
A unified active learning framework for annotating graph data for
regression task

Downloaded from: https://research.chalmers.se, 2024-11-16 21:15 UTC

Citation for the original published paper (version of record):
Samoaa, H., Aronsson, L., Longa, A. et al (2024). A unified active learning framework for annotating
graph data for regression task. Engineering Applications of Artificial Intelligence, 138.
http://dx.doi.org/10.1016/j.engappai.2024.109383

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

A unified active learning framework for annotating graph data for regression
task
Peter Samoaa a,∗, Linus Aronsson a, Antonio Longa b, Philipp Leitner c,
Morteza Haghir Chehreghani a

a Chalmers University of Technology, Data Science and AI, Sweden
b University of Trento, Italy
c Chalmers University of Technology, Interaction Design and Software Engineering, Sweden

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.7
792485

Keywords:
Graph neural networks (GNNs)
Active learning
Graphs-level regression

A B S T R A C T

In many domains, effectively applying machine learning models requires a large number of annotations and
labelled data, which might not be available in advance. Acquiring annotations often requires significant
time, effort, and computational resources, making it challenging. Active learning strategies are pivotal in
addressing these challenges, particularly for diverse data types such as graphs. Although active learning has
been extensively explored for node-level classification, its application to graph-level learning, especially for
regression tasks, is not well-explored. We develop a unified active learning framework specializing in graph
annotating and graph-level learning for regression tasks on both standard and expanded graphs, which are
more detailed representations. We begin with graph collection and construction. Then, we construct various
graph embeddings (unsupervised and supervised) into a latent space. Given such an embedding, the framework
becomes task agnostic and active learning can be performed using any regression method and query strategy
suited for regression. Within this framework, we investigate the impact of using different levels of information
for active and passive learning, e.g., partially available labels and unlabelled test data. Despite our framework
being domain agnostic, we validate it on a real-world application of software performance prediction, where
the execution time of the source code is predicted. Thus, the graph is constructed as an intermediate source
code representation. We support our methodology with a real-world dataset to underscore the applicability of
our approach. Our real-world experiments reveal that satisfactory performance can be achieved by querying
labels for only a small subset of all the data. A key finding is that Graph2Vec (an unsupervised embedding
approach for graph data) performs the best, but only when all train and test features are used. However,
Graph Neural Networks (GNNs) are the most flexible embedding techniques when used for different levels of
information with and without label access. In addition, we find that the benefit of active learning increases for
larger datasets (more graphs) and when the graphs are more complex, which is arguably when active learning
is the most important.
1. Introduction

The effectiveness of machine learning applications often depends
on the availability of a large quantity of high-quality annotated and
labelled data. Obtaining such data can be challenging and resource-
intensive, particularly in scenarios involving complex data structures
like graphs. However, graph data presents unique challenges due to its
non-linear and interconnected nature, which complicates the annota-
tion process. Annotating graphs often requires significant human exper-
tise and effort, particularly in large-scale or complex graph structures,
which can be a bottleneck in the application of machine learning.

∗ Corresponding author.
E-mail address: samoaa@chalmers.se (P. Samoaa).

Active learning strategies offer a solution to these challenges by
focusing on the most informative and uncertain data points for anno-
tation, thereby reducing the amount of data that needs to be manually
labelled while maintaining high-quality learning outcomes (Settles,
2009). This targeted approach can lead to more efficient use of re-
sources and time, making machine learning more accessible and feasi-
ble in real-world applications, for instance in image processing (Bossér
et al., 2021; Li and Oliva, 2021; Casanova et al., 2020; Sener and
Savarese, 2018), recommender systems (Rubens et al., 2015), driver
behaviour identification (Comuni et al., 2022), sound event detection
https://doi.org/10.1016/j.engappai.2024.109383
Received 9 August 2023; Received in revised form 25 April 2024; Accepted 23 Sep
vailable online 4 October 2024
952-1976/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
tember 2024

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
mailto:samoaa@chalmers.se
https://doi.org/10.1016/j.engappai.2024.109383
https://doi.org/10.1016/j.engappai.2024.109383
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.109383&domain=pdf
http://creativecommons.org/licenses/by/4.0/

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
(Shuyang et al., 2020), classification of driving time series (Jarl et al.,
2022), reaction prediction in drug discovery (Viet Johansson et al.,
2022), logged data analysis (Yan et al., 2018), medical analysis
(Konyushkova et al., 2017; Li and Oliva, 2021), text processing (Vu
et al., 2019), and person re-identification (Liu et al., 2019).

Although active learning has been extensively studied in the context
of node-level classification tasks (Zhang et al., 2022; Hu et al., 2020;
Wu et al., 2020; Cai et al., 2017), its application to graph-level learning,
particularly for regression tasks, is not explored. Graph-level learn-
ing involves understanding the properties and relationships of entire
graphs, as opposed to individual nodes and is critical for tasks such as
graph regression, where predictions are made at the graph-level rather
than at the node-level.

In many different domains, graphs can be expanded by adding more
nodes and edges to improve the properties in molecular graphs (Luo
et al., 2021; Guo et al., 2022; Wang et al., 2022) or to update the
knowledge representation in knowledge graphs (Shin et al., 2015; Yang
and Hou, 2023). Despite the importance of expanded graphs and their
applications, the literature does not explore the resilience of active
learning for expanded graphs.

In this paper, we present a unified active learning framework tai-
lored to graph-level learning for regression tasks on both the standard
graphs and an extension of them. The framework begins with the
collection and construction of graphs, followed by the generation of
graph embeddings (both supervised and unsupervised) into a latent
space. This approach renders the framework task-agnostic, allowing
for the application of any regression method and active learning query
strategy available in the literature. We explore the impact of utilizing
different levels of information for active and passive learning, such
as partially available labels and unlabelled test data, as well as the
training and testing features. Although our framework is designed to
be domain-agnostic, we validate its effectiveness on a real-world appli-
cation: software performance prediction. In this context, the execution
time of the source code is predicted, with the graph constructed as
an intermediate representation of the source code. Our approach is
supported by real-world experimental results, which demonstrate that
querying labels for only a small subset of the data can yield respectable
performance.

As key findings, Graph2Vec outperforms all the other unsupervised
and supervised embedding when the training and testing features are
used without accessing the labels. However, GNNs tend to be the more
flexible and can be used for all levels of information (i.e., it can utilize
both labels and features of any available dataset). When the graphs
are expanded, Graph2Vec shows consistent effectiveness, whereas for
GNNs we observe marginally worse performance. As for active learning,
we investigate common query strategies from the literature such as
Coreset (Sener and Savarese, 2018), Query-by-Committee (Seung et al.,
1992) and uncertainty selection based on Gaussian Processes (Kapoor
et al., 2007). We find that no active learning query strategy consistently
outperforms the others for all datasets, consistent with previous work
on active learning (Konyushkova et al., 2017). In addition, we find that
the benefit of active learning increases for larger datasets, in particular
for the expanded versions of the graphs (i.e., when the data is more
complex). Arguably, this is when active learning is the most important.

The aforementioned key findings highlight the potential of our
framework in improving the efficiency and accuracy of machine learn-
ing applications for graph-level regression tasks. Our contributions
are manifold and address several gaps in the current landscape of
graph-based learning methodologies:

1. Development of Specialized Graph Datasets: We propose new
graph datasets designed to be directly useable by researchers,
facilitating further exploration and validation of graph learning
techniques.
2
2. Novel Active Learning Framework on the Graph-Level: We
introduce a flexible framework for active learning applied to
graph data in regression tasks. This approach is distinct in its fo-
cus on graph-level dynamics rather than node-level interactions,
filling a gap in existing literature.

3. Expanded Graphs Handling: Our framework is designed to ef-
ficiently handle expanded graphs, making it particularly suitable
for complex, large-scale graph structures.

4. Investigation of the Impact of Additional Information: Our
research extensively investigates how various types of additional
information can enhance the active learning process. This explo-
ration is crucial for understanding and maximizing the efficacy
of active learning in complex scenarios.

5. Application to Software Performance Prediction: We utilize
our active learning framework for real-world software perfor-
mance prediction. This novel approach not only propels AI
forward in the domain of software performance engineering, but
it also provides an efficient and practical method for annotating
and labelling source code data.

6. Open-Source Active Learning Framework: We provide the
research community with an open-source implementation of our
framework. This tool is versatile, supporting various settings
and graph configurations, thereby enhancing its utility for a
broad range of applications. The code and the data are publicly
available at Samoaa et al. (2023).

2. Background

In this section, we provide an overview of the fundamental concepts
underlying our approach. We first introduce the notion of graphs, then
we present how source code can be represented as a graph. Later,
those concepts are used to explain our framework and to evaluate the
predicted execution time of source code

2.1. Graphs

A graph is a mathematical structure used to model relational data
across various domains such as social networks (Lachi et al., 2023;
Nguyen et al., 2022; Scott, 2011), biological networks (Huber et al.,
2007; Aittokallio and Schwikowski, 2006), interaction networks (Longa
et al., 2024; Arregui-García et al., 2024; Longa et al., 2022), and mobil-
ity networks (Mauro et al., 2022; Cardia et al., 2022). It is represented
as a pair (𝑉 ,𝐸) where 𝑉 is the set of vertices or nodes and 𝐸 is the
set of edges between the nodes, 𝐸 ⊆ {(𝑢, 𝑣) ∣ 𝑢, 𝑣 ∈ 𝑉 }. The graph
can be undirected if it lacks self-loops and has a symmetric adjacency
matrix, or directed otherwise. A path 𝑃 = {𝑣1,… , 𝑣𝑘} is an ordered
sequence of connected nodes, with its length being the number of nodes
it contains, and the shortest path between two nodes is the path with
the minimal length connecting them. The node neighbourhood of a node
𝑣 in graph 𝐺 = (𝑉 ,𝐸) is the set of nodes adjacent to 𝑣, and the degree of
a node is the number of its neighbours. The density of a directed graph
is defined as Density = |𝐸|

|𝑉 |(|𝑉 |−1) . A triad in a graph is a subset of three
connected nodes, classified as closed if it forms a triangle with three
edges, otherwise open.

2.2. Source code representation

Different representations of code have been crafted for program
analysis, aiming to understand program properties and optimize them.
While mainly used for analysis and optimization, these representations
also help characterize code, as explored in this study. Specifically,
we delve into two fundamental representations: Abstract Syntax Trees
(AST) and Control Flow Graphs (CFG), which form the basis for our
approach to predict the execution time.

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 1. Example of Tree and Graph Representation for the code snippet in Listing 1 (Yamaguchi et al., 2014).
Listing 1: Simple example of C source code (from Yamaguchi et al.,
2014).
void foo () {
int x = source () ;
i f (x < MAX) {
int y = 2∗x ;
s ink (y) ;

}
}

Abstract syntax tree (AST). Abstract syntax trees capture the nested
structure of statements and expressions in programs, abstracting away
specific syntax. For example, in C, a comma-separated list of declara-
tions yields the same tree as two consecutive declarations. They are
ordered trees with inner nodes representing operators and leaf nodes
representing operands. As an example, consider Fig. 1(a) showing the
AST for the code sample given in snippet 1 by Yamaguchi et al. (2014).
While useful for basic transformations and identifying similar code,
they lack explicit representation of control flow and data dependencies,
limiting their use in advanced code analysis tasks like detecting dead
code or uninitialized variables.

Control flow graphs (CFG). A Control Flow Graph precisely outlines the
sequence of code execution and the conditions required for specific exe-
cution paths. Nodes represent statements and conditions, connected by
directed edges to signify control transfer. Unlike abstract syntax trees,
these edges do not require a specific order. Predicate nodes have two
edges representing true or false outcomes. Fig. 1(b) displays the CFG for
the code in snippet 1 by Yamaguchi et al. (2014). Control flow graphs
are widely used in reverse engineering for program comprehension,
although they lack data flow details despite depicting control flow.

3. Related work

Active Learning (AL) has been widely studied across various do-
mains, including text (Shen et al., 2018) and image data (Gal et al.,
3
2017), to enhance data annotation processes and enable more practical
AI applications.

Graph data presents a distinct challenge for active learning, es-
pecially within densely connected networks (Li et al., 2022; Abel
and Louzoun, 2019). However, the application of AL to graph-level
tasks remains an unresolved area of research. Several approaches have
been proposed to address AL on node-level tasks. For instance, Cai
et al. (2017) introduced AGE, an active graph embedding framework
that operates at the node-level using uncertainty and representative-
ness as querying strategies. Similarly, Wu et al. (2020) developed a
generic active learning framework that employs distance-based cluster-
ing. Both studies relied on Graph Convolutional Networks (GCN) for
node representation learning.

Reinforcement learning has also been leveraged to enhance the
selection of informative nodes in graph-based active learning. For ex-
ample, the works in Hu et al. (2020), Zhang et al. (2022) applied active
learning to graph data using reinforcement learning. Hu et al. (2020)
proposed a Graph Policy Network (GPA) for transferable active learning
on graphs, formalizing the process as a Markov decision process (MDP)
and using reinforcement learning to identify the optimal query strategy.
Conversely, Zhang et al. (2022) presented BIGENE, a batch active
learning method formulated as a cooperative multi-agent reinforcement
learning problem.

Multi-arm bandit strategies offer another perspective on active
learning, optimizing node selection through strategic exploration. For
example, the works in Gao et al. (2018), Chen et al. (2019) investigated
multi-arm bandits in an active learning setting. Gao et al. (2018)
proposed ANRMAB, which uses Information Entropy, Node Centrality,
and Information Density as querying strategies for node-level labelling.
Meanwhile, Chen et al. (2019) introduced ActiveHNE, a heterogeneous
network embedding method that combines Network Centrality, Convo-
lutional Information Entropy, and Convolutional Information Density
as selection strategies based on uncertainty and representativeness.

Despite these advances, a few limitations remain common across
these studies: they primarily used benchmark datasets such as Cite-
seer, Cora, and Pubmed for validation; they employed semi-supervised
learning; and they focused on the node-level. Our approach diverges by

utilizing real-world datasets, operating at the graph-level, incorporating

P. Samoaa et al.

a
d
u
t
c
b

s

a
h
t
t
c
t

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 2. Representation learning and Active Learning Strategies.
both supervised and unsupervised learning, and engaging with different
graph sizes.

Our work is inspired by the study in Jarl et al. (2022), which in-
troduced a flexible active learning framework for time series data. This
framework embeds the data into a latent space, allowing for the use of
any machine learning model and active learning strategy. Similarly, our
research adopts this structure for graph data. However, we also conduct
experimental studies to systematically assess the performance of this
framework at various levels of information. For more details about our
framework, see Section 4.

4. Learning framework

In this section, we provide a detailed overview of our active learning
framework. Fig. 2 presents our framework for active learning. Sec-
tion 4.1 begins by explaining the general setup for active and passive
learning given a graph dataset. The remaining sections will then explain
each of the components visualized in Fig. 2.

4.1. Active and passive learning procedure

We are given a dataset of 𝑁 source code files (represented
s graphs, see next section). For active learning, we then split this
ataset into three parts, the initially labelled dataset 0, the initially
nlabelled dataset 0 and a test set . The purpose of the test set is
o be able to evaluate the active learning procedure. Active learning
an be seen as an iterative procedure where in each iteration 𝑖, one
egins by training some regressor 𝑖 based on the currently available

information, i.e., 𝑖, 𝑖 and possibly .1 Then, the current regressor
𝑖 is evaluated using the test set . Then, a query strategy is used to

elect the most informative batch ⊆ 𝑖 of data items from 𝑖 based
on information in the following components: 𝑖, 𝑖, 𝑖 and . Finally,
the datasets are updated by setting 𝑖+1 ∶= 𝑖 ∪ and 𝑖+1 ∶= 𝑖 ⧵ .
This is repeated until a stopping criterion is met (e.g., if the labelling
budget has been reached). In addition to active learning, we conduct
experiments in the passive setting, which corresponds to setting = 0
and 0 = ∅. Then, one trains a regressor on and makes predictions
on (i.e., the traditional supervised machine learning).

4.2. Transforming source code to graphs

This section explains how to build the graphs from the source codes.
As shown in Fig. 3, we investigate Java source code files. We represent
the source code as an AST intermediate representation. To compress
both semantic and syntactical information, we augment the AST by
adding edges that preserve both data and control the flow of the graphs.
Hence, we arrive at a flow-augmented AST (FA-AST) graph, a concept
that we introduced in our earlier work (Samoaa et al., 2022b).

1 Note that here we assume for the test data only the data features might be
vailable to be utilized, not the labels. Assume, for example, a photographer
as taken two sets of photos from the same objects. For the first set (i.e., the
raining dataset) she has the image labels, but for the second set (i.e., the
est dataset) only the images (without labels) are available. When training a
lassifier, she may then use the test images as well, in addition to labelled

raining dataset.

4
Our motivation for augmenting the AST comes from recent stud-
ies (Samoaa et al., 2022a), emphasizing the importance of rich code
representation when using deep learning in software engineering.
Hence, and given the complexity of predicting performance, prediction
based on the syntactical information extracted from ASTs alone is not
sufficient to achieve high-quality predictions. The AST’s basic structural
information is enriched with semantic information representing data
and control flow. Consequently, the tree structure of the AST is gen-
eralized to a (substantially richer) graph, encoding more information
than the code structure alone.

4.2.1. Motivation example
To understand how the graphs are built, we will present an example

for a Java code file and then explain in detail how the FA-AST is built
(see Listing 2).

Listing 2: A Simple JUnit 5 Test Case
package org . myorg . weather . t e s t s ;

import s t a t i c
org . j u n i t . j u p i t e r . api . A s se r t i on s . a s s e r tEqua l s ;

import org . myorg . weather . WeatherAPI ;
import org . myorg . weather . F lags ;

public class WeatherAPITest {

WeatherAPI api = new WeatherAPI () ;

@Test
public void testTemperatureOutput () {

double currentTemp = api . currentTemp () ;
F lags f = api . ge tFreezeF lag () ;
i f (currentTemp <= 3.0d)

a s s e r tEqua l s (F lags . FREEZE , f) ;
else

as se r tEqua l s (F lags .THAW, f) ;
}

}

AST parsing. In this example, a single test case testTemperature-
Output() is presented that tests a feature of an (imaginary) API. As
common for test cases, the example is short and structurally relatively
simple. Much of the body of the test case consists of invocations to
the system-under-test and calls of JUnit standard methods, such as
assertEquals.

A (slightly simplified) AST for this illustrative example is depicted in
Fig. 4. The produced AST does not contain purely syntactical elements,
such as comments, brackets, or code location information. We make use
of the pure Python Java parser javalang2 to parse each test file and use
the node types, values, and production rules in javalang to describe our
ASTs.

Capturing ordering and data flow. In the next step, we augment this
AST with different types of additional edges representing data flow and
node order in the AST. Specifically, we use the following additional
flow augmentation edges, in addition to the AST child and AST parent
edges that are produced readily by AST parsing:

2 https://pypi.org/project/javalang/

https://pypi.org/project/javalang/

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 3. Source Code to Graph Process.
Fig. 4. Simplified abstract syntax tree (AST) representing the illustrative example presented in Listing 2. Package declarations, import statements, as well as the declaration in
Line 15 are skipped for brevity.
• FA Next Token (b): This type of edge connects a terminal node
(leaf) in the AST to the next terminal node. Terminal nodes are
nodes without children. In Fig. 4, an FA Next Token edge would
be added, for example, between WeatherAPI and api.

• FA Next Sibling (c): This connects each node (both terminal and
non-terminal) to its next sibling and allows us to model the order
of instructions in an otherwise unordered graph. In Fig. 4, such an
edge would be added, for example, connecting the first usage of
api and with the CONSTR node (representing a Java constructor
call).

• FA Next Use (d): This type of edge connects a node representing
a variable to the place where this variable is next used. For
example, the variable api is declared in Line 10 in Listing 2, and
then used next in Line 14.

Fig. 5 shows an example augmenting the AST in Fig. 4 (and,
consequently, the example test case in Listing 2). Solid black lines
indicate the AST parent and child relationships (for simplicity indicated
through a single arrow, read from top to bottom). Red dashed arrows
refer to the new edges added to represent the data and control flow
in the FA-AST, with letter codes indicating the edge type. Terminal
nodes are connected with FA Next Token edges (b), modelling the
order of terminals in the test case. Similarly, the ordering of siblings is
modelled using FA Next Sibling edges (c). Finally, data flow is modelled
by connecting each variable to their next usage via FA Next Use edges

(d). Edge types (e), (f), and (i) represent a control flow statement, which

5
will be discussed in the following. Multiple edges of different types
are possible between the same nodes. For example, the terminal nodes
Flags.FREEZE and f are connected via both, an FA Next Token (b)
and an FA Next Sibling (c) edge.

Capturing control flow. In a second augmentation step, we now add fur-
ther edges representing the control flow in the test cases. We currently
support if statements, while and for loops, as well as sequential execu-
tion. We currently do not support switch statements or do-while loops,
as these are less common. Java source code containing these elements
will still be parsed successfully, but these control flow constructs will
not be captured by the FA-AST. Specifically, the following further edges
are added (see also Fig. 6):

• FA If Flow (e): This type of edge connects the predicate (condi-
tion) of the if-statement with the code block that is executed if the
condition evaluates to true. Every if-statement contains exactly
one such edge by construction.

• FA Else Flow (f): Conversely, this edge type connects the predi-
cate to the (optional) else code block.

• FA While Flow (g): A while loop essentially entails two elements
- a condition and a code block that is executed as long as the
condition remains true. We capture this through a FA While
Flow (g) edge connecting the condition to the code block, and
an FA Next Use (d) edge in the reverse direction. The latter is

used to model the next usage of a loop counter.

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 5. Flow-Augmented AST (FA-AST) for the example presented in Listing 2. Solid lines represent AST parent and child edges, and dashed lines different types of flow
augmentations.
Fig. 6. Additional flow augmentations for different control flow constructs.
• FA For Flow (h): For loops are conceptually similar to while
loops. We use FA For Flow (h) edges to connect the condition
to the code block, and an FA Next Use (d) edge in the re-
verse direction. Similar to the modelling of while-loops, FA Next
Use (d) relates to the usage (typically incrementing) of a loop
counter.

• FA Next Statement Flow (i): In addition to the control flow
constructs discussed so far, Java of course also supports the simple
sequential execution of multiple statements in a sequence within
a code block. FA Next Statement Flow edges (i) are used to
represent this case. Different from the constructs discussed so far,
a code block can contain an arbitrary number of children, and
the FA Next Statement Flow edge is always used to connect each
statement to the one directly following it.
6
Referring back to Fig. 5, two types of control flow annotations
are visible: the modelling of the if-statement in lines 16 to 19 of
the test case on the right-hand side and various edges representing
sequential executions (FA Next Statement flow (i)). Further note how
flow annotation adds a large number of edges to even a very small AST,
transforming the syntax tree into a sparse graph. This rich additional
information can be used in the next step by our GNN model to predict
highly accurate test execution times.

4.3. Depth of FA-AST parsing

One challenge with representing source code as graphs is that
graphs tend to become very large. We address this challenge by limiting
how deeply we parse the AST. We investigate two alternatives:

P. Samoaa et al.

4

t
s
o
t
r
w

r
n
u
a
G
f

4

r
t
a
t
P
c

g
s
w
v
m
c

h
i
t
c
i
t
g
l

d
t
e
W
b

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
• File-Level Parsing: in the first alternative, we parse the AST only
on the level of individual Java source files. References to Java
constructs (e.g., classes, functions, etc.) not implemented in this
file are turned into leaf nodes (and not resolved further). This
leads to graphs of manageable size and has the added benefit of
simplifying parsing, but evidently much expressive information is
lost.

• System-Level Parsing: in the second alternative, the parser
has access to all source code files of the study subject system
(e.g., all source code files of Hadoop when constructing FA-ASTs
for Hadoop), and the all references to classes or functions that
are implemented in the study subject are resolved fully. External
dependencies or calls to the Java system library are not resolved,
these remain represented as leaf nodes. This parsing strategy leads
to substantially larger and more complex graphs, but has the
benefit that more knowledge about the performance of methods
of the study subject is represented in the graph.

.4. Graph representation learning

The graph structure of the data items in yields a restriction on the
ypes of regression models that can be used, and thus the types of query
trategies to use for active learning. Therefore, we investigate a number
f unsupervised and supervised approaches to constructing embeddings
hat can be used to project the graph data into a latent space where any
egression model (and thus query strategy) can be used. In this section,
e outline each of the embeddings that we investigate in this work.

Since our focus is on directed graphs, we use embedding algo-
ithms compatible with directed graphs where the adjacency matrix is
ot symmetric. For this purpose, we explore three main approaches:
nsupervised embeddings (based on Graph Neural Networks (GNNs)
nd shallow embedding algorithms), supervised embeddings (based on
NNs) and manual embeddings (based on manually extracted graph

eatures). Each of these categories are listed and explained below.

.4.1. Unsupervised embeddings.
Fig. 7 illustrates the hierarchy of unsupervised embedding algo-

ithms used. The hierarchy is inspired by Chami et al. (2022). We have
wo main types of shallow embedding approaches: matrix factorization
nd skip-gram. In matrix factorization, we use the Graph Represen-
ation (GR) approach (Cao et al., 2015) and Higher-Order Proximity
reserved Embedding (HOPE) (Wang et al., 2016), both of which are
ompatible with directed graphs.

GR operationalizes matrix factorization to capture both local and
lobal structural information within graphs. It does this by first con-
tructing k-step probability transition matrices for different lengths of
alks in the graph, essentially encoding the connectivity patterns at
arious scales. GR then applies matrix factorization to these transition
atrices, enabling the extraction of node embeddings that reflect the

omposite of these patterns.
HOPE, on the other hand, employs matrix factorization to preserve

igh-order proximities between nodes in a graph. It constructs a sim-
larity matrix based on certain measures of node similarity (such as
he Katz Index or rooted PageRank) that encapsulates higher-order
onnections beyond immediate neighbours. By factorizing this similar-
ty matrix, HOPE efficiently generates node embeddings that maintain
he asymmetric transitive relationships, especially useful in directed
raphs, by focusing on scalable, low-rank approximations to handle
arge-scale graphs.

These algorithms operate at the node-level, resulting in an embed-
ing array for each graph rather than a vector. Therefore, we aggregate
he embedding using mean and sum aggregation to represent the graph
mbeddings as vectors. For skip-gram-related methods, we use Deep-
alk (Perozzi et al., 2014), Node2Vec (Grover and Leskovec, 2016),

oth of which learn the embedding at the node-level, and Graph2Vec
7
which is the only method for the shallow embedding category that
returns a vector representing the embedding for the entire graph.

DeepWalk utilizes random walks to sample sequences of nodes
from a graph analogously to sentences in a corpus. By treating these
sequences as "sentences’’, DeepWalk applies the skip-gram model to
learn node embeddings that preserve the neighbourhood structure of
the graph. This approach effectively captures the local connectivity
patterns around each node, embedding them into a low-dimensional
space that reflects the structural similarities between nodes.

Node2Vec builds upon the DeepWalk framework by introducing a
flexible notion of a node’s neighbourhood. It achieves this by param-
eterizing the random walks to balance between breadth-first sampling
(capturing immediate neighbourhood structures) and depth-first sam-
pling (exploring more distant parts of the graph). This controlled
exploration allows Node2Vec to learn embeddings that can reflect
both homophily and structural equivalences, thereby providing a more
nuanced representation of node relationships in the embedding space.

Graph2Vec creates Weisfeiler–Lehman tree features for nodes in
graphs. A graph feature co-occurrence matrix is decomposed to gen-
erate graph representations using these features.

According to Chami et al. (2022), shallow embedding methods are
applied to a finite set of input graphs and cannot be applied to instances
different from those used to train the model.

In addition to the shallow embeddings, we train GNNs (without
labels) to compute unsupervised embeddings. We employ three state-of-
the-art GNN architectures, namely GCNConv (Kipf and Welling, 2017),
GraphSAGE (Hamilton et al., 2017) and GraphConv (Defferrard et al.,
2016). This is done using the well-known autoencoder neural network
architecture (Kipf and Welling, 2016) (in combination with one of the
mentioned GNNs). In short, this works by training the corresponding
GNN to reconstruct the input graphs. After training, an embedding is
extracted from the last layer of the corresponding GNN.

4.4.2. Supervised embeddings.
For supervised representation learning (embedding), we employ

three state-of-the-art architectures, namely GCNConv
(Kipf and Welling, 2017), GraphSAGE (Hamilton et al., 2017), and
GraphConv (Defferrard et al., 2016). These methods are explained in
detail below.

• GCNs leverage the concept of convolutional operations on graph-
structured data. The model updates a node’s representation by
aggregating its neighbours’ features.

𝐻 (𝑙+1) = 𝜎(�̃�− 1
2 �̃��̃�− 1

2 𝐻 (𝑙)𝑊 (𝑙)) (1)

Where 𝐻 (𝑙) is the matrix of node features at layer 𝑙, �̃� = 𝐴+𝐼𝑁 is
the adjacency matrix 𝐴 with added self-connections 𝐼𝑁 , �̃� is the
degree matrix of �̃�, 𝑊 (𝑙) is the weight matrix for layer 𝑙, and 𝜎 is
a non-linear activation function.

• GraphSAGE (Graph Sample and Aggregation) generates embed-
dings by sampling and aggregating features from a node’s local
neighbourhood.

ℎ′𝑖 = 𝜎
(

𝑊 ⋅ MEAN({ℎ𝑖} ∪ {ℎ𝑗 ,∀𝑗 ∈ (𝑖)})
)

(2)

Where ℎ𝑖 is the feature vector of node 𝑖, (𝑖) is the set of
its neighbours, and 𝑊 is the weight matrix associated with the
aggregator function.

• GraphConv (Spectral Graph Convolution) employs spectral graph
convolutions by leveraging the graph Laplacian’s eigenbasis. This
approach efficiently captures the graph structure at different
scales.

𝐻 (𝑙+1) = 𝜎
(

𝑈𝛬(𝑙)𝑈𝑇𝐻 (𝑙)𝑊 (𝑙)) (3)

Where 𝐻 (𝑙) is the matrix of node features at layer 𝑙, 𝑈 is
the matrix of eigenvectors of the normalized graph Laplacian
𝐿 = 𝐼𝑁 − 𝐷− 1

2 𝐴𝐷− 1
2 , 𝛬(𝑙) is a diagonal matrix of spectral filters

(parameters) at layer 𝑙, 𝑊 (𝑙) is the weight matrix for layer 𝑙, and

𝜎 is a non-linear activation function.

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 7. Hierarchical structure of the different unsupervised graph embedding algorithms used in this study.
Given this embedding, the active and passive learning is performed
using the regression model introduced in Section 4.6. The reasons for
this is to be consistent with the unsupervised embeddings (that will use
the same regression model) and because the performance turned out to
be slightly better compared to the predictions made by the last (linear)
layer of the GNN.

4.4.3. Manual embedding
We also consider a manually constructed embedding by extracting

a set of graph metrics for each of the graphs (data items). Here, we
represent each graph as a vector of metrics that are directly extracted
from the graphs without learning. Fig. 8 shows a categorization of the
extracted metrics. Below we list and explain each of the metrics.

1. Integration Metrics (Latora and Marchiori, 2001): those metrics
capture the spreading of information within the network. In
particular:

• Characteristic Path Length: This metric represents the aver-
age shortest path length between all pairs of nodes in the
graph.

• Global Efficiency : It measures the average inverse shortest
path length between all pairs of nodes in the graph.

• Local Efficiency : Local efficiency is computed for each node
as the global efficiency of its neighbourhood subgraph and
then averaged over all nodes.

2. Resilience Metrics (Newman, 2002): These metrics assess the
robustness of a graph and its ability to maintain its structure
and functionality despite changes or failures. In particular, we
consider

• Assortativity Coefficient : this metric measures the correla-
tion between the degrees of a node and its neighbourhood.

3. Segregation Metrics (Latora and Marchiori, 2001): they quan-
tify the degree to which nodes in a graph tend to form tightly
knit communities or clusters. Two metrics related to this cate-
gory are listed below.

• Global Clustering Coefficient (GCC) (Watts and Strogatz,
1998): it is the number of closed triplets over the total
number of triplets.

𝐺𝐶𝐶 = 1
𝑛
∑

𝑣∈𝐺

2𝑇 (𝑣)
𝑑𝑒𝑔(𝑣)(𝑑𝑒𝑔(𝑣) − 1)

where 𝑇 (𝑣) is the number of triangles through node 𝑣.
• Transitivity : defined as 3 #𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 .
#𝑡𝑟𝑖𝑎𝑑𝑠

8
4. Basic Graph Metrics: Basic graph metrics describe a graph’s fun-
damental structure, size, and connectivity. In this category, we
are inspired by Newman (2010). Five related metrics related to
this category are listed below as the following:

• Number of Nodes: The total number of nodes in the graph.
• Number of Edges: The total number of edges in the graph.
• Diameter : The diameter 𝐷 is the shortest path length be-

tween the two most distant nodes in the network.
• Edge Density : The ratio of the actual number of edges to the

maximum possible number of edges.
• Average Degree: The average number of degrees.

By considering these categories and their associated metrics, we
can understand the graph’s properties comprehensively, which can be
valuable in various graph analysis and machine learning tasks.

4.5. Incorporating different information

When constructing the embeddings and performing the active/pas-
sive learning procedure outlined in Section 4.1, one can utilize different
levels of information about the datasets. We describe how this is done
for active learning and passive learning below. Let 𝑿 and 𝒀 refer to
the feature vectors and labels respectively of some generic dataset .

4.5.1. Active learning
For active learning we have three datasets: 𝑖, 𝑖 and . In prin-

ciple, the information that can be used to construct the embeddings
and perform the active learning are the labels and features of these
datasets, i.e., 𝑿𝑖

, 𝑿𝑖
, 𝑿 , 𝒀 𝑖

, 𝒀 𝑖
and 𝒀 . As suggested by Munjal

et al. (2020), it is important to separate the reported active learning
results depending on what information is used. For example, if one no-
tices improved performance when using the features of the unlabelled
data items 𝑿𝑖

(through, e.g., semi-supervised learning) compared to
not doing so, it is important not to fully credit this improvement to
the query strategy used. Partial credit must be given to the learning
algorithm used since it was able to effectively use the additional infor-
mation. Note that for the active learning pipeline followed in this paper,
both the construction of the embedding and the active learning can
utilize different levels of information (separately). For simplicity, the
active learning (given some embedding) is always done based on the
training features and training labels only (i.e., supervised training based
on 𝑿𝑖

and 𝒀 𝑖
). However, for the construction of the embeddings, we

considered four different levels of information, each of which are listed
and explained below. Note that we never use 𝒀 , i.e., the labels of the
test dataset.

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 8. Hierarchy of graph-based metrics.
• 𝑿𝑖
, 𝑿𝑖

and 𝑿 . This category is only applicable to the unsu-
pervised embeddings (since the labels are not used). In this case,
we simply construct the embedding using all available features and
then embed 𝑖, and 𝑖 and into the resulting latent space before
performing the active learning.

• 𝑿𝑖
and 𝑿𝑖

. This category is only applicable to the unsupervised
embeddings (since the labels are not used). For the GNN based unsu-
pervised embeddings it is straightforward. One begins by constructing
an embedding using 𝑿𝑖

and 𝑿𝑖
. Given the embedding, 𝑖, 𝑖 and

 can be projected into the resulting latent space before doing the
active learning. For the shallow embeddings this does not work since
it is not possible to project new data items into the resulting latent
space (i.e., only the data items that were used to construct the latent
space can be accessed in the resulting latent space). Instead, we first
construct an embedding based on 𝑿𝑖

and 𝑿𝑖
and access 𝑖 and

𝑖 in the resulting latent space. Then, we construct an embedding
based on 𝑖, 𝑖 and and access in the resulting latent space. It
should be noted that in this case is in a different (but hopefully
similar) feature space compared to 𝑖 and 𝑖. Finally, we consider
the manual embedding to belong to this category since it does not
use the test features when it is constructed. However, it should be
noted that it is not strictly the same, since for the manual embedding
the feature representation of each graph is only based on information
in the graph itself (i.e., it is independent of all other graphs).

• 𝑿𝑖
and 𝒀 𝑖

. This category is only applicable to the supervised
embedding approach (based on GNNs) since it uses the labels of 𝑖. In
this setting one simply performs supervised training of a GNN based
on 𝑿𝑖

and 𝒀 𝑖
(in each iteration 𝑖). Then, all data is projected into

the latent space of the last layer of the GNN before performing the
active learning.

• 𝑿𝑖
, 𝒀 𝑖

and 𝑿𝑖
. This category is only applicable to the supervised

embedding approach (based on GNNs) since it uses the labels of 𝑖.
This setting works identically to the previous category except that
we also use pseudo-labels for data items in 𝑖 (i.e., semi-supervised
learning). After some investigation, this category turned out to not
lead to improved performance for our datasets and models, and is
therefore not reported in the results.

4.5.2. Passive learning
The passive learning is conducted in a corresponding fashion to the

active learning described above by simply setting = and = ∅.
0 0

9
4.6. Regression model

Given some graph embedding, we require a regression model to
make predictions (either for passive learning or active learning). Our
framework is generic enough to utilize any regression model. In this
project, we investigate Gaussian Process Regressors (GPR). The reason
is that GPRs are both powerful regressors while also providing an
explicit uncertainty model due to their probabilistic nature (Rasmussen
and Williams, 2005). This uncertainty model allows us to define a nat-
ural acquisition functions that can be used in an active learning setting.
This is discussed more in the next section. We refer to Rasmussen and
Williams (2005) for the mathematical details of GPRs.

4.7. Query strategies for active learning

In this paper, we consider batch active learning (Ren et al., 2021).
In batch active learning, a batch of data points ⊆ 𝑖 is selected in
each iteration of the active learning procedure (instead of a single data
point). This adds an extra level of complexity in the construction of
query strategies, because the selected batch must contain data points
that are jointly informative (i.e., not redundant). With this in mind,
we list and explain all query strategies (acquisition functions) used
in the active learning experiments below. All query strategies below
are commonly investigated in active learning and are not specific to
graph data. This highlights the benefit of our framework: given a graph
embedding, we can utilize any model (GPR in our case) and any active
learning query strategy suited for this model, none of which are specific
to the graph data.

• Random: This corresponds to selecting a batch ⊆ 𝑖 uniformly
at random, which is a common baseline strategy.

• Coreset: This was originally introduced by Sener and Savarese
(2018), and has become a well established baseline method for
batch active learning. Intuitively, it aims to select a batch ⊆ 𝑖
that is maximally representative of 𝑖 while simultaneously being
maximally different from the samples in 𝑖 (i.e., informative).
In general, representativeness is quantified based on distances
in feature space. In our case, that corresponds to distances in
the latent space provided by the graph embeddings. We utilize
the efficient k-Center-Greedy algorithm described in the original
work (Sener and Savarese, 2018).

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
• Variance: This is based on the uncertainty estimations provided
by the GPR. Due to the probabilistic nature of GPRs, it can
produce an estimate of the variance for every data point. Let 𝜎(𝒙)
correspond to the variance of some data item 𝒙 ∈ 𝑖 (estimated
by the GPR). A data point with large variance indicates the GPR is
uncertain about this data point, and may therefore be informative
if labelled and included in the labelled data set. We can then
select the top-|| data points from 𝑖 according to 𝜎(𝐱): ∗ =
arg max⊆ 𝐢 ,||=𝐵

∑

𝐱∈ 𝜎(𝐱), where 𝐵 is the batch size.
• Query-by-committee (QBC): In general, this corresponds to fit-

ting 𝑛 estimators to (potentially bootstrapped) subsets of the
labelled data. Then, a prediction is made by each of the estimators
for all the data items in 𝑖. If the estimators disagree strongly
about a data point 𝐱 ∈ 𝑖, this indicates large uncertainty and
thus informativeness. In this paper, we employ QBC by training
10 GPR estimators on different bootstrapped subsets of the train-
ing data 𝑖. Let 𝜇𝑗 (𝐱) be the prediction of estimator 𝑗. We then
compute the variance of the predictions as

𝜎QBC(x) =
1
𝑛

𝑛
∑

𝑗=1
𝜇𝑗 (𝐱)2 −

(

1
𝑛

𝑛
∑

𝑗=1
𝜇𝑗 (𝐱)

)2

. (4)

A batch is then selected as for the variance query strategy de-
scribed above: ∗ = arg max⊆ 𝐢 ,||=𝐵

∑

𝐱∈ 𝜎QBC(x).

Finally, variance and QBC are single-sample acquisition functions that
do not explicitly consider the joint informativeness among the elements
in a batch . This may lead to redundancy in the batch, but has
the benefit of avoiding the combinatorial complexity of selecting an
optimal batch, which is a common problem for batch active learn-
ing (Ren et al., 2021). However, the work in Kirsch et al. (2023)
proposes a simple method for improving the batch diversity for single-
sample acquisition functions using noise. For both variance and QBC we
utilize the power acquisition method. For variance, this corresponds to
modifying 𝜎(𝐱) ∶= log(𝜎(𝐱))+𝜖 where 𝜖 ∼ Gumbel(0; 1), before selecting
the top-|| elements. This works analogously for QBC. The adjusted
versions of variance and QBC will be referred to as PowerVariance
and PowerQBC, respectively.

4.8. Limitations and challenges

Despite the robustness of our framework through the usage of differ-
ent embedding techniques, utilization of different levels of information,
and the investment in different selection methods of active learning,
our framework does face some challenges and limitations. This section
outlines the main practical challenges and limitations of our proposed
framework:

• Access to Oracle: A pivotal challenge arises from the reliance
on oracles to acquire labels. In our setting, the oracle could
correspond to software developers who execute code files in order
to retrieve the execution time. This means that expensive compu-
tational resources must be available, which adds a monetary cost,
in particular if cloud instances are utilized.

• Variability in Oracle Costs: In practice, we may have multiple
oracles, i.e., multiple software developers with different levels
of experience and different access to computational resources.
This means that a query to each oracle may have different costs.
However, in this paper, we assume we have only one oracle,
where each query incurs the same cost (as is common in previous
work on active learning).

• Computational Resource Requirements: The comprehensive
nature of our framework demands significant computational re-
sources for graph learning and executing active learning itera-
tions. This is particularly pronounced in supervised settings where
re-training of the GNN model is required with each update to
the training set after label acquisition, thus intensifying time and
resource consumption.
10
5. Experiments

In this section, we describe the experiments and present the results.

5.1. Research objectives

This section outlines the principal research objectives explored
through experiments on the proposed framework. Our primary goal is
to explore the application of active learning in the context of graph
learning on a graph-level, with a particular emphasis on directed
sparse graphs. Nonetheless, it is posited that the framework holds
potential applicability to a broader spectrum of graphs, contingent
upon the adaptation of embedding techniques suitable for variants such
as undirected graphs. In pursuit of these aims, the following research
questions will guide our investigation:

• To what extent can active learning contribute to graph-level
learning?

• Among the active learning query strategies evaluated, which
demonstrate superior performance in conjunction with specific
embedding techniques?

• Are the results obtained through the framework robust and con-
sistent when applied to expanded graphs?

5.2. Dataset collection

In our experiments, to increase reliability, we use two different
real-world datasets of performance measurements. The first dataset
(OSSBuild) is real build data collected from the continuous integration
systems of four open-source systems. The second (HadoopTests) is a
larger dataset we have collected ourselves by repeatedly executing
the unit tests of the Hadoop open-source system in a controlled envi-
ronment. A summary of both datasets is provided in Table 1. In the
following subsections, we provide some additional information about
each of the two datasets that we used in the experimental studies.

5.2.1. OSSBuild dataset
In this dataset (originally used in Samoaa et al. (2022b)), infor-

mation about test execution times in production build systems was
collected for four open-source projects: systemDS, H2, Dubbo, and
RDF4J. All four projects use public continuous integration servers
containing (public) information about the project’s builds, which we
harvested for test execution times as a proxy of performance in summer
2021. Basic statistics about the projects in this dataset are described in
Table 1 (top). ‘‘Files’’ refers to the number of unit test files we collected
execution times for, ‘‘Runs’’ is the (total) number of executions of files
we extracted data for, whereas ‘‘Nodes’’ and ‘‘Vocabulary Size’’ indicate
the resulting graphs (for both file and system-level parsing). Prior to
parsing the test files, we remove code comments to reduce the number
of nodes in each graph (by construction irrelevant). We note that we
have 60514 more nodes for system-level parsing and 493 new vocabs.

5.2.2. HadoopTests dataset
To address limitations with the OSSBuilds dataset (primarily the

limited number of files for each individual project in the dataset), we
additionally collected a second dataset for this study. We selected the
Apache Hadoop framework since it entails a large number of test files
(2895) of sufficient complexity. We then executed all unit tests in the
project five times, recording the execution duration of each test file as
reported by the JUnit framework (in millisecond granularity). As an
execution environment for this data collection, we used a dedicated
virtual machine running in a private cloud environment, with two
virtualized CPUs and 8 GByte of RAM. Following performance engi-
neering best practices, we deactivated all other non-essential services
while running the tests. Statistics about the HadoopTests dataset are
described in Table 1 (bottom).

Since we have more files in HadoopTests, we have more added
nodes to the system-level parsing setting. Thus 776438 nodes are added
to the graphs in the system-level parsing, and we get 3544 more vocabs.

P. Samoaa et al.

w
r

5

s
a
(
i
f

l

d
2
o
a
g
t
W

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Table 1
Overview of the OSSBuilds and HadoopTests datasets.

Project Description Files Runs File-Level Parsing System-Level Parsing

Nodes Vocab. Nodes Vocab.

OSSBuilds

systemDS Apache Machine Learning system
for data science lifecycle

127 1321 110 651 3161 114 904 3205

H2 Java SQL DB 194 1391 405 706 17 972 432 375 18 326
Dubbo Apache Remote Procedure Call

framework
123 524 75 787 4499 77 142 4505

RDF4J Scalable RDF processing 478 1055 214 436 10 755 242 673 10 844
Total 922 4291 806580 36387 867094 36880

HadoopTests Hadoop Apache framework for processing
large datasets on clusters

2895 24348 4314360 135408 5090798 138952
T
A

p
S
r
r
o
0

c
l
A
(

5

l
r

5

s
a

o
s

p

5.2.3. Dataset selection rationale
The selection of this dataset was guided by several considerations,

underscoring its suitability for our research objectives:

• The dataset’s real-world origin enhances the credibility and ap-
plicability of our research findings and the proposed framework.

• Its characteristics offer potential for generalization to diverse
graph datasets.

• Notably, existing research on active learning for graphs predom-
inantly focuses on node-level tasks (classification or regression).
Our datasets provide the opportunity to investigate graph-level
regression tasks, a field that, to our knowledge, has not been
extensively explored in the existing literature.

• The variation in graph sizes is particularly important for our
research. It encompasses graphs derived from file-level parsing,
which can be further expanded through system-level parsing by
incorporating additional nodes, and edges. This aspect, especially
in the context of active learning, represents a novel research
direction not explored in literature.

It is worth mentioning that our work provides a public and real-
orld graph dataset, enabling researchers to investigate and use it in

esearch. The dataset is publicly available at Samoaa et al. (2023).

.3. Analysis of graphs

We want to annotate each source code file with the corresponding
calar value related to execution time. The source code is represented
s a graph. In particular, each graph represents a Java source code file
a JUnit test case). As aforementioned, the base structure is a tree that
s then extended to a graph adding edges representing program control
low (Samoaa et al., 2022b).

Table 2 shows the average statistics of the input graphs. In particu-
ar, we report the average number of nodes (|𝑉 |), the average number

of edges (|𝐸|), the density, the average global clustering coefficient
(𝐺𝐶𝐶), the average number of cycles and the average tree similarity.
We define a simple function to measure how similar the graph is to a
tree (𝑡𝑟𝑒𝑒 − 𝑠𝑖𝑚) as the number of edges that have to be removed to
convert the graph into a tree, i.e.,

𝑡𝑟𝑒𝑒 − 𝑠𝑖𝑚 =
|𝐸| − (|𝑉 | − 1)

(|𝑉 | − 1)(
|𝑉 |

2
− 1)

. (5)

The formula has to be interpreted as the number of edges of the
graphs minus the number of edges of a tree with 𝑁 nodes, normalized.
If the input graph is a tree, then we have that 𝑡𝑟𝑒𝑒 − 𝑠𝑖𝑚 is equal to 0,
while if the graph is complete, 𝑡𝑟𝑒𝑒 − 𝑠𝑖𝑚 is equal to 1.

From Table 2, it is easy to see that the input graph has a high
iameter. In fact, if we generate a random graph (Batagelj and Brandes,
005) with the same number of nodes and the same density as the
riginal ones, we obtain an average diameter of 2 and 4 for OSSBuilds
nd HadoopTests, respectively. It is also easy to see that the input
raphs are quite sparse. Finally, in both datasets, the 𝑡𝑟𝑒𝑒− 𝑠𝑖𝑚 is close
o zero. Thus, we can conclude that input graphs are similar to trees.

e report a detailed analysis of the input graphs in Appendix A.
11
able 2
verage statistics of the input graphs of System Level Parsing.
Dataset Type |𝑉 | |𝐸| Diameter Density 𝐺𝐶𝐶 𝑡𝑟𝑒𝑒 − 𝑠𝑖𝑚

OSSBuilds File-level 875 1679 14 0.014 0.16 0.007
System-level 940 1848 13 0.013 0.15 0.006

HadoopTests File-level 1490 1848 15 0.005 0.15 0.003
System-level 1734 3428 14 0.006 0.15 0.003

5.4. Experimental setup

In this section, we describe the experimental setup. Each experiment
has been executed on a computer with four GPU NVIDIA Tesla A40
with 48 GB of memory, two CPU Xeon(R) Gold 6338, and DDR4 RAM
of 256 GB. However, the framework can be executed on less powerful
machines with longer execution times as a consequence.

We used the Scikit-learn (Pedregosa et al., 2011) implementation
of Gaussian Process Regressors with a Matern kernel. In the passive
setting, the hyperparameters of the Matern kernel were fine-tuned.
For active learning, the hyperparameters of the Matern kernel were
fine-tuned in each iteration based on the currently available labelled
data in 𝑖. The GNN models used for both supervised and unsu-
ervised embeddings consist of three layers with 30 neurons each.
ince each layer learns a node representation, we compute the graph
epresentation by concatenating the sum, average, and max of the node
epresentation, resulting in an embedding of 90 dimensions. The Adam
ptimizer (Kingma and Ba, 2014) is employed with a learning rate of
.001, and the loss used is the Mean Squared Error.

We measure the quality of the predictions by computing the Pearson
orrelation score between the predicted value and the real value. A
arger Pearson correlation score implies better quality predictions. In
ppendix B.3 we include results with the Root Mean Squared Error

RMSE) metric.

.5. Results

In this section, we present the results of both the passive and active
earning experiments. In Section 6 we discuss the conclusions from the
esults in detail.

.5.1. Passive learning
To perform passive learning, we utilize a training set and a test

et . For each embedding, we train a Gaussian process (GP) using
nd then use it to predict the execution time of all test data items in
. Additionally, all passive learning results correspond to the average
f 15 runs with different seeds, where for each method, the mean and
tandard deviation (STD) values are reported.

We will show the results for file-level parsing and system-level
arsing.

P. Samoaa et al.

i
d
c

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Table 3
Results for Unsupervised Embedding for graphs of File Level Parsing.

Train and Test features Train features

OSSBuilds HadoopTests OSSBuilds HadoopTests

Shallow Embedding

Graph2Vec 0.74 ± 0.03 0.74 ± 0.02 NA NA

GR Mean 0.58 ± 0.03 0.50 ± 0.03 NA NA
Sum 0.47 ± 0.05 0.46 ± 0.04 NA NA

HOPE Mean 0.16 ± 0.05 0.06 ± 0.03 NA NA
Sum 0.16 ± 0.05 0.37 ± 0.05 NA NA

DeepWalks Mean 0.42 ± 0.05 0.47 ± 0.03 NA NA
Sum 0.41 ± 0.05 0.46 ± 0.04 NA NA

Node2Vec Mean 0.30 ± 0.06 0.20 ± 0.03 NA NA
Sum 0.25 ± 0.07 0.40 ± 0.04 NA NA

GNN
GCNConv 0.47 ± 0.05 0.52 ± 0.04 0.46 ± 0.04 0.50 ± 0.04
GraphSAGE 0.44 ± 0.06 0.44 ± 0.04 0.42 ± 0.04 0.42 ± 0.04
GraphConv 0.48 ± 0.05 0.52 ± 0.04 0.47 ± 0.05 0.51 ± 0.03
Table 4
Results for Supervised and Manual Embedding for graphs of File Level Parsing.

OSSBuilds HadoopTests

Supervised Embedding (GNN)
GCNConv 0.61 ± 0.04 0.66 ± 0.02
GraphSAGE 0.64 ± 0.03 0.68 ± 0.02
GraphConv 0.67 ± 0.02 0.68 ± 0.01

Manual Embedding 0.64 ± 0.05 0.61 ± 0.02

File-level parsing. In Section 4.5, we explained how different levels of
nformation can be used when constructing the embeddings. Table 3
isplays the results for the unsupervised embeddings when they are
onstructed using: (i) both train and test features (i.e., 𝐗 and 𝐗 , re-

spectively); (ii) only train features (𝐗). As explained in Section 4.5.1,
the second option is not straightforward using shallow embeddings, as
it will lead to the training data and test data being in different feature
spaces. Because of this, we do not include it in the table (it is marked
as NA). However, we show the results for this setting in Appendix B,
with further explanation.

When utilizing both the training and testing features, Graph2Vec
attains the highest scores with consistent average scores for both
datasets—0.74 each.

Graph2Vec provides an embedding for the entire graph by default,
but the remaining shallow embedding methods are on a node-level.
Thus, in order to have the embedding for the entire graph, the embed-
ding is aggregated using mean and sum aggregation functions. For the
shallow embeddings that operate on a node-level, we observe that GR
performs significantly better compared to the other methods for both
datasets, where HOPE is the worst performing overall.

The results of shallow embeddings are more stable for HadoopTests
since the STD is in the range of [0.02,0.05], which is not the case
for OSSBuilds when the STD range is [0.03,0.07]. This is reasonable
because by looking at Table 1, we can see that OSSBuilds contains four
different projects for four different domains, which is not the case for
HadoopTests, where all code files are related to one project.

The performance of the GNN-based methods is slightly better when
the test features are used in the embedding. GraphConv is the best
GNN model for both datasets in both cases. The unsatisfactory perfor-
mance of GNNs is not surprising, as unsupervised graph representation
learning by GNNs requires vast data.

The results for the supervised embeddings based on the train fea-
tures 𝑿 and train labels 𝒀 are presented in Table 4. The Pearson
correlation obtained with GNNs is shown in the first rows, while the
results obtained using the manual embedding are reported in the last
row. It is evident from the table that the performance of the GNN-
based approaches is superior to that of the manual embeddings for both
datasets (except the GCN for OssBuilds, which is slightly worse than
manual embedding). Thus, GraphConv performs the best for OSSBuilds,

with an average correlation score of 0.67 and STD of 0.02. In contrast,

12
for HadoopTests, GraphSAGE and GraphConv have the highest average
correlation score of 0.68 and STD of 0.02 and 0.01, respectively.

Overall, for passive learning, Graph2Vec with test features achieves
the best score for both datasets and settings. The reason why Graph2Vec
performs well could be because our input graphs are similar to trees
(see Section 5.3). In fact, Graph2Vec explores a much deeper path
within the input graph compared to GNN. On the other hand, GNNs in
a supervised setting deliver reasonable results for both datasets (unlike
the unsupervised GNN embedding). This is likely because the labels
are utilized. The manual embedding also yields an acceptable score
compared to the shallow embeddings (except Graph2Vec).

System-level parsing. This section examines the passive learning out-
comes for System-Level parsing, where graphs are expanded from their
File-Level counterparts.

Table 5 displays the results for the unsupervised embeddings based
on both train and test features, as well as only train features for GNN for
System-Level parsing. Thus, looking at the results of Tables 5, we notice
that Graph2Vec attains the highest scores of 0.73 and 0.75 for the
OSSBuilds and HadoopTests datasets, respectively, which is consistent
with the results obtained for File-Level Parsing. For both datasets, GR,
DeepWalks, and Node2Vec with both aggregation functions achieve a
reasonable Pearson correlation score. On the other hand, HOPE remains
the worst-performing approach in terms of embedding quality. The
results of shallow embeddings are more stable for HadoopTests since
the STD is in the range of [0.02,0.04], which is not the case for
OSSBuilds when the STD range is [0.03,0.08].

For GNNs, the average score decreases by a small margin (especially
for HadoopTests graphs) with/without test features compared to the
original graphs in File-Level Parsing.

As for supervised results in Table 6, the results for all GNN-based
models are slightly worse compared to the original graphs in File-Level
Parsing. The same is true regarding Manual Embedding. The reason for
this might be that we have more nodes and edges with System-level
parsing, which means more sparsity as well as more layers needed by
the GNN models to get more information from the new nodes.

5.5.2. Active learning
Given an embedding, the active learning experiments were con-

ducted as outlined in Section 4.1. We investigate different sizes of
the initially labelled dataset |0| and the batch size ||. Additionally,
all active learning results correspond to the average of 15 runs with
different seeds, where the variance of the runs is indicated by a shaded
colour.

The active learning experiments investigate three different graph
embeddings (based on the passive learning results): manual embed-
ding, Graph2Vec (with test features) and GraphConv as the supervised
(GNN) embedding. For each embedding, we use the six query strate-
gies outlined in Section 4.7 (i.e., random, coreset, variance, QBC,
PowerVariance and PowerQBC).

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Table 5
Results for Unsupervised Embedding for graphs of System Level Parsing.

Train and Test features Train features

OSSBuilds HadoopTests OSSBuilds HadoopTests

Shallow Embedding

Graph2Vec 0.73 ± 0.03 0.75 ± 0.02 NA NA

GR Mean 0.45 ± 0.04 0.47 ± 0.02 NA NA
Sum 0.40 ± 0.05 0.43 ± 0.03 NA NA

HOPE Mean 0.19 ± 0.07 0.06 ± 0.03 NA NA
Sum 0.20 ± 0.08 0.35 ± 0.04 NA NA

DeepWalks Mean 0.37 ± 0.06 0.44 ± 0.02 NA NA
Sum 0.36 ± 0.06 0.43 ± 0.04 NA NA

Node2Vec Mean 0.33 ± 0.06 0.42 ± 0.03 NA NA
Sum 0.36 ± 0.06 0.42 ± 0.04 NA NA

GNN
GCNConv 0.41 ± 0.06 0.48 ± 0.03 0.44 ± 0.05 0.48 ± 0.03
GraphSAGE 0.37 ± 0.06 0.42 ± 0.04 0.38 ± 0.04 0.45 ± 0.05
GraphConv 0.43 ± 0.06 0.49 ± 0.03 0.44 ± 0.07 0.49 ± 0.03
Fig. 9. Active learning results for all embeddings for the OSSBuilds dataset (File Level Parsing) with |0| = 100 and || = 50.
Table 6
Results for Supervised and Manual Embedding for graphs of System Level Parsing.

Train features

OSSBuilds HadoopTests

Supervised Embedding (GNN)
GCNConv 0.59 ± 0.04 0.64 ± 0.03
GraphSAGE 0.61 ± 0.04 0.67 ± 0.02
GraphConv 0.65 ± 0.04 0.66 ± 0.02

Manual Embedding 0.60 ± 0.04 0.59 ± 0.03

File level parsing graphs. In Figs. 9 and 10 we show the active learning
results for file level parsing for all embeddings for the OSSBuilds and
13
Hadoop datasets, respectively. We observe that random selection is a
strong baseline for both datasets. However, we see some benefit of the
other query strategies indicating the usefulness of active learning. This
benefit is more clear for system level parsing (see below). In particular,
we see the usefulness of PowerVariance and PowerQBC (compared to
their non-power versions). In terms of the embeddings, we see that the
ranking is consistent for all query strategies at all iterations of the active
learning procedure. For OSSBuilds, Graph2Vec is the best, manual
embedding second best, and supervised embedding the worst. One
exception to this is for the coreset query strategy, where the supervised
embedding outperforms the manual embedding in later iterations. For
Hadoop, Graph2Vec is still the best, but the supervised embedding

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 10. Active learning results for all embeddings for the HadoopTests dataset (File Level Parsing) with |0| = 150 and || = 100.
outperforms the manual embedding in later iterations (when more
labelled data is available).

System level parsing graphs. In Figs. 11 and 12 we show the active
learning results for file level parsing for all embeddings for the OSS-
Builds and Hadoop datasets, respectively. For the OSSBuilds dataset,
we observe that QBC and Variance perform slightly better than random.
For Hadoop, we see that Variance significantly outperforms random (in
particular in later iterations) for the manual embedding. For Graph2Vec
and the supervised embedding, we see that random is consistently
outperformed by the other query strategies. For the embeddings, we
observe that Graph2Vec is the best for both datasets. In addition,
we observe that the manual embedding is better in early iterations,
whereas the supervised embedding eventually becomes better than the
manual embedding (once sufficient labelled data is available).

5.6. Experiment limitation

In utilizing real-world graphs for source code representation, we
posit that our framework is applicable across various domains of
directed graph data, including social networks and pharmacological
graphs and others. While our framework is primarily tailored for di-
rected graphs, adaptations for undirected graph scenarios, particularly
within supervised embedding contexts, are conceivable. It is impera-
tive, however, to acknowledge that the efficacy and relevance of our
findings may vary across different graph datasets. This variance can be
attributed to inherent differences in graph structure and characteristics.
Our experimental graphs, as delineated in Table 2, are sparse, large,
and complex. These attributes may not be universally representative,
suggesting that certain embedding techniques and query strategies
optimized for our dataset might not directly translate to or yield
comparable results in dissimilar graph environments.
14
6. Discussion

In this section, we comment on the results for both passive and
active learning.

6.1. Passive learning

In this section, we assess the resilience of embedding techniques
as graphs in System-Level parsing evolve by incorporating additional
nodes and edges, thus providing insights into how these techniques
perform under conditions of increased graph complexity and size.

The resilience of unsupervised embedding techniques to the ex-
panded version of graphs varies across the methods tested. Graph2Vec
exhibits strong resilience, showing minimal performance change de-
spite increased graph complexity, which suggests its effectiveness in
scalable applications. GR and HOPE demonstrate some sensitivity to
scale, with slight to moderate performance declines, indicating po-
tential limitations in more complex graph environments. DeepWalks
maintain performance levels but do not show improvements, suggest-
ing stability rather than adaptability to larger scales. The embedding
quality for Node2Vec increased compared to the original graphs in File-
Level parsing, and the opposite for GR. That explains why Node2Vec
performs better on graph data with more nodes and edges. Lastly, GNN
models (GCNConv, GraphSAGE, GraphConv) show a moderate decrease
in performance in extended graphs compared to the original graphs in
File-Level parsing, suggesting that while they handle increased com-
plexity, their efficacy slightly diminishes as graph complexity increases.
This analysis underlines the importance of carefully selecting embed-
ding techniques based on anticipated graph structure and complexity
for optimal performance in scalable environments.

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 11. Active learning results for all embeddings for the OSSBuilds dataset (System Level Parsing) with |0| = 100 and || = 50.
As graphs expanded from File-Level to System-Level parsing, su-
pervised and manual embedding techniques exhibited a slight decline
in performance. GCNConv, GraphSAGE, and GraphConv demonstrate
robustness with minor reductions, suggesting they manage increased
complexity well, though effectiveness slightly diminishes in more com-
plex settings. Manual Embedding shows a more noticeable performance
drop, indicating a greater sensitivity to graph complexity. This trend
highlights the need for cautious application as graph size and intricacy
grow.

6.2. Active learning

There are three main observations from the active learning results:
(i) There is no single query strategy that consistently outperforms
the others across all settings, which is consistent with observations in
other AL works (Konyushkova et al., 2017). However, there is some
indication that the coreset performs particularly well in conjunction
with the supervised embedding (based on deep GNN). This is logical
considering that coreset was originally introduced for deep batch active
learning (Sener and Savarese, 2018); (ii) The benefit of the different
query strategies over random selection improves for the Hadoop dataset
(compared to OSSBuilds), and in particular for system level parsing.
The reason is likely because Hadoop contains more data points com-
pared to OSSBuilds. In addition, for system-level parsing, we obtain
more complex graphs. In other words, we observe the increased benefit
of (batch) active learning for larger and more complex datasets. In
contrast, for small and simple datasets, random selection becomes a
very strong baseline. However, it can be argued that for small and
simple datasets, the use of active learning is not as important; (iii)
The supervised embedding (based on GNN) is worse than the manual
embedding in early iterations but exceeds it in later iterations. This
15
reflects our intuition since out of the three embeddings considered
for active learning, only the supervised embedding will update its
latent space iteratively as more labels become available. However,
Graph2Vec still outperforms the supervised embedding when all labels
are available. The main reason for this is likely (as discussed for the
passive learning results) that Graph2Vec uses the test features when
constructing its latent space.

7. Conclusion

Our investigation of a unified active learning framework for anno-
tating graphs at the graph-level has yielded several significant insights.
We found that unsupervised embedding techniques like Graph2Vec
exhibit robust performance when leveraging both training and testing
features. However, supervised embeddings like GNNs offer greater
flexibility across various levels of information accessibility. Specifically,
active learning strategies excel in environments with larger, more
complex datasets, underscoring the potential for these techniques in
scaling to more extensive graph structures. Reflecting on our research
objectives, this study successfully demonstrates the application of ac-
tive learning to graph-level regression tasks, a relatively unexplored
area. The ability of our framework to adapt to expanded graphs and
efficiently utilize computational resources highlights its practical rel-
evance and potential for broad application. The implications of our
findings are profound for the domain of graph data analysis, partic-
ularly in enhancing the efficiency of data annotation processes without
compromising quality of the machine learning models trained on this
data. This is particularly relevant in fields where data complexity and
volume pose significant challenges. However, the following limitations
of our work should be mentioned. First, the framework can be com-
putationally demanding, in particular when used in conjunction with

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. 12. Active learning results for all embeddings for the HadoopTests dataset (System Level Parsing) with |0| = 150 and || = 100.
GNN embeddings, since a GNN must be trained from scratch in each
iteration. Second, the obtained results are specific to the considered
datasets and active learning strategies. Consequently, for future work,
we recommend further investigation into the scalability of the pro-
posed active learning framework and the investigation of more diverse
datasets to broaden the applicability of our findings.

CRediT authorship contribution statement

Peter Samoaa: Data curation, Formal analysis, Investiga-
tion, Methodology, Project administration, Resources, Software,
Validation, Visualization, Writing – original draft, Writing –
review & editing. Linus Aronsson: Formal analysis, Investigation,
Methodology, Validation, Visualization, Writing – original draft,
Writing – review & editing. Antonio Longa: Data curation,
Formal analysis, Investigation, Methodology, Software, Validation,
Visualization, Writing – original draft, Writing – review & editing.
Philipp Leitner: Data curation, Funding acquisition, Supervision.
Morteza Haghir Chehreghani: Conceptualization, Funding acquisi-
tion, Investigation, Methodology, Project administration, Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data and used cade are available in the following link https:
//doi.org/10.5281/zenodo.7792485.
16
Acknowledgements

This work received financial support from the Swedish Research
Council VR under grant number 2018-04127 (Developer-Targeted Per-
formance Engineering for Immersed Release and Software Engineers).
The work of Linus Aronsson and Morteza Haghir Chehreghani was
partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by Knut and Alice Wallenberg Foun-
dations. Antonio Longa acknowledges the support of the MUR PNRR
project FAIR—Future AI Research (PE00000013) funded by the
NextGenerationEU. Finally, the computations and data handling was
enabled by resources provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS) and the Swedish National
Infrastructure for Computing (SNIC), partially funded by the Swedish
Research Council through grant agreement no. 2022-06725 and no.
2018–05973.

Appendix A. Graph analysis

In this section, we do a deeper investigation of the graph topology
of our dataset.

A.1. Basic topology

Fig. A.13 displays node (Fig. A.13(a)) and edge (Fig. A.13(b)) dis-
tributions, respectively. The data indicate a minimal disparity between
file and system levels in terms of both statistics.

The degree distribution, depicted in Fig. A.14, effectively captures
the resemblance between the distributions of nodes and edges.

https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485
https://doi.org/10.5281/zenodo.7792485

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. A.13. Distributions of the number of nodes and edges in Hadoop (left) and OssBuild (right) for both file-level and system-level settings.
Fig. A.14. Degree distribution in logarithmic scale of Hadoop (left) and OssBuild (right) for both file-level and system-level.
A.2. Triangles

In network science, the concept of triangle closure, also known as
the ‘‘friendship paradox’’, is a well-established and widely recognized
phenomenon. It has garnered significant attention and has been ex-
tensively studied in various research works, highlighting its relevance
and importance in numerous real-world applications. In particular, we
explore the relationship between the graph and triangles through Tran-
sitivity (Watts and Strogatz, 1998) and Clustering Coefficient (Newman
and Watts, 1999). Transitivity is defined as follows:

Transitivity = 3 ⋅
of triangles

(A.1)

of triads

17
On the other hand, the clustering coefficient is a metric associated with
a given node 𝑢, and it refers to the degree to which nodes in a graph
tend to cluster together. The clustering coefficient of a node 𝑢 is defined
as follows:

𝐶𝑢 =
2 ⋅ 𝑇 (𝑢)

(𝑑𝑒𝑔(𝑢)) ⋅ (𝑑𝑒𝑔(𝑢) − 1)
(A.2)

Where 𝑇 (𝑢) is the number of triangles through node 𝑢, and 𝑑𝑒𝑔(𝑢) is the
degree of node 𝑢. The Global Clustering Coefficient (GCC) is the aver-
age among the clustering coefficient of all nodes. In summary, while
both transitivity and clustering coefficient capture the local clustering
patterns in a network, transitivity focuses on the presence of triangles
and overall network connectivity, whereas the clustering coefficient

P. Samoaa et al.

s
n

t
i
f
d

A

a
h
o
s
c
t
n

w
s
c
e
l
d

A

n

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. A.15. Distributions of the transitivity and global clustering coefficient (GCC) in Hadoop (left) and OssBuild (right) for both file-level and system-level settings.
W
l

b
P

pecifically measures the density of connections between neighbouring
odes.

Fig. A.15 shows the transitivity (Fig. A.15(a)) and the global clus-
ering coefficient (Fig. A.15(b)) distributions. Based on the results, it
s apparent that both transitivity and GCC exhibit higher values in the
ile-level dataset compared to the system-level dataset. However, this
istinction is not as pronounced in the OssBuild dataset.

.3. Assortativity

Assortativity, in network theory, refers to the tendency of nodes in
network to connect with similar nodes. It measures the degree of

omophily or assortative mixing in a network based on node attributes
r characteristics. Assortativity can be quantified using various metrics,
uch as degree assortativity, attribute assortativity, or assortativity
oefficient (Newman, 2002). In Fig. A.16 we report the degree assorta-
ivity that examines the correlation of node degrees between connected
odes.

Based on the observations in Fig. A.16, it is challenging to determine
hether the graphs exhibit positive assortativity (where nodes with

imilar degrees tend to connect) or negative assortativity (indicating
onnections between nodes with differing degrees). However, upon
xamining the histograms, it appears that in both scenarios, the System-
evel dataset tends to connect nodes to other nodes with differing
egrees.

.4. Centralities

Centrality in network analysis refers to the importance or promi-
ence of nodes within a network. It measures the extent to which a
 t

18
node is influential, well-connected, or positioned strategically within
the network structure. Centrality measures help identify key nodes
that play crucial roles in information flow, influence propagation, and
network dynamics.

Various centrality measures exist, where we have already eval-
uated the degree distributions (in Fig. A.14). Here we dig deeper
into Betweenness Centrality, Closeness Centrality, and Page Rank. The
Betweenness Centrality measures the control a node has over the flow
of information in the network. Formally, it is defined as (Freeman,
1977)

Betweenness Centrality𝑢 =
∑

𝑠,𝑡∈𝑉

𝜎(𝑠, 𝑡|𝑣)
𝜎(𝑠, 𝑡)

(A.3)

where, 𝜎(𝑠, 𝑡) is the number of shortest paths between node 𝑠 and node
𝑡, while 𝜎(𝑠, 𝑡|𝑢) is the number of shortest paths between node 𝑠 and
node 𝑡 passing through node 𝑢.

Closeness Centrality measures the proximity of a node to all other
nodes in the network. Formally, it is defined as (Wasserman and Faust,
1994)

Closeness Centrality𝑢 =
𝑛 − 1

∑𝑛−1
𝑣=1 𝑑(𝑣, 𝑢)

(A.4)

here here 𝑛 is the number of nodes, and 𝑑(𝑣, 𝑢) is the shortest-path
ength between node 𝑣 and node 𝑢.

Finally, the Page Rank (Ma et al., 2008) assigns importance to nodes
ased on the number and quality of incoming links. Nodes with higher
age Rank are considered more influential.

In Fig. A.17 we report the Betweenness, Closeness and Page Rank of
he datasets. It is clear that the strongest difference between the file and

P. Samoaa et al.

Fig. A.16. Distributions of the degree assortativity in Hadoop (left) and OssBuild (right) for both file-level and system-level.

Fig. A.17. Distributions of the Betweenness, Closeness and Page Rank (in log scale) in Hadoop (left) and OssBuild (right) for both file-level and system-level settings.

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383

19

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. A.18. Shortest path length distributions.
Fig. A.19. Tree sim distributions.
Fig. A.20. Diameter distributions.
system level settings relies on the Betweenness. This is not surprising at
all, since in the file-level setting there are fewer edges, thus the number
of edges with a higher Betweenness is greater.

A.5. Meso-scale

In conclusion, we explore the meso-scale characteristics of the
network topology by employing measures such as shortest-path analy-
sis (Newman, 2010), tree similarity, and the diameter (Newman, 2010)
of the input network.

The shortest path is defined in Definition 2, and it reports the
smaller path connection between two given nodes. The distribution
is reported in Fig. A.18. The figure clearly indicates that the system-
level network exhibits shorter shortest paths compared to the file-level
network. This observation is expected, as the system-level networks
20
contain a higher number of edges in comparison to the file-level
networks.

The tree-sim metric, defined in Eq. (5), is a custom measure that
quantifies the similarity between the input graph and its corresponding
tree structure. It is important to note that this metric should not be con-
fused with Treewidth. In our study, we introduced the tree-sim metric
as an alternative to overcome the computational complexity associated
with calculating Treewidth. The distribution of the tree-sim metric for
each dataset is presented in Fig. A.19. However, no significant in-
sights or noteworthy patterns were observed from the analysis of these
distributions, where, as expected, both follow power-law distribution.

Lastly, in Fig. A.20, we present the distribution of diameters for
each graph. As expected, the system-level networks exhibit a smaller
diameter compared to the file-level networks.

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Table B.7
Results for Unsupervised Embedding for graphs of System Level Parsing.

Train and Test features Train features

OSSBuilds HadoopTests OSSBuilds HadoopTests

Shallow Embedding

Graph2Vec 0.78 0.74 0.65 0.46

GR Mean 0.44 0.49 0.50 0.45
Sum 0.45 0.42 0.45 0.48

HOPE Mean 0.14 0.015 0.16 0.04
Sum 0.13 0.36 0.16 0.39

DeepWalks Mean 0.41 0.47 0.38 0.4
Sum 0.43 0.45 0.32 0.39

Node2Vec Mean 0.39 0.42 0.29 0.32
Sum 0.44 0.42 0.33 0.43
Appendix B. Shallow embedding results when test features are not
used

As we mentioned in Section 5.5.1, computing the embedding using
only the training features without manipulating the test features in
embedding is not possible for unsupervised shallow embedding because
eventually, we will have different features space for both training
and testing data. In this section, we will prove the aforementioned
statement for both passive and active learning.

B.1. Passive learning

We are experimenting with computing the embedding only for one
seed for the dataset. We compute the embedding for the entire dataset
(when test features are included) and then we get the first 80% of
the dataset and compute the embedding only for this portion of the
dataset(so here, the last 20% are excluded). Here we either retrain
the model based on the last 20%, which leads to poor results or
alternatively, we get the benefit of the embedding of the entire dataset
since the training data is included. Then using the same split index
that we did when we got the training data, we get the last 20% of the
embedding.

B.1.1. System-level parsing
Table B.7, shows the results for shallow embedding with and with-

out test features with one split for the data. These results are signif-
icantly better than the ones we averaged for 15 different splits when
we used the test features. However, with more splits, the results are
more reliable. Looking at Table B.7, using only the train data features
leads to a substantial decline in the performance of Graph2Vec, Deep-
Walk, and Node2Vec (except for sum aggregation in the HadoopTest
dataset). These methods are all shallow embedding techniques based
on skip-gram, as shown in Fig. 7. Conversely, there are generally
slight improvements for the other shallow methods based on Matrix
Factorization, such as HOPE and GR (except for mean aggregation in
the HadoopTests dataset).

B.1.2. File-level parsing
The results for this setting are reported in Table B.8. In this setting,

we still have better results than those obtained with 15 different splits
for the dataset.

Nevertheless, when we exclude the test features, the correlation
score for Graph2Vec is drastically reduced to 0.53 for OssBuilds and
0.49 for HadoopTests which remains the best for such dataset when
we only use the train features. Conversely, GR with mean aggregation
is the best for the same setting for OssBuilds.

B.2. Active learning

To understand the impact of different feature spaces embedding we
will present the active learning results for Graph2Vec when test features
are not included.
21
Fig. B.21. Active learning results for Graph2Vec When Test Features are not Used
in embeddings for the OSSBuilds (left) and HadoopTest (right) datasets (System Level
Parsing) with |0| = 100 and || = 50.

Fig. B.22. Active learning results for Graph2Vec When Test Features are not Used in
embeddings for the OSSBuilds (left) and HadoopTest (right) datasets (File Level Parsing)
with |0| = 100 and || = 50.

B.2.1. System-level parsing
In Fig. B.21, the embedding performance based on Graph2Vec

without test features for HadopTests only improves slightly at the start
but then stays fairly constant. The reason for this is likely because
the resulting latent graph representation is not rich enough for this
embedding past 500 labels. We have the same issue for the OSSBuilds
dataset for random and QBC.

B.2.2. File-level parsing
In Graph2Vec with no test features in Fig. B.22, for the HadoopTests

dataset, coreset and random are the best choice when we have up to
1000 samples but the quality of labelling drastically reduces after that
threshold when variance remains the best as it performs reliably after
500 samples. Variance is the worst option for the OSSBuilds dataset.

B.3. Root mean square error

In this section, we present the active learning results using the (log)
RMSE metric for all datasets for both file level and system level parsing.
In all cases, we observe consistent results with the Pearson correlation
score from the main paper (see Figs. B.23–B.26).

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Table B.8
Results for Unsupervised Embedding for graphs of File Level Parsing.

Train and Test features Train features

OSSBuilds HadoopTests OSSBuilds HadoopTests

Shallow Embedding

Graph2Vec 0.78 0.74 0.53 0.49

GR Mean 0.57 0.46 0.59 0.41
Sum 0.51 0.42 0.49 0.37

HOPE Mean 0.17 0.034 0.06 0.07
Sum 0.15 0.35 0.07 0.3

DeepWalks Mean 0.45 0.43 0.34 0.24
Sum 0.42 0.41 0.39 0.02

Node2Vec Mean 0.33 0.2 0.39 0.15
Sum 0.33 0.36 0.31 0.32
Fig. B.23. Active learning results for all embeddings for the HadoopTests dataset (File Level Parsing) with |0| = 150 and || = 100.
22

P. Samoaa et al.

Fig. B.24. Active learning results for all embeddings for the OSSBuilds dataset (File Level Parsing) with |0| = 100 and || = 50.

Fig. B.25. Active learning results for all embeddings for the HadoopTests dataset (System Level Parsing) with For the RMSE |0| = 150 and || = 100.

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383

23

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Fig. B.26. Active learning results for all embeddings for the OSSBuilds dataset (System Level Parsing) with |0| = 100 and || = 50.
References

Abel, R., Louzoun, Y., 2019. Regional based query in graph active learning. arXiv:
1906.08541.

Aittokallio, T., Schwikowski, B., 2006. Graph-based methods for analysing networks in
cell biology. Brief. Bioinform. 7 (3), 243–255.

Arregui-García, B., Longa, A., Lotito, Q.F., Meloni, S., Cencetti, G., 2024. Patterns in
temporal networks with higher-order egocentric structures. Entropy 26 (3), 256.

Batagelj, V., Brandes, U., 2005. Efficient generation of large random networks. Phys.
Rev. E 71 (3).

Bossér, J.D., Sörstadius, E., Chehreghani, M.H., 2021. Model-centric and data-centric
aspects of active learning for deep neural networks. In: 2021 IEEE International
Conference on Big Data (Big Data). pp. 5053–5062. http://dx.doi.org/10.1109/
BigData52589.2021.9671795.

Cai, H., Zheng, V.W., Chang, K.C.-C., 2017. Active learning for graph embedding.
arXiv:1705.05085.

Cao, S., Lu, W., Xu, Q., 2015. GraRep: Learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management. CIKM ’15, Association for Computing
Machinery, New York, NY, USA, pp. 891–900. http://dx.doi.org/10.1145/2806416.
2806512.

Cardia, M., Luca, M., Pappalardo, L., 2022. Enhancing crowd flow prediction in
various spatial and temporal granularities. In: Companion Proceedings of the Web
Conference 2022. pp. 1251–1259.

Casanova, A., Pinheiro, P.O., Rostamzadeh, N., Pal, C.J., 2020. Reinforced ac-
tive learning for image segmentation. In: International Conference on Learning
Representations. URL: https://openreview.net/forum?id=SkgC6TNFvr.

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K., 2022. Machine learning
on graphs: A model and comprehensive taxonomy. J. Mach. Learn. Res. 23 (89),
1–64.

Chen, X., Yu, G., Wang, J., Domeniconi, C., Li, Z., Zhang, X., 2019. ActiveHNE:
Active heterogeneous network embedding. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence. pp. 2123–2129. http:
//dx.doi.org/10.24963/ijcai.2019/294.

Comuni, F., Mészáros, C., Åkerblom, N., Haghir Chehreghani, M., 2022. Passive and
active learning of driver behavior from electric vehicles. In: 25th IEEE International
Conference on Intelligent Transportation Systems. ITSC, pp. 929–936.
24
Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional neural networks on
graphs with fast localized spectral filtering. In: Lee, D., Sugiyama, M., Luxburg, U.,
Guyon, I., Garnett, R. (Eds.), In: Advances in Neural Information Processing
Systems, vol. 29.

Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Sociometry
40 (1), 35–41, URL: http://www.jstor.org/stable/3033543.

Gal, Y., Islam, R., Ghahramani, Z., 2017. Deep bayesian active learning with image data.
In: Precup, D., Teh, Y.W. (Eds.), Proceedings of the 34th International Conference
on Machine Learning. In: Proceedings of Machine Learning Research, vol. 70, pp.
1183–1192, URL: https://proceedings.mlr.press/v70/gal17a.html.

Gao, L., Yang, H., Zhou, C., Wu, J., Pan, S., Hu, Y., 2018. Active discriminative network
representation learning. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence. pp. 2142–2148. http://dx.doi.org/10.24963/
ijcai.2018/296.

Grover, A., Leskovec, J., 2016. Node2vec: Scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16, New York, NY, USA, pp. 855–864. http:
//dx.doi.org/10.1145/2939672.2939754.

Guo, Z., Guo, K., Nan, B., Tian, Y., Iyer, R.G., Ma, Y., Wiest, O., Zhang, X., Wang, W.,
Zhang, C., et al., 2022. Graph-based molecular representation learning. arXiv
preprint arXiv:2207.04869.

Hamilton, W., Ying, Z., Leskovec, J., 2017. Inductive representation learning on
large graphs. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing
Systems. 30.

Hu, S., Xiong, Z., Qu, M., Yuan, X., Côté, M.-A., Liu, Z., Tang, J., 2020. Graph policy
network for transferable active learning on graphs. Adv. Neural Inf. Process. Syst.
33, 10174–10185.

Huber, W., Carey, V.J., Long, L., Falcon, S., Gentleman, R., 2007. Graphs in molecular
biology. BMC Bioinform. 8 (6), 1–14. http://dx.doi.org/10.1186/1471-2105-8-S6-
S8.

Jarl, S., Aronsson, L., Rahrovani, S., Chehreghani, M.H., 2022. Active learning of driving
scenario trajectories. Eng. Appl. Artif. Intell. 113, 104972. http://dx.doi.org/10.
1016/j.engappai.2022.104972.

Kapoor, A., Grauman, K., Urtasun, R., Darrell, T., 2007. Active learning with Gaussian
processes for object categorization. In: 2007 IEEE 11th International Conference on
Computer Vision. pp. 1–8. http://dx.doi.org/10.1109/ICCV.2007.4408844.

http://arxiv.org/abs/1906.08541
http://arxiv.org/abs/1906.08541
http://arxiv.org/abs/1906.08541
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb2
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb2
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb2
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb3
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb3
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb3
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb4
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb4
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb4
http://dx.doi.org/10.1109/BigData52589.2021.9671795
http://dx.doi.org/10.1109/BigData52589.2021.9671795
http://dx.doi.org/10.1109/BigData52589.2021.9671795
http://arxiv.org/abs/1705.05085
http://dx.doi.org/10.1145/2806416.2806512
http://dx.doi.org/10.1145/2806416.2806512
http://dx.doi.org/10.1145/2806416.2806512
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb8
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb8
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb8
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb8
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb8
https://openreview.net/forum?id=SkgC6TNFvr
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb10
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb10
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb10
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb10
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb10
http://dx.doi.org/10.24963/ijcai.2019/294
http://dx.doi.org/10.24963/ijcai.2019/294
http://dx.doi.org/10.24963/ijcai.2019/294
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb12
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb13
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb13
http://www.jstor.org/stable/3033543
https://proceedings.mlr.press/v70/gal17a.html
http://dx.doi.org/10.24963/ijcai.2018/296
http://dx.doi.org/10.24963/ijcai.2018/296
http://dx.doi.org/10.24963/ijcai.2018/296
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/2939672.2939754
http://arxiv.org/abs/2207.04869
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb19
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb20
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb20
http://dx.doi.org/10.1186/1471-2105-8-S6-S8
http://dx.doi.org/10.1186/1471-2105-8-S6-S8
http://dx.doi.org/10.1186/1471-2105-8-S6-S8
http://dx.doi.org/10.1016/j.engappai.2022.104972
http://dx.doi.org/10.1016/j.engappai.2022.104972
http://dx.doi.org/10.1016/j.engappai.2022.104972
http://dx.doi.org/10.1109/ICCV.2007.4408844

P. Samoaa et al. Engineering Applications of Artiϧcial Intelligence 138 (2024) 109383
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kipf, T.N., Welling, M., 2016. Variational graph auto-encoders. arXiv preprint arXiv:
1611.07308.

Kipf, T.N., Welling, M., 2017. Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations.

Kirsch, A., Farquhar, S., Atighehchian, P., Jesson, A., Branchaud-Charron, F., Gal, Y.,
2023. Stochastic batch acquisition: A simple baseline for deep active learning.
Trans. Machine Learn. Res. URL: https://openreview.net/forum?id=vcHwQyNBjW.
Expert Certification.

Konyushkova, K., Raphael, S., Fua, P., 2017. Learning active learning from data. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems. NIPS ’17, Curran Associates Inc., Red Hook, NY, USA, pp. 4228–4238.

Lachi, V., Dimitri, G.M., Di Stefano, A., Liò, P., Bianchini, M., Mocenni, C., 2023. Impact
of the covid 19 outbreaks on the italian twitter vaccination debat: a network based
analysis. arXiv preprint arXiv:2306.02838.

Latora, V., Marchiori, M., 2001. Efficient behavior of small-world networks. Phys. Rev.
Lett. 87, 198701. http://dx.doi.org/10.1103/PhysRevLett.87.198701.

Li, Y., Oliva, J., 2021. Active feature acquisition with generative surrogate models. In:
Proceedings of the 38th International Conference on Machine Learning, ICML. pp.
6450–6459.

Li, X., Wu, Y., Rakesh, V., Lin, Y., Yang, H., Wang, F., 2022. SmartQuery: An active
learning framework for graph neural networks through hybrid uncertainty reduc-
tion. In: Proceedings of the 31st ACM International Conference on Information;
Knowledge Management. CIKM ’22, Association for Computing Machinery, New
York, NY, USA, pp. 4199–4203. http://dx.doi.org/10.1145/3511808.3557701.

Liu, Z., Wang, J., Gong, S., Tao, D., Lu, H., 2019. Deep reinforcement active learning
for human-in-the-loop person re-identification. In: International Conference on
Computer Vision. IEEE, pp. 6121–6130.

Longa, A., Cencetti, G., Lehmann, S., Passerini, A., Lepri, B., 2024. Generating
fine-grained surrogate temporal networks. Commun. Phys. 7 (1), 22.

Longa, A., Cencetti, G., Lepri, B., Passerini, A., 2022. An efficient procedure for mining
egocentric temporal motifs. Data Min. Knowl. Discov. 1–24.

Luo, Y., Yan, K., Ji, S., 2021. Graphdf: A discrete flow model for molecular
graph generation. In: International Conference on Machine Learning. PMLR, pp.
7192–7203.

Ma, N., Guan, J., Zhao, Y., 2008. Bringing PageRank to the citation analysis. Inf.
Process. Manage. 44 (2), 800–810.

Mauro, G., Luca, M., Longa, A., Lepri, B., Pappalardo, L., 2022. Generating mobility
networks with generative adversarial networks. EPJ Data Sci. 11 (1), 58.

Munjal, P., Hayat, N., Hayat, M., Sourati, J., Khan, S., 2020. Towards robust and
reproducible active learning using neural networks. In: Conference on Computer
Vision and Pattern Recognition. pp. 223–232.

Newman, M., 2002. Assortative mixing in networks. Phys. Rev. Lett. 89 (20), http:
//dx.doi.org/10.1103/physrevlett.89.208701.

Newman, M.E.J., 2010. Networks: an introduction. Oxford University Press, Oxford;
New York.

Newman, M.E., Watts, D.J., 1999. Renormalization group analysis of the small-world
network model. Phys. Lett. A 263 (4–6), 341–346.

Nguyen, A., Longa, A., Luca, M., Kaul, J., Lopez, G., 2022. Emotion analysis using
multilayered networks for graphical representation of tweets. IEEE Access 10,
99467–99478.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Perozzi, B., Al-Rfou, R., Skiena, S., 2014. DeepWalk: Online learning of social rep-
resentations. In: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’14, Association for Computing
Machinery, New York, NY, USA, pp. 701–710. http://dx.doi.org/10.1145/2623330.
2623732.

Rasmussen, C.E., Williams, C.K.I., 2005. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta, B.B., Chen, X., Wang, X., 2021.
A Survey of Deep Active Learning. vol. 54, (no. 9), Association for Computing
Machinery, New York, NY, USA, http://dx.doi.org/10.1145/3472291.

Rubens, N., Elahi, M., Sugiyama, M., Kaplan, D., 2015. Active learning in recommender
systems. In: Recommender Systems Handbook. springer, pp. 809–846. http://dx.
doi.org/10.1007/978-1-4899-7637-6_24.
25
Samoaa, P., Aronsson, L., Longa, A., Leitner, P., Chehreghani, M.H., 2023. A Unified Ac-
tive Learning Framework for Annotating Graph Data with Application to Software
Source Code Performance Prediction. Zenodo, http://dx.doi.org/10.5281/zenodo.
7792485.

Samoaa, H.P., Bayram, F., Salza, P., Leitner, P., 2022a. A systematic mapping study of
source code representation for deep learning in software engineering. IET Softw.
16 (4), 351–385. http://dx.doi.org/10.1049/sfw2.12064.

Samoaa, H.P., Longa, A., Mohamad, M., Chehreghani, M.H., Leitner, P., 2022b. TEP-
gnn: Accurate execution time prediction of functional tests using graph neural
networks. In: Taibi, D., Kuhrmann, M., Mikkonen, T., Klünder, J., Abrahamsson, P.
(Eds.), Product-Focused Software Process Improvement. Springer International
Publishing, Cham, pp. 464–479.

Scott, J., 2011. Social network analysis: developments, advances, and prospects. Social
network analysis and mining 1, 21–26.

Sener, O., Savarese, S., 2018. Active learning for convolutional neural networks: A
core-set approach. arXiv:1708.00489.

Settles, B., 2009. Active Learning Literature Survey. Computer Sciences Technical
Report, 1648, University of Wisconsin–Madison.

Seung, H., Opper, M., Sompolinsky, H., 1992. Query by committee. In: Proceedings of
the Fifth Annual ACM Workshop on Computational Learning Theory. In: Proceed-
ings of the Fifth Annual ACM Workshop on Computational Learning Theory, Publ
by ACM, pp. 287–294. http://dx.doi.org/10.1145/130385.130417, Proceedings of
the Fifth Annual ACM Workshop on Computational Learning Theory ; Conference
date: 27-07-1992 Through 29-07-1992.

Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A., 2018. Deep active learning
for named entity recognition. arXiv:1707.05928.

Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., Ré, C., 2015. Incremental knowl-
edge base construction using deepdive. In: Proceedings of the VLDB Endowment
International Conference on Very Large Data Bases. 8, (11), NIH Public Access, p.
1310.

Shuyang, Z., Heittola, T., Virtanen, T., 2020. Active learning for sound event detection.
IEEE/ACM Trans. Audio Speech Lang. Proc. 28, 2895–2905. http://dx.doi.org/10.
1109/TASLP.2020.3029652.

Viet Johansson, S., Gummesson Svensson, H., Bjerrum, E., Schliep, A.,
Haghir Chehreghani, M., Tyrchan, C., Engkvist, O., 2022. Using active learning to
develop machine learning models for reaction yield prediction. Mol. Inform. 41
(12), http://dx.doi.org/10.1002/minf.202200043.

Vu, T.-T., Liu, M., Phung, D., Haffari, G., 2019. Learning how to active learn
by dreaming. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, pp.
4091–4101.

Wang, D., Cui, P., Zhu, W., 2016. Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’16, Association for Computing Machinery, New York, NY, USA,
pp. 1225–1234. http://dx.doi.org/10.1145/2939672.2939753.

Wang, Z., Liu, M., Luo, Y., Xu, Z., Xie, Y., Wang, L., Cai, L., Qi, Q., Yuan, Z., Yang, T.,
et al., 2022. Advanced graph and sequence neural networks for molecular property
prediction and drug discovery. Bioinformatics 38 (9), 2579–2586.

Wasserman, S., Faust, K., 1994. Social network analysis: Methods and applications.
Cambridge University Press.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’networks. Nature
393 (6684), 440–442.

Wu, Y., Xu, Y., Singh, A., Dubrawski, A., Yang, Y., 2020. Active learning graph neural
networks via node feature propagation.

Yamaguchi, F., Golde, N., Arp, D., Rieck, K., 2014. Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy. pp. 590–604. http://dx.doi.org/10.1109/SP.2014.44.

Yan, S., Chaudhuri, K., Javidi, T., 2018. Active learning with logged data. In: Dy, J.G.,
Krause, A. (Eds.), Proceedings of the 35th International Conference on Machine
Learning. In: Proceedings of Machine Learning Research, 80, pp. 5517–5526.

Yang, S., Hou, M., 2023. Knowledge graph representation method for semantic 3D
modeling of Chinese grottoes. Herit. Sci. 11 (1), 266.

Zhang, Y., Tong, H., Xia, Y., Zhu, Y., Chi, Y., Ying, L., 2022. Batch active learning with
graph neural networks via multi-agent deep reinforcement learning. Proc. AAAI
Conf. Artif. Intell. 36 (8), 9118–9126. http://dx.doi.org/10.1609/aaai.v36i8.20897.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1611.07308
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb26
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb26
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb26
https://openreview.net/forum?id=vcHwQyNBjW
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb28
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb28
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb28
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb28
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb28
http://arxiv.org/abs/2306.02838
http://dx.doi.org/10.1103/PhysRevLett.87.198701
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb31
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb31
http://dx.doi.org/10.1145/3511808.3557701
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb33
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb33
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb33
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb33
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb33
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb34
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb34
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb34
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb35
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb35
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb35
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb36
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb36
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb36
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb36
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb36
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb37
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb37
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb37
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb38
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb38
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb38
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb39
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb39
http://dx.doi.org/10.1103/physrevlett.89.208701
http://dx.doi.org/10.1103/physrevlett.89.208701
http://dx.doi.org/10.1103/physrevlett.89.208701
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb41
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb41
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb41
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb42
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb42
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb42
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb43
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb43
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb43
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb43
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb43
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb44
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb44
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb44
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb44
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb44
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb44
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb44
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb46
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb46
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb46
http://dx.doi.org/10.1145/3472291
http://dx.doi.org/10.1007/978-1-4899-7637-6_24
http://dx.doi.org/10.1007/978-1-4899-7637-6_24
http://dx.doi.org/10.1007/978-1-4899-7637-6_24
http://dx.doi.org/10.5281/zenodo.7792485
http://dx.doi.org/10.5281/zenodo.7792485
http://dx.doi.org/10.5281/zenodo.7792485
http://dx.doi.org/10.1049/sfw2.12064
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb51
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb52
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb52
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb52
http://arxiv.org/abs/1708.00489
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb54
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb54
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb54
http://dx.doi.org/10.1145/130385.130417
http://arxiv.org/abs/1707.05928
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb57
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb57
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb57
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb57
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb57
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb57
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb57
http://dx.doi.org/10.1109/TASLP.2020.3029652
http://dx.doi.org/10.1109/TASLP.2020.3029652
http://dx.doi.org/10.1109/TASLP.2020.3029652
http://dx.doi.org/10.1002/minf.202200043
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb60
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb60
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb60
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb60
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb60
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb60
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb60
http://dx.doi.org/10.1145/2939672.2939753
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb62
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb62
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb62
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb62
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb62
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb63
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb63
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb63
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb64
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb64
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb64
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb65
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb65
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb65
http://dx.doi.org/10.1109/SP.2014.44
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb67
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb67
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb67
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb67
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb67
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb68
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb68
http://refhub.elsevier.com/S0952-1976(24)01541-0/sb68
http://dx.doi.org/10.1609/aaai.v36i8.20897

	A unified active learning framework for annotating graph data for regression task
	Introduction
	Background
	Graphs
	Source Code Representation

	Related Work
	Learning Framework
	Active and Passive Learning Procedure
	Transforming Source Code to Graphs
	Motivation Example

	Depth of FA-AST Parsing
	Graph Representation Learning
	Unsupervised embeddings.
	Supervised embeddings.
	Manual embedding

	Incorporating Different Information
	Active Learning
	Passive Learning

	Regression model
	Query Strategies for Active Learning
	Limitations and Challenges

	Experiments
	Research Objectives
	Dataset Collection
	OSSBuild Dataset
	HadoopTests Dataset
	Dataset Selection Rationale

	Analysis of Graphs
	Experimental Setup
	Results
	Passive Learning
	Active Learning

	Experiment Limitation

	Discussion
	Passive Learning
	Active Learning

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Graph analysis
	Basic topology
	Triangles
	Assortativity
	Centralities
	Meso-scale

	Appendix B. Shallow Embedding Results When Test Features are Not Used
	Passive Learning
	System-Level Parsing
	File-Level Parsing

	Active Learning
	System-Level Parsing
	File-Level Parsing

	Root Mean Square Error

	References

