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A B S T R A C T

Ride-hailing services provided by companies like Uber, Lyft, and Didi have rapidly grown, leading to increased
traffic congestion and greenhouse gas emissions. The transition of ride-hailing fleets to Electric vehicles
(EVs) presents a considerable opportunity to reduce emissions in the transportation sector. Despite this
potential, the carbon emission benefits of electrifying ride-hailing vehicles remain inadequately quantified. This
study introduces a framework designed to assess carbon emission reductions resulting from EVs, specifically
accounting for emissions transferred from electricity during the operational phase of ride-hailing vehicles.
The study employs field data from Chengdu and Xi’an, China for case studies using the proposed framework.
Our findings indicate that emission reductions are markedly influenced by the grid electricity emission factors
specific to each city. The daily reduction in emissions due to electrification of ride-hailing vehicles is equivalent
to eliminating approximately 133,307 and 63,162 trips of gasoline vehicle in the ride-hailing services of
Chengdu and Xi’an, respectively. More importantly, this study identifies equilibrium points that establish
the necessary grid electricity emission factors for achieving emission reductions across all ride-hailing trips
when transitioning from gasoline to EVs through sensitivity analysis. For Chengdu and Xi’an, the thresholds
of grid electricity emission factors are 156.25 g/kWh and 131.09 g/kWh, respectively. This study offers an
applicable analytical framework to evaluate emission reductions of ride-hailing electrification across various
urban contexts, thereby aiding in the determination of conditions conducive to effective integration of EVs
into ride-hailing services.
1. Introduction

Ride-hailing services provided by transportation network companies
(TNCs) such as Uber, Lyft, and Didi represent a new form of on-
demand mobility [1–3]. In less than a decade, Uber and Lyft have
collectively facilitated 5.5 billion rides for over 50 million users, mark-
ing a remarkable achievement [4]. In 2023, Didi Chuxing reported an
average of 31.3 million orders per day, amounting to approximately
11.4 billion transactions for the year [5]. With around 587 million
annual active users and 23 million annual active drivers, Didi continued
to enhance its services and technological capabilities to improve oper-
ational efficiency [6]. This significant growth of ride-hailing vehicles
has led to increased traffic congestion and substantial greenhouse gas
(GHG) emissions. While ridesplitting, a form of ride-hailing service that
matches riders with similar routes to share the same vehicle and fare,
has shown potential to alleviate the issues, its actual environmental
benefits are limited [7]. In Chengdu, China, only 8.92% of ridesplitting
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trips result in emission reductions when considering the rides that
shift from public transit. In Xi’an, China, this figure is even lower at
4.68% [8].

One transition that may help ride-hailing services to reduce emis-
sions is the adoption of a cleaner vehicle fleet through the integration
of electric vehicles (EVs) [9–12]. Some companies have already intro-
duced EVs to replace gasoline vehicles (GVs) in ride-hailing service.
Ride-hailing electric vehicles (REVs) have been vigorously promoted
worldwide. For instance, Uber introduced the Green Future program,
aiming to assist drivers in transitioning to EVs by 2025 [13]. Didi
successfully launched 1 million EVs for ride-hailing service in 2020,
with a future target of scaling this number to 10 million EVs by
2028 [14,15]. The trend toward electric ride-hailing vehicles has been
evident in China. With the comprehensive implementation of policies
encouraging EVs in cities such as Shenzhen, Guangzhou, and Wuhan. As
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of January 1, 2021, ride-hailing gasoline vehicles (RGVs) are no longer
able to apply for ride-hailing operation permits. Existing permits for
RGVs have also become invalid, with REVs completely replacing RGVs
in these cities. However, the environmental benefits of REVs completely
replacing RGVs have not been thoroughly investigated.

The question of whether EVs truly reduce GHG emissions in mobility
systems remains a topic of debate. While EVs are celebrated for their
zero emissions during operation, the upstream emissions from elec-
tricity generation are often overlooked [16,17]. Accounting for these
upstream emissions is crucial, as vehicle electrification can sometimes
lead to increased emissions, depending on the carbon intensity of the
electricity used. Variations in energy structure and efficiency mean
that the carbon emissions of EVs can differ significantly [18–20]. For
instance, the use of Vehicle-to-Grid (V2G) technology may increase car-
bon emissions, particularly when replacing peak energy [21], and smart
charging strategies might lead to higher GHG emissions in regions with
low renewable energy penetration [22]. Thus, assessing the emission
reductions from EVs without considering the emissions associated with
electricity generation offers an incomplete picture.

To address this gap, our study introduces a novel framework that
specifically evaluates emission reductions in electric ride-hailing ser-
vices by accounting for emissions transferred from the electricity grid.
This approach adds a unique perspective to the existing literature by
focusing on the operational phase emissions, offering a more compre-
hensive understanding of the environmental impact of electrifying ride-
hailing fleets. The main contributions of this study can be summarized
as follows:

1. A framework for evaluating emission reductions: This study
develops an analytical framework to assess emission reductions
in ride-hailing service based on empirical data. It provides em-
pirical evidence on the real-world impacts of REVs on carbon
emissions to facilitate policy making for transportation network
companies and governments.

2. Emission reduction modeling: To develop a versatile model
applicable to various datasets, this study introduces a novel
approach that integrates field data collected from GVs using
portable devices with data from EVs recorded at different scales.
A specialized deep learning algorithm is then employed to accu-
rately estimate the emission reductions in ride-hailing service by
comparing GVs and EVs.

3. Emission reduction analysis: This study provides an analytical
framework to determine whether a ride-hailing trip leads to
emission reductions, quantify the amount of emissions reduced,
and identify the reasons behind increased emissions for some
trips. More importantly, this study introduces a method to ex-
plore the conditions for achieving emission reductions across all
trips in ride-hailing services.

The remaining sections are structured as follows. Section 2 in-
roduces the related works. Section 3 elaborates on the methodol-
gy, including proposed framework, data processing methods, model-
ng of emission from gasoline and EVs, and emission reduction esti-
ation. Section 4 presents case studies and subsequent results. Sec-

ion 5 summarizes the findings, implications, limitations and future
irections.

. Literature review

Thanks to the potential of EVs in reducing GHG emission, EVs have
een encouraged worldwide to meet the net zero emission targets [23,
4]. Over the past decades, the environmental benefits of EVs have
enerated significant attention. For example, Isik et al. [25] analyzed
he impacts of CO2 reduction policies on costs and air emissions within
he transportation sector of New York City, utilizing a technology-

ich and bottom-up energy system optimization model. Their findings

2 
highlighted the necessity of electrifying light-duty vehicles to achieve
deeper reductions in traffic-related emissions. Donateo et al. [26] in-
vestigated EVs that recharged through the public Enel Distribuzione
recharging infrastructure in Rome. The impact of EVs on CO2, CO,
NO𝑥, HC, PM and HC+ NO𝑥 were quantified. This study demonstrated
that the pollutants emitted from EVs in Italian were lower than those
from conventional vehicles on the New European Driving Cycle. It
indicates that EVs are a good alternative to conventional vehicles.
Küfeoğlu et al. [27] studied the contribution of battery electric vehicle
and plugged in Hybrid Electric Vehicles on Green House Gas emission
reductions in the UK transport sector, with a focus on meeting carbon
targets by 2050. Their results revealed that the UK transport sector
might fail to meet the 4th, 5th, 6th and 7th carbon budget targets.
Consequently, authorities might need to consider discussing a hybrid
car ban in the near future. These studies underscore the critical role
that EVs can play in achieving substantial emission reductions.

The vast majority of research focuses on the broader significance of
EVs rather than the specific role of REVs in emission reduction. Several
studies revealing the potential of EVs in shared mobility have pro-
vided important insights into the electrification of ride-hailing fleets. Li
et al. [28] evaluated the emission benefits of shared autonomous elec-
tric vehicle fleets in California. They found that the adoption of shared
autonomous electric vehicle could reduce greenhouse gas emissions by
up to 34% of the total traffic emissions by 2025, even compared to
other sustainable options such as public transport, walking, and cy-
cling [29,30]. Yang et al. [31] predicted environmental and emissions
benefits of electrifying taxi fleets, providing insights through specific
case studies in Nanjing. A 48% reduction in emission were reported by
integrating EVs into taxi fleets. Teixeira et al. [32] evaluated the ef-
fects of replacing engine-powered vehicles with EVs on carbon dioxide
emissions and energy consumption. A simulation was performed under
different scenarios of total or partial fleet replacement over a period of
15 years. The simulations showed that the electric energy consumption
by EVs is about four times lower than the fuel energy consumption by
conventional vehicles undergoing a standard test schedule.

Although these studies implied the significant potential of EVs in
reducing emissions within shared mobility, it is evident that most prior
research discusses emission reduction theoretically, with only a few
empirical studies examining real-world impacts [33]. This theoretical
focus using different assessment methods can sometimes yield conflict-
ing results, highlighting the necessity for empirical studies to provide
more robust insights into the actual outcomes [13,34]. In empirical sce-
narios, the effectiveness of emission reduction also depends on various
factors beyond vehicle type, such as charging activities [35], specifica-
tions of vehicles [36], and driving conditions such as speed and traffic
patterns [37]. These factors interact in complex ways to influence the
overall emissions performance of electrifying vehicles in shared mobil-
ity. Additionally, the emission reductions achieved through electrifying
vehicles in shared mobility are significantly influenced by the emission
factors associated with electricity generation [16]. The cleanliness of
the electric grid, whether it relies on fossil fuels or renewable sources,
plays a crucial role in determining the environmental benefits of EVs.
Efforts should continue to address these influencing factors and their
threshold effects in empirical scenario to maximize the environmental
benefits.

Moreover, the discussion of EVs in a ride-hailing context is rare. Al-
though limited studies have investigated the environmental benefits of
EVs in the ride-hailing context using field data, gaps remain. For exam-
ple, Zhao et al. [38] established a comprehensive feasibility–economic–
environmental assessment system to explore the applicability, life-cycle
economic, and carbon reduction benefits of ride-hailing electrification.
They found that electrification for full-time drivers can achieve syner-
gistic economic and environmental benefits, saving $14,000–$24,500
and reducing 47–66 tons of CO2 emissions over a vehicle’s lifetime.
Ride-hailing electrification for full-time drivers can achieve synergetic

economic and environmental benefits by saving 14000–24500$ and
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Fig. 1. Framework of methodology.
reducing 47–66 t of CO2 emissions in a whole lifetime. Jenn [4] studied
empirical data on the usage of EVs in Uber and Lyft fleets, using data
from various electric vehicle charging network providers and TNCs. The
findings reveal that the daily emission savings from electrifying ride-
hailing services averaged 38.7 kg of CO2. From early 2017 to May 2018,
the total savings across all 1000 battery electric vehicles amounted to
1142 tons of CO2. However, these conclusions may not be applicable to
all cities worldwide, as the energy structure and emission factors vary
by region. More importantly, the studies do not specify the conditions
under which all REVs reduce emissions.

Therefore, this study assesses emission reductions in empirical ride-
hailing services within the Chinese context based on empirical data.
Our goal is to provide empirical evidence on the real-world impacts of
REVs on carbon emissions. Some rides where REVs lead to an increase
in CO2 emissions are identified, and the reason for these increases
are explored. Additionally, a sensitivity analysis and balance point
analysis are conducted to determine the requirements for grid emission
factors to achieve overall emission reductions in ride-hailing service.
This framework will help cities worldwide to understand the potential
environmental benefits in REVs and the necessary conditions for the
effective integration of REVs in their ride-hailing services.

3. Methodology

3.1. Analysis framework

The framework of the analysis methodology is shown in Fig. 1. We
define emission reduction electrifying ride-hailing vehicles by compar-
ing with a scenario in which all these vehicles were gasoline. This study
collects emission data from GVs using portable emission measurement
systems (PEMS). Whereas, dataset of EVs is sourced from Shanghai
Electric Vehicle Public Data Collection Monitoring and Research Cen-
ter, which complies GB/T 32960.3-2016 standard. The analysis begins
with data down-sampling, aiming to standardize the resolution across
the different datasets including PEMS gasoline emission dataset, electric
vehicle dataset and ride-hailing dataset. Then, we construct emission
estimation models for RGVs and REVs using data-driven deep learning
algorithm. The PEMS dataset and EV dataset are used to modeling emis-
sion estimation models. Subsequently, we evaluate the CO2 emission
reduction in the ride-hailing service using these models. The difference
of CO2 emission between RGVs and REVs are compared based on
trajectory data provided by ride-hailing dataset, which is determined

as emission reduction.

3 
3.2. Data down-sampling for standardized resolution

Before proceeding with modeling, it is essential to standardize
the resolution for feature extraction across the three datasets: the
PEMS dataset is recorded at 1-second intervals, the EV dataset at 10-
second intervals, and the ride-hailing dataset at 3-second intervals. This
standardization ensures seamless integration of ride-hailing trajectory
data with the emission models trained on the PEMS and EV datasets.
Down-sampling is performed on these datasets separately. For GVs,
we standardized the modeling and emission reduction evaluation to a
3-second time step. For EVs, the emissions and modeling were stan-
dardized to a 1-kilometer time step. Specifically, we use the PEMS
and ride-hailing datasets at 3-second time step to extract features,
construct model, and calculate emissions from RGVs, while we use the
EV and ride-hailing datasets at 1-kilometer time step for REVs. The total
emissions for the entire trip are calculated as the sum of all data points
for that trip.

3.3. Emission estimation models

The emission estimation is defined as a supervised learning task
trained using Long Short-Term Memory (LSTM) networks, chosen for
their ability to capture temporal dependencies and patterns in sequen-
tial data like time series data of vehicle emissions [39,40]. LSTM, a type
of recurrent neural network, is well-suited for this task due to its capa-
bility to model long-range dependencies in the data [41,42], crucial for
accurately estimating emissions over time. Moreover, LSTM networks
have been successfully applied in various time series prediction tasks,
making them suitable for modeling the complex and dynamic nature of
emissions data.

3.3.1. Emission estimation model for RGVs
The structures of LSTM for RGVs and REVs emission estimation

differ, as shown in Fig. 1. For RGVs, the structure involves single-step
time series forecasting. The sum of all outputs for each trip represents
the total emissions for that trip. The target values used to train RGVs
emission estimation is the sum mass of CO2(g) in each time step. The
selection of features for modeling RGVs and REVs emission estimation
encompasses key factors during the driving process, including distance,
duration, duration of idling, average speed, average acceleration, and
vehicle-specific power (VSP). The duration of idling is defined as the pe-
riod when the vehicle speed is 0 km/h while the trip has not concluded.
In urban environments, traffic lights and congestion often lead to fre-
quent idling, during which energy consumption cannot be ignored. GVs
consume a considerable amount of fuel during this period, contributing



Z. Zhang et al.

t
t
i
s
r
s
t
c
b

𝐸

Applied Energy xxx (xxxx) xxx 
to emissions and environmental impacts. Additionally, to refine the
models further, VSP is also incorporated as a feature when training the
RGVs emission model. VSP is a measure of the power demand on a
vehicle, influenced by factors such as speed, acceleration, road grade,
and vehicle mass. It plays a significant role in determining the energy
consumption of GVs. Including VSP helps capture the dynamic nature of
energy consumption, improving the accuracy of emission estimations.
In this study, a simplified formulation is used to estimate VSP, which
is determined by the following formula:

𝑉 𝑆𝑃 = 𝑣 (1.1𝑎 + 9.81 sin 𝜃 + 0.132) + 3.02 × 10−4𝑣3, (1)

where 𝑣, 𝑎 and 𝜃 denote speed (km/h), accelerate (m/s2) and road
grade (◦), respectively.

3.3.2. Emission estimation model for REVs
For REVs, a multi-step time series forecasting approach is necessary

o account for the strong correlation between energy consumption and
he vehicle state. The 10-second resolution of our data for EVs is
nadequate for estimating emissions based on instantaneous state. Con-
equently, a multi-step forecasting approach is employed to capture the
elationship between energy consumption and changes in the vehicle
tate over the course of an entire trip. The goal is to train a model
o understand the relationship between relevant features and energy
onsumption rather than direct emissions, as emissions from RGVs can
e derived from energy consumption and emission factors as

𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐸𝐶 × 𝐸𝐹 , (2)

where 𝐸𝐹 represent emission factors, which are illustrated in Table 1
across various years. The emission factors are derived from China
Regional Power Grid Carbon Dioxide Emission Factors at 2023. The
values for 2025, 2030, 2035 years are predicted values in this report.
The energy consumption 𝐸𝐶 (kw/h) is determined as

𝐸𝐶 = 1∕3600 × 1∕1000 × 𝑉 𝐼𝛥𝑡, (3)

where 𝑉 and 𝐼 represent the battery voltage and current, and 𝛥𝑡
represents the time period. In this study, we calculate the target values
based on 𝛥𝑡 = 10 s, which provides the highest resolution to ensure the
accuracy.

The features incorporated in the emission estimation model for
REVs include average speed, distance, duration, and duration of idling.
The duration of idling is particularly vital for REVs because EVs can
undergo energy recovery during deceleration or idling, which influ-
ences their energy consumption patterns and overall efficiency. Con-
sequently, the duration of idling has a significant impact on energy
consumption. Thus, we also consider it in modeling for REVs. The
sequence length for RGVs and REVs models are set to 6 and 30,
respectively. Both of two models are composed of 2 layer of LSTM
units, in which each LSTM layer has 8 hidden units. We trained the
model for 500 epochs and employed early stopping to achieve the best
performance.

3.4. Estimation of emission reduction for electrifying ride-Hailing vehicles

After modeling, the CO2 emission from all ride-hailing trips can
be quantified using above models. We assume that all GVs would be
substituted by EVs in ride-hailing service. The type of GVs replaced in
ride-hailing are consistent with the type used in our PEMS test, and
the type of EVs are consistent with that collected in the EV dataset.
The CO2 emission reduction from electrifying ride-hailing vehicles is
determined by comparing with a scenario in which all these vehicles
were EVs. The difference of emission from REVs and RGVs is

𝐸𝑅 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝐺𝑉 − 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝐸𝑉 , (4)

where 𝐸𝑅 > 0 denotes emission reduction resulting from the substi-
tution by REVs. 𝐸𝑅 < 0 denotes emission increase resulting from the
4 
Table 1
The provincial grid emission factor across various years.

2018 2020 2025 2030 2035

Chengdu (kgCO2/kWh) 0.103 0.117 0.104 0.075 0.040
Xi’an (kgCO2/kWh) 0.767 0.641 0.607 0.601 0.515

substitution by REVs. 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝐺𝑉 denotes the emission from the re-
placed RGVs, while 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝐸𝑉 denotes the emission from REVs. For
solo ride, the emission is the total emission along the entire trajectory.
Whereas, for shared rides, the emission is determined by

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠ℎ𝑎𝑟𝑒𝑑 = 𝐸𝑠𝑜𝑙𝑜_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 + 1∕2𝐸𝑠ℎ𝑎𝑟𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡. (5)

where 𝐸𝑠𝑜𝑙𝑜_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 represents emission from non-shared segments of tra-
jectories, and 𝐸𝑠ℎ𝑎𝑟𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 represents emission from shared segments
with another passengers.

4. Empirical analysis

4.1. Case description

We analyze two representative cases in the Chinese ride-hailing
market: Chengdu and Xi’an. Chengdu is a major metropolis in the
southwest, while Xi’an is the largest city in the northwest. As shown
in Fig. 2(a), the data in Chengdu spans an area of 8.5 × 8.5 km2, en-
compassing prominent business districts like Tianfu Square and Chunxi
Road. Presented in Fig. 2(b), the data in Xi’an covers an area of
8.5 × 9.0 km2, including well-known business clusters such as Xi’an
Tower and Xiaozhai. Three datasets are utilized in case studies: the
PEMS dataset for modeling emissions estimation from RGVs, the EV
dataset for modeling emission estimation from REVs, and the ride-
hailing dataset for empirically evaluating carbon emission reductions
in a case city in China.

(1) PEMS dataset
The PEMS dataset is obtained by field campaign using portable

emission measurement systems (PEMS) and test light-duty gasoline
vehicles (LDGVs), as shown in Fig. 1. PEMS is a widely used equipment
to collect real-time emission data from motor vehicles. SEMTECH,
as a typical PEMS, was employed as our experimental measurement
device. It consists of seven modules, including Supply and Commu-
nication System, Gas Analysis Systems, Exhaust Flow Measurement,
Global Positioning System, Weather Probe, In-Cab Module, and Power
Supply. SEMTECH-SCS Module is the main source for data acquisition,
which measures concentrations, emission rates, and emission volumes
of different emission gases [43,44]. All the data is collected at 1 s
interval.

Table 2 shows the tested LDGVs under the two most commonly
found emission standards on the road in China. China V and China
VI are distinct emission standards, with vehicles emitting less under
the China VI standard. The China VI emission standard is a critical
policy for China to achieve its carbon peak by 2023. To support the
transition from China V to China VI, many regions in China have
implemented relevant regulations. For instance, as of July 1, 2020,
all newly sold vehicles in Shanghai must comply with the China VI
emission requirements. Compared to LDGV 2 under China VI emission
standard, the model of LDGV 1 under China V emission standard is
more frequently used in ride-hailing services. Therefore, we primarily
evaluate emission reductions using data points from LDGV 1. Data
points from LDGV 2 are used for comparison in the sensitivity analysis.
The test vehicles used gasoline RON 95 as the fuel type during the
Real Driving Emissions test, which was conducted in both urban area
(Xuhui District) and suburban area (Minhang District) in Shanghai from
September 9, 2021, to September 12, 2021. The test routes comprise
various roads of different types, such as expressway (A1–A4), arterial
road (B1–B4), secondary road (C1–C4), branch (D1–D4). The detailed

test routes can be reviewed in our previous study [43,45]. These four
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Fig. 2. Case study in two cities.

road types indicated in the legends are typical urban roads in China,
designed for speeds of 80, 60, 50, and 40 km/h respectively. This allows
us to construct generic models for various speeds and traffic conditions.
Finally, the number of cleaned data points obtained from two type of
vehicles are 13,372 and 6,178, respectively.

(2) EV dataset
The EV dataset is sourced from the Shanghai Electric Vehicle Public

Data Collection Monitoring and Research Center. It encompasses a com-
prehensive range of EV data such as driving records, charging records,
and alarm records, all collected in accordance with the GB/T 32960.3-
2016 standard. All the recorded values in the dataset are instantaneous,
captured at 10-second intervals, and generated in Shanghai. In this
research, we specifically utilize data from 22 sedans equipped with
ternary material batteries, each having a capacity of 50.8 kWh. Our
analysis focuses on the data related to timestamps, vehicle status,
5 
Table 2
Tested vehicles in PEMS dataset.

LDGV 1 LDGV 2

Fuel type Gasoline Gasoline
Emission standard China V China VI
Model Sagitar GL8
Model year 2016 2020
Manufacture year 2018 2020
Vehicle manufacturer Volkswagen Buick
Engine capacity (L) 1.6 2.0
Engine type Direct injection Direct injection

speed, mileage, voltage, and current, spanning from June 1, 2022 to
June 1, 2023.

We marked the start and end points of each trip based on the
vehicle status, a categorical field used to classify whether the vehicle
is running or turned off. If the vehicle remains in the turned-off status
for more than 15 min, we consider this point as the end of the trip,
allowing us to extract the data subset for each trip. Within each trip,
we smooth the original data to achieve more consistent variations in
features. Identifying the most effective smoothing interval remains a
complex task. Guided by recent research that demonstrates a significant
correlation between trip distance and energy consumption, the decision
was made to apply smoothing on a per-kilometer basis. Additionally,
we filter out outliers and invalid records. We select trips with a distance
ranging from 3 km to 20 km. Ultimately, the cleaned dataset comprises
4210 trips, accumulating a total mileage of 28,267 km.

(3) Ride-hailing dataset
The ride-hailing dataset is sourced from Didi Chuxing through the

GAIA Open Data Initiative (https://gaia.didichuxing.com). This dataset
includes order IDs, driver IDs, and longitude and latitude coordinates
recorded every three seconds for each ride-hailing trip between October
1, 2018, and November 30, 2018. For this study, we primarily analyze
trips during a typical week from November 3, 2018, to November 9,
2018. The dataset encompasses both solo rides and shared rides. Solo
rides are the trips where a single passenger or a group of passengers
traveling together as one party hires the vehicle exclusively. No other
passengers are picked up or share the ride with them. shared rides
are ride-hailing trips where multiple passengers from different parties
share the same vehicle. The ride-hailing service picks up and drops off
passengers along a route. This type of ride is typically cheaper than
solo rides and helps reduce the number of vehicles on the road, po-
tentially lowering traffic congestion and emissions. The methodologies
for identifying shared rides are thoroughly detailed in our previous
study [7]. Thus, the dataset selected in this study comprises 986,597
ride-hailing trips in Chengdu and 663,211 ride-hailing trips in Xi’an,
captured throughout this typical week. The shared rides in Chengdu
and Xi’an are 60,674 and 40,572, respectively.

4.2. Model performance

The data used to feed emission estimation model for GVs includes
approximately 40,000 valid records, where the data used to train
energy consumption model for EVs includes more than 4000 travel
events. We filter out trips with distances greater than 30. The Ta-
ble 3 illustrates the performance of CO2 emission for GVs and energy
consumption for EVs. The unit of data points used to calculate these
losses are g and g/km for GVs and EVs respectively. The R2 values
for GVs under China V and China VI emission standards are 0.760 and
0.790, respectively, indicating strong performance and generalization.
In contrast, the models for EVs exhibit lower performance due to the
higher resolution dataset available for GVs.

To further verify the validation of our models, we statistically
compare the emission factor (gCO2/km) of GVs and energy efficiency
(kWh/km) of EVs obtained by our models with those from other studies.
Table 4 presents the statistical values of emission factors and energy
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Table 3
The performance of CO2 emission for GVs and energy consumption for EVs.

𝑅2 MAE MSE RMSE

GVs (China V standard) 0.760 0.652 1.076 1.037
GVs (China VI standard) 0.790 1.16 4.58 2.14
EVs 0.651 0.018 0.002 0.035

efficiency for ride-hailing trips in Chengdu and Xi’an, which is obtained
by predicted values for each trip. It shows that emission factors for most
trips in Chengdu ranges from 210 to 374, which is basically consistent
with the variation range of emission factors of different road sections in
Zhu’s study [43]. The emission factors in Xi’an are higher than that in
Chengdu. This is because, in the fourth quarter of 2018, Xi’an’s Baidu
Congestion Index was higher than that of Chengdu [46]. The energy
efficiency in both Chengdu and Xi’an ranges from 0 to 0.39 kWh/km,
with an average value of 0.17 kWh/km. This is consistent with previous
research, where the energy consumption was 28 kWh per 100 miles,
equivalent to 0.174 kWh/km [4].

4.3. Emission reduction and influencing factors for REV electrification

4.3.1. Estimation of emission reduction
We estimate emission savings from electrifying ride-hailing vehicles

by comparing a scenario in which all these vehicles were gasoline-
powered. To ensure robust outcomes, we analyze all ride-hailing trips
during a typical week in Chengdu and Xi’an. The following findings
in this section are obtained based on data from tested electric vehicle
and gasoline vehicle under China V standard. Because tested gasoline
vehicle under China V is more frequently used type in ride-hailing
service than that under China VI. We assume that all ride-hailing
vehicles comply with tested vehicles. Our findings show that REVs in
both cities lead to significant emission reductions compared to GVs. In
Chengdu, almost all solo and shared rides result in emission reductions.
In Xi’an, 98.6% of all rides result in emission reductions, with solo
rides accounting for 98.5% and shared rides accounting for 99.9% of
emission reduction trips. This finding, based on data from October 1,
2018, to November 30, 2018, shows no significant variation across
different days.

Then how much emission has been reduced by the use of REVs in
ride-hailing services? Across all rides during this typical week, the daily
emission reduction in two cities averages 239 tons and 135 tons of
CO2, respectively, due to the electrification of the ride-hailing service.
This results in total CO2 emission reductions in Chengdu and Xi’an of
675 tons and 945 tons, respectively. The average emission reduction
er trip in the two cities is 1.699 kg and 1.427 kg, respectively,
hich is equivalent to reducing approximately 5.18 and 3.80 vehicle
ilometers traveled using GVs in ride-hailing. Please note that these
quivalents are based on tested vehicles in this study. On a per-trip
asis, this daily reduction equates to removing approximately 133,307
nd 63,162 travel events using GVs in ride-hailing.

Additionally, it is worth noting that the emission reduction effects
f electrifying ride-hailing vehicles differ between shared rides and solo
ides. Although the portion of shared trips leading to emission reduc-
ion is higher compared to solo rides, the per-trip emission reduction
or shared rides is not as high as that for solo rides. In Chengdu, the
er-trip emission reductions for shared rides and solo rides are 1.34 kg
nd 1.55 kg, respectively. In Xi’an, the per-trip emission reductions
or shared rides and solo rides are 1.25 kg and 1.44 kg, respectively.
his difference is because emission reduction is calculated as the differ-
nce between the emissions of GVs and EVs. Shared rides have lower
asoline vehicle emissions compared to solo rides, so the emission
eductions achieved through electrification are less pronounced for
hared rides.
6 
4.3.2. Potential factors association with emission reduction
Although most ride-hailing trips contribute to emission reductions

and the overall reduction is significant, it is important to investigate
why some trips lead to an increase in CO2 emissions. We find that
the portion of ride-hailing trips leading to increased emissions is sig-
nificantly associated with speed. In Fig. 3, green bars represent the
portion of ride-hailing trips leading to emission reductions, while pink
bars represent the portion of ride-splitting trips leading to emission
increases. For each speed interval, the sum of the portions of ride-
hailing trips leading to emission reductions and increases is 100%. To
observe generate patterns, we select intervals where the total number
of trips more than 30. There are almost no ride-hailing trips leading
to emission increases in Chengdu, so we present this figure with data
points from Xi’an. As shown in Fig. 3, the portion of trips leading
to emission reductions decreases with higher speeds. This pattern is
consistent across different days, revealing a strong negative relationship
between emission reductions and speed.

We also analyzed the quantitative relationship between emission
reduction and various potential factors. As demonstrated in Fig. 4(a),
The equation provided on the plot fits the data points well. The curve
shows a negative exponential relationship, indicating that as the speed
increases, the mean emission reduction per trip decreases. At lower
speeds (around 10 km/h), the emission reduction is at its highest,
around 2500 g. As speed increases, the emission reduction decreases
significantly. By the time the speed reaches 60 km/h, the emission
reduction drops to below 500 grams. As speed increases, the vehicle’s
energy consumption rises due to factors such as increased air resistance
and rolling friction. This results in reduced emission savings because
the vehicle’s efficiency decreases at higher speeds. Fig. 4(b) illustrates
the relationship between the distance of a trip and emission reduction
per trip. The curve indicates a quadratic relationship between distance
and emission reduction, where the emission reduction first increases
with distance and then decreases after reaching a peak. The maximum
emission reduction is observed around a distance of 10 kilometers,
where the emission reduction reaches its highest value, close to 1900
grams. From distances of 4 to 10 km, the emission reduction increases
significantly, indicating that up to a certain point, longer trips benefit
more from emission reductions. Beyond approximately 10 kilometers,
the emission reduction starts to decrease, suggesting that very long trips
do not achieve as much emission reduction per trip as medium-length
trips. This could be due to increased energy consumption over longer
distances, such as the need to maintain higher speeds or the additional
energy required for extended periods of driving, which may offset the
benefits of longer trips. Fig. 4(c) illustrates the relationship between
the duration of a trip and emission reduction per trip. The plot shows a
clear linear relationship between trip duration and emission reduction,
with emission reduction increasing consistently as trip duration in-
creases. The plot shows a clear linear relationship between trip duration
and emission reduction, with emission reduction increasing consistently
as trip duration increases. It suggests that longer trips benefit from the
cumulative effect of the vehicle’s energy efficiency.

4.4. Spatiotemporal patterns of emission reduction for REV electrification

4.4.1. Temporal patterns
We observe that emission reductions per trip vary with the hour of

the day. Similar temporal patterns are found for both cities, so Fig. 5
illustrates the emission reductions across different days in Chengdu as
an example. On weekdays, emission reductions fluctuate with traffic
demand, peaking at 8:00 and 18:00. On weekends, emission reductions
also follow traffic demand, reaching their highest values at 18:00 on
Saturday and 17:00 on Sunday. Based on the analysis in Section 4.3.2,
we understand that these patterns are due to the strong correlation
between emission reductions and speed. During peak hours, road con-
gestion results in very low driving speeds, making the advantages of

EVs in emission reduction more pronounced.
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Fig. 3. Emission reduction probability in Xi’an across different days.

Fig. 4. The relationship between emission reduction and factors.
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Table 4
Emission factors and energy efficiency obtained by our models.

Count Mean Std. Min. 25% 50% 75% Max.

Chengdu
Emission factors (China V) 985 526 328.41 131.17 12.41 234.86 322.27 410.39 1530.03
Emission factors (China VI) 985 526 183.47 128.35 2.94 96.85 150.12 228.43 1250.98
Energy efficiency 985 526 0.16 0.02 0.00 0.15 0.16 0.17 0.39

Xi’an
Emission factors (China V) 662 472 376.66 133.08 13.51 288.76 367.56 451.15 1546.99
Emission factors (China VI) 662 472 183.79 119.75 3.73 108.40 152.44 217.27 1366.49
Energy efficiency 662 472 0.16 0.02 0.01 0.15 0.16 0.17 0.39
Fig. 5. Temporal patterns of emission reduction per trip across different days.
4.4.2. Spatial patterns
Fig. 6 displays spatial patterns of emission reduction per trip in

Chengdu and Xi’an. We demonstrate both of shared trips and solo trips
to compare emission reduction effects. As analyzed in Section 4.3.1,
the emission reductions due to shared rides are lower than solo rides.
Thus, we set different scales for solo rides and shared rides to high-
light their spatial characteristics. The color gradient ranges from blue
(lower emission reduction) to red (higher emission reduction). The
black lines in maps are expressways. From the maps, it is evident
that regardless of the city, both shared rides and solo rides show
higher emission reductions within the ring road. This is because the
areas within the ring road are the city center, where traffic volume
is higher and congestion is more severe. The lower average driving
speeds in these areas result in higher emission reductions. However,
in areas with dense expressways, where driving speeds are high, the
reduction in emissions is smaller. This verifies the conclusion that
emission reduction is negatively associated with driving speed.
8 
4.5. Sensitivity analysis and balance point of emission factors

4.5.1. Sensitivity analysis considering different emission factors
Fig. 7 shows sensitivity analyses of CO2 emission reductions in

Chengdu and Xi’an under China V and China VI emission standards
across different years. For China V in Fig. 7(a), the emission reduc-
tions are relatively stable over the years, with median values consis-
tently around 1600 grams. The interquartile range remains relatively
constant, suggesting that the variability in emission reductions does
not significantly change over the years. Almost all of the trips have
achieved emissions reductions. Whereas, for China VI, there have been
many trips that have not achieved emissions reductions until 2035.
The emission reductions are consistently lower compared to the China
V standard, with median values around 750 grams. This is because
emission reduction is calculated as the difference between emissions
from GVs and EVs. GVs under the China VI standard emit less CO2 than
those under the China V standard. Therefore, achieving comprehensive
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Fig. 6. Spatial patterns of average emission reduction per trip in two cities.
Fig. 7. Emission reduction under different emission standard from 2018 to 2035.
emission reductions under the China VI standard requires even cleaner
electricity to maximize the benefits of EVs in ride-hailing service.

Compared to Chengdu, the benefits of REVs in Xi’an are not as
significant. This observation is supported by Fig. 7(b), which clearly
shows a substantial portion of trips that do not result in emission
reductions. Additionally, regardless of whether EVs are compared with
China V or China VI GVs, the median values of emission reduction
in Xi’an are consistently lower than those in Chengdu. These findings
suggest that the transition from GVs under the China VI standard to EVs
has a long way to go to achieve comprehensive emission reductions.
One primary reason for this is Xi’an’s high grid emission factor, which
diminishes the overall effectiveness of the switch to EVs in terms of
reducing emissions.
9 
4.5.2. Balance point of emission factors
Based on the above analysis, grid emission factors are crucial for

achieving overall emission reductions. Therefore, we analyze the bal-
ance points of grid emission factors to determine the threshold values
required for all ride-hailing trips to achieve CO2 emission reductions.
Fig. 8 provides balance points for different speed, distance, and dura-
tion intervals in Chengdu and Xi’an. The balance point represents the
grid emission factor at which the emissions from RGVs are equal to the
emissions from REVs. The curves of different colors are plotted based
on the minimum emission reduction within each interval.

The balance points for different speed, distance, and duration are
156.25 g/kWh, 372.68 g/kWh, and 380.56 g/kWh, respectively. This
means that for all trips within the speed interval, the grid emission
factor needs to be 156.25 g/kWh or less for REVs to achieve emission
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Fig. 8. Balance point of electric emission factors in two cities.
reductions compared to RGVs. For all trips with different distances,
372.68 g/kWh is the threshold grid emission factor required for EVs
to provide emission reductions. For trips of varying durations, the grid
emission factor must be 380.56 g/kWh or lower for EVs to be beneficial.
The empirical grid emission factor in the studied year is 108 g/kWh,
which is already lower than these balance points. Thus, almost all the
trips in Chengdu lead to emission reductions, which is consistent with
the findings in the above analysis.

In Xi’an, the outcome differs due to the high grid emission factor.
For different speeds, the minimum balance point is 131.09 g/kWh.
This lower balance point compared to Chengdu indicates that Xi’an
requires even cleaner electricity for EVs to be beneficial. For different
distances, the minimum balance point is 367.22 g/kWh, similar to
that of Chengdu. For different duration, the minimum balance point is
429.26 g/kWh. Notably, the empirical grid emission factor in Xi’an is
higher than these balance points. Consequently, a significant number of
trips lead to increased emissions compared to RGVs in Xi’an. Therefore,
for Xi’an, a grid emission factor below 131 g/kWh is required.

5. Conclusion

This study conducts a comprehensive analysis of CO2 emission
reductions assuming all RGVs are replaced by REVs. Comparing REVs
with RGVs under China V emission standard, the detailed outcomes are
provided for two typical cities in China including Chengdu and Xi’an. In
10 
Chengdu, almost all solo and shared rides result in emission reductions.
In Xi’an, 98.6% of all rides result in emission reductions, with solo rides
accounting for 98.5% and shared rides accounting for 99.9% of emis-
sion reduction trips. The daily emission reduction in two cities averages
239 tons and 135 tons of CO2, respectively, due to the electrification of
the ride-hailing service. The average emission reduction per trip in the
two cities is 1.699 kg and 1.427 kg, respectively, which is equivalent to
reducing approximately 5.18 and 3.80 vehicle kilometers traveled using
GVs in ride-hailing. On a per-trip basis, this daily reduction equates
to removing approximately 133,307 and 63,162 travel events using
GVs in ride-hailing. This daily reduction is equivalent to removing
approximately 132,572 and 63,162 gasoline vehicle trips in Chengdu
and Xi’an, respectively.

For ride-hailing trips that lead to increased CO2 emissions, higher
driving speeds are a significant factor, as increased speed significantly
reduces emission reductions. Another factor contributing to emission
reduction is the grid emission factor, due to an insufficiently clean
power structure. For Chengdu and Xi’an, the grid emission factors
required to achieve overall emission reductions for all ride-hailing trips
are 156.25 g/kWh and 131.09 g/kWh, respectively. Although these
findings are obtained based on trips in Chengdu and Xi’an, the analyti-
cal framework in study can be used to evaluate emission reductions in
worldwide cities with varying energy structures. This framework assists
in identifying the conditions required for eco-driving and facilitates the
effective integration of REVs into ride-hailing services.



Z. Zhang et al. Applied Energy xxx (xxxx) xxx 
The findings of this study have significant implications for both
policy-making and practical implementation in the context of reducing
CO2 emissions through the electrification of ride-hailing services. The
results highlight the importance of local energy structures in determin-
ing the effectiveness of ride-hailing electrification policies. For instance,
the varying grid emission factors required to achieve overall emission
reductions in Chengdu and Xi’an suggest that local governments need
to consider the cleanliness of their power grids when planning and
promoting EVs adoption. This can guide the development of region-
specific strategies and support the setting of realistic and achievable
emission reduction targets. The study’s framework can also inform
national policies by identifying areas where improvements in power
grid infrastructure could lead to substantial emission reductions when
combined with the electrification of ride-hailing services.

Additionally, our study still has several limitations. First, due to the
constraints in data sources, this study focuses on emissions transferred
from electricity during the operational phase, excluding those from
other phases such as vehicle production. Future studies could provide a
more comprehensive assessment of emission reductions resulting from
EVs by incorporating Life Cycle Analysis insights, including the emis-
sions associated with both the vehicle and the electricity used to power
it [47]. Second, this study focuses on estimating carbon emissions
for fully electric vehicles, based on the assumption that all gasoline
vehicles are replaced by fully electric vehicles. We did not consider
plug-in hybrid vehicles, as their emissions include contributions from
both gasoline and electric power. Due to data limitations, we are
currently unable to obtain the gasoline emissions from hybrid vehicles.
Therefore, this study exclusively focuses on emissions derived from
the energy consumption of fully electric vehicles. Third, the emission
factors used in this study are derived from China Regional Power Grid
Carbon Dioxide Emission Factors report, which provides the annual
average emission factor for each province. Due to data limitations, we
are unable to construct the model using emission factors that vary by
time and space. The average emission factors can provide an overall
understanding. If a more detailed investigation is needed in future stud-
ies, the deviations caused by the limitations of the emission factors can
be calibrated once more granular data becomes available. Fourth, our
datasets used in case study are derived from China, providing a specific
Chinese context for emission reduction resulting from electrification
in urban ride-hailing services. Globally diverse data are necessary to
enable comparative evaluation across different contexts and to obtain
general and city-specific outcomes.
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