization of

10



2.2 Non-asymptotic Bounds

the random codebook can be upper bounded as

ϵ(x1, . . . ,xM) ≤ 1
M

M∑
i=1

P

 M⋃
j=1,j ̸=i

PY |X(Y |xj) ≥ PY |X(Y |xi)

 (2.11)

where the inequality here arises from the assumption that all ties result in er-
rors. Next, we evaluate the error probability averaged over all codebooks, and
since all codewords are identically and independently distributed (i.i.d.), we
assume, without loss of generality, that the first codeword X1 is transmitted.
Then, the average error probability ϵ = E[ϵ(x1, . . . ,xM)] can be evaluated as

ϵ ≤ P

 M⋃
j=2

PY |X(Y |Xj) ≥ PY |X(Y |X1)

 (2.12)

= E

P
 M⋃

j=2
PY |X(Y |Xj) ≥ PY |X(Y |X1)

∣∣∣∣∣∣ X1,Y

 (2.13)

≤ E

min

1,
M∑

j=2
P
[
PY |X(Y |Xj) ≥ PY |X(Y |X1)

∣∣ X1,Y
]
 (2.14)

= E
[
min

{
1, (M− 1)P

[
PY |X(Y |X̄) ≥ PY |X(Y |X)

∣∣ X,Y
]}]

. (2.15)

where
PX,Y ,X̄(X,Y , X̄) = PX(X)PY |X(Y |X)PX(X̄) (2.16)

meaning that X̄ has same distribution as X but it is independent of X and
Y . Here, in (2.13), we condition on X1 and Y to have a tighter bound once
we apply the union bound in (2.14), and (2.15) follows since all codewords are
i.i.d., so the (M − 1) probability terms are identical. Note that RCU bound
can also equivalently be stated as

ϵ ≤ E
[
min

{
1, (M− 1)P

[
ı(X̄; Y ) ≥ ı(X; Y )

∣∣ X,Y
]}]

. (2.17)

The RCU bound is extremely difficult to compute for many practical chan-
nels. In general, there is no closed-form expression for the probability in (2.15),
and this probability can be extremely small, since it is scaled by (M− 1). For
n = 100, R = 1/2 we have M − 1 ≈ 1015, which means that the probability

11



Chapter 2 Finite-Blocklength Achievability Bounds

term in (2.15) must be evaluated with a resolution of 10−15. The evaluation
with a Monte Carlo simulation would require ∼ 1017 samples for the proba-
bility event. In addition, the probability term must be evaluated for different
realizations of X and Y . In [21], the authors evaluated both the probabil-
ity term and the expectation in (2.15) using saddlepoint approximation for a
binary-input additive white Gaussian noise (biAWGN) channel. We will also
review saddlepoint approximation in detail in Chapter 4.

One may relax the RCU bound using a generalized Markov inequality which,
for nonnegative random variable Z and s > 0, is given as

P(Z > γ) ≤ E[Zs]
γs

. (2.18)

After applying Markov inequality to the probability term in (2.15) we get

ϵ ≤ E

[
min

{
1, (M− 1)

EX̄

[
PY |X(Y |X̄)s

]
PY |X(Y |X)s

}]
(2.19)

= E
[
e−(ıs(X;Y )−log(M−1))+

]
(2.20)

where ıs(X; Y ) is the so-called generalized information density and defined
as

ıs(x; y) = log
PY |X(y|x)s

E
[
PY |X(y|X̄)s

] . (2.21)

Using the identity E[min{1, Z}] = P{Z ≥ U} for a non-negative random vari-
able Z and uniform random variable U in (0, 1) [16], we may express the RCUs
bound as a tail probability as

ϵ ≤ P[ıs(X; Y ) + logU ≤ log(M− 1)] . (2.22)

2.2.2 Gallager’s Random Coding Bound
Refined asymptotic expansions are derived by asymptotic analyses of the max-
imum coding rate or error probability, which become more and more precise
with increasing blocklength. These expansions are usually expressed in closed
form and illustrate how the maximum coding rate approaches capacity for a
given coding rate or how the error probability decays with increasing block-
length. The Gallager’s random coding error exponent, which we shall derive
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2.2 Non-asymptotic Bounds

next, is one of the classical examples of such an expression in the information-
theory literature.

Let κs(y) be the cumulant-generating function (CGF) of ı(X̄,y), which is
the logarithm of moment generating function (MGF), as

κ(s,y) = logE
[
esı(X̄,y)

]
(2.23)

Then,

ϵ ≤ inf
s>0

E
[
min

{
1, (M− 1)e−(sı(X;Y )−κ(s,Y ))

}]
(2.24)

≤ min
0≤p≤1

inf
s>0

E
[
(M − 1)pe−(psı(X;Y )−pκ(s,Y ))

]
(2.25)

≤ min
0≤p≤1

inf
s>0

E
[
e−(psı(X̄,Y )−pκ(s,Y )−ı(X̄;Y )−pnR)

]
(2.26)

= min
0≤p≤1

inf
s>0

E
[
e(1−sp)ı(X̄;Y )+pκ(s,Y )+pnR

]
(2.27)

= min
0≤p≤1

inf
s>0

E
[
eκ(1−sp,Y )+pκ(s,Y )+pnR

]
(2.28)

= min
0≤p≤1

E
[
e(1+p)κ( 1

1+p ,Y )+pnR
]

(2.29)

where (2.24) is equivalent to (2.19) and infimum over s is included to obtain a
tighter bound; (2.25) follows from min{1, x} ≤ xp for all x ≥ 0 and 0 ≤ p ≤ 1;
(2.26) follows from the change of measure E[f(X,Y )] = E

[
f(X̄,Y ), eı(X̄;Y )

]
and M − 1 ≤ enR; (2.28) follows from (2.23), and X̄ is independent of X

and Y ; (2.29) follows from setting s = 1/(1 + p), which can be shown to be
optimal. Using Gallager’s E0-function, which is given as

E0(p) = − 1
n

logE
[
e(1+p)κ( 1

1+p ,Y )
]

(2.30)

we obtain the Gallager’s random coding bound as

ϵ ≤ min
0≤p≤1

e−n(E0(p)−pR) (2.31)

Gallager’s random coding bound is tight when n is large but loose when n

is small [16], which makes this bound a poor choice to benchmark URLLC
systems.
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Figure 2.1: Error probability as a function of SNR. Here n = 128 and R = 0.5 BPCU;
QY = PY for beta-beta bound and s is optimized for RCUs bound.

2.3 Results and Discussion
In Fig. 2.1 we have compared Gallager’s random coding bound, the beta-beta
bound, the RCU and the RCUs bounds for a biAWGN channel R = 0.5 bits
per channel use (BPCU), and n = 128. We observe that the RCU bound is
significantly tighter than all other bounds, but it is also the most complex
in terms of computational complexity. The RCUs bound is tighter than the
beta-beta bound and Gallager bound, and its computational complexity is
significantly lower than that of the RCU bound.
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CHAPTER 3

System Models

In this chapter, we review some of the practically relevant system models
that we have used in this work. In particular, we introduce the block fading
channel model, which serves as the basis for the remaining models and is used
in Paper A, Paper B, Paper C and Chapter 4; block fading channel with
imperfect synchronization, which models imperfect timing synchronization in
addition to the block fading channel and is used in Paper B; massive MIMO
network, which is used in Paper A.

3.1 Block-Fading Channel

3.1.1 Propagation Model
The propagation environment is crucial for the development of a wireless com-
munication system. Since using an exact model of the environment is imprac-
tical, simplified channel models are used in the analysis. There is a trade-off
between the accuracy and simplicity of such channel models. To avoid us-
ing a model that is too specific to a particular environment, the statistics of
the propagation environment are usually described with several simplifying
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Chapter 3 System Models

assumptions. In the following, we present the simplifying assumptions that
enables the use of block-fading channel model.

Electromagnetic waves get reflected, refracted, and diffracted in the envi-
ronment. This interaction may separate the wave into so-called multipath
components that arrive at the receiver with a potentially different delay, am-
plitude, phase, and angle. The impact of the channel is mathematically de-
scribed as [22, Ch. 6.3.1]

y(t) =
∫ ∞

−∞
x(t− τ)h(t, τ) dτ (3.1)

where x(t) and y(t) are the complex signal transmitted and received at time
t by the transmitter and receiver respectively, and h(t, τ) is the time-varying
impulse response of the channel. Here, τ can be considered as the time delay
between the transmission and reception of the signal. In fact, h(t, τ) depends
on the multipath components and the radiation patterns of the transmit and
receive antennas.

The delay, angle and number of multipath components may change over
time due to the changing propagation environment. However, we assume
that the change in these variables over time is slow enough in comparison
to the packet duration such that they are considered time invariant. We
model h(t, τ) as a realization of the random process H(t, τ). If the channel is
wide-sense stationary (WSS) and scattering is uncorrelated, i.e., if we assume
that H(t, τ) is WSS in t and uncorrelated in τ , then one can show that the
time-frequency response H(t, f), which is the Fourier transform of H(t, τ),
is WSS in both t and f . Hence, the correlation function RH(t1, t2, f1, f2) =
E[H∗(t1, f1)H(t2, f2)] depends only on ∆t = t2 − t1 and ∆f = f2 − f1 as we
shall refer as RH(∆t,∆f).

Multipath components take different routes to the recipient, which is partly
characterized by the delay τ . This leads to a time dispersion at the receiver due
to multipath components with different delays. In the frequency domain, mul-
tipath components with different delays correspond to different phase shifts
of the same signal, therefore, the combination of these components can lead
to interference. If the interference is destructive, the output power of the
channel can be significantly reduced. Since the phase shifts vary with fre-
quency, the same multipath components can cause constructive interference
at one frequency and destructive interference at another, typically known as
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3.1 Block-Fading Channel

frequency selectivity. A common simplifying assumption is that dispersion
is uncorrelated, meaning that multipath components with different delays do
not correlate with each other.

A stochastic description of the time-varying impulse response requires the
joint probability density function (pdf) of the complex amplitudes of the mul-
tipath components at all times, delays and angles. This is of course generally
not available, and a common simplification is to use an autocorrelation func-
tion as an approximate description of the impulse response instead.

The coherence time Tc indicates the rate at which the channel changes
over time and is defined as the duration during which the channel remains
statistically correlated. It is given as [22, Ch.6.5.4]

Tc = max
{

∆t : |RH(∆t, 0)|
RH(0, 0) = α

}
(3.2)

for some α ∈ [0, 1]. Similarly, the coherence bandwidth Bc in the frequency
domain indicates how fast the channel changes with frequency. It is defined as
the maximum frequency spacing over which the channel remains correlated.
It is given by

Bc = max
{

∆f : |RH(0,∆f)|
RH(0, 0) = α

}
. (3.3)

where α ∈ [0, 1] as in (3.2). We assume that α is chosen large enough such
that the channel remains the same for the time duration Tc and the frequency
interval Bc. Such time-frequency blocks with the time duration Tc and the
bandwidth Bc are usually referred to as coherence blocks, also known as fading
blocks.

Assume that the signal bandwitdh B satisfy B ≪ Bc and we choose the
duration of the transmitted signal T to be T ≪ Tc. Then, we may exploit
frequency diversity by transmitting the signal over different fading blocks with
independent fading gains, and fading gains stay same during a transmission
as H = H(t, τ).

3.1.2 Pilot-Assisted Transmission and Channel Estimation
We begin by examining a memoryless block fading channel within single-input
single-output (SISO) setting. In this model, the channel remains unchanged
during the transmission of a block containing nc channel uses, but it varies
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Chapter 3 System Models

independently from one block to the next. Each transmitted packet spans nb
of these fading blocks. Consequently, a packet contains n = nbnc symbols
that are complex-valued. Within each block, the first np symbols are pilot
symbols known to the receiver, while the remaining nd = nc−np symbols are
data symbols.

The pilot symbols are used to estimate the fading channel within their
respective blocks. The input-output relationship during the pilot transmission
phase within the block ℓ = 1, . . . , nb is represented as follows:

Y
(p)

ℓ = Hℓx(p)
ℓ + W

(p)
ℓ . (3.4)

Here, x(p)
ℓ stands for the deterministic np-dimensional vector of pilot symbols,

which we assume to obey the power constraint ∥x(p)
ℓ ∥2 = ρnp, where ρ denotes

the average transmission power per symbol. Moreover, Hℓ denotes the scalar
random complex fading channel gain and W

(p)
ℓ denotes the np-dimensional

additive noise vector. We assume that the entries of W
(p)
ℓ are i.i.d. CN (0, σ2

ℓ ).
The receiver uses the received vector Y

(p)
ℓ and the pilot sequence x(p)

ℓ to
estimate the channel Hℓ, resulting in an estimate Ĥℓ. It is important to note
that we have not defined the fading distribution nor the specific algorithm
that the receiver uses to estimate the fading channel. The error probability
bounds presented in this section apply to any fading distribution and any
channel estimation algorithm.

Within each block, the pilot-transmission phase is followed by a data-
transmission phase, which involves the transmission of nd symbols per block,
i.e., a total of nbnd symbols. Conditioned on the data, the input-output
relation for the ℓth block in the data phase is given by

Yℓ = Hℓxℓ + Wℓ. (3.5)

This setup is illustrated in Fig. 3.1 for an orthogonal frequency-division multi-
plexing (OFDM) scheme where a codeword with length n = 108 is transmitted
over nb = 3 fading blocks, each block contains 3 resource blocks and each re-
source block contains one OFDM symbol spanning 12 subcarrier [15].
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Figure 3.1: Pilot-assisted transmission over a block-fading channel for nb = 3, nc = 36,
np = 6. Here, blue squares corresponds to the pilot symbols and yellow squares
corresponds to the data symbols.

3.1.3 Mismatched Decoding
To perform decoding, the receiver seeks the codeword in the codebook that is
closest to the received signal, once each part of the codeword corresponding
to a different fading block is scaled by the available channel estimate. Mathe-
matically, given the received vector [y1, . . . ,ynb ]T and the channel estimates
{ĥ1, . . . , ĥnb}, the decoded codeword x̂ = [x̂1, . . . , x̂nb ]T is determined as

x̂ = arg min
x̄=[x̄1,...,x̄nb ]∈C

nb∑
ℓ=1
∥yℓ − ĥℓx̄ℓ∥2. (3.6)

This decoder, which is known as mismatched scaled nearest-neighbor (SNN)
decoder, coincides with the ML decoder only when the receiver has perfect
channel-state information, i.e., ĥℓ = hℓ for ℓ = 1, . . . , nb. The attractive fea-
ture of this decoder is that information-theoretic bounds on its error probabil-
ity can be approached in practice using good channel codes for the nonfading
additive white Gaussian noise (AWGN) channel [23].
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3.2 Imperfect Timing Synchronization
Timing synchronization refers to the process by which wireless communication
systems align the timing of their operations to ensure accurate and coherent
data exchange. This alignment is important to minimize interference, optimize
spectral efficiency and ensure the integrity of transmitted data. In essence,
timing synchronization is critical to the smooth operation of wireless networks
and has a direct impact on their performance and reliability.

Many studies in the literature concerning timing synchronization consider
clock synchronization for different system models (see [24], [25] for a review
on this topic). However, we consider the problem of the receiver detecting the
time of packet start. The imperfect time synchronization in this case can be
caused by the communication channel or clock skew. At the waveform level,
this problem is usually solved using pilot symbols, a solution that is at least 40
years old [26] and is still used today [27]. Mathematically, the continuous-time
signal x(p)(t) for a fading block is defined as

x(p)(t) =
np∑

k=1
x

(p)
k stp(t− (k − 1)tp) (3.7)

where stp(t) is a rectangular pulse given as

stp(t) =


1√
tp
, t ∈ [0, tp)

0, otherwise .
(3.8)

The data symbols in the ℓth block are sent after the pilot symbols via the
continuous-time signal

x
(d)
ℓ (t) =

ns∑
k=1

x
(d)
k,ℓstp(t− (k − 1)tp − nptp). (3.9)

The total continuous-time signal corresponding to the ℓth subpacket is put
through a flat-fading channel to obtain the received continuous signal

Yℓ(t) = Hℓ

(
x(p)(t−Dℓ) + x

(d)
ℓ (t−Dℓ)

)
+ Zℓ(t) (3.10)

where Hℓ denotes the scalar random fading complex channel gain for the ℓth
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Figure 3.2: An example of transmission and detection. Here, we only consider real symbol
transmission and to plot Yℓ(t), we oversampled the received signal after passed
it through an anti-aliasing filter; Hℓ = 0.6, σ2

ℓ = 1, ρ = 15 dB; green and red
dashed lines shows the sampling at the output of the matched filter when time
synchronization is perfect and imperfect, respectively.

fading block, Dℓ is the time delay for the ℓth fading block, which we assume to
be uniform in [0, dmax], and Z1(t), . . . , Znb(t) are independent white complex
Gaussian processes with power spectral density N0.

Once a packet has been transmitted over a noisy channel and received by the
receiver, it is passed through a matched filter. Due to imperfect time synchro-
nization, the output of the matched filter cannot be sampled at the moment
when a peak would occur if the signal were not distorted by the channel, as
illustrated by a simple example in Fig. 3.2. Such a shift in sampling causes
intersymbol interference, which should be taken into account when analyzing
the performance of a communication system. In conventional systems, it can
be assumed that the pilot sequences are long enough to eliminate this effect.
With URLLC, however, the use of pilot symbols is heavily penalized due to
the use of short packets. Therefore, it is crucial to evaluate the impact of
imperfect time synchronization in addition to the impact of using pilot sym-
bols. In Paper B, we analyzed the effects of imperfect timing synchronization
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in detail and showed that for a block-fading channel with fading blocks that
have the same delay, the pilot symbols used for channel estimation can be
used for both coarse and fine timing synchronization.

3.3 Massive MIMO Network
A massive MIMO network consists of L cells that work with a synchronous
time division duplex (TDD) protocol, in which an uplink transmission is usu-
ally followed by a downlink transmission [28, Ch. 2.1]. Each cell is served
by a base station (BS) equipped with m antennas, where m ≫ 1 and each
BS communicates with k single antenna users with m/k > 1. Massive MIMO
technology enables the design of a highly spectrally efficient cellular network
[29], [30] and has been implemented in real-time massive MIMO testbeds [31].

Practical channels are usually spatially correlated because antennas have
non-uniform radiation patterns, and certain spatial directions are more likely
to carry strong signals from the transmitter to the receiver due to the physi-
cal propagation environment. This spatial channel correlation is particularly
important for large arrays, as these have better spatial resolution in relation
to the number of scattering clusters. Consequently, the correlated Rayleigh
fading channel model is given as Hj

ℓ,i,k ∼ CN (0M,Rj
i,k) where Hj

ℓ,i,k ∈ CM

the channel gain vector within the ℓth fading block between user k in cell i
and the BS in cell j, and Rj

i,k is the spatial correlation matrix which shows
the propagation effects like antenna gains and radiation patterns at the trans-
mitted and receiver [28, Ch. 2.2]. The normalized trace βj

i,k = tr(Rj
i,k)/M

determines the average channel gain between user k in cell i and the BS in
cell j which can be modelled in dB scale as

βj
i,k = λ− 10α log10

(
dj

i,k

)
(3.11)

where λ the median channel gain at a reference distance of one kilometer, α
is the pathloss exponent and dj

i,k is the distance between the BS in the cell
j and the user k in cell i in kilometer. The parameters α and λ either needs
to be measured or may be computed using the propagation model (see [32]
for a survey on propagation models for mobile communication) and how the
spatial correlation matrix can be evaluated is described in [28, Ch. 2.6].

Two important features that improve the spectral efficiency of massive
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MIMO channels are channel hardening and favorable propagation.
Channel hardening describes the phenomenon that a fading channel behaves

almost deterministically due to spatial diversity, which means the SNR is not
affected by small-scale fading (the Rayleigh fading in this case). Mathemati-
cally, this is described as

∥Hj
ℓ,j,k∥2

E
[
∥Hj

ℓ,j,k∥2
] → 1 (3.12)

as m→∞.
Favorable propagation stands for the phenomenon that the channel direc-

tions becoming orthogonal as m → ∞. It can be mathematically described
as 〈

Hj
ℓ,i,k1√

E
[
∥Hj

ℓ,i,k1
∥2
] , Hj

ℓ,j,k2√
E
[
∥Hj

ℓ,j,k2
∥2
]
〉
→ 0 (3.13)

as m → ∞. Favorable propagation makes it easier for the base station to
combat interference between users and enables the use of linear combining
and precoding.

The idea of block-fading, which is explained in the Sec. 3.1, can be used
in massive MIMO transmission by using multi-carrier modulation methods
such as conventional OFDM. In this case, the subcarriers are transmitted
via coherence blocks, whereas the channel realizations between the blocks are
independent. This allows the use of analysis tools developed for block-fading
channels for massive MIMO settings, as done for example in [33] and Paper A.
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CHAPTER 4

Asymptotic Expansions of RCUs Bound

In this chapter, we will present the saddlepoint expansion of the tail prob-
ability of the sum of i.i.d. random variables used in Paper A, Paper B and
Paper C. We will then show that, through a first-order asymptotic expan-
sion of RCUs bound, how one may capture both the outage and the ergodic
capacity.

4.1 Asymptotic Expansions of a Tail Probability
RCU and RCUs bounds require the evaluation of tail probabilities, which are
generally not available in closed form, and their direct evaluation (e.g. via
Monte-Carlo simulations) has a high computational complexity. Tail prob-
abilities instead can be approximated as n → ∞ using probabilistic results.
One of the most fundamental results of probability theory that is relevant
here is the law of large numbers, which is given as follows [34, Ch. VII.8]:
Let Z1, . . . , Zn be i.i.d. real-valued continuous random variables with finite
mean µ = E[Zj ], finite variance σ2 = Var[Zj ] and finite third absolute central
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moment θ = E
[
|Zj |3

]
for j = 1, . . . , n. Then,

lim
n→∞

P

 1
n

n∑
j=1

Zj ≥ γ

 = 1 {γ ≤ µ} (4.1)

which shows that
∑n

j=1 Zj concentrates around its mean as n tends to in-
finity. The law of large numbers provides no information about the rate at
which the sum of the random variables converges to its mean. We, however,
would like to characterize how quickly the sum approaches its asymptotic
limit. The behavior of the sum of random variables may be refined using
central limit theorem (CLT). It provides a characterization of the error that
arises when approximating the tail probability of an appropriate normalized
sum of independent random variables with the tail probability of a standard
normal random variable, which we shall refer as Gaussian approximation. The
Berry-Esseen CLT for every λ ∈ R is given as [34, Chapter XVI]∣∣∣∣∣∣P

∑n
j=1(Zj − µ)√∑n

j=1 σ
2
≥ λ

−Q(λ)

∣∣∣∣∣∣ ≤ 6
∑n

j=1 θ(∑n
j=1 σ

2
)3/2 . (4.2)

Note that the right hand side (r.h.s.) of (4.2) does not depend on λ, which
indicates that Gaussian approximation is accurate when λ is close to µ, but,
depending on n, may be inaccurate otherwise. To tackle this problem, we
can utilize an exponentially tilted random variable and control its moments
such that its mean is matched with λ, evaluate the desired tail probability
via applying Gaussian approximation to the tilted random variable, and char-
acterizes the relative error that results from approximating the exponentially
tilted distribution with a normal distribution.. This method is called saddle-
point expansion which we shall review next.

The proof of the saddlepoint expansion is provided in detail in [35, Ch. 6],
which is mostly based on [34, Ch. XVI.4, Th. 1] and [36, App. E] (see also
[37, App. I.A]). For completeness, we will present the proof in [35, Ch. 6]
here, using our notation with some minor changes for clarity. In the proof, for
notational brevity, we use upper-case letters in a special font to denote the
distribution of a continuous random variable (i.e., Y).

As before, let Z1, . . . , Zn be i.i.d. real-valued continuous random variables.
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4.1 Asymptotic Expansions of a Tail Probability

Additionally, let m(ζ) and κ(ζ) denote the MGF and CGF of Zj , respectively,
which are given as follows:

m(ζ) = E
[
eζZj

]
(4.3)

κ(ζ) = log(m(ζ)). (4.4)

The saddlepoint expansion of the tail probability P[
∑n

j=1 Zj > λ] for λ ∈ R
is given as follows: Let ζ be the solution of nκ(ζ) = λ and we assume that

sup
ζ<ζ<ζ

∣∣∣∣ d3

dζ3m(ζ)
∣∣∣∣ <∞. (4.5)

For ζ ∈ [0, ζ)

P

 n∑
j=1

Zj > λ

 = en(κ(ζ)−ζκ′(ζ))
[
Ψn,ζ(ζ) + o

(
1√
n

)]
(4.6)

and for ζ ∈ (ζ, 0)

P

 n∑
j=1

Zj > λ

 = 1− en(κ(ζ)−ζκ′(ζ))
[
Ψn,ζ(−ζ) + o

(
1√
n

)]
(4.7)

where κ′(ζ) and κ′′(ζ) denote the first and second derivatives of κ(ζ), respec-
tively, and

Ψb,ζ(u) = eb u2
2 κ′′(ζ)Q

(
u
√
bκ′′(ζ)

)
. (4.8)

We begin the proof with P
[∑n

j=1 Zj > λ
]

for ζ ∈ [0, ζ). Let Yj = Zj − λ̃,
where λ̃ = λ/n and let Y denote the distribution of Yj . Then, the CGF of
Yj is given by γ̃(ζ) = κ(ζ) − ζλ̃. Let the tilted random variable Vj have the
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Chapter 4 Asymptotic Expansions of RCUs Bound

distribution Vζ as2

Vζ(x) = e−γ̃(ζ)
∫ x

−∞
eζt dY(t) (4.9)

= e−κ(ζ)+ζλ̃

∫ x

−∞
eζt dY(t). (4.10)

Also let ψζ(τ) denote the MGF of the tilted random variable Vj given as

ψζ(τ) =
∫ ∞

−∞
eτx dVζ(x) (4.11)

=
∫ ∞

−∞
eτx−κ(ζ)+ζλ̃+ζx dY(x) (4.12)

= e−κ(ζ)+ζλ̃

∫ ∞

−∞
e(τ+ζ)x dY(x) (4.13)

= e−κ(ζ)+ζλ̃ E
[
e(τ+ζ)(Zj−λ̃)

]
(4.14)

= e−κ(ζ) E
[
e(τ+ζ)Zj

]
e−τλ̃ (4.15)

= m(τ + ζ)
m(ζ) e−τλ̃. (4.16)

Since E[Vj ] = ψ′
ζ(0) where the derivative is taken with respect to τ , it follows

that

E[Vj ] = ψ′
ζ(0) (4.17)

=
(
m′(τ + ζ)
m(ζ) e−τλ̃ − λ̃m(τ + ζ)

m(ζ) e−τλ̃

) ∣∣∣∣
τ=0

(4.18)

= m′(ζ)
m(ζ) − λ̃ (4.19)

= κ′(ζ)− λ̃. (4.20)

Similarly, Var[Vj ] = E
[
V 2

j

]
− E[Vj ]2 = κ′′(ζ).

Let Y∗n be the distribution of
∑n

j=1 Yj and V∗n
ζ be the distribution of

2Note that P[Yj > λ] =
∫∞

λ
dY(t)
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4.1 Asymptotic Expansions of a Tail Probability

∑n
j=1 Vj . Proceeding as in (4.9), we have

V∗n
ζ (x) = e−nγ̃(ζ)

∫ x

−∞
eζt dY∗n(t) (4.21)

= e−nκ(ζ)+ζλ̃

∫ x

−∞
eζt dY∗n(t). (4.22)

Since P[
∑n

j=1 Zj > λ] = 1− Y∗n(λ), we require an expression for 1− Y∗n(λ)
as a function of V∗n

ζ (x). This can be obtained by inverting (4.22) as

P

 n∑
j=1

Zj > λ

 = enκ(ζ)−ζλ

∫ ∞

0
e−ζy dV∗n

ζ (y). (4.23)

We next set ζ such that nκ′(ζ) = λ, which ensures that the distribution
V∗n

ζ has zero mean, and replace the distribution V∗n
ζ by the zero-mean normal

distribution with variance nκ′′(ζ), which we denote by Φζ . To do so, let aζ(λ)
be the expression after replacing V∗n

ζ by Φζ in (4.23). Then,

aζ(λ) = enκ(ζ)−ζλ

∫ ∞

0
e−ζy dΦζ(y) (4.24)

= en[κ(ζ)−ζκ′(ζ)]√
2πnκ′′(ζ)

∫ ∞

0
e−ζye

− y2
2nκ′′(ζ) dy (4.25)

= en[κ(ζ)−ζκ′(ζ)]
√

2π

∫ ∞

0
e−ζt
√

nκ′′(ζ)e− t2
2 dt (4.26)

= e
n

[
κ(ζ)−ζκ′(ζ)+ ζ2

2 κ′′(ζ)
]

√
2π

∫ ∞

0
e

− 1
2

(
t+ζ
√

nκ′′(ζ)
)2

dt (4.27)

= e
n

[
κ(ζ)−ζκ′(ζ)+ ζ2

2 κ′′(ζ)
]

√
2π

∫ ∞

ζ
√

nκ′′(ζ)
e− x2

2 dx (4.28)

= e
n

[
κ(ζ)−ζκ′(ζ)+ ζ2

2 κ′′(ζ)
]
Q
(
ζ
√
nκ′′(ζ)

)
(4.29)

= en[κ(ζ)−ζκ′(ζ)]Ψn,ζ(ζ) (4.30)

where the (4.26) follows from the change of variable t = y/
√
nκ′′(ζ), and
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Chapter 4 Asymptotic Expansions of RCUs Bound

(4.28) follows from the change of variable x = t+ ζ
√
nκ′′(ζ).

We next asses the error incurred by replacing V∗n
ζ with Φζ in (4.23), which

is given by

enκ(ζ)−ζλ

∫ ∞

0
e−ζy dV∗n

ζ (y)− aζ(λ)

= en[κ(ζ)−ζκ′(ζ)]

[
κ′′′(ζ)

6κ′′(ζ)3/2√n

(
− 1√

2π
+ ζ2nκ′′(ζ)√

2π

− ζ3κ′′(ζ)3/2n3/2Ψn,ζ(ζ)
)

+ o

(
1√
n

)]
(4.31)

= en[κ(ζ)−ζκ′(ζ)]
[
K(ζ, ζ, n)√

n
+ o

(
1√
n

)]
(4.32)

= en[κ(ζ)−ζκ′(ζ)]o

(
1√
n

)
(4.33)

where

K(u, ζ, n) = κ′′′(ζ)
6κ′′(ζ)3/2

(
− 1√

2π
+ u2nκ′′(ζ)√

2π
− u3(κ′′(ζ)n)3/2Ψn,ζ(u)

)
.

(4.34)
Here, (4.31) follows from integration by parts [34, Ch. V.6, Eq.(6.1)] and
from [34, Ch. XVI.4, Th. 1], which requires the condition (4.5) to be met,
and (4.33) follows since K(u, ζ, n) = O(1/n) [35, App. B.7] which indicates
K(u, ζ, n)/

√
n = o(1/

√
n). By combining (4.30) and (4.33), we establish (4.6).

We next consider the case ζ ∈ (ζ, 0). Note that P
[∑n

j=1 Zj < λ
]

is the tail
of the distribution. To utilize this, we note that

P

 n∑
j=1

Zj > λ

 = 1− P

 n∑
j=1

Zj < λ

 (4.35)

and

P

 n∑
j=1

Zj < λ

 = enκ(ζ)−ζλ

∫ 0

−∞
e−ζy dV∗n

ζ (y). (4.36)

We again choose ζ such that nκ′(ζ) = λ, and let ãζ(λ) be the expression after
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4.1 Asymptotic Expansions of a Tail Probability

replacing V∗n
ζ by Φζ in (4.36). Then,

ãζ(λ) = enκ(ζ)−ζλ

∫ 0

−∞
e−ζy dΦζ(y) (4.37)

= en[κ(ζ)−ζκ′(ζ)]√
2πnκ′′(ζ)

∫ 0

−∞
e−ζye

− y2
2nκ′′(ζ) dy (4.38)

= en[κ(ζ)−ζκ′(ζ)]
√

2π

∫ 0

−∞
e−ζt
√

nκ′′(ζ)e−t2/2 dt (4.39)

= e
n

[
κ(ζ)−ζκ′(ζ)+ ζ2

2 κ′′(ζ)
]

√
2π

∫ 0

−∞
e

− 1
2

(
t+ζ
√

nκ′′(ζ)
)2

dt (4.40)

= e
n

[
κ(ζ)−ζκ′(ζ)+ ζ2

2 κ′′(ζ)
]

√
2π

∫ ζ
√

nκ′′(ζ)

−∞
e− x2

2 dx (4.41)

= e
n

[
κ(ζ)−ζκ′(ζ)+ ζ2

2 κ′′(ζ)
]

√
2π

∫ ∞

−ζ
√

nκ′′(ζ)
e− x2

2 dx (4.42)

= e
n

[
κ(ζ)−ζκ′(ζ)+ ζ2

2 κ′′(ζ)
]
Q
(
−ζ
√
nκ′′(ζ)

)
(4.43)

= en[κ(ζ)−ζκ′(ζ)]Ψn,ζ(−ζ) (4.44)

where (4.39) follows from the change of variable t = y/
√
nκ′′(ζ), and (4.41)

follows from the change of variable x = t+ζ
√
nκ′′(ζ). The error incurred due

to substituting V∗n
ζ by Φζ can be obtained by following the steps leading to
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Chapter 4 Asymptotic Expansions of RCUs Bound

(4.33) as

enκ(ζ)−ζλ

∫ 0

−∞
e−ζy dV∗n

ζ (y)− ãζ(λ)

= en[κ(ζ)−ζκ′(ζ)]

[
1√
2π

κ′′′(ζ)
6κ′′(ζ)3/2√n

(
1 +

∫ 0

−∞
ζ
√
nκ′′(ζ)(1− z2)

× e−ζ
√

κ′′(ζ)nz− z2
2 dz

)
+ o

(
1√
n

)]
(4.45)

= en[κ(ζ)−ζκ′(ζ)]

[
κ′′′(ζ)

6κ′′(ζ)3/2√n

(
1√
2π
− ζ2κ′′(ζ)n√

2π

− ζ3(κ′′(ζ)n)3/2Ψn,ζ(−ζ)
)

+ o

(
1√
n

)]
(4.46)

= en[κ(ζ)−ζκ′(ζ)]
(
−K(−ζ, ζ, n)√

n
+ o

(
1√
n

))
(4.47)

= en[κ(ζ)−ζκ′(ζ)]o

(
1√
n

)
. (4.48)

Combining (4.44) and (4.48) for nκ′(ζ) = λ, we establish (4.7).
The tail probability that appears in the RCUs bound is in the form of

P
[∑n

j=1 Zj ≥ λ+ logU
]
. Different from (4.6) and (4.7), we now have the

term logU . Specifically, we again let ζ be the solution of λ = nκ′(ζ) and if
ζ ∈ [0, 1], then

P

 n∑
j=1

Zj ≥ λ+ logU

 = en[κ(ζ)−ζκ′(ζ)]
[
Ψn,ζ(ζ) + Ψn,ζ(1− ζ) + o

(
1√
n

)]
(4.49)

If ζ ∈ (1, ζ), then

P

 n∑
j=1

Zj ≥ λ+ logU

 = enκ(1)−λ

[
Ψ̃n(1, 1) + Ψ̃n(0,−1) +O

(
1√
n

)]
(4.50)
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4.1 Asymptotic Expansions of a Tail Probability

where

Ψ̃b(a1, a2) = e
ba1
[

λ
b −κ′(1)+ κ′′(1)

2

]
Q

(
a1
√
bκ′′(1)− a2

b(κ′(1) + λ)√
bκ′′(1)

)
. (4.51)

If ζ ∈ (ζ, 0), then

P

 n∑
j=1

Zj ≥ λ+ logU

 = 1− en[κ(ζ)−ζκ′(ζ)]

×
[
Ψn,ζ(−ζ)−Ψn,ζ(1− ζ) + o

(
1√
n

)]
. (4.52)

We start with the case ζ ∈ [0, 1] and expand the tail probability as

P

 n∑
j=1

Zj ≥ λ+ logU


= enκ(ζ)−ζλ

∫ 1

0

∫ ∞

log u

e−ζy dV∗n
ζ (y) du (4.53)

= enκ(ζ)−ζλ

∫ ∞

−∞

∫ min(1,ey)

0
e−ζy dudV∗n

ζ (y) (4.54)

= enκ(ζ)−ζλ

∫ ∞

0
e−ζy dV∗n

ζ (y) + enκ(ζ)−ζλ

∫ 0

−∞
e(1−ζ)y dG∗n

ζ (y). (4.55)

The first term in (4.55) coincides with the aζ(λ) given in (4.30). To analyze
the second term, we let bζ(λ) be the expression after V∗n

ζ is replaced by Φζ of
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Chapter 4 Asymptotic Expansions of RCUs Bound

the second term in (4.55). Then,

bζ(λ) = enκ(ζ)−ζλ

∫ 0

−∞
e(1−ζ)y dΦζ(y) (4.56)

= en[κ(ζ)−ζκ′(ζ)]√
2πnκ′′(ζ)

∫ 0

−∞
e(1−ζ)ye

− y2
2nκ′′(ζ) dy (4.57)

= en[κ(ζ)−ζκ′(ζ)]
√

2π

∫ 0

−∞
e(1−ζ)t

√
nκ′′(ζ)e− t2

2 dt (4.58)

= e
n

[
κ(ζ)−ζκ′(ζ)+ (1−ζ)2

2 κ′′(ζ)
]

√
2π

∫ ∞

ζ

e
− 1

2

(
t−(1−ζ)

√
nκ′′(ζ)

)2

dt (4.59)

= e
n

[
κ(ζ)−ζκ′(ζ)+ (1−ζ)2

2 κ′′(ζ)
]

√
2π

∫ −(1−ζ)
√

nκ′′(ζ)

−∞
e− x2

2 dx (4.60)

= e
n

[
κ(ζ)−ζκ′(ζ)+ (1−ζ)2

2 κ′′(ζ)
]

√
2π

∫ ∞

(1−ζ)
√

nκ′′(ζ)
e− x2

2 dx (4.61)

= e
n

[
κ(ζ)−ζκ′(ζ)+ (1−ζ)2

2 κ′′(ζ)
]
Q
(

(1− ζ)
√
nκ′′(ζ)

)
(4.62)

= en[κ(ζ)−ζκ′(ζ)]Ψn,ζ(1− ζ) (4.63)

where (4.58) follows from the change of variable t = y/
√
nκ′′(ζ) and the (4.60)

follows from the change of variable x = t− (1− ζ)
√
nκ′′(ζ). We next evaluate
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4.1 Asymptotic Expansions of a Tail Probability

the error incurred by substituting V∗n
ζ with Φζ as

enκ(ζ)−ζλ

∫ 0

−∞
e(1−ζ)y dV∗n

ζ (y)− bζ(λ)

= en(κ(ζ)−ζκ′(ζ))
[

1√
2π

κ′′′(ζ)
6κ′′(ζ)3/2√n

×
(

1−
∫ 0

−∞
(1− ζ)

√
nκ′′(ζ)(1− z2)e(1−ζ)

√
nκ′′(ζ)z− z2

2 dz
)]

(4.64)

= en(κ(ζ)−ζκ′(ζ))
[

κ′′′(ζ)
6κ′′(ζ)3/2√n

(
1√
2π
− (1− τ)2nκ′′(ζ)√

2π

+ (1− ζ)3(nκ′′(ζ))3/2Ψn,ζ(1− ζ)
)

+ o

(
1√
n

)]
(4.65)

where (4.64) follows from integration by parts and from [34, Ch. XVI.4, Th.
1]. By combining (4.65), (4.63), (4.30) and (4.33), we get (4.49).

When ζ ∈ (1, ζ), the term e(1−ζ)y diverges as y → −∞. Then, we cannot
follow the steps (4.64)-(4.65) to get the error incurred by substituting V∗n

ζ

with Φζ for ζ ∈ (1, ζ). To analyse this case, we instead set ζ = 1 and as
a consequence, we now need to analyze the error incurred by replacing V∗n

ζ

with the normal distribution that has the mean nκ′(ζ) − λ and the variance
nκ′′(ζ). After following the steps leading to (4.63) and (4.33) for the two
terms in (4.55) for ζ = 1, we get (4.50).

It only remains to show the saddlepoint expansion of the tail probability
P [
∑n

j=1 Zj ≥ λ + logU ] = 1 − P [
∑n

j=1 Zj < λ + logU ] when ζ ∈ (ζ, 0). In
this case, it follows that

P

 n∑
j=1

Zj < λ+ logU

 (4.66)

= enκ(ζ)−ζλ

∫ 1

0

∫ log u

−∞
e−ζy dV∗n

ζ (y) du (4.67)

= enκ(ζ)−ζλ

∫ 0

−∞

∫ 1

ey

e−ζy dudV∗n
ζ (y) (4.68)

= enκ(ζ)−ζλ

(∫ 0

−∞
e−ζy dV∗n

ζ (y) +
∫ 0

−∞
e(1−ζ)y dV∗n

ζ (y)
)
. (4.69)
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Here, the first term coincides with ãζ(λ) and the second term coincides with
bζ(λ). Thus, combining (4.44), (4.48), (4.63) and (4.65) we get (4.52).

Refined approximations based on saddlepoint approximation of the RCU
and RCUs bounds are presented in Paper A, Paper B and Paper C for system
models introduced in Chapter 3. The error probability expansions derived
through saddlepoint expansion have a term that decays exponentially with
the number of data symbols and thus captures the behavior of the error prob-
ability in the large-deviation regime. In addition, a pre-exponential term,
obtained by applying a refined normal approximation, ensures the accuracy
of the approximation in the short-packet regime. This approach results in an
approximation that is accurate for a wide range of target error probabilities
and rates, including those relevant to URLLC scenarios.

4.2 First-order Asymptotic Expansion of RCUs
bound

In this section, we let the transmission takes place in a block-fading channel
as described in Chapter 3.1. The RCUs bound for the block-fading channel is
given as

ϵ ≤ P

[
nb∑

ℓ=1
ıs(Xℓ; Yℓ, Ĥℓ) + logU ≤ log(M− 1)

]
(4.70)

= E

[
P

[
nb∑

ℓ=1
ıs(Xℓ; Yℓ, Ĥℓ) + logU ≤ log(M− 1)

∣∣∣∣∣ H, Ĥ

]]
(4.71)

= E

[
P

[
nb∑

ℓ=1

nc∑
k=1

ıs(Xk,ℓ;Yk,ℓ, Ĥℓ) + logU ≤ log(M− 1)

∣∣∣∣∣ H, Ĥ

]]
(4.72)

where Xk,ℓ and Yk,ℓ are the kth element of Xℓ and Yℓ respectively.
There are two ways to perform asymptotic blocklength over block-fading

channels. In particular, the blocklength n can grow infinitely as the size
of the fading blocks nc grows to infinity, or as the number of fading blocks
nb grows to infinity. As illustrated in Fig. 4.1, this results in two different
asymptotic regimes: quasistatic setting, in which the asymptotic analysis is
performed over nc, and the ergodic setting, in which the asymptotic analysis
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Fading block 1

Fading block 2

Fading block nb

nc

Quasi-static setting (nc → ∞)

E
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b
→

∞
)

Figure 4.1: Ergodic and quasistatic regimes.

is performed over nb.

4.2.1 Quasistatic Setting
For a quasistatic block-fading channel spanning nb coherence blocks, the out-
age probability as a function of the rate R is defined by

Pout(R) = P

[
1
nb

nb∑
ℓ=1

log
(

1 + ρ |Hℓ|2
)
≤ R

]
(4.73)

For a given ϵ > 0, the outage capacity Cout is defined as the supremum of
all rates R that satisfy sup{R : Pout(R) < ϵ}. Communication with arbitrarily
small error probability is possible if R < 1

nb

∑nb
ℓ=1 log

(
1 + ρ |Hℓ|2

)
. Next, we

will show that we can prove the achievability of Pout by expanding the RCUs
bound.

Note that, when nc → ∞, the channel hℓ can be estimated perfectly with
no rate penalty by simply using a sublinear number of channel uses for this
task [38, p. 2632]. Thus, we may safely replace nd by nc and assume perfect
CSI is available at the receiver, namely Ĥℓ = Hℓ for ℓ = 1, . . . , nb.
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The tail probability in (4.72) may be expanded as

ϵ ≤ E

[
P

[
1
nc

nb∑
ℓ=1

nc∑
k=1

ıs

(
Xk,ℓ;Yk,ℓ, Ĥℓ

)
+ logU

nc
≤ nbR

∣∣∣∣∣ H

]]
(4.74)

= E

[
Q

(∑nb
ℓ=1 Is(Hℓ, Hℓ)− nbR√∑nb

ℓ=1 Vs(Hℓ, Hℓ)/nc

)
+ o

(
1
√
nc

)]
. (4.75)

where

Is

(
Hℓ, Ĥℓ

)
= −s

(∣∣∣Hℓ − Ĥℓ

∣∣∣2 ρ+ 1
)

+ s
|Hℓ|2 ρ+ 1

1 + sρ
∣∣∣Ĥℓ

∣∣∣2 + log
(

1 + sρ
∣∣∣Ĥℓ

∣∣∣2)
(4.76)

Vs

(
Hℓ, Ĥℓ

)
= E

[(
ıs

(
Xk,ℓ;Yk,ℓ, Ĥℓ

)
− Is

(
Hℓ, Ĥℓ

))2
∣∣∣∣ Hℓ, Ĥℓ

]
(4.77)

(4.74) follows from log(M−1) ≤ log(M) = nR, and (4.75) follows from apply-
ing the Berry-Esseen CLT, performing multiple Taylor series expansions and
gathering the terms vanishing faster than 1/√nc into o(1/√nc). Recall that
Pout(R) is the error probability as nc →∞, then

Pout(R) ≤ P

{
1
nb

nb∑
l=1

Is(Hℓ, Hℓ) ≤ R
}
. (4.78)

Here, (4.78) follows from using the identity

lim
nc→∞

Q

(∑nb
ℓ=1 Is(Hℓ, Hℓ)− nbR√∑nb

ℓ=1 Vs(Hℓ, Hℓ)/nc

)
= 1

{
nb∑

ℓ=1
Is(Hℓ, Hℓ)− nbR ≤ 0

}
.

(4.79)
We next set s = 1, as it maximizes Is(Hℓ, Hℓ), and get

I1(Hℓ, Hℓ) = log(1 + ρ |Hℓ|2) (4.80)

Then, by substituting (4.80) into (4.78), we get the outage capacity.
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4.2 First-order Asymptotic Expansion of RCUs bound

4.2.2 Ergodic Setting
The well-known capacity expression for the block-fading channel with perfect
CSI, i.e. Ĥ = H may be obtained by following similar steps to obtain outage
capacity: We first apply the Berry-Esseen CLT to (4.70) as

ϵ ≤ Q
(
nbIs − log(M− 1)√

nbVs

)
+ o

(
1
√
nb

)
(4.81)

where Is = E
[
ıs(X; Y , Ĥ)

]
is the generalized mutual information, Vs =

Var
[
ıs(X; Y , Ĥ)

]
is the channel dispersion and X, Y and H are distributed

as one of the Xℓ, Yℓ and Hℓ, respectively. It follows that

lim
nb→∞

ϵ ≤ 1

{
Is

nc
< R

}
. (4.82)

After picking the s that is maximizing Is, we have Is = nc E
[
log(1 + ρ |H|2)

]
[39] which then can be substituted into (4.82) as

lim
nb→∞

ϵ ≤ P
[
E
[
log(1 + ρ |H|2)

]
< R

]
. (4.83)

This expression indicates that a reliable communication can only be estab-
lished when R < E

[
log(1 + ρ |H|2)

]
which is exactly the ergodic (or channel)

capacity.

4.2.3 Results and Discussion
We next compare the accuracy of the saddlepoint approximation, outage prob-
ability and a simple yet theoretically ungrounded approximation that is some-
times used by researchers. Specifically, in [40], the ergodic capacity for block-
fading channel under ML estimation of the channel is used to find the outage
probability. This outage expression is given as

ϵ ≈ P

[(
nc − np

nc

)
1
nb

nb∑
ℓ=1

E
[
log(1 + ρ̂ML(Ĥ))

]
< R

]
(4.84)
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Figure 4.2: Error probability as a function of SNR. Here n = 192, nb = 6, R = 0.104
BPCU; np and s are optimized

where

ρ̂ML

(
Ĥ
)

= ρ
∣∣∣Ĥ∣∣∣2( npρ

npρ+ 1

)2(
ρ+ npρ+ 1
npρ+ 1

)−1
. (4.85)

Although this expression is not theoretically well-founded, it can nevertheless
be regarded as an approximation.

To compare the tightness of the aforementioned expressions, we consider a
Rayleigh fading scenario in which {Hℓ}nb

ℓ=1 are generated independently from
a CN (0, 1) distribution. We also consider i.i.d. CN (0, ρ) Gaussian codebooks
and use an ML estimate of the channel. In Fig. 4.2 we report the error prob-
ability ϵ as a function of SNR ρ for n = 192, nb = 6, R = 0.104 BPCU of
RCUs bound, its saddlepoint approximations w.r.t. nb and nc, the outage ca-
pacity, and the outage expression in (4.84). We observe that both saddlepoint
approximations are very accurate for the considered parameters and that the
outage capacity and the outage expression in (4.84) are not a good benchmark
for the short-blocklength regime.
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CHAPTER 5

Erasure Decoding in URLLC

In this chapter, we present an information theoretic analysis of erasure decod-
ing, in which the decoder detects errors through the capability of the channel
codes and in this case declares an erasure. This is fundamentally different
than having a complete decoder, which always outputs a codeword as defined
in Chapter 2.

5.1 Overview
In channel coding, the goal is to develop a code that can accurately decode
a message transmitted over a noisy channel. However, when the noise is too
severe for the decoding system to confidently determine the correct message,
it is often better to declare an erasure. This approach prevents the system
from making the costly mistake of passing an incorrect message to the upper
layers, and for instance, allows the use of an automatic repeat request protocol
to retransmit the intended message.

The reliability of URLLC systems are typically measured by the block error
probability at the output of the decoder. However, for certain mission-critical
applications, this metric alone is insufficient, and it is important to distin-
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Figure 5.1: Representation of decision regions: (a) classical decoder, (b) erasure decoder

guish between two types of decoding errors: detected and undetected errors.
A detected error occurs when the channel decoder declares an erasure. In
contrast, an undetected error occurs when the decoder outputs an incorrect
message, which is then passed on to the upper layers without being flagged as
erroneous.

5.2 System Model
In classical decoding, the decision regions are mutually exclusive and collec-
tively exhaustive, which means that every received vector is assigned to a
decision region, and the decoder always outputs a codeword. In contrast, an
erasure decoder operates differently: while the decision regions remain dis-
joint, they do not fully cover the output space. Consequently, certain received
vectors fall outside any decision region and cause the decoder to declare an
erasure. This is depicted in Fig. 5.1.

To analyse decoding with erasure option, we consider an arbitrary discrete-
time communication channel that maps input symbols from the set X to
output symbols from the set Y, as we introduced in Chapter 2. However, our
goal is to characterize the performance of the channel codes in terms of both
undetected error probability (UEP), and total error probability (TEP), which
is the combined probability of undetected and detected errors. To this end,
we need to update the notion of channel code introduced in Chapter 2, which
we define next.
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5.2 System Model

Definition 5.1. An (n,M, ϵU, ϵT)-code for the channel PY |X(Y |X) consists
of

• A random variable V with distribution PV defined on a set V with |V| ≤ 2
that is revealed to both the transmitter and the receiver before the start of
transmission. This allows the transmitter and the receiver to time-share
between deterministic (n,M, ϵU, ϵT)-codes.

• An encoder f : V ×{1, . . . ,M} → Xn that maps a message W , which we
assume to be uniformly distributed on {1, . . . ,M}, to a codeword in the
set CV = {x1, . . . ,xM} ⊂ Xn.

• An erasure decoder g : V × Yn → {0, 1, . . . ,M}, that maps the received
vector to one of the messages in {1, . . . ,M}, or declares an erasure,
which we indicate by the message 0. Let Dv,ŵ = g−1(v, ŵ) ⊂ Yn denote
the decoding region associated to each ŵ ∈ {0, 1, . . . ,M} and v, and
assume that they are disjoint. We require that the TEP and UEP do not
exceed ϵT and ϵU, respectively:

1
M
∑
v∈V

M∑
m=1

M∑
m′=0
m′ ̸=m

P[Y ∈ Dv,m′ |W = m,V = v]PV (v) ≤ ϵT (5.1)

1
M
∑
v∈V

M∑
m=1

M∑
m′=1
m′ ̸=m

P[Y ∈ Dv,m′ |W = m,V = v]PV (v) ≤ ϵU. (5.2)

The performance of (n,M, ϵU, ϵT)-code may also be assessed, for a fixed
blocklength n and average error probabilities ϵU and ϵT, via the maximum
coding rate as

R∗(n, ϵU, ϵT) = log2(M∗(n, ϵU, ϵT))
n

(5.3)

where
M∗(n, ϵU, ϵT) = sup{M : ∃(n,M, ϵU, ϵT)-channel code} . (5.4)

The supremum in (5.4) is formed over all encoder/decoder pairs that form a
(n,M, ϵU, ϵT) channel code.

The original argument of random coding states that for certain encoding and
decoding rules, an upper bound on the average error probability, averaged over
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an ensemble of randomly generated codebooks, indicates that there is at least
one codebook within the ensemble that satisfies this bound. If two quantities
need to be bounded, in this case TEP and UEP, this argument needs to be
updated. In particular, an upper bound on the average UEP and the average
TEP, both averaged over a codebook ensemble, does not guarantee that a
single codebook exists that satisfies both bounds simultaneously. One can use
a randomized coding strategy, i.e., a new code is drawn from the ensemble
and used for each transmission to overcome this problem. It turns out that
for this case, randomization between two deterministic codebooks is sufficient
[11, App. A] and the random variable V in Definition 5.1 enables the use of
the randomized coding strategy.

Next, we present three methods for erasure decoding that are commonly
used in the literature: the optimal erasure decoder, the use of the CRC outer
code for error detection, and thresholding (generalized) information density.

5.2.1 Optimal Erasure Decoder
An optimal incomplete decoding algorithm was presented and analyzed by
Forney in [41]. This method can be seen as applying complete maximum like-
lihood decoding followed by a threshold test after decoding to decide whether
to accept or reject the ML decoder’s decision. Forney has shown that the
decoder that optimally weighs between TEP and UEP follows this rule: It
outputs the message whose likelihood is at least 2nT times greater than the
sum of the likelihoods of all other messages. If no message fulfills this crite-
rion, an erasure is declared. Mathematically, for a given observation Y = y,
the decoder outputs the coderword x that fulfills the following conditions

Λ(x,y) > 2nT (5.5)

where T ≥ 0 is a parameter that controls the tradeoff between ϵU and ϵT, and

Λ(x,y) =
PY |X (y|x)∑

x′∈C\{x} PY |X (y|x′) . (5.6)

If no codeword in the codebook satisfies (5.5), the decoder declares an erasure.
The main disadvantage of this decoder is that it is difficult to analyze and

difficult to implement, which limits its use for our purposes.
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Figure 5.2: Reference model describing erasure decoding via CRC outer code.

5.2.2 Error Detection via CRC Outer Code
A CRC code can be appended to a data packet to enable the error detec-
tion after channel decoding as shown in Fig. 5.2 Although suboptimal, using
CRC outer code for error detection is a very common choice due to their low
encoding complexity and strong error detection performance [42]–[44]. With
this scheme, the relation between TEP and UEP can be approximated as
ϵU ≈ ϵT2−kcrc where kcrc is the number of parity bits added by the CRC [45].
Note that when the blocklength is large, a strong error detection capability
can be ensured by using CRC codes as the rate loss due to the addition of
these parity bits may be negligible. In the short-blocklength regime however,
the rate loss cannot be omitted anymore and should be characterized to have
an accurate benchmark for the system.

5.2.3 Suboptimal Threshold Decoder
Another scheme used for error detection, although not as common as CRC
codes, is thresholding the generalized information density (defined in (2.21))
[46], [47].3 Specifically, the decoder selects the codeword with the highest like-
lihood and outputs the corresponding message if the generalized information
density of this codeword exceeds a preset threshold nδ. If this condition is
not met, the decoder declares an erasure.

5.3 Finite Blocklength Achievability Bounds for
Erasure Decoding

Forney in his seminal paper [41] showed that over a discrete memoryless chan-
nel (DMC) for an arbitrary input distribution PX , and for X = {x1, . . . , xmi}
and Y = {y1, . . . , ymo

}, there exists a block code of length n and rate R that

3In [46], [47] the authors threshold the information density in their erasure decoders. By
setting s = 1 in generalized information density (2.21), we can get the information
density, thus thresholding generalized information density is a more general method.
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simultaneously satisfies

ϵT < 2−nE1(R,T,PX ) (5.7)

ϵU < 2−nE2(R,T,PX ) (5.8)

where

E1(R,T, PX) = max
0≤s≤p≤1

[E0(s, p, PX)− pR − sT ] (5.9)

E2(R,T, PX) = E1(R,T, PX) + T (5.10)

with

E0(s, p, PX) = − log2

mo∑
j=1

(
mi∑
i=1

PX(xi)q1−s
ji

)(
mi∑

i′=1
PX(xi′)qs/p

ji′

)p

(5.11)

and with qji = PY |X(yj |xi) being the transition probability of the DMC.
In the literature, using the optimal erasure decoder and the Gallager’s error
exponent framework, the bounds are generalized for constant composition
codes [48], [49] and improved for some linear block code ensembles [50]. The
main drawback with the Forney’s bounds (and their generalization) is that
they are based on the Gallager’s error exponent framework which typically
yields loose bounds for short blocklengths [37].

One drawback of Forney’s bound is that it is only valid for DMCs. To have
achievability bounds on TEP and UEP for block-fading channel, we can use
two bounds we introduced in Paper C. Both of these bounds are based on
RCU bound, thus, they are computationally demanding, as we discussed in
Chapter 2. To address this, we next introduce the relaxed versions of these
bounds, relaxed via Markov inequality in (2.18), similar to how we relaxed
RCU bound and obtained RCUs bound.

The finite-blocklength achievability bound using a CRC-outer code scheme
is given as follows.

Theorem 5.1. For an arbitrary input distribution PX , for all s > 0
and for every kcrc ∈ N0, there exists an (n,M, ϵT, ϵU)-code for the channel
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Py|x(Y |X) simultaneously satisfying

ϵT ≤ E
[
e−(ıs(X;Y )−log(2k+kcrc−1))+]

(5.12)

ϵU ≤ E
[
e−(ıs(X;Y )−log(2k+kcrc−1))+]

2−kcrc (5.13)

where k = nR.

Proof: See Paper C for the proof of RCU-based bounds for ϵT and ϵU for
this setup. (5.12) and (5.13) can be obtained by relaxing these bounds using
Markov inequality given in (2.18).

Here, we observe that when a CRC-outer code is used, the ϵT can be bounded
by RCUs bound with a rate R = (k+kcrc)/n and the error detection capability
is directly related with the number of CRC-bits kcrc.

The finite-blocklength achievability bound using the suboptimal threshold
decoder is given as follows.

Theorem 5.2. For an arbitrary input distribution PX , for all s > 0,
s̄ > 0 and δ ∈ R, there exists an (n,M, ϵT, ϵU)-code for the channel PY |X(Y |X)
satisfying

ϵT ≤ E
[
1 {ıs̄(X,Y ) ≥ nδ} e−(ıs(X;Y )−log(M−1))+

]
+ P[ıs̄(X,Y ) < nδ]

(5.14)

ϵU ≤ E
[
e−(ı̃s,s̄(X;Y )−log(M−1))+

]
(5.15)

where

ı̃s,s̄(X; Y ) = log
max

{
PY |X(Y |X)s, δ̃Y ,s̄

}
EX̄

[
PY |X(Y |X̄)s

] (5.16)

δ̃y,s̄ =
(
enδ EX̄

[
PY |X(y|X̄)s̄

])1/s̄ (5.17)

and
PX,Y ,X̄(X,Y , X̄) = PX(X)PY |X(Y |X)PX(X̄). (5.18)

Proof: Similar to the Theorem 5.1, the RCU-based bounds for this setup
on ϵT and ϵU are available in Paper C. (5.14) and (5.15) can be obtained by
relaxing these bounds using Markov inequality given in (2.18).
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Figure 5.3: TEP as a function of SNR. Here, n = 288, nb = 3, R = 0.104 BPCU, ϵU =
10−5; s and s̄ are optimized.

5.4 Results and Discussion
Next, we compare the performances of the two decoders in a Rayleigh fading
scenario. We use i.i.d. CN (0, ρ) Gaussian codebooks and an ML estimate
of the channel at the receiver. In Fig. 5.3 we report TEP as a function of
SNR ρ for n = 288, nb = 3, np = 10, R = 0.104 BPCU and ϵU = 10−5.
Here we see that these two methods perform similarly. This indicates that in
the short-blocklength regime, using the CRC outer code for error detection
is as good as using the suboptimal threshold decoder. This is important
because implementing a CRC outer code for error detection is much easier
than implementing the suboptimal threshold decoder.
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CHAPTER 6

Summary

This chapter concludes Part I of the thesis by summarizing the most important
results and conclusions. In addition, we discuss the limitations of our results
and provide directions for future research

6.1 Contributions
In this thesis, we study the performance of wireless communication systems
operating in the URLLC regime. Specifically, this thesis contains nonasymp-
totic information-theoretic studies on:

• Pilot-assisted transmissions over SISO block-fading channels with mis-
matched SNN decoding

• Multicell multiuser massive MIMO communications over spatially cor-
related Rayleigh-fading channels

• Pilot-assisted transmissions over block-fading channels with imperfect
timing synchronization and mismatched decoder
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• The trade-off between the total and the undetected error probabilities
over biAWGN and block-fading channels.

• How the saddlepoint approximation can be used to efficiently evaluate
the nonasymptotic results

Our contributions are presented in Part II of the thesis in the form of three
attached papers that are summarized below.

Paper A:“Efficient Evaluation of the Error Probability for Pilot-assisted
URLLC with Massive MIMO”

In Paper A, we propose an efficient method for evaluating the random-coding
union bound on the error probability in finite-blocklength regime for pilot-
assisted transmission over memoryless block-fading channels using Gaussian
codebooks. Our method uses the saddlepoint approximation with respect to
the number of fading blocks (diversity branches) per codeword, thus avoid-
ing the costly numerical averaging over fading process realizations and their
pilot-assisted estimates at the receiver. This approach significantly reduces
the number of channel realizations required to accurately estimate the error
probability. Numerical experiments on single-antenna and massive MIMO
systems show that, compared to traditional saddlepoint approximations with
respect to the number of channel realizations per block, our method requires
about two orders of magnitude fewer Monte-Carlo samples and achieves ac-
curate error probability estimation when there are two or more fading blocks.

Paper B: “Is Synchronization a Bottleneck for Pilot-assisted URLLC
Links?”

In Paper B, we propose a framework to evaluate the RCUs bound on the
achievable error probability in the finite-blocklength regime for pilot-assisted
transmission over imperfectly synchronized memoryless block-fading wave-
form channels. In contrast to previous methods, our system accounts for
imperfect synchronization by using pilots for both synchronization and chan-
nel estimation. Using this framework, we introduce an RCUs bound for a
receiver that treats these estimates as accurate and employ the saddlepoint
approximation for numerical efficiency. Numerical experiments confirm the ac-
curacy of the approximation. The results show that for fully dependent delays
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across fading blocks, the number of pilots required for good enough channel
estimation when time delays are known (i.e., when synchronization is perfect)
is also sufficient when times delays are unknown and needs to be estimated in
URLLC. However, with independent delays between blocks, synchronization
limits system performance.

Paper C: “Undetected Error Probability in the Short Blocklength
Regime: Approaching Finite-Blocklength Bounds with Polar Codes”

In paper C, we analyze the tradeoff between the total and the undetected er-
ror probability in short blocklength regimes. We introduce two achievability
bounds and evaluate the performance of polar codes with outer CRC codes
known as CRC-assisted polar codes. The first bound uses an outer detection
code, and the second employs a threshold test for generalized information
density, both of which are tighter than Forney’s error exponent bound for the
binary-input additive white Gaussian noise channel. Inspired by these bounds,
CRC-assisted polar codes are compared under two error detection techniques:
a threshold test that approximates Forney’s optimal rule at the output of the
successive cancellation list decoder, and an algorithm that splits CRC parity
bits into subsets for error detection. The results show that the threshold test
outperforms CRC-based error detection, although the advantage diminishes
with increasing blocklength. In scenarios with noisy channel state information
leading to mismatched decoding, outer CRC codes ensure robustness, while
threshold-based techniques relying on mismatched likelihood exhibit signifi-
cant performance degradation.

6.2 Conclusions
In this thesis, we provide nonasymptotic tools to benchmark wireless commu-
nication systems. The conclusions we draw from this work can be summarized
as follows:

1. The saddlepoint approximation provides accurate results for the nonasymp-
totic bounds in short-blocklength regime. When possible, it should be
utilized to reduce the numerical complexity evaluations.

2. Timing synchronization in short-packet transmission can be established
via pilots. When delays are fully dependent across fading blocks, the
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number of pilots required for sufficiently good channel estimation when
delays are known is also sufficient to establish synchronization. Hence,
in this sense, there is no penalty for not knowing the channel delays.

3. The optimal erasure decoder is both difficult to analyze and implement.
In fact, the available achievability bound on the error probability for the
optimal decoder in the short blocklength regime is loose. This bound
can be significantly improved by analyzing suboptimal decoders that
utilize error detection schemes, such as employing a CRC outer code or
thresholding the information density.

6.3 Future Work
The results in all our studies are based on RCUs bound and saddlepoint and
normal approximations. An alternative approach to obtain nonasymptotic
result is studied in [51], where the authors considered the so-called moderate
deviation regime and derived refined asymptotic expansions of the upper and
lower bounds of the error probability based on another refined asymptotic ex-
pansion for independent random variables [52, Ch. 8, Th. 4]. In this regime,
it is assumed that the error probability ϵ decay subexponentially with the
blocklength n. Thus, the goal is to close the gap between the approximations
based on the central limit theorem, which yield asymptotic expansions of the
rate with increasing n for fixed ϵ, and the approximations based on large
deviations such as the error exponent approximation, which yield asymptotic
expansions of ϵ with fixed rate. It would be interesting to see how this approx-
imation behaves, for example, in the context of for example, massive MIMO
for URLLC.

Another interesting extension of all our studies would be to include the
effects of practical components. In industrial environments, for example, elec-
trical and other types of machinery are recognised sources of significant in-
terference. In addition to the usual white Gaussian thermal noise, this inter-
ference can severely affect communication in radio frequency bands [53]. The
block-fading channel that we have considered in this thesis cannot model the
effects of such behaviour. For this, one should consider channel models that
take impulsive noise into account [54].

A missing component in this study is the lack of nonasymptotic converse
bounds for various system models considered in Paper A, Paper B and Paper
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C. Unfortunately, it is a challenge to obtain a general nonasymptotic con-
verse bound for mismatched decoding since there is no converse bound for
mismatched capacity.

In Paper A, we claim that an advantage of saddlepoint approximation with
respect to number of fading blocks is that it requires a small number of Monte
Carlo samples. An interesting extension would be to derive an explicit expres-
sion for how many samples are required to achieve a certain accuracy with
saddlepoint approximation. Such an expression would allow the extension of
the results in Paper A to different system models.

In Paper B, timing synchronization was established only with the help of
pilot symbols. A valuable extension would be to allow the system to use the
data symbols for synchronization and then examine the trade-off between the
error probability and the number of pilot symbols for a fixed blocklength and
rate. It would also be interesting here to see how our bounds compare to an
actual code for URLLC.

Finally, although we have some understanding of how the suboptimal thresh-
old decoder used in Paper C relates to Forney’s optimal erasure decoder, it
would be interesting to analyse their relation rigorously. Indeed, such an anal-
ysis could also pave the wave for the discovery of better performing suboptimal
decoders.
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