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Cellular location shapes quaternary
structure of enzymes

György Abrusán 1 & Aleksej Zelezniak1,2,3

The main forces driving protein complex evolution are currently not well
understood, especially in homomers, where quaternary structure might fre-
quently evolve neutrally. Here we examine the factors determining oligo-
merisation by analysing the evolution of enzymes in circumstances where
homomers rarely evolve. We show that 1) In extracellular environments, most
enzymes with known structure are monomers, while in the cytoplasm homo-
mers, indicating that the evolution of oligomers is cellular environment
dependent; 2) The evolution of quaternary structure within protein
orthogroups is more consistent with the predictions of constructive neutral
evolution than an adaptive process: quaternary structure is gained easier than
it is lost, and most extracellular monomers evolved from proteins that were
monomers also in their ancestral state, without the loss of interfaces. Our
results indicate that oligomerisation is context-dependent, and even when
adaptive, in many cases it is probably not driven by the intrinsic properties of
enzymes, like their biochemical function, but rather the properties of the
environment where the enzyme is active. These factors might be macro-
molecular crowding and excluded volume effects facilitating the evolution of
interfaces, and the maintenance of cellular homeostasis through shaping
cytoplasm fluidity, protein degradation, or diffusion rates.

The majority of proteins form complexes, however, the main forces
driving quaternary structure evolution are currently not well under-
stood, especially in the case of homomers - complexes made from
multiple units of the same protein. Traditionally, protein multi-
merizationwas viewed as the result of adaptation1,2, however, in recent
years, it was demonstrated that neutral processes also significantly
influence the evolution of quaternary structure3–6, and currently it is
unclear what is the relative importance of adaptive vs. stochastic fac-
tors in protein complex evolution.

In many complexes, multimerization contributes to their bio-
chemical function, which can be related to allostery7–10, gene
regulation11,12, structural stabilisation13 or other factors14. In their pio-
neering (and quite overlooked) work, Chan and colleagues have
demonstrated that in some enzymes which do form stable homomers,

the subunits can nevertheless perform their catalytic functions in
isolation almost as well as in complex15–17, and hypothesised that in
such cases, the primary role of multimerization is not related to the
biochemical function, but to other factors like proteostasis, compart-
mentalisation, or osmotic regulation. The importance of multi-
merization in proteostasis was demonstrated in recent years18, while
we only begin to understand the role of protein condensates in
maintaining cellular water availability19, even though the role of pro-
teins in maintaining osmotic pressure is well studied20.

However, in several homomers, the contribution of quaternary
structure to any function is questionable21–23, and it was suggested that
neutral processes can also significantly influence their evolution.
Lynch has pointed out that, unlike many genomic traits, protein oli-
gomerisation is not correlated with the strength of selection, and in

Received: 23 March 2024

Accepted: 18 September 2024

Check for updates

1Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, New Hunt’s House, London, UK.
2Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden. 3Institute of Biotechnology, Life Sciences Centre, Vilnius University,
Vilnius, Lithuania. e-mail: gyorgy.abrusan@kcl.ac.uk

Nature Communications |         (2024) 15:8505 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4375-1552
http://orcid.org/0000-0003-4375-1552
http://orcid.org/0000-0003-4375-1552
http://orcid.org/0000-0003-4375-1552
http://orcid.org/0000-0003-4375-1552
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52662-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52662-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52662-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-52662-2&domain=pdf
mailto:gyorgy.abrusan@kcl.ac.uk
www.nature.com/naturecommunications


many homologous enzymes with the same biochemical function, the
quaternary structure is different (see Fig. 1 for an example), and sug-
gested that neutral forces are likely to play a significant role in the
evolution of quaternary structure3,24. This was also supported by other
theoretical findings showing that protein interactions can evolve
without providing a fitness advantage25. Subsequently, using the
change in ligand binding ability as ameasure of functional divergence,
we performed a PDB-wide analysis to test whether quaternary struc-
ture influences the evolution of new functions4,26. We found that
complexes where the binding sites are restricted to a single protein
chain, are not different from monomers, and also their folds have
similar characteristics26, which suggests that quaternary structure
frequently does not influence the evolution of biochemical function
and that in these complexes neutral evolution is frequent.

Recently, Hochberg et al.5 provided experimental evidence that in
steroid receptors, dimerisation does not have a measurable contribu-
tion to function, and proposed that the evolution of protein interfaces
follows a ratchet-like pattern. These authors suggested that the driving
mechanism behind the long-term “entrenchment” of interfaces is
constructive neutral evolution (CNE)27,28: the high frequency of
hydrophobic residues in random mutations can create interfaces
randomly, which can be deleterious when exposed to solvent (due to
aggregation or destabilisation), and thus can be maintained by pur-
ifying selection without providing any fitness advantage5. A sub-
sequent bioinformatic analysis by us has demonstrated that the
hydrophobicity of interfaces is largely independent of the strength of
selection acting on them, indicating that it is maintained by a neutral
mechanism6 and that in ~35% of homodimers with small to medium
interface size, the interface may not contribute to the biochemical
function of the protein6.

In this work, we test the predictions of the CNE, and suggest that
macromolecular crowding and themaintenance of cellular homoeostasis
are also key factors in the evolution of homomers. Using monomer and
homomer enzymes from the Protein Data Bank (PDB), we examine the
factors determining oligomerisation by analysing the evolution of pro-
teins in situationswhenhomo-oligomers rarely evolve, or their interfaces
are lost. We hypothesised that in different cellular environments, the
probability of the evolution of homomers is different: in the crowded
cytoplasm, the probability of protein associations is high due to the high
frequency of interactions and the excluded volume effect29,30, that, in the
long-term, might favour the evolution of new interfaces. In contrast, in
the extracellular environment, the frequency of complexes is likely to be
low due to several mechanisms: the low concentration of subunits pre-
venting assembly or resulting in their dissociation, difficulties in trans-
porting assembled complexes inProkaryotes, or the lower diffusion rates
of large oligomers (Fig. 2A).

Our findings confirmed this hypothesis, and we show that
extracellular enzymes are predominantly monomers, while in the
cytoplasm, homomers are prevalent. In addition, we found that the

abundance of homomers is consistently higher in the cell than the
abundance of monomers, indicating that high protein abundance
facilitates homomer evolution. The analysis of quaternary structure
evolution within orthologous proteins shows that quaternary struc-
ture is gained easier than lost and that the evolution of extracellular
proteins is largely consistent with the predictions of CNE, i.e., a
unidirectional, ratchet-like evolutionary process, most likely due to
the hydrophobic ratchet, but we hypothesise that a degradation-
based ratchet also contributes to the pattern. Taken together, our
findings indicate that the factors influencing oligomerisation are
significantly shaped by the properties of the cellular environment,
like macromolecular crowding, and not only by the intrinsic prop-
erties of proteins (i.e., their biochemical function), and that oligo-
merisation is likely to contribute to the maintenance of cellular
homoeostasis.

Results
Data sources
We have extracted all proteins from the PDB, which are either mono-
mers or homomers; their structure contains at least 80% of their Uni-
Prot sequence and has a resolution better than 3 Å (see “Methods” for
details). Proteins that are also part of heteromer PDB structures were
not included. Next, the sequences were filtered for enzymatic activity,
and only the ones with a known Enzyme Commission (EC) number or
for which an EC number could be reliably predicted were kept in the
dataset (see “Methods”). This resulted in a list of 11968 enzymes
(Supplementary Data 1), of which 8248 are homomers, and 3720 are
monomers. Analyses of surface hydrophobicity, absence of trans-
membrane helices, and known heteromer complexes indicate that the
quality of the dataset is high (Supplementary notes and Supplemen-
tary Figs. 1 and 2). Cellular location was determined with DeepLoc231

for Eukaryotes and PSORTb32 for Prokaryotes, resulting in 7562 cyto-
plasmic, 894 extracellular, and 1726 other proteins. As the cellular
compartments and extracellular environments of Prokaryotes and
Eukaryotes are frequently very different, just as their protein secre-
tion/transport mechanisms, wherever it was possible, we analysed
Prokaryote and Eukaryote proteins separately (8228 and 3740 pro-
teins, respectively). To remove redundancies in Figs. 2 and 3, we
clustered the proteins with MMseqs233 at a 30% sequence similarity
cutoff. This resulted in 2435 prokaryotic and 1528 eukaryotic clusters
for which the cellular location could be determined, and the cluster
centroids were used in the downstream analyses.

Extracellular enzymes are predominantly monomers
The analysis of prokaryotic and eukaryotic proteins indicates that
despite the huge differences in their biology and composition of their
extracellular/intracellular space, enzymes in the two groups show a
largely similar pattern: in the cytoplasm, homomers dominate (70% of
the clusters, Fig. 2B), while in the extracellular space monomers (70%
of the clusters, Fig. 2B), and proteins of other cellular components
have intermediate frequencies of homomers and monomers (Fig. 2B).
The differences in the frequencies also result in qualitative differences
in homomer interfaces: in homodimers, the fraction of the protein
surface that is buried in interfaces is much smaller in the case of
extracellular proteins than in cytoplasmic ones (Fig. 2C), and in
extracellular proteins, the interface is also much less conserved com-
pared to the protein surface (Fig. 2D–F). Conservation was measured
as the difference between the ConSurf scores34 of the interface and
surface residues. Homomers with small interfaces, particularly below
1000Å2, are likely to be enriched in quaternary structure (QS) errors6,35

(i.e., can have non-biological, crystallographic interfaces), thus the real
frequency of monomers in extracellular proteins is probably even
higher, and our estimates are conservative.When only homomerswith
1000+Å2 interfaces are included, in the cytoplasm, 30.2% of the clus-
ters have interfaces that are not significantly more conserved than the

Fig. 1 | Examples of quaternary structure variability in homologous Cu-Zn
Superoxide dismutases (CuSOD, EC = 1.15.1.1). A In eukaryotes, e.g., mouse (PDB
ID: 3GTT), CuSOD is a homodimer with a small but highly conserved interface. B In
prokaryotes, it is either a monomer (E. coli, PDB ID: 1ESO) or (C) a homomer (e.g.,
Actinobacillus pleuropneumoniae, PDB ID: 2APS). However, the interfaces in pro-
karyotes are not homologous with the interfaces of eukaryotes. (Note that on the
three panels, the blue subunits are structurally aligned).
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Fig. 2 | Extracellular enzymes are predominantly monomers. A Mechanisms
that might prevent the evolution of oligomers in extracellular enzymes: low con-
centration of subunits resulting in dissociation, limitations of transport mechan-
isms (in Prokaryotes), and selection for highdiffusion rates.B Extracellular enzyme
clusters are dominated bymonomers, while cytoplasmic ones by homomers, both
in prokaryotes and eukaryotes. Bars indicate the fraction of quaternary structure in
the set, whiskers represent 95% CI. P-values were calculated with tests of propor-
tions andwere correctedwith the Benjamini-Hochbergmethod.C The relative size
of homomer interfaces is largest in the cytoplasm, and smallest in the extracellular
space. D–F The conservation of homomer interfaces (relative to the solvent-

accessible surface) shows a similar trend as their size and frequency: it is highest in
the cytoplasm, and lowest in the extracellular space, where the fraction of non-
conserved - and probably non-functional - interfaces is very high, 63.0−73.8%. As
non-biological (crystallographic) interfaces in the PDB are primarily present in
homomers with interface areas below 1000 Å2, the fraction of proteins with non-
conserved interface was calculated also for homomers with interface areas greater
than 1000 Å2; and prokaryotes and eukaryotes were pooled. On panels (C–F)
boxplots display the median, 25–75% interquartile range (IQR), and 1.5 * inter-
quartile range from the hinge (whiskers). Notches, when present, are defined as
1.58 * IQR / sqrt(n). Datapoints beyond the whiskers are shown as outliers.
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solvent-accessible surface (Fig. 2D) while in the extracellular space,
63.0% (Fig. 2F), which is in good agreement with our recent findings
showing that in ~35% of homodimers, multimerization is unlikely to
contribute to the biochemical function6.

Taken together, these findings are in agreement with the
hypothesis that in the extracellular space, oligomerisation is either
difficult or deleterious (Fig. 2A), and that results in the evolution and
dominance of monomer enzymes. Since the pattern is essentially
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similar in eukaryotes and prokaryotes, it is unlikely to be caused by the
limitations of the protein secretion mechanisms of prokaryotes, as
eukaryotes can secrete large, assembled complexes.We add that in the
final stages of revisions we found out that Monod has already noticed
that extracellular proteins are usually monomers36 and hypothesised
that it is due to their stabilisation by disulfide bridges. However, this
explanation can be ruled out due to the much higher frequencies of
disulfide bridges in eukaryotes than in prokaryotes, and the fact that
quaternary structure varies in enzymes with the same folds and
function.

Extracellular enzymes are most common in hydrolases
and lyases
Next, we examined whether monomers and extracellular enzymes are
enriched in particular enzyme classes. We found that monomers are
most abundant among hydrolases (EC = 3), where their frequency is
comparable to the frequency of homomers (Fig. 3A, B), while in the
case of other enzyme classes, the ratio of homomers to monomers is
much higher, ~2–3 in prokaryotes and ~1.5–2 in eukaryotes (Fig. 3A, B).
The frequency of extracellular enzymes is highest in the monomers of
hydrolases and lyases (EC = 3 and 4, Fig. 3C, D), and the difference
between homomers and monomers remains highly significant within
these enzyme classes, both in Eukaryotes and Prokaryotes, suggesting
that the majority of extracellular enzymes in the PDB are involved in
the degradation of macromolecules (Fig. 3C, D).

In addition to their distribution in enzyme classes, we also
examined the enrichment of Gene Ontology terms in extracellular
proteins, compared to the full dataset (Fig. 3E and Supplementary
Data 2). Similarly to EC numbers, hydrolase activity is highly enriched
amongmolecular function terms, both in Eukaryotes (p = 2.5e-144) and
Prokaryotes (p = 2.9e-47, Fig. 3E and Supplementary Data 2), and all
major hydrolase forms are enriched in the dataset (hydrolyses acting
on glycosyl bonds, peptidases, lipases, serine hydrolases; Fig. 3E and
Supplementary Data 2). The “biological process” terms are less com-
parable in eukaryotes and prokaryotes due to their different com-
plexity, but in both groups “catabolic process” and its derived terms
are the most frequently enriched (see Supplementary Data 2).

The above results indicate that hydrolases are the most common
enzymes in the extracellular space, however, hydrolases also represent
75% of industrially relevant enzymes37, which may result in research
biases in the composition of PDB. Thus, we examined whether
excluding them from the data changes the pattern, i.e., whether the
enrichment of monomers is a hydrolase-specific phenomenon or a
more general trend. We found that their exclusion does not change
qualitatively the patterns we observe (Supplementary Fig. 3), although
significances are affected, due to the much lower number of clusters
(e.g., in eukaryotes, the total number of extracellular clusters drops
from 214 to 58, while in prokaryotes to 25, from 105).

The evolution of interfaces follows a ratchet-like pattern
Next, we examined whether the evolution of homomers from
monomers (or vice versa) shows any biases, i.e., whether interfaces
are more likely to be gained than lost. Using the full set of 12 k
eukaryotic and prokaryotic sequences, we identified orthogroups
within them using the eggNOG-mapper tool38 (see “Methods”).
Altogether, 311 orthogroups had ten or more sequences, and these
were used in the downstream analyses. The proteins were aligned,
and their rooted phylogenetic trees were used to estimate the evo-
lution of oligomeric status along the phylogeny (see “Methods”), i.e.,
the ancestral probabilities of being a monomer or homomer for each
node (Fig. 4A, see pie charts at each node). Most orthogroups have
ancient proteins: 243 have proteins frommore than one domain and
92 from all three domains (Bacteria, Archaea, Eukaryota). Ancestral
probabilities were estimated in two ways: a binary, and the more
accurate multi-state method. In the binary case, proteins were

assigned to one of two states: monomers or homomers, irrespective
of the number of their subunits. In the multi-state case, the number
of subunits (monomer, dimer, tetramer, octamer, etc.) was used as
the discrete variable for ancestral character estimation, and we also
took into account the homology of interfaces: complexes with
similar number of subunits but non-homologous interfaces were
treated as separate states in the trees. The estimation of ancestral
state was performedwithmaximum likelihood (ML, Figs. 4 and 5) and
also with maximum parsimony (MP, Supplementary Figs. 4 and 5),
which show similar results. Trees with only a single quaternary
structure type (e.g., all proteins being homomers) were included, but
trees where the highest ancestral probability at the root was lower
than 51% were excluded from the analyses (31 binary and 57 multi-
state trees with ML, and 37 binary and 78 multi-state trees with MP).

To testwhether there are trends in the evolutionof homomers, we
split the trees into two groups depending on whether the root was a
homomer or amonomer (Fig. 4A). Next, we examined the frequencyof
quaternary structure changes in the trees. We found large differences
between the phylogenies: in the binary analysis, in the trees where the
ancestral state was a monomer, the frequency of multimerization and
the fractionofhomomers in the tree ismuchhigher than the frequency
reversion to a monomer in those trees where the root was a homomer
(Fig. 4B and Supplementary Fig. 4A). In the case of homomers with
more than two subunits (e.g., tetra- or octamers) reversion to a
monomer state is likely to needmore than one steps,while a dimer can
evolve from a monomer in a single step. To account for this, using the
multi-state assignments, we also examined in every tree the frequency
of subunit gains and losses, which shows a similar, highly significant
difference as in the binary assignment (Fig. 4C and Supplementary
Fig. 4B). This is also reflected in the size of the interfaces: homomers in
trees with a monomer-root have much smaller (~2x) interfaces than
homomers in trees where the root was also a homomer (Fig. 4D and
Supplementary Fig. 4C), indicating that once large interfaces were
evolved, reverting to amonomer state ismuch less likely than evolving
a new (and relatively small) interface by a monomer. To rule out the
possibility that this pattern is caused by major differences in the
topologies of the trees (for example, by lower divergence from the
root in trees with homomer-root), we calculated the average distance
from the root (Supplementary Fig. 6A) and the average distance
between the proteins (Supplementary Fig. 6B) for every tree, which
show no significant differences between the two tree categories
(Supplementary Fig. 6). Finally, in the case of multi-state trees with
homomer roots, we also calculated whether the frequency subunit
gains and losses differ; surprisingly we found no significant difference
between the two (Fig. 4E and Supplementary Fig. 4D). However, this is
in agreement with recent experimental findings which show that in the
case of homomers that are multimers of dimers, new subunits can be
gained and lost relatively easily39,40, at leastwhen thenew interfaces are
not very large or hydrophobic.

Since many of the homomers in the trees with monomer-root
have small interfaces, and some of these interfaces might be crystal-
lographic, rather than biological6,35, we also examined whether the
pattern changes if homomers with interfaces below 1000 Å2 are
assumed to be quaternary structure errors and are treated as mono-
mers in the analyses. The reanalysis of the data with this extended set
of monomers with ML shows that the pattern remains similar (Sup-
plementary Fig. 7), thus, our findings are unlikely to be significantly
influenced by quaternary structure errors in the PDB.

Interface variability depends on the ancestral state of the
orthogroups
Next, using the ancestral state of the roots of the multi-state analysis,
we examined whether and to what degree the overlap between inter-
face residues depends on the structural similarity of the proteins and
the size of the interface.We found that within orthogroups, the overall
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structural similarity between the subunits of different homomers is
high, with the average TM-score being above 0.7–0.8 in the vast
majority of the trees (Fig. 4F and Supplementary Fig. 4E). The average
overlap of interfaces depends largely on the ancestral state of the tree:
in the trees where the root is homomer, it is typically high, above 75%,
while in the trees withmonomer root, the overlap ismuch smaller, less

than ~50% inmost cases (Fig. 4F and Supplementary Fig. 4E), indicating
that in these orthogroups different interfaces evolved repeatedly. In
addition, interface overlap depends on the size of the interfaces: in
orthogroups where the average interface size is below ~1200 Å2, the
overlap drops (Fig. 4G and Supplementary Fig. 4F), irrespectively
whether the root of the tree is a homomer or monomer, suggesting

0.5

ADAS_CAVPO
ADAS_DICDI

D2HDH_HUMAN
Q6NAV4_RHOPA

Q0SBK1_RHOJR

D3Y1I2_9ACTN

DLD_ECOLI

A0A0U1ZL01_LINUS
CKX7_ARATH

A0A1D6QQD6_MAIZE
CKX1_MAIZE

E3T1W8_MAIZE
Q709Q5_MAIZE

DPRE1_MYCS2
DPRE1_MYCTU

XYOA_STRCO

HDNO_PAENI

BBE15_ARATH
CYND4_CYNDA
THCAS_CANSA

BBE28_ARATH
RETO_ESCCA

AKNOX_STRGJ
HEXNO_RALSU

GOOX_SARSR
A0A098DND1_GIBZE
MNCO_MICNN

XYLO_MYCTT

VAOX_PENSI

a

a

a

a

Dimer_1

Dimer_2

Monomer

Octamer

a

a

a

a

cytoplasm

extracell.

n.a.

other

COG0277.1A

p = 5.02e−02

n:

Mon. = 33

Hom. = 7

0 40 80 120

Homomer

Monomer

0.00

0.01

0.02

0.03

0.04

0.05

Percent of extracellular proteins

D
en

si
ty

Homomer

Monomer

Ancestral state of root, MultiB

p = 2.75e−03

n:

Mon. = 25

Hom. = 10

0 40 80 120

Homomer

Monomer

0.00

0.01

0.02

0.03

0.04

0.05

Percent of extracellular proteins

D
en

si
ty

Homomer

Monomer

Ancestral state of root, BinaryC

7

0

0

7

24

2

Homomer

Monomer

Unclear

Homomer Monomer
Root QS

E
xt

ra
ce

llu
la

r 
Q

S

Ancestral states,
Multi, p = 6.7e−04

D

8

2

0

4

20

1

Homomer

Monomer

Unclear

Homomer Monomer
Root QS

E
xt

ra
ce

llu
la

r 
Q

S

Ancestral states,
Binary, p = 1.8e−03

E
ANCOVA
p = 0.064

n:

Mon. = 33
Hom. = 7

1000

3000

10000

0 25 50 75 100
Percent of extracellular proteins

A
vg

.i
nt

er
fa

ce
ar

ea
�Å

2 �

Homomer

Monomer

Ancestral state of root, MultiF

n = 17

0

100

200

300

0 100 200 300
Extracellular, MW (kDa)

C
yt

op
la

sm
ic

, M
W

 (
kD

a)
 

Eukaryota

Prokaryota

MW of HomomersG

n = 17

0

25

50

75

0 25 50 75
Extracellular, MW (kDa)

C
yt

op
la

sm
ic

, M
W

 (
kD

a)
 

Eukaryota

Prokaryota

MW of Homomer subunitsI

n = 29

0

20

40

60

0 20 40 60 80
Extracellular, MW (kDa)

C
yt

op
la

sm
ic

, M
W

 (
kD

a)
 

Eukaryota

Prokaryota

MW of MonomersK

Diff. from 0
p = 0.013

0

2

4

6

8

−200 −100 0 100
Ext. − Cyt. difference (kDa)

N
r 

of
 p

hy
lo

ge
ni

es

Eukaryota

Prokaryota

MW difference, HomomersH
Diff. from 0
p = 0.854

0

2

4

6

8

−20 0 20 40
Ext. − Cyt. difference (kDa)

N
r 

of
 p

hy
lo

ge
ni

es

Eukaryota

Prokaryota

MW difference, Homomer subunitsJ
Diff. from 0
p = 0.076

0

2

4

6

8

10

−20 0 20 40
Ext. − Cyt. difference (kDa)

N
r 

of
 p

hy
lo

ge
ni

es

Eukaryota

Prokaryota

MW difference, MonomersL

Article https://doi.org/10.1038/s41467-024-52662-2

Nature Communications |         (2024) 15:8505 7

www.nature.com/naturecommunications


that, besides rapid evolution, someof these small interfaces do contain
crystallographic artefacts. However, in the case of orthogroups with
monomer root, even the plateau above 1200 Å2 shows only 25–50%
interface overlap (Fig. 4G and Supplementary Fig. 4F), indicating that
these orthogroups are characterised by the repeated evolution of
homomers with new interfaces.

Extracellular protein evolution indicates the importance of CNE
Next, we examined whether the evolution of quaternary structure in
extracellular proteins is more consistent with the predictions of con-
structive neutral evolution (CNE, “hydrophobic ratchet”), or with the
traditional view, which assumes that quaternary structure is adaptive.
Extracellular proteins can be seen as a “canary in the coalmine”
because the two hypotheses make different predictions: the hydro-
phobic ratchet predicts that once they evolve, losing interfaces is dif-
ficult, thus extracellular monomers will primarily evolve in
orthogroups where the ancestral state is also a monomer. In contrast,
the adaptive view is less restrictive and does not assume the persis-
tence of quaternary structure without a fitness advantage, thus, it is
more permissive for the evolution of monomers from homomers and
losing interfaces.

To test this, we selected the trees/orthogroups with at least one
extracellular protein, where the cellular location could be determined
for at leastfive proteins, and the probability of themost likely ancestral
state is higher than 51% (see Fig. 5A for an example). The number of
such trees is limited, 35 in the binary and 40 in themulti-state casewith
the ML ancestral reconstruction method (Fig. 5), and 33 and 37,
respectively, with MP (Supplementary Fig. 5). First, we examined the
frequency of extracellular proteins, which is higher in orthogroups
with amonomer root than in orthogroupswith a homomer root, in the
binary, and to a lesser degree in themulti-state analyses (Fig. 5B, C and
Supplementary Fig. 5B, C). Next, using the most common quaternary
structure of extracellular proteins in the orthogroups, we tested
whether their quaternary structure changed compared to the root. We
found that in the majority of trees, the most common quaternary
structure of extracellular proteins is the same as the root (Fig. 5D, E and
Supplementary Fig. 5D, E), and it changes compared to the root only in
22% (Fig. 5D, Multi-state analysis) and 20% (Fig. 5E, Binary analysis) of
the trees (ML), and even less in the case of the MP method (Supple-
mentary Fig. 5D, E). In the vast majority of the trees where most
extracellular proteins are monomers, the root was also a monomer,
and thedifference between treeswith homomer andmonomer roots is
highly significant for both analyses (Fig. 5D, E and Supplementary
Fig. 5D, E). Since in some trees, the majority of proteins are extra-
cellular (see Fig. 5B, C), which can make changes in a quaternary
structure very unlikely, thus we repeated the ML analysis using only
trees where the fraction of extracellular proteins is less than half of the
total number of proteins (Supplementary Fig. 8). This reduced set of
trees (29 and 26 for multi-state and binary) still shows a largely similar
pattern, as only 27% (Supplementary Fig. 8A, Multi-state analysis) and

26.9% (Supplementary Fig. 8B, Binary analysis) of the trees indicate a
change in quaternary structure. The comparison of interface sizes
suggests that interface size scales similarly with the fraction of extra-
cellular proteins irrespectively of the root, although the small number
of trees with homomer root results in a very high uncertainty for the
slope (Fig. 5F and Supplementary Fig. 5F). These findings indicate that
reverting to a monomer state from a homomer is difficult even in the
caseof extracellularproteins, andmost extracellularmonomers evolve
from monomer ancestors, in agreement with the predictions of the
CNE model.

Extracellular homomers have reduced molecular weight
In the above analysis, we focused on qualitative changes in the
quaternary structure (i.e., a change from homomer to monomer).
However, selection might also result in more subtle, quantitative
changes, like a reduction in the size of complexes or proteins, for
example, due to the better solubility of smaller complexes/mono-
mers, or their higher diffusion rates (Fig. 2A). Diffusion rates scale
with the molecular weight (MW) of proteins, and complexes, espe-
cially with many subunits, are known to have much lower diffusion
rates than monomers41. We examined whether extracellular and
cytoplasmic proteins within the same orthogroups have similar MW
and found that extracellular homomers do show a statistically sig-
nificant reduction inMW (p = 0.013, Fig. 5G, H), but not their subunits
(Fig. 5I, J), or monomers (Fig. 5K, L), indicating that quaternary
structure is affected by cellular location, but not protein length.
(Note that Prokaryotes and Eukaryotes were treated separately, even
within the same orthogroups, because Eukaryotic proteins are gen-
erally larger than Prokaryotic ones.) This suggests that selection is
also likely to contribute to the loss of subunits/interfaces in extra-
cellular proteins, although the uncertainty associated with the ana-
lysis is high due to the small number of orthogroups having both
extra- and intracellular homomers.

Amino acid synthesis cost is unlikely to be a major determinant
of homomer frequency
The synthesis of amino acids is metabolically costly, and in E. coli, the
synthesis cost, measured as the number of high energy ATP P-bonds
required for synthesis in the synthesis pathway, can range between 11
P-bonds (Alanine, Glycine, Serine), to 74 (Tryptophan)42, and hydro-
phobic residues with large side chains are characterised by high
synthesis costs (e.g., Tryptophan, Tyrosine, Phenylalanine). Such costs
can change when the entire metabolic network is considered or using
different substrates43 nevertheless, maintaining a hydrophobic inter-
face is likely to be more costly than having an equivalent solvent-
accessible (hydrophilic) surface. Thus, having unnecessary hydro-
phobic interfaces might be deleterious and is unlikely to be a com-
pletely neutral trait. We examined whether the synthesis costs of
proteins differ in homomers and monomers of E. coli, and found that,
as expected, the surface of subunits (that included interface residues,

Fig. 5 | Extracellular monomers evolved from monomer ancestors. A Example
phylogenetic tree, with the quaternary structure and cellular locations of the pro-
teins. Pie charts at the nodes indicate the probability of the number of chains for
each node, extracellular proteins at the leaves are highlighted with green. B, C The
frequency of extracellular proteins in the orthogroups, depending on the type of
analysis (Binary or Multi-state). The fraction of extracellular proteins is higher in
orthogroups where the ancestral state was a monomer, however, the difference is
only nearly significant in themulti-state comparison due to the small number (7) of
trees (Wilcoxon-rank sum tests.). Boxplots display themedian, 25–75% interquartile
range (IQR), and 1.5 * interquartile range from the hinge (whiskers). Notches are
defined as 1.58 * IQR / sqrt(n). Datapoints beyond the whiskers are shown as out-
liers. P-values are fromWilcoxon rank sum tests.D, EMatrices with the quaternary
structure (QS) of the root and extracellular proteins in the orthogroups which do
have extracellular proteins. P-values (test of proportions) indicate the difference

between extracellular QS in trees with homomer and monomer roots. In the
majority of cases, theQSof extracellular proteins is the same as the root, indicating
that most extracellular monomers did not lose their quaternary structure but
already evolved frommonomers, while in the trees with homomer rootmost of the
time, they remained homomers. This pattern is consistent with the predictions of
CNE. F The average interface area of homomers scales similarly with the fraction of
extracellular proteins in the orthogroups with homomers of monomer ancestral
state. G–JWithin orthogroups, the average molecular weight (MW) of extracellular
homomers is smaller than the MW of cytoplasmic monomers, but there is no dif-
ference in their subunits (one-sample Wilcoxon-tests). This suggests that besides
CNE, the selection also shapes their quaternary structure. Note that due to the
larger size of eukaryotic proteins, prokaryotes and eukaryotes were treated sepa-
rately, even within orthogroups.K, L TheMWofmonomers is not affected by their
cellular location (one-sample Wilcoxon-tests).
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see “Methods”) has a higher per-residue synthesis cost in homomers
(Fig. 6A), particularly in interfaces (Fig. 6B). However, the protein core
is more costly in monomers (Fig. 6C), and the total synthesis cost of
proteins is also slightly higher in monomers, even when differences in
codon adaptation index (which integrate expression levels) are taken
into account (Fig. 6D). This raises the possibility that in E. coli (and
species with similar metabolic pathways), the high frequency of
homomers in the cytoplasm is nevertheless the result of selection
against monomers for metabolic reasons, if oligomerisation enables
the reduction of total synthesis costs of proteins.

This hypothesis can be largely ruled out by the examination of
taxonomic groups with amino acid auxotrophies. In mammals, most
hydrophobic aminoacids (F, I, L,M, V,W) areessential andare takenup
from the environment, and two (C, Y) are conditionally essential. Thus,
there is no, or just reduced synthesis cost associated with them.
Intracellular parasites like Plasmodium sp. or Toxoplasma take upmost
amino acids from their host44, and parasitic bacteria like Tenericutes
(which include Mycoplasma) are also auxotrophic for most amino
acids45. In contrast, auxotrophy is rare in plants, and most bacteria
(78.4%) can synthesise all amino acids45. Despite thesemajormetabolic

differences, the ratio of homomer and monomer enzymes in the
cytoplasm does not vary dramatically between these taxa (Fig. 6E and
Supplementary Fig. 11), and auxotrophic endoparasites also con-
sistently show the same pattern, even though the number of their
currently available PDB entries is very low. In addition, theory
suggests46 that in eukaryotes, the cost of protein production is usually
not high enough to be perceived by natural selection, while it is in
prokaryotes.

It has also been suggested that in prokaryotes, extracellular pro-
teins, especially flagellar and fibrous proteins, have reduced synthesis
costs because their amino acids arenot recycled by the cell47. Using the
proteins of the orthogroups, we examined whether this pattern is
present also in enzymes (and whether it can contribute to the low
frequency of homomers in extracellular proteins). The results indicate
that in our dataset, the synthesis costs of extracellular monomers are
not lower than the synthesis costs of intracellular monomers, neither
within orthogroups (Fig. 6F) nor between orthogroups (Fig. 6G), and
also when all prokaryotic extracellular monomers are compared to all
prokaryotic intracellular monomers (n = 176 and 1426, respectively;
p =0.487, Wilcoxon rank sum test). Thus, location itself is unlikely to

Wilcoxon
p = 1.1e−04

ANCOVA
p = 0.0141

n:
Mon. = 134
Hom. = 401

0.4 0.5 0.6 0.7 0.8 Hom. Mon.

Hom.

Mon.

18

21

24

27

Codon Adaptation Index                    

P
−

co
st

 p
er

 r
es

id
ue

E. coli, protein surfaceA

Wilcoxon
p =

1.4e−56

n = 401

−10

−5

0

5

10

15

Hom.
QS

In
te

rf
ac

e 
−

 s
ur

fa
ce

 P
−

co
st

 d
iff

.

E. coli
Homomers

B

Wilcoxon
p = 5.2e−06

ANCOVA
p = 4.02e−04

n:
Mon. = 134
Hom. = 401

0.4 0.5 0.6 0.7 0.8 Hom. Mon.

Hom.

Mon.

20.0

22.5

25.0

27.5

30.0

Codon Adaptation Index                    

P
−

co
st

 p
er

 r
es

id
ue

E. coli, protein coreC

Wilcoxon
p = 0.0150
ANCOVA

p = 0.0156

n:
Mon. = 135
Hom. = 403

0.4 0.5 0.6 0.7 0.8 Hom. Mon.

Hom.

Mon.

22

24

26

28

Codon Adaptation Index                    

P
−

co
st

 p
er

 r
es

id
ue

E. coli, full proteinD

1045 359
0

10

20

30

40

50

60

70

80

90

Hom. Mon.

P
er

ce
nt

 o
f Q

S
Gram−neg

200 102
0

10

20

30

40

50

60

70

80

90

Hom. Mon.

Mammals

35 10
0

10

20

30

40

50

60

70

80

90

Hom. Mon.

Plasmodium

E

Wilcoxon
p = 0.190

n = 17

−1

0

1

2

Prokaryotes

P
−

co
st

 d
iff

er
en

ce
, e

xt
ac

el
l. 

−
 in

tr
ac

el
l.

Monomers
within

orthogr.

F

Wilcoxon
p = 0.044

n = 18 n = 120
21

22

23

24

25

26

27

extrac. intrac.

P
−

co
st

 p
er

 r
es

id
ue

 

Monomers
between

orthogroups

G
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(including interface) in E. coli. B Difference between interface and solvent acces-
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most amino acids from its host, in mammals most hydrophobic amino acids are
essential, while most bacteria can synthesise all amino acids. (See also Supple-
mentary Fig. 11). F Within orthogroups, the per-residue synthesis cost of prokar-
yotic extracellular and intracellular monomers does not differ significantly.
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have a major effect on the synthesis cost of these enzymes, and their
quaternary structure.

However, proteins that are more expressed or abundant were
shown to have lower average synthesis costs42,48,49, thus the lower
overall metabolic cost of homomers in E. coli can also reflect higher
protein abundance or expression, which is in agreement with the
hypothesis that macromolecular crowding is a significant factor in the
evolution of oligomers (see below).

Homomers are more abundant in the cell than monomers
If the high frequency of oligomerisation in the cytoplasm evolves due
to macromolecular crowding, that predicts that oligomers will be
formed primarily by proteins that aremore abundant thanmonomers.
We tested this hypothesis using the E. coli, yeast and human enzymes,
and abundances obtained from the paxDB database50. Besides
using our high coverage enzyme dataset from the PDB where the
quaternary structure is known, in the case of E. coli and yeast, both the

heteromers51 and homomers52 of their entire proteomes are known or
predicted, thus their monomers can also be defined, and proteome
scale comparisons of enzymes are possible. Our results indicate that in
all three species, homomers have higher abundances than monomers
(Fig. 7, white panels), the only exception being the comparison in the
yeast set of the PDB (Fig. 7D), most likely due to the low numbers of
available proteins. In addition, the pattern is present both in cyto-
plasmic (Supplementary Fig. 12) and non-cytoplasmic (Supplementary
Fig. 13) proteins. This is consistent with the hypothesis that homomer
interfaces evolve due to macromolecular crowding, i.e., due to the
high frequency of interactions in the cell and the minimisation of
excluded volume29,30.

In addition, when the abundances are scaled down with the
number of subunits of each complex (or, in the case of predicted
structures, the putative number of subunits, see “Methods”), thus
when the abundance of the complexes/particles they form is com-
pared, in all three species the difference between homomers and
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the scaled abundance (~number of particles) is used. This pattern is consistent with
the hypothesis that the high abundance of proteins (macromolecular crowding)
facilitates the evolution of homomers. However, it also indicates that not just the
number of proteins, but also the number of particles they form is regulated by the
cell, suggesting that oligomerisation contributes to the maintenance of cellular
homoeostasis. On all panels, boxplots display the median, 25–75% interquartile
range (IQR), and 1.5 * interquartile range from the hinge (whiskers). Notches are
defined as 1.58 * IQR / sqrt(n). Datapoints beyond the whiskers are shown as out-
liers. All p-values were calculated with Wilcoxon rank sum tests.
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monomers largely disappears (Fig. 7, grey panels). This suggests that
not only the abundance of enzymes (i.e., the number of catalytic sites),
but also the abundance of their complexes (the number of particles
they form) is regulated in the cell, the twomight be shaped by separate
processes, and oligomerisation allows a certain level of uncoupling
between the two. Thus, besides biochemical function, the evolution of
oligomers and their frequencymight alsobe shapedby thenecessity to
maintain cellular homoeostasis, most likely by their effect on the
properties of the cytoplasm, like viscosity/fluidity, osmotic pressure or
diffusion rates.

However, several studies have demonstrated that in eukaryotes,
oligomerisation increases the half-life of protein complexes and
reduces their degradation rate, due to burying ubiquitinoylation
sites and degrons in interfaces18,26,53,54. A similar interface effect has
not been described in bacteria so far, nevertheless, it may exist, as
interface residues are generally enriched at the C-termini of
proteins55, and may overlap with C-degrons. Thus (at least in eukar-
yotes and archaea), the higher abundance of oligomers may be the
consequence of oligomerisation, the cause of it, or both. Mallik and
Kundu demonstrated that in yeast, the half-life of homomers scales
with their buried interface area18, and using the high-coverage
enzyme dataset, we examined whether the association between
abundance and buried interface area is similarly strong as between
abundance and oligomerisation (Fig. 8 and Supplementary Fig. S14).
We found that both in E. coli (where the ubiquitin-proteasome
pathway doesn’t exist) and human datasets there is a significant
positive correlation between the buried interface area of homomers
and their abundance, thus the presence of interfaces and complex
formation may influence abundances. However, its correlation
coefficient (R2) is lower than between quaternary structure and
abundance (Fig. 8), especially when only dimers are used, where only
E. coli is significant (Supplementary Fig. 14). Thus, the higher abun-
dance of homomers is unlikely to be purely the consequence of lower
degradation rates due to having interfaces. The presence of degrons
in interfaces is likely to be used as a regulatory mechanism by the
cell, however, the fact that interfaces do influence protein abundance
through degradation, together with macromolecular crowding, can
result in a positive feedback between the two: abundant proteins
oligomerise, which in turn reduces their degradation rate, resulting
in even higher abundances and interaction frequencies. We hypo-
thesise that besides the hydrophobic ratchet, this “degradation
ratchet” might be an additional process causing the accumulation of
interfaces over evolutionary timescales, at least in eukaryotes.

Discussion
Our results indicate that in extracellular environments, most enzymes
do not form homomers (Fig. 2), indicating that the factors responsible
for the evolution of oligomers, both the adaptive and neutral ones, are
primarily present in the intracellular environment. Even though
hydrophobic interfaces are likely to have a metabolic cost (Fig. 6), the
general pattern of homomer evolution in enzymes is consistent with
the predictions of CNE (“hydrophobic ratchet”): the transition from
monomers to homomers is easier than the reverse process (Fig. 4),
extracellular monomers evolved primarily from proteins that were
monomers also in their ancestral state, and in the majority of cases
their evolution did not involve the loss of interfaces (Fig. 5 and Sup-
plementary Fig. 8). The bias in interface evolution also explains pre-
vious observations that the order of the assembly of protein complex
subunits reflects their evolution14,56,57, if new interfaces are added as the
complex evolves, but old interfaces are rarely lost. In addition, our
analyses indicate that other factors, like differences in catalytic con-
stants (Supplementary notes, Supplementary Figs. 9 and 10) or dif-
ferences in the synthesis cost of amino acids, are unlikely to explain the
differences in homomer frequencies between the extracellular and
cellular environment.

The high frequency of hydrolases among extracellular enzymes
(Fig. 3) suggests that interactions with the solvent might be among the
key factors responsible for their rare oligomerisation. Oligomerisation
might be deleterious in the extracellular space due to the exposed
hydrophobic interfaces if homomers dissociate due to the low con-
centration of their subunits, or monomers can even be adaptive due to
their smaller size if selection favours high diffusion rates (Fig. 2A).

In many enzymes, the contribution of quaternary structure to
their function is beyond doubt (e.g., allosteric oligomers). However,
enzyme oligomerisation is environment-dependent (Fig. 2), while
biochemical function isnot; in somecases, oligomerisation is known to
be gratuitous5,15, and the interfaces of homomers with identical func-
tions are not always conserved (see Fig. 1). This indicates that some of
the factors that facilitate the evolution of oligomers are not directly
related to the biochemical function of the protein, but rather to the
characteristics of the cellular environment. One such characteristic is
likely to be themacromolecular crowding of the cytoplasm, which can
result in high interaction frequencies, facilitating the evolution of
interfaces. However, oligomerisation may also be related to the
maintenance of cellular homoeostasis, like water availability19, and
proteostasis15,18,26, determining the viscosity/fluidity of the cytoplasm
and diffusion rate of proteins within the cell. The higher frequency
(Fig. 2) and abundance (Fig. 7) of homomers than monomers, and the
fact that the difference in abundance disappears when it is scaled with
subunit number is consistent with both possibilities (macromolecular
crowding and cellular homoeostasis). The evolution of complexes
(e.g., dimers) may simply allow the uncoupling between biochemical
and biophysical constraints of the cell, for example, if the cell needs N
binding sites for catalysis, but only N/2 particles for the optimal
cytoplasmic fluidity/viscosity, osmotic pressure or diffusion rate
(these parameters are usually correlated). Due to excluded volume
effects, complex formation also allows a higher number of proteins
(and denser cytoplasm) in the same cell volume than with monomers,
explaining the presence of homomers in viruses. A process like this is
easy to reconcile with the neutral patternof interface evolution, even if
they have ametabolic cost, as from the perspective ofmaintaining the
correct cytoplasmic fluidity, it may not matter which proteins form
oligomers. Thus, interfaces of individual proteins can vary and evolve
effectively randomly, as long as selection maintains the biophysical
properties (and oligomer frequencies) of the cell within the physiolo-
gical range. This would also explain the relatively constant ratio of
homomer and monomer enzymes in different taxonomic groups
(Supplementary Fig. 11). In addition, the weak, nevertheless positive
correlation between interface size and protein abundance suggests
that besides the hydrophobic ratchet, a “degradation ratchet”may also
contribute to the accumulation of interfaces over evolutionary
timescales.

The relative contribution of oligomerisation to these processes
remains to be seen, and an important limitation of our work is that it
does not take into account heteromers, due to their very incomplete
annotation. Healthy cells maintain a narrow size range58, and the
dilution of the cytoplasm due to cellular overgrowth results in
impaired cell function59. Recent work indicates that protein con-
densates play a role in the regulation of water potential in the cell19

and osmotic pressure60,61, thus, the frequency and abundance of
oligomers in the cytoplasm may help to establish the “default”
amounts of available water. The lower diffusion rate of oligomers
might also allow a certain level of compartmentalisation within the
cytoplasm15,41 and, in consequence substrate channelling (and
enzyme assemblies)62, which have been observed for several meta-
bolic pathways62. In contrast, in the extracellular space, maintaining
enzyme assemblies is probably not possible, and selection might
favour the highest diffusion rate. In the cytoplasm, diffusion rates
show considerable spatial variability63, and several studies have
demonstrated that the diffusion rates of proteins are also highly

Article https://doi.org/10.1038/s41467-024-52662-2

Nature Communications |         (2024) 15:8505 11

www.nature.com/naturecommunications


variable and depend both on the size of oligomers41,64,65, as well as the
surface characteristics and charge of proteins66,67 (which are influ-
enced by their interfaces). However, in E. coli, even for large proteins
(582 kDa), the cytoplasmic diffusion rate remains high enough to

traverse the cell several times every minute64, and the typical
homodimer is much smaller than that. In addition, the frequency of
homomers in enzymes does not appear to differ dramatically in
taxonomic groups that face different osmotic pressures20, have
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Fig. 8 | The higher abundance of homomers is unlikely to be the by-product of
their lower degradation rates due to having interfaces. A E. coli. B Yeast.
C Human. The left panels indicate the correlation between quaternary structure
and abundance and the corresponding abundance density plots, the right panels
indicate the correlation between abundance and the relative surface area of
homomers that are buried in the interface. p-valueswere obtainedwith the Pearson
correlation test. Red vertical lines indicate the average buried surfaced area. While

R2 is low in all cases, it is significant in E. coli and Humans, and in both cases the
association between buried surface area and abundance is weaker than between
quaternary structure and abundance. This indicates that the positive correlation
reported previously in eukaryotes between relative interface size and protein half-
life is not sufficient to explain the abundance difference between homomers and
monomers. (See also Supplementary Fig. 14, showing only dimers).
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different cell walls/membranes, and are characterised by proteins
with different surface charge68, like Gram-negative vs. Gram-positive
bacteria, Plasmodium species or mammals (Supplementary Fig. 11),
and even in the small number (n = 14) of enzymes from halophilic
bacteria there is only a single monomer. This indicates that on evo-
lutionary timescales, proteomes adapt to environments with differ-
ent osmotic pressures, primarily with protein surface charge, and
that oligomerisation evolves largely independently from it. However,
if oligomerisation influences the fluidity of the cytoplasm, that is
likely to result in the observed relatively constant ratios between
homomers and monomers (Supplementary Fig. 11).

Finally, our results also have practical implications and suggest
that in industrial applications where the conditions are comparable to
the extracellular environment rather than the cytoplasm, engineering
monomeric forms of certain enzymes might be advantageous com-
pared to their native oligomeric form, either due to being less aggre-
gation-prone, or lower synthesis costs.

Methods
Data sources
We downloaded all proteins from the Protein Data Bank (PDB) with
homomer or monomer quaternary structure, resolution better than
3 Å, and where the PDB structure contains a minimum of 80% of the
residues of the UniProt sequence. Only proteins with a minimum
length of 100 amino acids were used; when signal peptides and transit
peptides were present in the UniProt annotation these were not
included in the 100 amino acids. For everyUniProt entry, we used all of
its PDB structures to identify the quaternary structure of the protein,
i.e., in the case of monomers, all first biological units are monomers,
and in the case of homomers, at least one of the PDB entries form a
homomer, and none are part of a heteromer. PDB entries withmultiple
biounits, where the biounits have variable quaternary structures (e.g.,
some are monomers, others are homomers), were not used. In addi-
tion, sequences annotated as antibodies and MHC proteins, PDB
entries with chimeric sequences, proteins forming fibrils, and virus
proteins were also not included in the analyses.

The enzymatic activity of proteins (EC numbers) was extracted
from UniProt. For proteins without an EC number in the UniProt,
enzyme function (EC number) was predicted with the CLEAN tool
(v.1.0.1)69. For the CLEAN predictions, we used a minimum distance of
0.5 as the cutoff for enzymatic activity: below 0.5 the protein was not
considered an enzyme. Altogether we identified 3740 eukaryotic, and
8228 prokaryotic sequences that meet the above criteria.

The cellular locationof proteinswasdeterminedusing thePSORTdb
database32 (v4.0) and PSORTb tool (v3.0) for prokaryotes and with Dee-
pLoc v2.031 for eukaryotes.We used the full sequences (containing signal
and transit peptides) todetermine the cellular location.Whena sequence
was annotated as both extracellular and cytoplasmic or also having other
cellular locations, the ones having a Sec/SPI or Tat/SPI signal peptides
were classified as extracellular proteins. Signal peptides were identified
with the SingnalP6 tool70. Proteins that are neither cytoplasmic nor
extracellular, or are present both in the cytoplasm and other organelles
(but are not extracellular) were annotated as “other”.

Catalytic constants (KM, and kcat/KM) of proteins were down-
loaded from the BRENDA database71, the constants of protein mutants
were not used. We used the lowest KM and the highest kcat/KM for all
substrates (Supplementary Fig. 9) and the natural substrates (Supple-
mentary Fig. 10) of the proteins separately, because for a large number
of proteins where catalytic constants are available, the constants for
the natural substrates are not known.

Clustering, ortholog identification and phylogenetic analyses
To remove redundancies,we clustered the sequences at 30% sequence
similarity and 90% coverage with the MMseqs2 tool33 (using the flags:
--alignment-mode 3 --min-seq-id 0.3 -c 0.9 --cov-mode 1 --cluster-mode

2-s 8.5). Eukaryotic, Prokaryotic, and taxon-specific (Supplementary
Fig. 11) sequences were clustered separately.

To identify orthologous proteins in the pooled Eukaryotic and
Prokaryotic sequences (11968 sequences), we used the web version of
eggNOG-mapper38 with default settings, except for realigning the
queries to the entire PFAM database. The lowest root-level
orthogroups were used for every protein. In addition, we required
that in each orthogroup, the sequences have shared PFAM
domains, and orthogroups with less than 10 sequences were not
used in the downstream analyses. Altogether, we identified 311
orthogroups, of which 108 had 20 or more sequences, and 203 had
10–19 sequences.

Within orthogroups, the quaternary structure was determined for
every protein, and the overlap between interface residues was calcu-
lated (see below) for every possible protein pair. Subgroups within
homomers were identified by identifying the connected components
with homologous interfaces, i.e., networks of proteins where in every
protein pair, one protein had at least 50% of its interface residues
structurally aligned with the interface residues of the other protein.

Multiple sequence alignments of the orthogroupsweremadewith
MAFFT-DASH (v7.520)72, with the L-INS-I method (--maxiterate 1000
--localpair). This integrates sequence and structure alignment and
improves the quality of alignments of highly diverged sequences if
their structures have similar folds. Phylogenetic trees were made with
IQ-Tree v.273 and were subsequently rooted with theMinimal Ancestor
Deviation method (MAD v2.2)74. Ancestral states (probabilities) of the
tree nodes, including the root, were determined with the ace function
of APE v.5.7 (Analyses of Phylogenetics and Evolution) library of R75,
using the discrete maximum likelihood method, and the equal rates
(ER) model. For maximum parsimony, we used the ancestral.pars
function of the Phangorn v.2.10 R library76, with the ACCTRAN model.
Of the 311 phylogenetic trees, only those were used where the most
likely ancestral state of the root had at least 51% probability. The fre-
quency of changes in subunit numbers (or quaternary structure) was
calculated as the number of parent-child node-pairs in the tree where
the subunit number (quaternary structure) was different in the
ancestral and child node, divided by the total number of node-pairs of
the tree where the quaternary structure could be determined (or was
known, i.e., the leaves of the tree) for both nodes.

Identification of surface and interface residues, and their
conservation
The solvent-accessible surface area (SASA) of all residues in the protein
complexeswasdeterminedwith FreeSASA v1.177, in all complexes, their
subunits, and monomers. The size of the interfaces was defined as
the total difference in the SASAbetween the homomers and the sumof
the SASAs of their subunits, divided by the number of subunits in the
complex. The relative buried surface was defined as the difference
between the SASAs of all subunits minus the SASA of the assembled
complex, divided by the sum of the SASAs of all subunits. Interface
residues used in the analyses of conservation were defined as residues
with different SASA in the subunits and the full homomer, if the dif-
ference was larger than 10% of their SASA in the subunit, and the
relative solvent accessibility in the subunitswashigher than20% (using
the full amino acid areas defined by Miller et al.78). Surface residues
were defined as residues which are not part of the interface and have
relative solvent accessibility above 20%. The hydrophobicity of inter-
faces and surfaceswasmeasured as the fraction ofC, F, I, L,M,V, andW
residues in them.

The conservation of residues was determined using the ConSurf
database34. We downloaded the summary files for every structure and
calculated the difference between the average conservation of the
interface and surface residues using the normalised conservation score.

Molecularweight (MW)was calculated as the sumof theMWof all
residues of the UniProt sequence (minus waters, and excluding the
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signal and transit peptide, when present), which in the case of com-
plexes was multiplied by the number of subunits.

Gene Ontology analyses
Gene Ontology (GO) annotations for all sequences were downloaded
from UniProt; the full ontology network (go.obo file) from https://
geneontology.org. As the completeness and depth of the annotations
are highly variable for different proteins, for every UniProt GO term,
we also identified all of their parental termsby traversing the “is_a” tags
of the go.obo file to the highest level Molecular Function or Biological
Process terms. Next, using the full lists of GO terms (UniProt +
parental), we determined the GO-term enrichment of Molecular
Function and Biological Process terms with GeneMerge (v1.4)79. The
analysis was performed separately for Eukaryotic and Prokaryotic
proteins.

Calculation of interface overlap
For each homomer in the orthogroups, interface residues were
determined as described above. Next, using TM-align (v. 20190822)80,
we made all possible structural alignments between the first subunits
of the complexes, and in the TM-align output, we identified the residue
pairs that correspond to each other in the two structures. Interface
overlap was calculated as the number of structurally aligned residue
pairswhereboth residues arepart of an interface, dividedby the sizeof
the smaller interface. (Similarly, from the two TM-scores of the struc-
tural alignment, the one normalized by the smaller structure was
used). Average overlaps (and also average TM-scores) were calculated
as the average of all possible pairwise comparisons in the orthogroup.

Calculation of protein synthesis cost
Synthesis costs of individual amino acids were obtained from Akashi
and Gojobori42. The codon adaptation index (CAI) for each E.coli gene
(taxids 562 and 511145) was obtained from the Codon Statistics
Database81. ATP costs of amino acid synthesis from Kaleta et al.43

(glucose medium) resulted in clear positive correlations between CAI
and per-residue ATP cost, and were not used. The protein surface was
defined as the residues with relative solvent accessibility larger than
0.2 in the monomer subunits (that includes also the interface resi-
dues), the remaining residues (excluding signal peptides) were used as
the core. The per-residue cost of the full protein included also the
signal peptides, when they are present. In the analyses of proteins in
orthogroups (Fig. 6F, G), we used sequences without signal peptides,
and for Fig. 6F, we also used orthogroups with less than 10 sequences,
to increase the power of the test.

Identificationof quaternary structure in proteomes, andprotein
abundance calculation
Protein abundance data for the E.coli, Yeast and Human proteomes
were downloaded from the paxDB database50; for each species, the
integrated dataset for the whole organism was used. For E. coli and
Yeast, homomers were identified as the proteins that either have a
predicted AlphaFold2 structure in the recently published Homomer
atlas52 or a homomer entry in the PDB (irrespectively of its coverage of
the protein sequence, thus incomplete structures were also used).
Proteins that forma heteromer in theComplexPortal51 or the PDBwere
excluded. Monomers were defined as proteins that are neither
homomers nor heteromers (using both PDB, Complex Portal and
predicted homomers). Only enzymes (i.e., proteins having an EC
number) were used in the analyses. In the case of Human data, pro-
teome scale comparisons are not yet possible, due to the incomplete
annotation of complex-forming proteins, thus we used only the
enzymes having a high coverage structure in the PDB (see the “Data
sources” section above). In the case of predicted homomers, the
number of their subunits was estimated by the number of subunits of
the closest homologue in the PDB, as provided by Schweke et al.52;

when such data was not available, the homomers were assumed to be
dimers.

Statistics and data visualisation
All statistical tests were two-sided, andwereperformedwithR (v.4.1.2).
Data visualisations were performed with the ggplot2 (v.3.3.5) R pack-
age. Boxplots are displayed as defined by the geom_boxplot function
of ggplot2, with median, 25–75% interquartile range (IQR) for the box,
andup to 1.5 * interquartile range from thehinge forwhiskers.Notches,
when present, are defined as 1.58 * IQR / sqrt(n). Data points beyond
whiskers are considered outliers and are displayed when the under-
lying raw data is not shown on the plot. On every panel of the figures
where more than one statistical test was performed (i.e., more than
one p-value is provided), corrections for multiple testing
were performed with the Benjamini-Hochberg method, except for the
Gene Ontology analysis (Fig. 3E), where the Bonferroni correction
was used.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data necessary to reproduce all figures, Supplementary Figures, and
tables is available without restrictions at Zenodo (https://doi.org/10.
5281/zenodo.11410391). Source Data is provided as a Source Data file.
Source data are provided in this paper.

Code availability
Code to reproduce all figures, Supplementary Figures, and tables is
available without restrictions at Zenodo (https://doi.org/10.5281/
zenodo.11410391).
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