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Department of Physics
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Abstract

Deep learning has transformed sensing and characterization technologies, en-
abling significant advancements across various scientific domains. This thesis
investigates the application of deep learning techniques to enhance the ap-
plicability of microscopy, spectrometry, and sensing, particularly under high
noise conditions. The central hypothesis of this research is that deep learning
can substantially improve the sensitivity and specificity of these technologies,
allowing for the detection and analysis of minute signals that were previously
obscured by the noise.

Key contributions include the development of novel deep learning methods
that enhance nanofluidic scattering microscopy, nanoplasmonic sensing, and
mass spectrometry. These methods enable precise quantification of chemical
reactions on nanoscale surfaces, detailed detection of cellular structures and
molecular interactions, and accurate identification of low-concentration sub-
stances amidst strong background signals. Collectively, these advancements
push the boundaries of what can be measured and observed at microscopic
and molecular scales, offering groundbreaking applications in environmental
monitoring and healthcare diagnostics.
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Chapter 1

Introduction

Extracting tiny signals from noise is a general and important challenge in
experimental science. In mass spectrometry, this challenge manifests itself
as the need to quantify chemical reactions on nanoscopic surface areas, such
as single nanoparticles or even single atoms. In microscopy, this manifests
as the necessity to discern and quantify fine details at cellular or molecular
scales amidst significant forms of visual interference. In sensing, this manifests
itself as the need to detect and quantify low concentrations of substances or
minimal physical changes in the presence of significant background noise. The
distinction between these applications comes from the underlying physical
principles giving rise to the measured phenomena and, crucially, in common for
all these seemingly disparate fields of experimental science is thus the problem
formulation on a high level of abstraction. This means that if one can solve the
generic challenge of separating signal from noise, the potential ramifications
for all fields of experimental science can hardly be overstated. The goal of this
thesis is to approach such a solution using artificial intelligence (AI), because,
to borrow the words of Nobel Laureate Dr. Hassabis of Google’s DeepMind,
“AI is perfect at taking weak, messy signals and making sense of them.” [1]

Through the paradigm of deep learning (DL), recent progress in AI has been
truly astounding; quickly evolving from struggling to recognize animals in
relatively simple images to leading a revolution in autonomous vehicles [2],
image-based medical diagnosis [3], material science [4], astronomy [5], weather
prediction [6], waste disposal [7], natural language processing [8] and many
other fields in the span of just a few years. The keys underpinning the
success lie in the fruitful marriage of a few seemingly disparate technological
advancements; the development of computationally tractable self-learning
neural network-based algorithms [9], the ever-growing availability and quality
of digital acquisition devices enabling high-throughput experimentation, and
the significant growth of the financially lucrative personal computer market
leading to ever-faster parallellizable computing devices. The combination of
large amounts of high-quality images, effectively 2-dimensional vector spaces
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2 CHAPTER 1. INTRODUCTION

containing locally dependent features, with convolution-based DL architectures
known under the umbrella term of convolutional neural networks (CNNs), has
been particularly potent. Self-learning CNN-based algorithms learning general
short-range dependencies between locally correlated data-points (i.e., pixels in
images), has been the workhorse of most recent progress [10]. This generality
means that algorithms developed in the context of, e.g., animal classification
or facial recognition can often directly be applied to other image-based tasks
with relatively minor tweaks, as a result of the generic self-learning nature of
DL-based algorithms. This generality has effectively formed a chain reaction
within quantitative image-based analytical research, in which lessons learnt in
one application of DL-based AI can often directly be applied to every other
application.

One field where the potential of DL is becoming increasingly clear is optical
microscopy, in which data analysis is often a limiting step because of images
which are both highly complex and have low signal-to-noise ratio. Promising
proof-of-principle results on super-resolving fluorescence microscopy [11], DL-
enhanced holography [12] and virtual chemical staining [13] to name a few
examples, suggests that DL is beginning to lead a revolution also in optical
microscopy. In life sciences, optical microscopy has proven instrumental for
fast and accurate characterization of biomolecule properties in- and outside
of complex biofluids. Historically, in the regime of small biomolecules (∼100s
of kDa), sensitive imaging techniques such as fluorescence microscopy and
interferometric scattering microscopy (iSCAT) fill this characterization role,
though they suffer from problems arising from fluorescent labelling [14] and
necessity of surface binding, respectively. To remedy this, we have in paper
I introduced Nanofluidic Scattering Microscopy (NSM), which relies on the
sub-wavelength interference of light scattered from a nanofluidic channel and
a nano-object, such as a biomolecule, inside it. However, the combination
of generally low SNR resulting in typically ”blinking” trajectories, changing
imaging conditions, and noise which is complex in both the spatial and tem-
poral dimensions, makes it very difficult to reliably calculate the biomolecules’
properties through standard heuristic-based methods alone.

The increasing need for advanced data science within life sciences forms the
essential background against which the works of Papers I, V and VI of this
thesis are justified; we show that by employing DL-based AI algorithms to
analyze biomolecule trajectories measured by our in-house NSM system, we
not only manage to analyze complex biological nanoparticles in the form of
extracellular vesicles, but also surpass state-of-the-art results on nano-scale
biomolecule weight-and-size screening and trajectory tracking. We show that a
custom CNN-based architecture trained on simulated biomolecule trajectories
atop simulated noise surpasses the performance of standard algorithms in terms
of tracking and determining the molecular weight (MW) and hydrodynamic
radius (Rs) of biomolecules in the low-kDa regime. Furthermore, this model
can accurately track and measure MW and Rs of biomolecules even below the
10-kDa regime, constituting approximately an order of magnitude improvement
in limit of detection (LoD) over current state-of-the-art. In this regime, hitherto



3

elusive species of biomolecules become accessible for label-free study using
NSM, including cytokines (≈ 5− 25 kDa) important for cancer research and
the protein hormone insulin (≈ 5.6 kDa), potentially opening up entirely new
avenues of biological research [15].

In the realm of experimental science, the task of distinguishing minute signals
from background noise represents a universally critical challenge. One example
is in the field of so-called single particle catalysis, where the study of individual
catalytic particles holds the potential to greatly impact our understanding
of catalyst structure-activity correlations. The faint signals emanating from
these individual particles pose a significant unresolved experimental challenge.
Inspired by the advances in DL, in Paper III, we tackle this issue by integrating
nanofluidic reactors with a deep learning-based denoising auto-encoder. This
enables the detection of reactions occurring on the tiny surfaces of single
nanoparticles, with CO oxidation on Pd serving as a case study. The nanofluidic
device coupled with this deep learning technique achieves 3 orders of magnitude
improvement in LoD of the quadrupole mass spectrometer (QMS) readout
over current state-of-the-art in terms of total catalytic surface are measured,
and enables new possibilities for analytical chemistry on the surface of single
catalytic nanoparticles.

Given the importance of hydrogen as a clean energy source, the development of
highly sensitive, selective, and fast-response hydrogen sensors is of paramount
interest. Here, the extraction of complex patterns from sensor data, which
are indicative of the presence and concentration of hydrogen or variations in
humidity, is an important challenge. These patterns might be too subtle or
complex for conventional analysis techniques but can be identified by trained
neural networks that have learned to correlate specific signal features with
environmental conditions or gas concentrations. In Papers II and IV, we
demonstrate the potential of AI-based analysis in the field of hydrogen gas
sensing, particularly in inert gas environments critical for safety in hydrogen
technologies and in high humidity ambient air environments critical for safety
sensor applications. Through a novel application of deep learning, specifically
tailored transformer architectures, the detection capabilities of plasmonic
hydrogen sensors have been significantly enhanced. The developed transformer
model accelerates the sensor’s response time by up to 40 times in oxygen-free
environments and improves the reliability and safety of hydrogen detection
by providing accurate predictions of hydrogen concentrations and eliminating
the pressure dependence of the sensor’s response. The transformer model
also enables up to an order of magnitude lower LoD of sensor signal in highly
humid environments. Such advancements underscore the potential of AI in
overcoming longstanding challenges in sensor technology, promising substantial
improvements in safety measures for hydrogen energy applications.

In this thesis, which is partially based on my licentiate thesis [16], I delve deeper
into the complexities of DL-based AI. I present how we have employed it to
NSM to analyze single biomolecule trajectories and establish a new state-of-the-
art in microscopy in certain respects, demonstrate its application in enhancing
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the sensitivity and specificity of hydrogen gas sensors, and unlock the potential
for analytical chemistry at the nanoscale within single nanoparticle catalysis.
These examples are emblematic of a broader paradigm shift across diverse fields
of experimental science, where the capacity of AI to parse through and make
sense of weak, complex signals is not just an incremental improvement but
represents a foundational shift in how we approach and solve problems. The
combination of deep learning technology with the intricacies of experimental
science has opened new doors to discovery, allowing us to explore phenomena
and mechanisms that were previously beyond reach. By harnessing the ability
of AI to discern patterns and correlations within complex datasets, we are
poised to uncover insights that can propel forward our understanding in fields
ranging from life sciences to energy sustainability and beyond. The journey
from recognizing animals in images to redefining the limits of detection and
analysis across experimental science underscores the transformative impact and
impressive progress of AI, reaffirming Dr. Hassabis’s vision of its capability
to interpret and understand the complex language of the natural world. This
thesis stands as a modest testament to the profound and versatile power of
deep learning, and its role as a critical tool in the future of scientific discovery
and innovation.

1.1 Scope of the Thesis

The primary objective of this thesis is to address the generic challenge of separ-
ating signal from noise in experimental science using DL-based AI algorithms.
Specifically, we aim to:

1. Enhance Biomolecule Analysis in NSM: Employ DL-based AI
algorithms to analyze biomolecule trajectories measured by our NSM
experimental platform, surpassing state-of-the-art results on nanoscale
biomolecule weight-and-size screening and trajectory tracking.

2. Detect Reaction Products in Single Nanoparticle Catalysis:
Integrate nanofluidic reactors and quadrupole mass spectrometry with
deep learning-based denoising auto-encoders to detect chemical reactions
occurring on the tiny surfaces of single nanoparticles, with CO oxidation
on Pd serving as a case study.

3. Improve Hydrogen Gas Sensing: Demonstrate the potential of AI-
based analysis in the field of hydrogen gas sensing, particularly in inert
gas environments and in humid air environments critical for safety in
hydrogen technologies, by enhancing detection capabilities of plasmonic
hydrogen sensors using tailored transformer architectures.

By addressing these objectives, we seek to demonstrate the transformative
potential of AI in overcoming longstanding challenges in experimental science.

The scope of this thesis focuses on the integration of DL technologies with
advanced experimental science methods, particularly within the areas of micro-
scopy, mass spectrometry and nanoplasmonic sensing. The primary objective
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is to advance the ability to detect, analyze, and interpret weak or complex
signals that are often obscured by noise in experimental data. This endeavor
aims to solve the pervasive challenge of signal-noise separation across these
fields, leveraging the capabilities of DL to improve the sensitivity, specificity,
and efficiency of various analytical and observational techniques.

The thesis presents a series of studies demonstrating the application of DL in
enhancing the performance of optical plasmonic hydrogen sensors, particularly
under conditions of high humidity or in inert gas environments, which are critical
for safety in hydrogen technologies. Additionally, it explores the development of
Nanofluidic Scattering Microscopy, which enables the label-free characterization
of biomolecules at the nanoscale. Through the application of DL algorithms,
the thesis also addresses the challenges in single particle catalysis by facilitating
the analysis of reaction products from individual catalyst nanoparticles.

Each chapter of the thesis contributes to a broader understanding of how DL
can be applied to overcome limitations in traditional experimental science
methodologies. This includes enhancing the limit of detection in sensing
applications, improving the resolution and contrast in microscopy, and achieving
more accurate and sensitive detection of catalytic reactions at the nanoscale
using mass spectrometry. The work underscores the transformative potential
of integrating DL with experimental science, opening new avenues for research
and application in these critical fields.

This thesis does not cover the hardware development of microscopy or sensing
devices, nor does it delve into the theoretical underpinnings of DL algorithms
beyond their application in the context of the presented research.

1.2 Thesis Structure

The thesis is organized as follows:

• Chapter 2 (Paper V): Provides a detailed introduction to deep learning,
its principles, relevance to signal extraction challenges in experimental
science, and applications in modern science.

• Chapter 3 (Paper I and VI): Presents the application of DL-based AI
algorithms to NSM for analyzing single biomolecule trajectories, demon-
strating improved tracking and measurement capabilities.

• Chapter 4 (Papers II and IV): Explores the enhancement of hydrogen
gas sensors using AI-based analysis, detailing how DL models accelerate
sensor response time and improve detection accuracy.

• Chapter 5 (Paper III): Examines the integration of nanofluidic reactors
with DL-based denoising auto-encoders to detect chemical reactions
on single nanoparticles, achieving significant improvements in limit of
detection.

• Chapter 6: Summarizes appended papers included in this thesis.
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• Chapter 7: Concludes the thesis with a summary of findings, reflections
on the research, and suggestions for future work.



Chapter 2

Deep Learning (DL)

Neural networks are effectively piecewise linear function approximators, cap-
able in principle of approximating any function through finding hyperplane
partitions of the input data during training [17]. The depth of a neural network
affects how complex these partitions might grow, in essence improving the
representational ability of the whole network architecture [17]. Effectively,
subsequent layers of neural networks (assuming equal or growing layer size)
increase the dimensionality of the latent representation of the input data to the
extent where finding some hyperplanar partition to approximate the output
values is always possible [17]. A neural network is considered deep if it consists
of more than one intermediate (”hidden”) layer, and every application of such
a deep neural network is considered to be Deep Learning (DL). This simple
yet powerful idea forms the basis of all neural network-based computation, and
the associated field of modern deep learning revolves around finding ways of
steering these networks to learn more physically relevant, generalizable and
interpretable functions during their training process [18]. The simplest example
of this steering is the CNN, the backbone of modern computer vision, which
connects neurons together in specific ways to bias them toward learning locally
relevant correlations (important for, e.g., images).

Black-box based DL analysis has seen a healthy amount of skepticism in recent
years, owing equally to its inherent lack of interpretability and unreliable
generalizability beyond its training set due mainly to underspecification [19].
However, many AI industry veterans argue that this skepticism often reaches
unfounded levels in many practical applications; many problems common to
deep learning in the past are better understood and can be mitigated through
rigorous implementation [20]. There are even accounts of non-mission-critical
DL-based algorithms reaching high accuracy never being employed in industry
[20], mainly due to a mystical distrust of self-learnt algorithms. Thus, it is often
difficult to see whether the error lies in the foundations of DL, or in the faltering
diffidence of the end-users who should be benefitting the most. To this dilemma,
the efficacy of its remedy lies in its simplicity; the mathematical foundations of

7
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DL must be deeper explored and its limitations unequivocally presented. This
section is based on presenting these mathematical foundations of (convolutional)
neural networks in its proper context; as that of the cornerstone of modern
computer vision and the catalyst for the deep learning revolution as a whole.

2.1 The Artificial Neuron

Conceptually, deep learning is inspired by the structure and function of the
brain. Specifically, the artificial neural network at the heart of all deep learning
is explicitly inspired by our own biological neural networks; the conglomeration
of neurons, synapses, chemical and electrical signals which make up our brains.
In its simplest interpretation, the biological neuron can be approximated as
a computational unit which fires a signal of a certain strength if its input
signal exceeds a certain threshold. Specifically, the biological neuron ”fires”
(activates) with strength w × x if its input signal overcomes threshold b [21].
Every artificial neural network consists of these individual computational units,
known as artificial neurons, with a certain weight w and bias b, and activation
function a, such that each neuron computes the simple linear function

z = a(wx+ b) (2.1)

given an electrical signal of strength x which overcomes a treshold (bias) b, for
a given weight w and activation function a [21]. The values of the weights w
and biases b are determined during training of the network on some dataset,
whilst the activation function is fixed and chosen by the engineer dependent
on the nature of the dataset in question [21]. This simple function is the basis
of all deep learning-based systems, regardless of their ultimate manifestations’
complexity or advanced functionality.

This computational model of artificial neural networks was introduced in 1943
by McCulloch and Pitts [22], and the following decades of developing theory
and practice of neural networks is a complex sequence of cycles of growing
hype, investment, disappointment and stagnation. This story of the highly
nonlinear development of deep learning has been told many times [23]–[25]
and will not be reiterated in this thesis. Rather, we note the most relevant
contribution to the field of deep learning in the context of computer vision, and
arguably, the most significant contribution in modern deep learning overall; the
work of LeCun et. al. [9] in introducing convolutional neural networks trained
with learnable parameters. This would later form the basis for AlexNet [26],
which would go on to convincingly win the long-standing image classification
challenge ImageNet [27] and spark the deep learning revolution which is still
gaining speed to this day. Following this success, several specially-designed
CNN architectures have been introduced for different purposes: most notably
for the purposes of this thesis are those developed for biomedical image analysis
[28], object detection [29] and skip-connection-based networks for enabling
deeper networks, i.e. networks with more consecutively connected layers, than
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previously possible [30]. To understand the significance of these algorithms in
the context of computer vision in broad and microscopy in particular, we need
to delve into their precise mathematical formulation.

2.2 Convolutional Neural Networks

As alluded to in the introduction of this chapter, the power of deep learning
comes from representation (feature) learning. The reason convolutional neural
networks dominate computer vision is because it learns to represent inherent
features of datasets better than handcrafted algorithms. The inductive locality
prior, weight sharing and stochastic gradient descent through backpropagation
[9] condense this computational power into a tractable and ultimately parallel-
izable form which enables training neural networks in feasible timeframes with
practically relevant data [31].

In their basic manifestation, convolutional neural networks consist of a com-
bination of three types of layers; fully connected neural layers, convolutionally
connected neural layers, and pooling layers, the details of which are recounted
in the sections below.

2.2.1 Fully Connected Neural Layers

The fully connected neural network layer consists of any number of neurons
computing the linear transformation in equation 2.1, where every neuron in the
layer is connected to every other neuron in the previous layer (see Figure 2.1).

As shown in Figure 2.1, the neurons’ activation consists of a weighted sum of the
inputs to the neuron plus a bias, where the values of the weights and bias are
learnt during training. This value, known as the logit, is then passed through
an activation function (e.g. a sigmoid) before being passed further to the next
layer of neurons (or output if it was the last layer). A sequence of such fully
connected layers constitutes the simplest version of a deep neural network, and
in turn the basis for the simplest realization of deep learning. Even this simple
network should not be underestimated, since mathematical theorems [32] prove
that such a fully connected network with only a single sufficiently sized layer can
approximate any finite-dimensional function to arbitrary accuracy. However,
the lack of any inductive bias within the network architecture makes learning
a very data-intensive process, and any trained model is highly prone to both
overfitting and underspecification (i.e. manifested as unrobust generalizability).
One simple way of introducing inductive bias into our models is by, for instance,
including memory of past inputs in the neuron activations (recurrent neural
layers) or only considering information from inputs which are spatially localized
close together (convolutional layers).

2.2.2 Convolutional Layers

Convolutional layers are a special case of the fully connected layer; we remove
connections between neurons such that only the inputs which are close together
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Figure 2.1: Schematic of a fully connected neural network, in which each
point xi in the input tensor is connected through a weight wji to every neuron
nj in the next layer, as shown in the schematic on the bottom. A sequence of
such layers is denoted as a deep (and fully connected) neural network.
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count toward the activation sum. This has shown to be a particularly powerful
approach for images, in which information about the position and classification
of objects is usually highly correlated within spatially proximal pixels. In
practice, this is easiest accomplished through a convolution as shown in Figure
2.2.

Figure 2.2: Demonstration of the operation of convolution, wherein a segment
of size [ks1, ks2] of the input image is convolved with a filter of equal size. The
operation consists of a dot product between the pixels of the input and filter,
whereafter the filter shifts sideways and repeats the process until the entire image
has been convolved. In a neural convolutional layer, the numeric values of the
weights of this filter are learnt during training. Figure from [33], reproduced
under the Creative Commons license.

The weighting of each pixel in the convolutional layer is learnt during training,
effectively applying the neuron’s computation in equation 2.1 in a convolution
rather than a linear fully connected fashion. When creating the layer, the
engineer defines the kernel size, stride (of the sliding window), and number of
filters. Filters work essentially as parallel channels all applying convolutions
to the same input but with separately learnt weights, effectively developing
separate “feature maps” which may represent different relevant features of
the input. Thus, using convolutional layers, a full CNN uses various kernels
to convolve the whole input into intermediately sampled feature maps, which
are in turn convolved in an equivalent manner. Ultimately, this realization
of neural networks enables fully rich feature representations of images whilst
prospectively fully preserving locality and richly detailed information. Further,
it has been shown that early layers of a CNN tend to learn basic features
relevant for image analysis, i.e. shapes, edges and simple structures, whereas
later layers learn more abstract features such as vehicle outlines and facial
details [34].
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2.2.3 Pooling Layers

The purpose of pooling layers is to reduce the dimensionality of data between
subsequent convolutional layers, reducing the impact of, as coined by Prof.
Bellman, the curse of dimensionality [35]. In short, as the dimensionality of
data increases, the total volume of the information space increases so quickly
that any available dataset becomes sparse, worsening still the problems of
underspecification [19]. Hence, the downsampling of dimensionality which
pooling layers provide results not only in less computational overhead but also
has been shown to improve generalization, latent space featurization and faster
training convergence [36].
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Figure 2.3: Schematic of the pooling convolution, demonstrated here for
average pooling on top and max pooling at the bottom for a 2x2 convolution
passing over the input with a stride of 2. In average pooling, the output of
each convolution is the average value within the corresponding pooling window.
In max pooling, the output is instead the maximal value within said pooling
window.

In Figure 2.3, an example of max- and average pooling layers is shown. Note
that though these are the most common pooling layers, and used in most
standard implementations of CNNs, there are several others [37]. For instance,
stochastic pooling for network regularization [38] and spatial pyramid pooling
to remedy certain architectures’ strict sizing requirements [39].
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2.2.4 Convolutional Architecture

Most convolutional neural networks in use today use some combination and
configuration of the convolutional, pooling and fully connected layers within
their architecture. To reiterate in concrete terms, each CNN architecture uses
these layers to accomplish three features: localized receptive fields (convolu-
tional layers), weight sharing, and spatial subsampling. Localized receptive
fields and weight sharing enable the introduction of inductive bias into our
models in the form of translational invariance, which promotes the learning
of general features relevant for (translationally invariant) imaging data. Each
subsequent convolutional layer in a deep convolutional architecture receives
inputs from a set of neighbouring units from the previous layer. In practice,
this configuration has been shown [10] [34] to effectively allow the correlations
learnt in each subsequent layer to grow in complexity; i.e., early layers learn
basic abstractions, edges and shapes, whereas later layers learn higher-order
representational features. Elementary features are often equally important
regardless of where they appear in the image; hence local receptive fields with
tied weights are appropriate [40].

In a traditional convolutional architecture, each convolutional layer is followed
by a pooling layer to reduce the problems related to the curse of dimensionality
[35]. Following several sequences of convolutional and pooling layers, the
final layer of highest-level reasoning occurring within the network is usually
achieved via fully connected layers. The neurons in fully connected layers are
connected to every other neuron in its two neighbouring layers, hence their
name, and their output is simply computed as an activation function of a matrix
multiplication with a bias offset as also described earlier in this section. This
generic architecture effectively enables the definition of a function approximation
whose input is a data type with locally relevant correlations (i.e. an image)
and whose output is a vector of numbers. By connecting this vector of numbers
to a regression (i.e. mean absolute error) or classification (i.e. cross-entropy)
[26] loss when compared with labelled data, and then backpropagating the
numeric value of loss through the network’s weights and biases in the opposite
direction of the gradient, we arrive at a trainable convolution-based network
architecture for generic image-to-vector translation. Note that this output
does not necessarily have to be the final output of a full model architecture
- it could rather be considered a latent feature vector for further processing
through another network type or standard methods [41]. Note that it is also
possible to control the nature of the output data type by modifying the output
layer of the network architecture - i.e. a convolutional layer instead enables
learning an image-to-image translation function approximation. Herein lies one
of the greatest strengths of neural network architectures in general: changing
the architecture to accommodate different data types, i.e. sequences, graphs,
images or tabular data, is relatively straightforward with modern powerful
deep learning frameworks like Keras [42] and PyTorch [43].
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2.3 Attention Mechanism

The attention mechanism describes a recent new group of layers in neural
networks that has attracted a lot of interest in the past few years, especially
in sequence tasks [44]. There are a lot of different possible definitions of
“attention” in the literature, but the one we will use here is the following: the
attention mechanism describes a weighted average of (sequence) elements with
the weights computed based on an input query and elements’ keys. The goal is
to take an average over the features of multiple elements. However, instead of
weighting each element equally, we want to weight them depending on their
actual values. In other words, we want to dynamically decide on which inputs
we want to “attend” more than others. In particular, an attention mechanism
usually has four parts we need to specify:

Firstly, the query, which is a feature vector that describes what we are looking
for in the sequence, i.e. what might we want to pay attention to. Secondly,
the keys, where we have a key for each input element which is again a feature
vector. This feature vector roughly describes what the element is “offering”, or
when it might be important. The keys should be designed such that we can
identify the elements we want to pay attention to based on the query. Thirdly,
values, where we also have a value vector for each input element. This feature
vector is the one we want to average over. Finally, the score function, which is
used to rate which elements we want to pay attention to. The score function
takes the query and a key as input, and outputs the score/attention weight of
the query-key pair. It is usually implemented by simple similarity metrics like
a dot product, or a small MLP.

Given a sequence of input vectors X = {x1, x2, . . . , xn}, the attention mechan-
ism first transforms X into three different spaces to obtain queries (Q), keys
(K), and values (V ) using three weight matrices WQ,WK ,WV respectively:

Q = XWQ, K = XWK , V = XWV (2.2)

The weights of the average are calculated by a softmax over all score func-
tion outputs. Hence, we assign those value vectors a higher weight whose
corresponding key is most similar to the query. The self-attention mechanism
computes the attention scores between each query and all keys to determine
how much focus to put on other parts of the input sequence for each element
in the sequence:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.3)

where dk is the dimensionality of the key vectors, which scales the dot products
to prevent them from growing too large. The softmax function is applied
to the rows of the resulting matrix, ensuring that the weights sum to 1 and
can be interpreted as probabilities. The core of the transformer’s attention
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mechanism is the scaled dot-product attention. The scaling factor
√
dk is

crucial as it prevents the dot product from growing too large in magnitude,
leading to gradients that are too small for effective learning. To allow the
model to jointly attend to information from different representation subspaces
at different positions, the transformer uses a mechanism called multi-head
attention. This involves running several attention mechanisms in parallel,
concatenating their outputs, and projecting the result with another learned
linear transformation:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O (2.4)

where each head is defined as:

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (2.5)

and WO is the weight matrix for the output linear transformation.

This mechanism allows the transformer to capture various aspects of the input
data and their interdependent correlations, making it extremely powerful for
tasks requiring an understanding of general long-range dependencies within
data. The ability of the attention mechanism to focus on relevant parts of the
input sequence has been a key factor in the success of transformers across a
wide range of applications, from language understanding and translation to
image recognition and beyond.

2.3.1 Transformers

Moving forward, we will explore the implementation of the multi-head attention
mechanism within the Transformer architecture. The transformer, introduced in
2017 by Vaswani et al. [44], is a particularly influential example of an attention-
based architecture. Initially conceived for the purpose of machine translation,
the Transformer employs an encoder-decoder setup. The encoder processes
the input sentence from the source language, creating an attention-informed
representation. Conversely, the decoder, mirroring the behavior of a traditional
recurrent neural network, uses this encoded data to autoregressively generate
the sentence in the target language. Although this configuration is highly
effective for Sequence-to-Sequence tasks requiring autoregressive decoding, our
discussion will predominantly center on the encoder component. The adoption
of purely encoder-driven Transformer models has spurred significant progress
in the field of natural language processing [45], [46].

The transformer architecture is again based on the idea of self-attention, where
the model learns to weigh the importance of different parts of the input data.
This is particularly useful for tasks where the input data is not spatially ordered,
such as natural language processing. Transformers revolutionize sequence-to-
sequence tasks by employing a self-attention mechanism that allows for parallel
processing of sequences and capturing long-range dependencies without the
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sequential computation limitations of RNNs and LSTMs. The transformer
model consists of an encoder and a decoder, each comprising a stack of identical
layers. The architecture’s core is the attention mechanism, which, in the
context of transformers, is mainly the multi-head self-attention mechanism
described previously. Each layer in both the encoder and decoder consists of
sub-layers, including multi-head self-attention mechanisms and position-wise
fully connected feed-forward networks. Normalization is applied before each
sub-layer, and residual connections around each of the sub-layers help facilitate
deep network training, as:

LayerNorm(x+ Sublayer(x)) (2.6)

where Sublayer(x) is the function implemented by the sub-layer itself. For the
encoder, this includes multi-head attention and feed-forward networks, while
the decoder includes an additional multi-head attention layer that attends to
the encoder’s output. Since transformers do not use recurrence or convolution,
positional encodings are added to the input embeddings to provide some
information about the position of the tokens in the sequence. This is given by:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.7)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.8)

where pos is the position, i is the dimension, and dmodel is the dimensionality
of the token embeddings. This allows the model to use the relative or absolute
position of the tokens in the sequences. The encoder’s self-attention layers
allow each position in the encoder to attend to all positions in the previous
layer of the encoder. Similarly, in the decoder, self-attention layers allow
each position to attend to all positions up to and including that position in
the decoder. In the decoder, the ”encoder-decoder attention” layer allows the
decoder to focus on different parts of the input sequence, similar to the attention
mechanism in sequence-to-sequence models with RNNs. This is crucial for
tasks like translation, where the model needs to focus on the relevant part
of the input sequence for each word in the output sequence. In addition to
attention mechanisms, each layer in the encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately
and identically. This consists of two linear transformations with a ReLU
activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.9)

Transformers’ ability to process entire sequences simultaneously, combined with
their reliance on attention mechanisms, makes them highly efficient and effective
for a wide range of sequence modeling tasks. Their architecture facilitates deep
network training and allows for significant parallelization, leading to substantial
improvements in training time and performance across tasks.
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2.3.2 Vision Transformers

Vision Transformers (ViTs) extend the transformer architecture, initially de-
veloped for natural language processing, to the domain of computer vision [47].
Unlike traditional CNNs, which as mentioned rely on local receptive fields to
extract spatial hierarchies, ViTs apply self-attention mechanisms across image
patches to capture long-range dependencies and global context simultaneously.
This shift in paradigm has demonstrated competitive performance in image
analysis tasks, scaling particularly well with increased computational power
and data, challenging the dominance of CNNs in computer vision.

In the previous section, we discussed how transformers are highly effective in
handling sequential data due to their ability to dynamically learn relationships
between inputs through attention mechanisms. However, a major drawback is
that they require n2 pairwise computations for an input sequence of length n,
making it challenging, or even impossible, to process large inputs with current
hardware. This issue is especially pronounced in image analysis, where images
typically have a size of n× n, leading to a total computational load of (n2)2.
For example, processing a single 256× 256 image would necessitate billions of
computations using a transformer. The Vision Transformer (ViT) addresses
this problem by breaking down the image into smaller patches and processing
them sequentially. As illustrated in Figure 2.4, the image is first divided into
smaller sections, which are then flattened, encoded with positional information,
and passed through a standard transformer model as previously described.

The core idea behind ViTs is to represent an image as a sequence of fixed-size
patches, analogous to the tokens in a sentence for natural language processing.
Specifically, an image of size H ×W × C (where H and W are the height and
width of the image, and C is the number of color channels) is split into N
patches, each of size P ×P ×C. Each patch is then flattened into a vector and
linearly projected to form a token embedding, similar to how word embeddings
are handled in NLP transformers. These embeddings are fed into a standard
transformer encoder.

Each input image patch x is projected to a d-dimensional embedding through
a learnable linear projection matrix E:

z0 = [x1E;x2E; . . . ;xNE] + Epos (2.10)

where z0 is the input sequence, and Epos is a learnable positional embedding
that encodes the location of each patch, preserving spatial information, since
transformers inherently lack built-in spatial inductive biases.

The transformer encoder processes this sequence of patch embeddings using
multi-head self-attention layers, where the self-attention mechanism operates
globally across all patches, allowing the model to capture relationships between
distant regions of the image. This capability to model long-range dependencies
is a significant advantage of ViTs over CNNs, which are inherently limited by
the locality of convolutional operations.



18 CHAPTER 2. DEEP LEARNING (DL)

Vision Transformer (ViT)

Figure 2.4: Vision transformer. We transform an input image into a
sequence of patches, which are then flattened and combined with a positional
embedding layer. The Vision Transformer also includes an additional learnable
node (denoted with *) at the 0th index, which gathers information from the rest
of the sequence and provides a global summary. This embedded sequence is then
fed into a standard transformer encoder, as outlined in the corresponding lecture.
The output from the 0th index of the transformer encoder is subsequently passed
through a dense MLP head for final classification.



2.4. TRAINING METHODS 19

The output of the transformer encoder, which represents contextualized patch
embeddings, is typically passed through a classification head for image classi-
fication tasks. A special class token is prepended to the input sequence, and
its corresponding output embedding is used for the final classification.

ŷ = MLP(zLclass) (2.11)

where zLclass is the final embedding of the class token after L layers, and MLP
is a multi-layer perceptron that outputs the predicted class.

One of the key advantages of ViTs is their scalability. By increasing the model
size (number of layers and attention heads) and the amount of training data,
ViTs have been shown to outperform traditional CNNs on large-scale image
datasets such as ImageNet [27]. Additionally, ViTs benefit from pretraining on
massive datasets, enabling strong transfer learning capabilities.

However, ViTs have also been noted to require significantly more data and
computational resources for training compared to CNNs. Their performance
on smaller datasets is generally inferior without extensive data augmentation
or transfer learning. Nevertheless, ViTs represent a powerful alternative to
convolutional approaches, particularly in tasks where capturing global context
and long-range dependencies is critical.

Effectively, Vision Transformers apply the principles of the transformer archi-
tecture to visual tasks by treating image patches as tokens and leveraging global
self-attention mechanisms. This approach offers competitive performance in
image classification and shows promise in expanding the use of transformers in
various computer vision applications beyond natural language processing.

2.4 Training Methods

Now that we have a better idea of the underlying algorithms used in this
thesis, it is natural to delve deeper into the specific training methods which are
vital to reaching the high accuracy and precision and low LoD of the models
used in this thesis. In particular, this section describes transfer learning; the
process of transferring learnt knowledge from one network to another, ensemble
modelling; the process of including the predictions of several neural networks
in a given task, and curriculum learning; the process of successively increasing
the difficulty of the task during training to be learnt to facilitate learning in
very challenging conditions.

2.4.1 Transfer Learning

Transfer learning is a technique pioneered in the fields of AI and DL that involves
transferring knowledge gained while solving one task to another (similar but
not identical) task. The underlying idea is that some of the knowledge and
skills learned while solving the first problem can be applied directly to the
second problem, resulting in improved performance and shorter training time.
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It has been shown that a neural network trained on a particular type of dataset
is much better at quickly recognizing new instances of similar data, when
compared to a completely untrained network [48]. For instance, though a
neural network may need thousands of examples of cars to start to accurately
recognize cars, such a network can learn much quicker to recognize other vehicles
when introduced into its training set compared to an untrained network [49].
This is a consequence of, as mentioned previously, neural networks learning
increasingly complex abstractions in deeper layers of the network. Thus, a
majority of the learning a network has to do to solve any given task is simply
to find a good representation of the data, and transfer learning can thus be
achieved by ”freezing” the training of the first layers of a neural network and
only training the last few layers on the new data.

There are several benefits of this approach, most evidently that it can help
reduce training time and data requirements for new tasks. Another benefit is
that it can improve generalization performance, meaning that models trained
using transfer learning are more likely to achieve good results on unseen
data than those trained from scratch specifically for the new task at hand.
Additionally, because transfer learning typically relies on pre-trained models
which have been already tuned for good performance on a wide range of tasks,
it can help avoid overfitting problems which can plague neural networks when
they are retrained from scratch for a specific purpose.

Despite its many advantages, there are also some potential drawbacks to
consider with transfer learning strategies. One issue may be poor adaptation
if there are significant differences between how tasks were originally learned
and how they need to be applied later on, and special care should be taken
when applying pre-trained models so as to not inadvertently introduce bias
into results due to inaccuracies or irregularities in how the old network was
transfer-learned into the new.

2.4.2 Ensemble Modeling

Ensemble modelling is a generic term meaning incorporating several models’
predictions to improve accuracy, precision and overall generalizability of a
final (ensemble) model. This technique has been used in traditional statistical
methods for many years [50], but is equally appropriate in (deep) machine
learning owing to the typically fast inference time of individual models. In
general, models in an ensemble can be trained on different datasets or different
permutations of the same datasets, be defined as identical architectures or
variations of the same underlying architectures, or even be entirely based on
completely separate architectures or algorithms. In principle, an ensemble
model can even be any combination of the above alternatives.

There are several advantages of this approach [42], dependent fully on its
specific implementation, but in general it’s usually used to improve accuracy
and generalizability by mitigating the consequences of exploding state spaces
[51] and underspecification [19] and bias. In short, models trained on different
permutations (or sometimes even the same) of the same dataset tend to learn
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different biases in different directions, such that their individual biases all
cancel out with a large enough ensemble of models. Another related benefit is
that of stability, wherein the variability of an ensemble model across different
datasets or with changed parameters is decreased compared to using a single
model. Additionally, ensemble modelling has been shown to be able to identify
patters than may not be visible to any individual module [52]. In essence,
combing information from several different models may reveal otherwise hidden
patterns, making them especially useful for complex problems where traditional
methods struggle to find accurate solutions.

2.4.3 Curriculum Learning

Another technique of significant impact to this project is curriculum learning
[53], wherein we take full advantage of the benefits of transfer learning. Human
beings often do not learn anything when approached with an insurmountable
challenge, learn only the minimally required information when approached with
a trivial problem, and learn optimally only when approached with a problem
perfectly tuned to be slightly challenging given their particular skillset [54].
Neural networks, interestingly, have been shown to learn in analogous ways [34].
To take advantage of this, we may implement active learning [55] or curriculum
learning schemes, wherein we vary which portions of the datasets are fed into the
neural network during training to tune the challenges of learning, for instance
by automatically feeding in more examples of data-points in regimes where the
network retains low accuracy. As mentioned, neural networks need to train on
a large amount of data only to learn optimal representations of the dataset in
its initial layers, but once these representations are learnt, transfer-learning
it on new data is usually only a question of tuning the specifics of the last
few layers’ learnt abstractions. To take advantage of this, we might employ
a curriculum learning scheme wherein we train the networks with the easiest
examples or the ones we have the most data-points of first, and successively
increase the difficulty of the dataset as the network’s loss decreases.

2.5 Quantitative Deep Learning for Optical Mi-
croscopy

Perception-based tasks in which data are collected under conditions which are
consistent across training and inference, are where the greatest strengths of
deep learning truly manifest [40]. The difficulties of deep learning; its black-box
nature, its oft-brittle performance [56] and fickle unpredictability inferring on
datasets orthogonal to its training set due to underspecification [19] and high
sensitivity to poorly labelled data [57], are mostly avoided in these applications.

In practice, DL-based algorithms often outperform handcrafted algorithms [12],
[58], as the heuristics necessary for complex image analysis are often limited
by technical expertise, technological limitations (e.g. processing speed for real-
time applications) and ultimately limits of human ingenuity and imagination.
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Through powerful representation learning, deep learning-based AI systems can
learn features more representative and relevant than other approaches [18].

Intuitively, this may be understood as a result of the complexity inherent in
nature being difficult to capture in simplified heuristics or theoretical models
alone, whereas data-driven DL approaches can learn directly from minimally
processed measurements of physical systems only with limited inductive bias.
Thus, DL systems trained in a supervised fashion can be interpreted in practice
as an opportunity to draw direct statistical correlations between datasets
without the potentially limiting intervention of researcher bias, an oft-cited
reason for why promising yet unfashionable theories struggle to gain ground
in physics [59]. In this section, I describe a few uses of CNNs in practice,
and particularly how they have proven useful for quantitative analysis within
optical microscopy [60].

2.5.1 Semantic Image Segmentation

The purpose of (semantic) image segmentation is to convert the pixel-wise
information in an image to the class of the object in the pixel with a given
probability. In classic image segmentation, this often reduces to outputting
the probability in each pixel containing any of a pre-defined set of classes, as
exemplified in Figure 2.5a.

For purposes of optical microscopy, the benefits of this application quickly
becomes clear; given a complex image of several cellular components and
different types of biological molecules, we can output a probability in each
pixel of that pixel containing a molecule or component of a certain class, as
exemplified in Figure 2.6. Thus, the complexity of the image is drastically
reduced, enabling biologists to analyze the data in a far faster and more
intuitive manner. This is especially relevant in the field of biomedical image
diagnosis [62], which is a pioneering field of applied DL, and an example of a
human-in-the-loop AI system where human experts and AI work in symbiosis
to accelerate experts’ work. In particular, this approach forms the backbone
of cross-modality transformations in optical microscopy, wherein one aims to
employ DL-based algorithms to virtually transform images taken with one
modality into another [13]. For instance, the virtual staining [13] of cellular
components allows one to bypass the manual chemical staining of patient
samples, prospectively saving time when diagnosing patients under the effects
of anesthesia. This is further enabled by the property of semantic segmentation
architectures being able to predict not only the likelihood of existence of objects
of interest in an image, but also the likelihood of said images belonging to a
certain class along with other properties of interest.

2.5.2 Object Detection

Object detection is a massively popular application within machine learning,
whose popularity and influence only seems grow every year through a wide
variety of advances within computer vision. For instance, great strides have
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Figure 2.5: Examples from the Common Objects in Context (COCO) image
dataset [61]. A shows the result of semantic segmentation, wherein each image
is “segmented” using DL such that every pixel of each separate object class
is coloured in with a separate colour. B shows the result of object detection,
wherein each separate object is localized with a so called “bounding box” with a
corresponding probability, and classified with a separate corresponding probabil-
ity.

Figure 2.6: A) Examples of HeLa cell microscopy images. B) Equivalent seg-
mented images, where different types or structures of cells may be identified and
coloured in different colours, through a U-net architecture. Figure reproduced
with permission from [28].
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been made in facial detection [63], pedestrian detection [64] and autonomous
driving [65] in the past few years alone. One of the most popular object
detection algorithms leading these recent developments is that of You Only
Look Once (YOLO), due to its impressive speed and higher generalizability
than many other competing algorithms [66]. These traits are a consequence of
the method’s namesake, where a single feed-forward pass of an image through
the CNN backbone is enough to predict (singular) bounding boxes and class
probabilities for each object in said image [66].

The purpose of object detection is to classify, localize and separate individual
objects within an image. In object detection applications, the exact classifica-
tion of each pixel is not important. Rather, each image consists of an unknown
number n of objects o1, o2, ...on pertaining to class co from a pre-defined set of
classes. A classic object detection algorithm trained in a supervised manner,
can never output that an object belongs to a class outside its pre-defined list.
Its function is exemplified in Figure 2.5b, where the benefit of object detection
becomes clear; a segmentation model could not identify that the two elephants
in the bottom left Figure are separate objects. Rather, it would fill in each pixel
with a high probability of ’elephant’, and contain no quantitative information
on the number or position of the separate elephants. Object detection is useful
in localizing objects within optical microscopy when pixel-wise segmentation
information is unavailable or infeasible to extract [68], as exemplified in Figure
2.7.

2.5.3 Quantitative Property Estimation

It should be noted that whilst object detection and semantic segmentation
are objectives which have come to dominate computer vision applications,
convolutional neural networks can in principle learn to output any property of
interest, as long as the property can be properly mathematically defined and
the relevant information and correlations exist in the dataset. In general, these
property calculating networks work using the same fully convolutional CNN
backbone structure as for semantic segmentation and object detection, with
the significant difference only manifesting in the data type which the neck and
head layers of the neural network output. In particular, the last layer of the
neural network, the head, is typically a dense layer with continuous outputs
connected to a regression-based loss.

One of the most effective and influential CNN architectures for this application
is the ResNet [30], whose deep skip connections between non-subsequent layers
enabled deeper network architectures than previously possible, and whose
subtle yet innovative change to calculate residuals rather than direct output
value enabled numerically accurate calculations.

The most important takeaway from this section is that despite the differing
applications, the underlying structure of the CNN remains the same. Con-
nections between layers vary - between upsampling and downsampling layers
in the U-net and between residually connected layers in the ResNet, but the
backbone of convolutional and pooling layers in sequence is consistent.
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Figure 2.7: A) Raw unprocessed image, consisting of nano-particle cells. B)
The boundaries automatically detected by an object detection network, where
each cell is identified with a so-called ”bounding box”. C) Centers of the detected
cells, where the colour of each detection corresponds to the prediction accuracy
of the corresponding box. Figure reproduced with permission from [67].
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2.6 Beyond Supervised Learning

So far, the contents of this thesis have been constrained to discussing the
particular paradigm of machine learning known as supervised learning, wherein
a neural network is used to approximate a function between input x and output
y. However, this is likely not where the most significant future strides in deep
learning will manifest. Though it is a powerful paradigm, it is significantly
limited in the sense that it cannot automatically learn relationships between
objects unless specifically pre-defined by their engineer. In particular, they
cannot recognize new types of objects not pre-specified within the model
definition, or for instance the relationship between words in different languages
as is highly relevant for modern natural language processing [69]. Indeed, many
of the current issues associated with DL are in practice rather a consequence
of supervised learning [70]. Other paradigms of AI, such as unsupervised,
self-supervised, generative and reinforcement learning, show much greater
robustness beyond their training set and greater potential with smaller datasets
(i.e. single-shot [71] or few-shot learning [72]). Therefore, to serve as a backdrop
against the future outlook for further development of the work conducted within
this thesis, and to introduce the reader to some of the most promising avenues
of current AI research, this section is dedicated to describing paradigms beyond
the standard of supervised learning.

Most straightforward to describe is unsupervised learning, wherein AI al-
gorithms which do not require any labelled data (i.e. output y) are of definition.
Rather, they automatically discover patterns and correlations only in input data
x on their own during training. Classes of algorithms which are encompassed
by this umbrella are e.g. clustering algorithms such as K-means clustering
[73], which automatically cluster input data in a predefined number of clusters
through appropriate parameters chosen by the network during training, and
auto-encoders which are often used as anomaly detection models [74]. Most
famously, some of the statistical analysis underlying the discovery of gravit-
ational waves [75] were based on this approach: in short, an auto-encoder
is trained to perfectly recreate the noise present in the LIGO interferometer
device used to measure gravitational wave signals. The portion of LIGO device
output which cannot be perfectly recreated by a such trained model is therefore
either some entirely new source of noise (which thus can be corrected for with
a new model) or quantitatively accurate gravitational wave signal down to a
very low SNR [76].

Another promising paradigm is that of self-supervised learning, wherein we
exploit the inherent symmetries in certain datasets to effectively teach a neural
network-based algorithm to learn certain useful transformations within un-
labeled datasets. For instance, the most influential use of self-supervised learn-
ing today is in that of training massive so-called attention-based transformer
models, effectively neural networks particularly tuned to learn relationships
between input tokens, on natural language processing. In short, one scrapes a
large dataset (e.g. the entirety of Wikipedia), randomly removes singular words
with some defined frequency, and trains the transformer model on filling in the
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missing words. Such models, when trained on billions of data-points and con-
taining billions of parameters, have been shown to be able to output human-like
text in form of essays, blog posts and even scientific articles [77], [78]. Another
example is the Low-shot deep Symmetric Tracking And Regression (LodeSTAR)
[71] algorithm, which essentially learns to detect particles in microscopy images
by training on a single crop of a single image of a single particle. It achieves
this by applying several (randomly modified) affine transformations to said
single image, and training a convolutional neural network to always recognize
to identify the same particle despite all possible affine transformations and
corruption schemes. Thus, the CNN learns robust features which allow it to
always track the profile of the particle type in different imaging conditions
and self-consistent transformations. Further, the natural continuation of the
supervised object detection algorithms presented in this thesis is self-supervised
vision transformers such as DINO [79], which can learn to identify and separate
objects into an arbitrary number of unseen and undefined classes, thus provid-
ing a solution to one of the biggest issues with supervised object detection
algorithms.

Reinforcement learning (RL) is another paradigm which has seen significant
medial attention in recent years, most notably for its use in developing AI-based
agents which can learn to play games to superhuman levels, notably beating
grand-master Lee Sedol in Go [80] and eventually going on to beat grandmasters
in inordinately complex video games such as Starcraft II [81] and Dota 2 [82].
Its use in real-world problems has of yet been underwhelming, owing to the
difficult “sim2real” [83] gap associated with bringing algorithms trained on
purely simulated data to work in the real world, as well as the difficulties
associated with training RL-agents in the real world [84]. However, significant
strides have also been made in this regard, including an agent which develops
new floorplan designs for computer chips at orders of magnitude higher speeds
than human engineers [85] and a fully autonomous robot which plans, executes
and analyzes experiments on its own [86].

Finally, and of particularly important note for the field of optical microscopy
and biomedical imaging, generative learning is a paradigm which enables AI
to generate new datasets given some original training data set. This may
at first stand in great contrast to the aforementioned paradigms where the
goal is to find correlations within and between datasets and optimize for
a loss(reward) function, but note that the function to optimize may well be
defined as that of how to generate unique data indiscriminate from some original
dataset. Said generative learning algorithms are able to create quantitatively
accurate representations for complex objects and patterns in data, which can
then be used for tasks such as image synthesis [87], text generation [88], and
cell microscopy image generation [89] in combination with e.g. supervised,
unsupervised or self-supervised learning. This essentially solves the issue of
requiring exceptionally large datasets to train certain models, if only one can
train a generative model to generate effectively infinite synthetic data.

Generative models are typically trained in a Generative Adversarial Network
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(GAN) environment [90]; a system composed of two neural networks competing
against each other in a zero-sum game. The first network, called the generator,
tries to generate fake data that is indistinguishable from real data. The second
network, called the discriminator, tries to distinguish between real and fake
data through a binary value. The generator gets better at creating realistic
data as it learns from feedback given by the discriminator.

2.7 Cross-modality Transforms in Biological Mi-
croscopy enabled by Deep Learning

As reviewed in Paper V of this thesis, one promising emerging topic in artificial
intelligence in the context of microscopy for biological (and non-biological)
applications is that of cross-modality transformations enabled by deep learning.
In short, this entails the process of training a neural network architecture
to transform images taken with one microscope modality to instead contain
information as if it were taken by another modality. One example of this is
histological staining, wherein we circumvent the time-consuming process of
manually chemically staining tissues by transforming e.g. brightfield images
of tissues to their chemically stained counterparts through generative learning
(see Figure 2.8).

Similarly, another virtual staining cross-modality transform is that of using
generative learning to fluorescently stain cellular and sub-cellular structures.
In pharmaceutical drug screening and digital cytology, quantitative analysis
of cell structures is essential: changes in the morphological properties of cell
structures are effective readouts into the physiological state of a cell culture
and its response under drug exposure [91], [92]. However, chemically staining
samples with fluorescent dyes to make them available for study entails invasive
and sometimes toxic procedures, potentially affecting cell health and behavior
[93]. Additionally, phototoxicity and photobleaching, occurring during the
acquisition of fluorescence images, limit the time scales available for live cell
imaging [94].

To remedy these challenges, recent works have proposed the use of DL, and
particularly generative learning, as an alternative to mitigate the inherent
problems associated with conventional chemical staining [95]. In these works,
chemical-staining and fluorescence microscopy are replaced with a virtual stain-
ing network that generates virtual fluorescence-stained images from unlabelled
samples. The input to the staining network must encode insightful contrast
of the various cell structures, providing the network with sufficient informa-
tion to learn the transformation to the desired high-contrast, high-specificity
fluorescently stained samples. Virtual staining of cells and cell structures
has been achieved from various imaging modalities, including phase-contrast
imaging [96]–[98], quantitative phase imaging [99], and holographic microscopy
[100]. Moreover, some work [13], [94], [101] suggests that bright-field images
contain the information necessary to reproduce different stainings, despite the
detail of these images being largely limited by diffraction. Another way of
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Figure 2.8: Comparison of manual versus virtual methods for acquiring
stained images. In the manual process, the specimen needs to be prepared,
stained, and then photographed. Preparing the tissue is a meticulous procedure
that may include steps like fixation, embedding, and sectioning of the original
specimen. Likewise, preparing an unstained specimen for histological staining
entails processes such as permeabilization, application of chemical dyes, rinsing,
counterstaining, and fine-tuning the entire protocol until it is ready for photo-
graphy. On the other hand, virtual staining techniques have simplified these
processes, applicable to both tissue preparation and histological staining. With
the virtual method, the specimen stays unchanged or unstained, and a virtual
staining algorithm converts it into a stained image. The outcome is comparable
for both techniques. Images that have been physically stained can serve as a
reference for training the model, or as input instead of an unfeatured image,
particularly when transforming between different stains is desired.
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overcoming said diffraction limit is by so-called super resolution techniques,
which are another example of cross-modality transforms recently enabled by
DL, as exemplified in Figure 2.9.

Many microscope techniques have been developed to overcome the diffraction
limit, including single-molecule localization microscopy (SMLM) methods such
as stochastic optical reconstruction microscopy (STORM) [104], photo-activated
localization microscopy (PALM) [105] and fluorescence photoactivation loc-
alization microscopy [106]. Yet other methods of transcending the standard
resolutions of microscopes exist, as mentioned, in the complex numerical es-
timations of point spread (transfer) functions (PSF) which seek to estimate
the diffraction behaviour, in illumination pattern engineering methods which
decrease the PSF size [107], as well as specialized flurophores [108]. These
approaches come with their own limitations in terms of the complex and mul-
tivariate dependency on imaging conditions which make solving the diffraction
integrals of the PSF very difficult for practically relevant systems [109], and
increased costs associated with aforementioned flurophores [14].

In recent years, another promising paradigm of super resolution has emerged
as a consequence of the astounding growth and success of DL-based computer
vision algorithms. Allegorically to the cross-modality transforms above, the
DL approach to super-resolution revolves around training neural networks to
transform one imaging modality (regular-resolution images) to another (super-
resolved images). Some of these approaches are through generative learning, i.e.
effectively learning the complex interpolation function between regular- and
super-resolved images, or through direct supervised learning e.g. by estimating
the positions of underlying diffraction-limited emitters. The details on how these
networks are trained in practice vary widely between applications, as elaborated
upon further in Paper V. Of course, one would be remiss in this context not to
mention that another way of effectively transcending the diffraction limit and
studying individual molecules is to use powerful scattering-based microscopy
methods like iSCAT or NSM.
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Figure 2.9: A) Illustration of the PSF resultant of imaging objects below the
diffraction limit of an optical system. B) Low-resolution image of simulated
emitters and ground truth emitter locations. Image reproduced with permission
from [102]. C,D) ANNA-PALM consists of two stages: firstly, acquisition of
training images using standard localization microscopy (PALM) followed by
neural network (ANN) training, and secondly reconstruction of super-resolution
views and low-resolution error maps from new sparse PALM and/or widefield
images at inference time. C) Training images are obtained by acquiring long
sequences of diffraction-limited single-molecule images with standard PALM.
Thereafter, standard localization microscopy algorithms are used to generate
super-resolution images. Different types of structures can be distinguished, for
example, nuclear pore complexes (NPC), mitochondria (Mito), or microtubules
(MT). A GAN is trained by using the sparse PALM images as inputs and
the corresponding dense PALM image as target output with the three error
functions in the gray-bordered boxes. D) At inference time, a short sequence
of low-resolution single-molecule images is acquired. Standard localization
algorithms generate a sparse (undersampled) PALM image. This sparse image,
the upscaled widefield image and switch setting are fed as inputs to the trained
generator, which outputs a super-resolved ANNA-PALM image (A’k). Images
C, and D reproduced with permission from [103].
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Chapter 3

DL for Nanofluidic
Scattering Microscopy

This chapter is dedicated to introducing the key concepts required for under-
standing the results produced in Papers I, V and VI. It is not meant as an
exhaustive review (see e.g. [110]); rather, its main purpose is to provide an
intuitive understanding behind the most important tools of optical microscopy
and deep learning which lie at the heart of this work. Specifically, the first
section of this chapter introduces the basics of optical microscopy for molecular
imaging, the method of nano-channel-based optical microscopy introduced in
Paper I, important features of a select few biological molecules studied in this
thesis, as well as touching upon the growing need for advanced data science
within biotechnology and life science applications. The second section of this
chapter introduces deep learning, specifically in the context of computer vision
in general and for biological applications in particular.

3.1 Optical Microscopy for Molecular Imaging

In general, an optical microscope is a system which leads light in the visible
spectral range through a sequence of lenses to magnify images of small ob-
jects. Though these systems have existed for a long time, arguably invented
in the 1500s in their simplest implementation [111], it took many hundred
years for the technology to become powerful enough to enable imaging of
systems on a molecular scale. This may be understood as follows; the shortest
physical distance between two points in an image, also known as the spatial
resolution, is the single most important feature in optical microscopy [112].
The principal limitations impinging the potential of the spatial resolution of
optical microscopy are imposed by an irreducible phenomenon; the physics
of diffraction. Effectively, even in the absence of any imperfections in lens
quality or optical component misalignment, the resolution of a microscope is
ultimately proportional to the wavelength of scattered or transmitted light

33
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being measured, and inversely proportional to the so-called numerical aperture
(NA) of its objective. This happens since light from an emitting light source
in a sample generates a fundamentally limited diffraction pattern known as
a point spread function (PSF) when passing to the image plane through an
object. By our definition above, the minimal distance between two points in a
sample which can be resolved thereby becomes limited by the distance at which
two overlapping PSFs can be resolved. This limitation may be transcended for
instance through super-resolution imaging techniques, i.e. techniques which
transcend the diffraction limit, of which DL-based CV methods already show
great potential as outlined in Paper V and section 2.7.

Indeed, optical characterization methods have proven instrumental for fast and
accurate measurement of biomolecule properties in- and outside of complex bio-
fluids [113]. Historically, for studies which require single-biomolecule resolution,
powerful microscopy techniques, such as fluorescence microscopy and iSCAT,
fill this role [114]. However, fluorescence microscopy requires the molecules to
be labelled by a clearly visible fluorophore or nanoparticle, arguably altering
their properties and behaviours [14], and iSCAT requires binding them to a
surface prior to measurement, thereby losing valuable information regarding
their movement behaviour and leaving a large portion of them undetected.
To remedy this, we have in Paper I introduced NSM, which relies on the
sub-wavelength interference of light scattered from a nanofluidic channel and a
nano-object, such as a biomolecule, inside it. Thus, we enable label-free mass
and size screening of freely diffusing single-biomolecule trajectories, effectively
constituting a leapfrogging step in the field of optical molecular imaging and
characterization. The related field of optical microscopy in the context of
molecular imaging is irrefutably immensely rich in history and complexity, and
the full breadth of its nuances is not recounted in this chapter. Rather, it is
given in its proper context for the purposes of the work accomplished in this
thesis; in the form of our in-house developed NSM technique.

3.1.1 Nanofluidic Scattering Microscopy

NSM works by a supercontinuum laser irradiating visible light onto a nano-
sized channel embedded in a silicon dioxide matrix within a nanofluidic chip
containing single biomolecules freely diffusing in solution, as shown in Figure
3.1a. In this setup, as shown in Figure 3.1b-c, the biomolecule and nanochannel
scatter light coherently into the collection optics of a microscope operated
in dark-field mode, resulting in an improved optical contrast of the imaged
biomolecules by several orders of magnitude. The total scattering intensity
recorded from a region of a nanochannel of length L = 3π

2k can be approximated
as (see section 1 in Supplementary Information of Paper I)

It ≈ Ic + Im −
√
2IcIm. (3.1)

Here, It is the total scattered intensity from the nanochannel, Ic is scattered
intensity from the channel and Im is scattered intensity from the biomolecule
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Figure 3.1: a, Artist’s rendition of the experimental configuration where
visible light irradiates a nanochannel with a biomolecule inside, and where
the light scattered from the system is collected in dark-field configuration. b,
Schematic of light scattered by a single biomolecule. c, Schematic of light
scattered by a nanochannel and the corresponding dark-field image. d, Schematic
of light scattered by a nanochannel with a single biomolecule inside, and the
corresponding differential dark-field image obtained by subtracting an image of
the empty nanochannel from the image of the nanochannel with the biomolecule
inside. Figure reproduced with permission from [115].

(see [115] for further details). A video is then recorded of the total scattered
intensity with a camera with high enough frame-rate to also be able to measure
the biomolecules’ diffusion along the nanochannel. By subtracting an image of
the empty nanochannel from an image with a biomolecule inside, as depicted
in Figure 3.1d, we acquire a differential image containing only the inference
term

√
2IcIm in equation 3.1 (Im is vanishingly small since scattering from

sub- wavelength objects scales as volume squared and the nano-channel’s
volume is much larger than the molecular volume). This inference term can be
several orders of magnitude larger than the scattering intensity produced by the
biomolecule alone (Im) outside the nanochannel, which in essence constitutes
the key feature of NSM and enables the direct imaging of diffusing biomolecules
and other nano-objects inside a nanochannel. From videos of a sequence of
differential images acquired in this way, so-called kymographs, the molecular
weight (MW ) and hydrodynamic radius (Rs) of each individual molecule can
be measured.

Determining the MW of a biomolecule from its trajectory is made possible since
the integrated optical contrast (iOC) of said trajectory is linearly dependent
on the polarizability αm of the biomolecule [116], where iOC is defined as

iOC =

∫ L

x=0

It(x)− Ic(x)

Ic(x)
dx (3.2)

for a channel of length L. This polarizability αm is in turn proportional

to a × MW , where a ≈ 0.46 Å
3
/Da [117]. It is also inversely propor-

tional to the cross-sectional area A of the nanochannel and proportional to
n̄ =

(
1.5n2

H2O
+ 0.5n2

SiO2

)
/
(
n2
H2O

− n2
SiO2

)
where nH2O and nSiO2

are the



36 CHAPTER 3. DL FOR NANOFLUIDIC SCATTERING MICROSCOPY

refractive indices of water and silicon dioxide, respectively [115]. These two
factors are constant and easily measured before an experiment, meaning that
the MW of individual biomolecules measured in our system can be determined
as

MW = iOC
A

n̄a
. (3.3)

Determining the Rs of a biomolecule from its trajectory is made possible since
its diffusivity is correlated with its size. In particular, by approximating the
biomolecule as a solid neutrally charged sphere, its Rs can be estimated using
the Stokes-Einstein equation with a correction term K for hindrance effects
arising from the diffusion of small objects in restricted volumes [118]. Rs is
estimated as

Rs = K
kBT

6πηD
, (3.4)

where kB is Boltzmann’s constant, T is temperature, and η is the viscosity
of the liquid in the nanochannel. By looking at a differential image of the
nanochannel over time, even exceedingly minuscule biomolecules can be detected
and analyzed, and by utilizing the fact that a biomolecule’s optical contrast
and diffusivity is correlated with its weight and size through its polarizability
and the Stokes-Einstein equation respectively, the largest limiting factor for our
analysis of smaller biomolecules quickly becomes the analysis of faint signals
in overwhelming noise. To overcome these challenges, we employ DL-based
approaches as described Chapter 2.

3.1.2 Nanofluidic Chip

The bases of NSM are the nano-fabricated chips containing the nano-channels
within which the biomolecules are analyzed. A schematic of the nanofluidic
chips used for our experiments is shown in Figure 3.2, which consists of a series
of nanochannels with specific cross-sectional dimensions chosen to accomodate
certain ranges of molecule size. The channels are connected to macroscopic
in- and outlets through two microchannels, which are pressurized to 2 bar to
facilitate sample transport. During measurement, this flow is usually turned
off to let the molecules freely diffuse inside the nanochannels. In Paper I, three
channel types were used: channel I with cross-sectional area AI = 100×27 nm2

to study mainly proteins, channel II with AII = 110× 72 nm2 to study mainly
DNA sequences, and channel III with AIII = 200× 225 nm2 to study larger
biological nanoparticles such as extracellular vesicles (EVs) which are further
explored in the next section. In Paper VI, two channel types were used: one
with size AIV = 30× 63 nm2 to measure molecules in the single-kDa regime,
and one with size AV = 122× 97 nm2 to measure DNA sequences.

3.1.3 Biological Molecules and Nanoparticles

Biological molecules are ubiquitously present in all living organisms, existing at
multiple different size scales and regulating essentially all biological functions
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Figure 3.2: Schematic of the nanofluidic chip. Two inlets connect to corres-
ponding outlets through a series of nanochannels with different cross-sectional
dimensions. A laser irradiates the nanochannel, wherein the imaged molecule
always remains in focus, as a camera measures the light scattered from said
nanochannel whilst biomolecules either freely diffuse or are pushed through with
an induced convective flow. Figure reproduced with permission from [115].

in both animal and plant bodies. Among the most important molecules are
the proteins; a type of molecule comprised of amino acids, which influence cell
structure, enzyme activity, molecule transport among many other functions
[119]. In Paper I, we see evidence both of monomeric proteins, which consist
of single molecules made up of one peptide chain, and polymeric proteins
which are composed of either two peptide chains (dimeric proteins) or three
peptide chains (trimeric proteins) [120]. Polymeric proteins consist of multiple
copies (polymers) of a single protein molecule [120]. Studying these proteins
and their polymeric aggregates are crucial for safe drug development and
furthering our understanding of biological systems in general [119]. In Paper
1, we characterise the dimeric protein thyroglobulin, an important biomarker
for thyroid cancer treatment [121], ferritin important for iron regulation [122],
Bovine Serum Albumin (BSA) which regulates many biological processes [123],
as well as Alcohol Dehydrogenase (ADH) which serves to break down alcohols
that otherwise are toxic [124].

DNA strands, similarly, are considered polymeric since they contain multiple
strands of a molecule bound together with hydrogen bonds between comple-
mentary nucleotides [120]. The study of DNA and the corresponding genes
they encode is the source of several separate fields of biological study, playing
a key role in everything from molecular [120] to evolutionary biology [125], as
well as genomic DNA analysis [126] and genomic sequencing [127].

Extracellular Vesicles (EVs) are small lipid vesicles that are secreted from cells
into the extracellular environment and can be found in all body fluids, including
blood, saliva, urine and breast milk [128]. They play an important role in cell-



38 CHAPTER 3. DL FOR NANOFLUIDIC SCATTERING MICROSCOPY

to-cell communication and have been implicated in a variety of diseases, such
as Alzheimer’s and Parkinson’s and certain types of cancer [128]. EVs contain
proteins, lipids and genetic material that can be used to identify the cell of
origin. This makes them valuable tools for studying cellular function and disease
pathology, i.e., by analyzing the RNA content of EVs it is possible to determine
which genes are being expressed by a particular cell type. This information can
then be used to develop new therapies for aforementioned diseases and cancers.
Therefore, EVs have potential as diagnostic tools, i.e., if one could detect specific
types of EVs in a patient’s body fluid, then this would indicate that they’re in
a particular disease state, which would potentially allow doctors to diagnose
several diseases earlier and begin treatment sooner than is currently possible
[128]. Thus, EVs effectively act as mediators of physiological intercellular
communication and have key functions in the pathobiology of many diseases
[129]. However, their specific properties (surface markers, molecular cargo,
weight, size, etc.) are difficult to measure precisely with existing metholodogies,
such as dynamic light scattering [130] or nanoparticle tracking analysis [131],
thereby necessitating new methods for their precise characterization. In Paper
I, we show that NSM is one such promising method for characterization of EVs,
exosomes and lipid nanoparticles in general.

3.1.4 Growing Need for Advanced Data Science in Life
Sciences

The scale of modern life science has grown equally impressive and imposing in
recent decades, as constantly improving automatized digital acquisition devices
along with researchers’ rapidly increasing knowledge of the molecular and
genetic underpinnings of diseases is making the field inordinately complex. This
presents a major challenge for traditional bioinformatics methods that rely on
hand-crafted algorithms optimized for a specific dataset size or type. Advanced
data science techniques are needed to handle this flood of genomic information
effectively and extract insights from it. The availability of experimental data is
often abundant, which transforms the challenge of analysis to ”digging out some
key piece of information from that morass of data”, to borrow the words of
Sir Roger Penrose [59]. To keep pace with this rapid evolution, advanced data
science methods grow evermore central and crucial to the modern scientist’s
toolbox. In particular, there is a growing need for automatized algorithms
which can quickly and robustly make sense of large and diverse datasets, as well
as faint signals hidden in noise which is difficult or even infeasible to mitigate
experimentally.

Fortunately, recent years have seen the advent of powerful data-science-focused
languages such as R and Python, as well as AI platforms such as Tensorflow
[132] and PyTorch [43] which are advancing at unprecedented speeds thanks
to their open-source nature. As these tools continuously grow to be more
democratized and easily available, they will effectively enable all scientists to
perform sophisticasted statistical analyses and (deep) machine learning on their
large and complex datasets. In addition, they provide a variety of libraries that
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can be used for specific applications, such as gene expression analysis [133] or
drug discovery [134].

In addition to handling large datasets efficiently, advanced data science methods
can help identify patterns in complex biological systems [135]. For example,
network inference algorithms can be used to identify modules within protein
networks or transcriptional regulatory networks [136], or as famously featured
in “Method of the year” in both Science and Nature and underpinning the 2024
Nobel Prize in Chemistry; to predict the 3-dimensional structure of proteins
using limited information [137]. Such patterns may reveal new insights into how
diseases develop and could lead to the development of new drugs or treatments.

Looking further ahead, the ability to optically monitor particles in the sub-
10 kDa regime without labels is a tantalizing prospect, as it may enable a
quick and cost-efficient analysis of subtle binding events, such as protein-DNA
bindings [138] or nanovesicle corona formations [139] [140]. Beyond the fields
of life science and biotechnology, it may potentially also enable the analysis of
currently invisible contaminator particles in air [141] and catalytic reactions
of single particles [142], suggesting significant research potential beyond the
immediate consequences such an improvement in detection limits may bring for
the field of biology. The study of small proteins is a field ready to emerge [15];
its abscence a symptom of lacking available methods for their characterization,
rather than any lack of scientific interest. Studies have shown that sub-10 kDa
molecules are ubiquitously present in many biological systems, particularly in
membranes of cells, and may even regulate diverse processes, such as spore
formation, cell division, enzymatic activities and signal transduction [15].
Further, there remain many questions regarding the fundamental nature of
small protein interaction which are yet to be answered [15].

3.2 Deep Learning for Biomolecule Character-
ization in NSM

This chapter is dedicated to introducing and describing the implementation
of the deep learning-based characterization methods used in Paper I and II.
Specifically, the first section of this chapter first gives an overview of the entire
DL-based analysis pipeline as it is implemented in Paper I, and thereafter
delves deeper into the technical details of each separate method within. The
second section describes some of the methods of training the networks which
were crucial to reaching their final level of performance. Finally, the chapter
ends with a description of how the biomolecule trajectories used as training
data were simulated.

To track and analyze single biomolecules within nanochannels, which are the
core of the NSM method, we implemented a DL analysis pipeline which takes
advantage of all the paradigms of CNN-based CV. Image segmentation is used
to identify the pixels in an image (kymograph) which contain the scattered light
from the biomolecules within the channel. In fact, using a specialized network
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Figure 3.3: Machine learning (ML) analysis workflow. (A) Raw image
data simulated for a single biomolecule with optical contrast iOC = 0.5 nm
and diffusivity D = 10 µm2/s. (B) Preprocessed kymograph with removed
background. (C) Segmented image where the particle positions are detected using
a U-net. (D) Single biomolecule trajectory identification using the YOLOv3
neural network. (E) Property calculation (iOC and D) using a custom fully
connected neural network (FCNN). (F) Unit conversion from iOC to molecular
weight MW and from D to hydrodynamic radius Rs plotted in a 2D histogram
for illustrational purposes, for a simulated example molecule. Figure reproduced
from [115].

architecture developed for biomedical image segmentation known as a U-net
[28], each output pixel corresponds to the probability of said pixel containing
scattered light from a particle. Further, object detection is used to identify the
separate trajectories and segment the kymographs into sections consisting only
of single trajectories. Finally, a fully convolutional neural network is used to
calculate the properties of interest - in principle any biomolecule property whose
quantitative values can be derived from its trajectory - for each individual
trajectory in turn. This pipeline is illustrated in Figure 3.3. It is comprised of
five parts:

3.2.1 Pre-processing into Kymographs

The raw image data (Figure 3.3A) was pre-processed to transform it into
kymographs (Figure 3.3B), by the following process. First, the intensity of the
raw CMOS camera image data was normalized according to

Ī (x, t) =
I(x, t)− ⟨I(x, t)⟩

⟨I(x, t)⟩ (3.5)

where I (x, t) is the intensity at position x and time-frame t, and ⟨I (x, t)⟩
represents the time average of said intensity. Second, a low-pass-filtered version
of Ī (x, t) was calculated by using two normalized sliding windows of sizes 200×1
and 1× 200, and subtracted from Ī (x, t). Finally, to obtain the kymographs
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used to calculate iOC, the resulting image was down-sampled by a factor
of 4 in the length dimension through mean pooling. Instead, to obtain the
kymographs used to calculate D, the image was normalized by its standard
deviation before being down-sampled by a factor of 4 in the length dimension
through mean pooling.

3.2.2 Image Segmentation

The purpose of image segmentation, as described in 2.5.1, is to transform
the value of each pixel within an image to another property which is more
conducive to the purposes of one’s analysis. For the purposes of particle
tracking, we want to transform our kymographs, consisting of the (differen-
tial) intensity of scattered light in each pixel, to “segmented” images which
contain the probability in each pixel containing scattered light from a particle.
This transformation is accomplished through implementation of a particular
CNN architecture, whose function is described in section 2.2 and architecture
summarized in Figure 3.4, trained in a GAN environment as described in
section 2.6. Specifically, the GAN consists of two networks: a generator U-net
which generates segmented images from input kymographs (pre-processed as
described above), and a discriminator ConvNet which outputs a binary value
whether the generated segmented image corresponds to the true trajectories or
not. By modifying the architecture of this ConvNet, different behaviours of
the U-net can be achieved. For instance, a relatively strong architecture which
considers multiple scales of the input image, including filters which convolve the
entire size of the input kymographs, is useful to force the U-net to always draw
fully connected trajectories (broken trajectories are always unphysical, unless
they are broken at the borders). Conversely, a relatively weak architecture,
whose filters consider only local features of the image, can be used to force
the U-net to only output trajectories in regions of the image where the local
SNR is high. Generally speaking, the former approach effectively results in
“ghost trajectories” in kymographs with heavy noise, as the generator U-net will
always draw fully connected trajectories even in regions where the signal is low
enough that it should be impossible. In these localized regions, the network
tends to “guess” the likely trajectory path. The latter approach usually results
in broken trajectories, since the generator will prefer to draw trajectories only
where the signal is sufficiently high. The ConvNet used in this thesis was
comprised of 5 convolutional layers of filter size 4, effectively corresponding to
a compromise between the two aforementioned approaches.

The U-net was trained on ∼300,000 simulated kymographs (generated as
described in section 3.3 and pre-processed as described in section 3.2.1) for
which the corresponding ground-truth single biomolecule trajectory is known
(using the ADAM optimizer [144]) with particle trajectories in the ranges
10−5 ≤ iOC ≤ 3 · 10−3 µm, 1 ≤ D ≤ 100 µm2/s. The input during training are
simulated images (kymographs) of size 128× 2048 with a random number of
trajectories and output segmented images of equivalent size. The model is also
train-validated every 120 epochs (∼= 30, 000 simulated kymographs) against
150 simulated kymographs (of size 128 × 512, 128 × 1024, 128 × 2048) with
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Figure 3.4: The U-net[28] consists of a series of contraction convolutional
layers, a bottleneck, and a series of expansion convolutional layers, as well as
a series of skip connections between corresponding contraction and expansion
convolutional layers to ensure that information learnt during contraction is not
lost at the bottleneck. Each 2x Conv box represents a convolutional block corres-
ponding to 2 convolutional layers in sequence, and each Conv T box represents
a single convolutional transpose layer as exemplified in the legend. Here, f is the
number of filters in each block, ks is the kernel size, a is the activation function,
and dr is the dilation rate. The network is visualized with Netron [143]. (B)
Block diagram of the GAN training environment, where kymographs are fed
both to a U-net generator network, which predicts a corresponding segmentation,
and a Convnet (convolutional network) discriminator network, which takes both
original kymographs and true segmentations as input to determine whether the
predicted segmentation is correct. A basic Convnet consisting of 5 convolutional
layers of size 4x4 and stride 1 connected to a single dense layer is used as
discriminator network. Figure reproduced with permission from [115].
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experimentally measured channel noise, using an 80-20 train-validation split.

3.2.3 Object Detection to Identify Trajectories

The next stage of analysis is object detection, to accomplish which we imple-
mented the YOLOv3 [29] (Figure 3.5) algorithm in PyTorch [146]. The purpose
of this stage of analysis is to identify and separate individual biomolecule
trajectories in a segmented kymograph output from the U-net described in
section 3.2.3, which only contains information of the probability in each pixel
that it contains the scattered light from a biomolecule. If a kymograph cannot
be separated in this manner (for instance as a result of two biomolecule traject-
ories strongly overlapping each other), the YOLO algorithm instead counts the
number of inseparable single biomolecule trajectories in the given kymograph,
outputs this value, and disregards the inseparable trajectories as the errors in
scattering resultant of particle interactions is not taken into account in any
calculations. Concretely, the YOLOv3 algorithm fits a minimally-dimensioned
rectangular bounding box around each separate single biomolecule trajectory,
and if the minimal bounding boxes of two single molecule trajectories overlap
more than the set threshold bt = 60% (roughly corresponding to the point
where they are more entwined than not), their bounding boxes are merged to
a minimal rectangular bounding box around both of them that is labelled as
containing two biomolecules. This process runs recursively until all boxes are
either combined or separated.

The YOLO algorithm is usually built upon a pretrained backbone, such as
a ResNET [147], GoogleNET [148] or in the case of this implementation, a
DarkNET [149]. In particular, we use the implementation known as DarkNet-53,
its namesake arising as a result of its architecture consisting of 53 convolutional
layers. This backbone is then attached to its neck, whose purpose is to form
features from the base convolutional neural network backbone. The YOLOv3
algorithm uses something akin to a Feature Pyramid Network (FPN) as neck,
adding a few convolutional layers in sequence which connect into an eponymous
yolo (detection) layer, which outputs a tensor containing bounding boxes, the
probability of an object being inside each bounding box and the probability of
the object being of a certain class. The feature map from the second prior layer
(i.e. two layers back from the detection layer) is upsampled and subsequently
merged with a much earlier layer in the network through concatenation, allowing
the network to learn semantic information from the upsampled feature map and
still retain information of finer details from the early feature map. At this step,
a few more convolutional layers are added and another yolo layer makes new
predictions, but at a different scale (proportional to the upsampling factor).
Through yet another concatenation with an early feature map and upsampling,
this process is repeated a third and final time into the third and last yolo layer,
which benefits from computations from the backbone DarkNet network and all
previous yolo layer computations. Thus, the YOLO algorithm makes detections
at three different scales, where each scale of detections make use of information
from prior layers detecting at larger scales, effectively resulting in quick and
highly accurate detections of generic objects in images.
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Figure 3.5: The YOLO algorithm is built upon a DarkNet-53 backbone [145],
which consists of a neural network architecture comprised of 53 convolutional
layers. This backbone feeds into three necks, which consist of a sequence of 5
convolutional layers, which in turn feed into corresponding heads, which output
bounding boxes at three different scales through yolo detection layers [29]. Each
neck is up-sampled and fed into its neighbouring neck, to make sure the last
yolo detection layer benefits from information collected at every previous stage.
Here, Conv represents a single convolutional layer, f is the number of filters in
each block, ks is the kernel size, and a is the activation function. The network
is visualized with Netron [143]. Figure reproduced with permission from [115].
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The YOLOv3 algorithm was trained on simulated kymographs, generated in the
same way as for the U-net (described in section 3.3), but where the input is a
perfectly segmented kymograph and the outputs are minimally sized bounding
boxes around each separate trajectory. Trajectories are considered separate in
the training data if they are more than T/16 frames apart, where T is the total
amount of frames in the kymograph. Images are continuously generated during
training, such that each subsequent image is entirely unique and the risk of
overtraining is eliminated. The algorithm was trained using approximately 2
million such unique segmented images, where each image was generated with
a constant diffusion in the range 1 ≤ D ≤ 100 µm2/s (the optical contrast is
not relevant here because we employ perfectly segmented simulated images)
with the standard YOLO error function [145] using the ADAM optimizer [144]
with a learning rate of 0.001. The input during training are simulated images
(segmented kymographs) of size 128 × 8192, down-sampled to 128 × 128 to
improve performance, and the output is a list of YOLO-labels containing class,
position, probability of occurrence and probability of class of each trajectory
in the input image.

3.2.4 Characterizing Trajectories with a Residually Con-
nected Convolutional Neural Network

CE-loss

Figure 3.6: The custom FCNN architecture is comprised of Conv blocks, which
are singular convolutional layers, and a sequence of Conv* blocks, which in turn
consist of a sequence of convolutional layers followed by a max pooling layer and
a skip connection, as exemplified in the legend. This sequence culminates into a
custom property layer that calculates iOC and D by the methods described in the
text below. Here, f is the number of filters in each block, ks is the kernel size,
and a is the activation function. The network is visualized with Netron[143].
Figure reproduced with permission from [115].

Finally, to calculate intensity iOC and diffusivity D for each single biomolecule
trajectory, we use a custom neural network architecture, which consists of a
FCNN connected with residual blocks. The architecture itself is a sequence
of convolutional layers followed by a max pooling layer, including short skip
connections to preserve information and mitigate the problems of vanishing
gradient as outlined in section 2.2. The full body of the architecture consists of
seven of these connected blocks, culminating in a computational head module,
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as exemplified in Figure 3.6. The body blocks are the neural networks which
bear the brunt of the computation, whereas the head controls the nature of the
data output by the network. In concrete terms, the head of the neural network
returns three outputs: (1) The raw output Omatrix from the last convolutional
layer of the neural network. (2) A mask, which is a down-sampled representation
of the original kymograph normalized by its pixel sum and passed through a
sigmoid activation function. This effectively gives us a weighted matrix, where
each matrix element is the probability that the corresponding down-sampled
region in the kymograph contains a biomolecule trajectory. (3) The calculated
property for each kymograph, obtained by multiplying Omatrix by the mask to
produce a value of the property for each pixel in the down-sampled kymograph
weighted by the probability of said pixel containing a trajectory, and finally
summing over the entire down-sampled image to obtain a single mean value
of the property for the entire kymograph. Note here that when calculating
D or iOC, the network architecture is identical - the only difference is which
property is included in the labelled data and therefore included in the loss
which the network’s parameters are trained to minimize.

The FCNN networks were trained using the ADAM optimizer [144] with a
learning rate of 0.0001 on approximately 300, 000 simulated kymographs in the
same range as the U-net and train-validated equivalently to the U-net. The
input during training of the FCNNs are simulated images (kymographs) of size
128x2048 with a single particle trajectory, and the output is a single value of
either iOC or D of said trajectory, as well as the mask which as mentioned is
a learnt downsampled representation of the original kymograph.

To train the intensity- and diffusivity-calculating FCNN models, a curriculum
learning scheme with intermittent checkpoints to be used for later ensemble
modelling prediction was employed. Specifically, the intensity-calculating
model was initially trained only on a narrow range of high iOC trajectories,
representing the highest SNR and in principle easiest case for the model to
begin learning correlations, and then slowly curriculum-learned down to the
lowest range of relevant iOC values. In each narrow range of iOC values,
checkpoint models which are more accurate in that particular narrow range
of values are saved separately. Upon model inference, an initial prediction is
made with a model trained on the entire range of iOC values with the scheme
described above, and then a second model trained on the narrower range of
values makes a second prediction on the same trajectory to achieve higher
accuracy. The process is equivalent for diffusivity, with the difference being
that the range of D values being trained on increases rather than decreases
during curriculum learning.

We note here that this ensemble modelling technique adds yet another barrier
against false signal detection, since if the epistemic uncertainty inherent in the
data is high, which may be the case for very short trajectories or regions of
unusually high noise, the two predictions will differ significantly and hence the
prediction should be discarded. Of course, as is common in ensemble modelling
[150], one can implement an even larger and finer-grained ensemble for even
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higher prediction accuracy and accurate uncertainty estimation.

3.2.5 Characterizing Trajectories with a Hierarchical Vis-
ion Transformer
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Figure 3.7: Hierarchical Vision Transformer (HViT) Architecture
for Single Biomolecule Characterization by NSM. The HViT model
processes kymographs of light scattering intensity to predict key single bio-
molecule properties, such as MW and (Rs). Initially, Conv2D layers extract
spatial features, followed by max pooling for downsampling. The Patch Encoder
then encodes these feature maps into smaller patches, while retaining crucial
spatial information. Each patch is passed through Transformer Blocks, where
multi-head attention mechanisms selectively focus on different regions of the
input, capturing long-range dependencies in the kymograph. The outputs of the
Transformer Blocks are processed to generate two key outputs: a Probability
Map (indicating the likelihood of particle trajectories at different locations) and
a Property Map (predicting specific biomolecule properties). The model utilizes
cross-entropy loss for classification tasks and L1 loss to minimize the error
between predicted and true molecular properties. The estimation of each para-
meter (θi) representing molecular weight, hydrodynamic radius, and number of
trajectory points is refined through iterative backpropagation. Finally, the model
weighs the Property Map with the Probability Map to output a final estimation
of the biomolecule properties, weighted by the probability of said biomolecule
existing in any given region.

To lower the LoD of NSM to the few kDa MW and the few nm Rs regime,
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respectively, we develop in Paper VI a new type of deep learning architecture
that leverages the Vision Transformer concept [47], and that we term Hierarch-
ical Vision Transformer (HViT). This model builds on recent advancements in
attention mechanisms and transformer-based architectures to effectively capture
the multi-scale nature of the kymograph data produced by NSM. Specifically, it
is designed to estimate the desired properties of molecules - or more generally
put ”particles” - diffusing inside a nanochannel (such as iOC or MW and D or
Rs) without explicitly needing to recreate said particles’ pixel-wise trajectories
when the particles travel through the nanofluidic channel. Technically speaking
this has the distinct conceptual advantage that a global attention mechanism
can be leveraged to focus on relevant features of the kymographs, which reduces
the impact of local noise and enhances predicted data interpretability. This
is an important advance because in data regimes with extremely low SNR at
hand here, accurately reconstructing the pixel-wise trajectories of particles
becomes practically impossible due to the overwhelming noise that obscures
individual particle movements. Specifically, recreating pixel-wise trajectories
in noisy conditions often exacerbates signal degradation and increases the
computational burden without directly improving property prediction accuracy
in the end [151]. To overcome this problem, in HViT we instead reformulate it
by using probability maps (rather than pixel-wise trajectories) that encode the
likelihood of particle presence at a specific position in the channel at a specific
point in time. This allows the model to focus on global feature extraction and
particle property prediction by aggregating information from across the entire
kymograph to identify consistent patterns indicative of particle presence, even
in the presence of noise. By employing multi-head attention mechanisms, the
model selectively attends to the most informative regions of the kymograph,
dynamically weighting contributions from different parts of the input data to
emphasize features that correlate with properties like iOC (and thus MW ) and
D (and thus Rs). This hierarchical approach enables the HViT to effectively
distill the kymograph into a concise representation that captures the essential
characteristics of particle diffusion and light scattering, enhancing the model’s
sensitivity and accuracy for estimating particle properties of interest even when
individual trajectories are not clearly visible due to low SNR.

As a further key aspect of the HViT solution, we note that deep learning
algorithms generally tend to learn low-frequency modes more quickly and
stably than high-frequency modes, a phenomenon known as spectral bias
[152]. Since a particle trajectory in a diffraction-limited NSM kymograph
essentially constitutes a low frequency signal embedded or hidden in high
frequency noise, it is critical to circumvent this spectral bias. In the HViT
architecture this is enabled by leveraging its hierarchical nature that forces it to
look at different frequencies, i.e., different regions of downsampling, to capture
trends in frequencies other deep learning algorithms would ignore. Explicitly,
this means that the HViT architecture prioritizes learning the iOC/MW and
D/Rs of a particle from a broader context, rather than localized trajectory
details, enhancing sensitivity to the very subtle light scattering signals from
very small particles. This shift in focus enables the improved detection limits
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we demonstrate below, compared to conventional convolutional approaches
that often suffer from overfitting to noisy, pixel-wise variations.

The HViT architecture begins with the input processing stage, where the
kymograph—a two-dimensional representation of scattered light intensity off a
nanochannel over time—is standardized by normalizing it with respect to its
temporal standard deviation (Figure 3.7). This pre-processing step ensures that
the input data are consistent and thus facilitates the subsequent feature extrac-
tion process. The kymograph then undergoes an initial convolution through
a layer with a kernel size of 7, utilizing leaky ReLU activation to preserve
nuanced variations in the data. This is followed by a series of convolutional
blocks, each comprising multiple convolutional layers that progressively increase
the number of filters. These blocks serve to downsample the kymograph while
simultaneously capturing essential features across different temporal and spatial
scales.

A critical innovation of this architecture lies in its hierarchical multi-scale
approach. As the model progresses through each convolutional block, the spatial
dimensions of the feature maps are reduced via max-pooling operations. At each
scale, patches are extracted from the feature maps and encoded using a custom
PatchEncoder layer. These encoded patches, now representing condensed and
contextually enriched portions of the original kymograph, are fed into a series
of transformer blocks. Each transformer block integrates a multi-head attention
mechanism, which allows the model to focus selectively on different regions of
the patches, and a multi-layer perceptron (MLP), which refines these focused
representations. The attention mechanisms within the transformer blocks are
pivotal, enabling the model to capture long-range dependencies both in space
and time (e.g. that a particle trajectory detected in a region of low noise
is likely to continue in a temporally and spatially adjacent region of higher
noise), and subtle variations in the kymograph that are critical for accurately
estimating properties of interest, such as D and iOC of a particle inside the
nanochannel in this present work. At each scale of downsampling, the model
generates predictions for a particles’ Rs and MW properties through dense
layers that process the outputs of the transformer blocks. These predictions are
complemented by probability maps, which quantify the likelihood that specific
regions of the kymograph contain particle trajectories. These maps are then
resized to match the original kymograph dimensions, ensuring that the model’s
focus aligns spatially with the input data.

The outputs from the different scales of downsampling are subsequently concat-
enated to form a comprehensive representation of the experimentally obtained
kymograph, i.e. that all information contained in the experimental kymograph
is condensed into a minimally dimensioned representation, such that all inform-
ation about the parameters that describe the particle in the channel is pooled
together across all scales. This representation undergoes further processing
through additional dense layers, culminating in final predictions for the entire
kymograph. In this final stage, a probability map and property predictions
are generated through a series of convolutional and dense layers. The final
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predictions of particle properties MW,Rs as well as the number of frames
N are derived using a weighted average, where the weights are set by the
probability maps, ensuring that regions with higher probabilities of containing
particle trajectories contribute more significantly to the final output.

3.3 Simulations of Biomolecule Trajectories

As mentioned previously, all models are trained using supervised learning,
i.e., by training each network to approximate a function correlating input x
to label (output) y. To accomplish this, not only do we need to show the
networks examples of kymographs containing particle trajectories, but also
provide it with reliable ground truth regarding the position and properties of
each individual trajectory. This can be done through manual labelling, but
we will quickly run into issues regarding the limited datasets which can be
procured by manual labour and problems related to human-induced biases.
It is also true that such a trained network can never transcend the abilities
of the human which provides the ground truth labels. Thus, we turn instead
to the possibilities regarding generation of synthetic data, understanding the
prospects of which necessitates a deep review of the underlying physics of the
NSM method.

Firstly, let us remind ourselves that NSM works by imaging nanofluidic channels
within an optically transparent matrix by dark-field light-scattering microscopy,
as shown in Figure 3.1. The channels exceed the field of the view lengthwise, and
extend between tens to hundreds of nanometres in cross-sectional dimensions
depending on the species to be investigated. As a result of this arrangement,
the imaged biomolecules are localized within the microscope focal plane during
the entire measurement and the optical contrast of the imaged biomolecules is
enhanced by several orders of magnitude.

For small biomolecules, such as the proteins and DNA strands imaged in Paper
I and VI, their scattering in our system is effectively that of a diffraction-
limited spot. To simulate their generated optical response in our system,
we thus simulate trajectories with four main varying properties; integrated
optical contrast iOC, diffusivity D, gaussian width s and velocity v. At
time zero, a position x0 is randomly chosen along the nanochannel, and the
position xi of the molecule at frame i is generated as Brownian motion with
xi = xi−1 + v∆t + N (0, 1)

√
2D∆t, where a random value N (0, 1) is drawn

from a normal distribution with mean 0 and standard deviation 1. The optical
response of the biomolecule was then simulated along this path as a gaussian
of width s, positions x0...xk for length of trajectory k and magnitude iOC.

The generated response was then combined with simulated background noise
(Figure 3.8B) as I = I0 · Ir, where I0 is the response of the empty channel and
Ir the response of the biomolecule, and kymographs were created according to
the procedure described in section 3.2.1. This simulated noise is generated as
following. We begin by assuming that the noise in the system is dominated
by two sources; shot noise from the channel and imperfections & dirt in the
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Figure 3.8: A: Examples of the simulated response of biomolecules defined by
different combinations of optical contrast iOC and diffusivity D. B: Examples of
simulated kymographs, acquired by combining the responses in A with simulated
noise.
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channel, and the vibration of the channels. The shot noise is generated as an
inevitable consequence of quantum-level fluctuations in the number of photons
interacting with the sensors of the camera over short periods of time. Shot
noise, as a sequence of independently occurring events of photon interaction
with a constant mean rate, can be modelled through a Poisson distribution,
which in turn can be modelled by a Gaussian distribution in the limit of large
N. The second source of noise is the vibrations of the channel (due to movement
of the entire setup), modelled as a harmonic vibration in the centroid of the
Gaussian distribution. Thus, for each frame t, the background is first initialized
as

b0 = e(−(x−(x0+xλ))
2/λ2) · (1 +N (0, 1) ∗ b) · (1 +AN (0, 1)) (3.6)

where x denotes the position along the channel, x0, λ, A are numerical para-
meters randomly drawn from a normal and uniform distribution, respectively,
∗ denotes the convolution operation, and where

xλ = (2N (0, 1) + sin((π − 0.05)t)) · dx,

b =
e(−(x)2/C2) + xλ∑
(e(−(x)2/C2) + xλ)

,

where dx, C are numerical parameters randomly drawn from uniform distribu-
tions. Here, in equation 3.6, the first factor is the aforementioned (partially
sinusoidally variant and partially randomly sampled) Gaussian. The second
factor corresponds to noise resultant of a perfect channel (1) plus noise res-
ultant of dirt and imperfections in the channel (N (0, 1) ∗ b), which can be
modelled by Gaussian noise with a large correlation length. We achieve this
by a convolution with a generic (randomly sampled) point spread function
(PSF) of the microscope and the (randomly sampled) position and size of said
dirt. The third factor corresponds to the aforementioned shot noise, and is
effectively a randomly sampled scalar.

Finally, the total background noise bf is calculated as

bf = b0 · (1 + bAN (0, 1)) + 0.4bAN (0, 1) (3.7)

where a new normal variable is drawn for each position x along the channel,
and bA is a numerical parameter drawn from a uniform distribution correlated
with the total quantitative noise level in the system.

The value of the numerical parameters are chosen such that they roughly corres-
pond to the quantitative levels of noise seen in experimentally measured noise,
within a numerical span large enough such that any quantitative variations of
the noise are still appropriately accounted for. In principle, so long as the true
values of the experimentally measured noise are encapsulated within the range
of the simulated noise, we can expect the neural network to properly interpolate
and correct for any such variation of noise. However, note that this approach is
sensitive to sources of noise which are not included in the simulations. Specific-
ally, if a qualitatively different source of noise excluded in the simulations is
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present in a measurement at inference time (i.e. spurious vibrations as a result
of human movement, or device malfunction), it will be ambiguous to the neural
network whether this portion of the data should be considered signal or noise.
This problem can, to an extent, be mitigated by transfer-learning the trained
network on a few examples of simulated trajectories within experimentally
measured noise before each new set of measurements, effectively constituting
a re-calibration step of the network. Alternatively, it is always possible to
include new sources of noise into the simulations. However, note that this
increases the state-space of possibilities which the network needs to learn and
thereby increases the overall training time and increases the requirements for
representational ability within the choice of network architecture.

Regardless, this method demonstrates a powerful benefit of using deep learning
systems: we do not have to perfectly describe or understand the noise in
order to correct for it. In general, so long as the noise is consistent (i.e., no
significantly different qualitatively new sources of noise are expected to exist
at inference time), and we know the generic representation of the dominating
sources of noise, we can expect deep learning systems to properly interpolate
learnt correlations to experimentally relevant data.

3.3.1 Simulated Biomolecules in Measured Noise

To estimate the accuracy and precision of the algorithm, we test it on a
combination of simulated biomolecules of iOC = [0.1, 0.2, 0.5, 1, 2] nm and D =
[10, 20, 50] µm2/s on top of experimentally measured noise. The trajectories of
biomolecules were found using the segmentation & object detection algorithm
described in sections 3.2.2 and 3.2.3, from which iOC and D were calculated
using the FCNN described in 3.2.4. Such determined values of iOC and D
of all detected trajectories are shown as a scatter plot in Figure 3.9. The
mean values of iOC and D in Figure 3.9 correspond to the mean calculated
value of iOC and D for each separate simulated trajectory. Thus, for a perfect
algorithm, we would expect the circular points (mean calculated value) to
perfectly overlap the crosses (ground truth), with error bars of minimal length
(see [115] for theoretical limits in precision). The values are compared with that
found by a standard heuristic-based algorithm (SA) in Figure 3.9B. Clearly,
the values identified by the pipeline correspond to the ground truth very well
even within experimentally measured conditions, and particularly outperform
the standard analysis at the lowest iOC, thereby corroborating the used data
analysis pipeline as a whole.

3.4 Theoretical Limits

In this section, we explore the theoretical limits of the NSM system. In the first
section, I derive the fundamental limits of estimating iOC/MW and D/Rs via
the Cramér-Rao Lower Bound (CRLB), and in the second section I compare
these calculated limits to the output of the HViT in a simulated system in
ideal conditions.



54 CHAPTER 3. DL FOR NANOFLUIDIC SCATTERING MICROSCOPY

A)

SA

DL

B)

Figure 3.9: Analysis of the artificially generated data set comprised of exper-
imentally recorded background signal and simulated response of biomolecules
defined by a combination of values for iOC = [0.1, 0.2, 0.5, 1, 2] nm, and
D = [10, 20, 50]µm2/s. A: Scatter plot of mean value of iOC and D. Er-
ror bars correspond to the resolution in iOC and D defined as the standard
deviation of the calculated values for iOC and D for each separate D, iOC
permutation. B: Same as for DL, but for the standard analysis algorithm (SA)
as described in [115].
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3.4.1 Cramér-Rao Lower Bound

The CRLB provides a theoretical lower bound on the variance of any unbiased
estimator of a parameter, indicating the best precision achievable under a given
statistical model [153], [154]. It is a fundamental concept in estimation theory
and is widely used in statistical signal processing [155]. The CRLB is directly
tied to the Fisher information, denoted as I(θ), which measures the amount of
information that an observable random variable conveys about an unknown
parameter θ. The mathematical expression for the CRLB is given by:

Var(θ̂) ≥ 1

I(θ)

where Var(θ̂) represents the variance of the estimator θ̂. This inequality suggests
that the variance of any unbiased estimator cannot be smaller than the inverse
of the Fisher information.

It serves as a benchmark for assessing the efficiency of estimators. An estimator
that achieves this lower bound is considered efficient, as it has the smallest
possible variance among all unbiased estimators for that parameter. The
amount of data influences the Fisher information—generally, an increase in
data leads to higher Fisher information, which implies a tighter bound and
hence, a reduced potential estimation error.

Define the Statistical Model

We begin by specifying the probability density function (pdf) or probability
mass function (pmf) of our data, including the scale parameter σ that we aim
to estimate. The choice of model depends on the nature of our data (e.g.,
normal distribution, exponential distribution).

Example: Consider a normal distribution with mean zero and unknown scale
(standard deviation) σ:

f(x;σ) =
1√
2πσ

exp

(
− x2

2σ2

)

This model is appropriate for many natural phenomena due to the Central
Limit Theorem [156].

Find the Likelihood Function

For a sample of independent and identically distributed observations X =
(X1, X2, . . . , Xn), we construct the likelihood function by taking the product
of individual pdfs:

L(σ;X) =

n∏

i=1

f(xi;σ)
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Example:

L(σ;X) =

(
1√
2πσ

)n

exp

(
−
∑n

i=1 x
2
i

2σ2

)

Compute the Log-Likelihood Function

Next, we take the natural logarithm of the likelihood function to simplify
differentiation:

ℓ(σ;X) = lnL(σ;X)

Example:

ℓ(σ;X) = −n lnσ −
∑n

i=1 x
2
i

2σ2
+ constant terms

Calculate the First Derivative (Score Function)

We differentiate the log-likelihood function with respect to σ to obtain the
score function:

∂ℓ(σ;X)

∂σ
= −n

σ
+

∑n
i=1 x

2
i

σ3

Compute the Second Derivative

We now differentiate the score function with respect to σ to get the observed
information:

∂2ℓ(σ;X)

∂σ2
=

n

σ2
− 3

∑n
i=1 x

2
i

σ4

Calculate the Fisher Information I(σ)

The Fisher Information quantifies the amount of information that our observable
data carries about the unknown parameter σ:

I(σ) = −E

[
∂2ℓ(σ;X)

∂σ2

]

Given that Xi ∼ N(0, σ2) and E[X2
i ] = σ2, we have:

I(σ) = −
(

n

σ2
− 3nσ2

σ4

)
=

2n

σ2

This result is consistent with standard statistical texts [157].
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Compute the Cramér-Rao Lower Bound

Finally, the CRLB provides the minimum variance bound for any unbiased
estimator σ̂ of σ:

Var(σ̂) ≥ 1

I(σ)
=

σ2

2n

This implies that no unbiased estimator of σ can have a variance lower than
σ2

2n , as established in estimation theory [155].

3.4.2 Cramér-Rao Lower Bound for NSM

In NSM, the intensity of scattered light from biomolecules diffusing in a
nanofluidic channel provides insights into molecular weight and hydrodynamic
radius. For NSM, the observed intensity It of the scattered light from a
biomolecule within a nanochannel can be modeled as:

It = cI0L|αt|2
k3

4

where:

• αt = αc +
αm

L2
represents the total polarizability, composed of the polar-

izability of the nanochannel αc and the biomolecule αm.

• αm, αc: Polarizabilities of the biomolecule and the nanochannel.

• I0: Incident light intensity.

• k: Wavenumber of the light.

• L: Length of the illuminated part of the nanochannel.

• c: Collection efficiency.

Assumptions for the Likelihood Function

Assume the measured intensity It is subject to Gaussian noise. Thus, the
probability density function of observing It given the parameters αm is modeled
as:

f(It;αm) =
1√
2πσ

exp

(
− (It − µ(αm))2

2σ2

)

where:

µ(αm) = cI0L
(
αc +

αm

L2

)2 k3

4

and σ is the standard deviation of the measurement noise.

The log-likelihood function log f(It;αm) is:

log f(It;αm) = −1

2
log(2πσ2)− (It − µ(αm))2

2σ2
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Derivation of the Fisher Information

The Fisher Information I(αm) is defined as the negative expected value of the
second derivative of the log-likelihood with respect to the parameter αm. In the
Gaussian noise model with known variance, the Fisher Information simplifies
to:

I(αm) =
1

σ2

(
∂µ(αm)

∂αm

)2

Compute the first derivative of µ(αm) with respect to αm:

∂µ(αm)

∂αm
= cI0L · 2

(
αc +

αm

L2

)
·
(

1

L2

)
· k

3

4

Simplify:
∂µ(αm)

∂αm
=

cI0k
3

2L

(
αc +

αm

L2

)

Note that αt = αc +
αm

L2
, so:

∂µ(αm)

∂αm
=

cI0k
3

2L
αt

Therefore, the Fisher Information is:

I(αm) =
1

σ2

(
cI0k

3

2L
αt

)2

Cramér-Rao Lower Bound (CRLB)

The CRLB provides a lower bound on the variance of any unbiased estimator
of αm:

Var(α̂m) ≥ 1

I(αm)
=

σ2

(
cI0k

3

2L
αt

)2

Simplify:

Var(α̂m) ≥ σ2

(
2L

cI0k3αt

)2

This expression shows that the variance of the estimator depends on the true
value of αt, which includes the parameter αm we aim to estimate.

Model for Multiple Measurements

For N independent measurements, the total Fisher Information is:

Itotal(αm) = N × I(αm)

Thus, the CRLB for estimating αm from N measurements is:

Var(α̂m) ≥ 1

Itotal(αm)
=

σ2

N

(
2L

cI0k3αt

)2
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CRLB for Diffusivity in NSM

The relationship between the diffusivity D and the hydrodynamic radius Rs is
given by the Stokes-Einstein equation:

D =
kBT

6πηRs

Considering the displacement x of a diffusing particle over time t, the probability
density function is:

f(x;D) =
1√
4πDt

exp

(
− x2

4Dt

)

The log-likelihood function is:

log f(x;D) = −1

2
log(4πDt)− x2

4Dt

Compute the first derivative with respect to D:

∂

∂D
log f = − 1

2D
+

x2

4D2t

Compute the second derivative:

∂2

∂D2
log f =

1

2D2
− x2

2D3t

Calculate the Fisher Information by taking the negative expected value of the
second derivative. Since E[x2] = 2Dt, we have:

I(D) = −E

[
∂2

∂D2
log f

]
=

1

2D2

Thus, the CRLB for a single measurement is:

Var(D̂) ≥ 1

I(D)
= 2D2

For N independent measurements:

Itotal(D) = N × I(D) =
N

2D2

So the CRLB becomes:

Var(D̂) ≥ 1

Itotal(D)
=

2D2

N

Final CRLB Expressions

Var(α̂m) ≥ σ2

N

(
2L

cI0k3αt

)2

Var(D̂) ≥ 2D2

N
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3.4.3 Including Localization Error in CRLB

So far, we have assumed a theoretically optimal but practically impossible
localization error of 0 for a molecule in an NSM experiment. If we include
the theoretical limits of localization error, for N independent displacement
measurements over a total observation time T = n∆t, the CRLB is derived as
follows.

Let σL be the standard deviation of the localization error. The measured
position xm(t) at time t is:

xm(t) = x(t) + ϵ

where x(t) is the true position, and ϵ is a zero-mean Gaussian random variable
with variance σ2

L.

The observed displacement ∆xm between two time points separated by ∆t is:

∆xm = xm(t+∆t)− xm(t) = ∆x+ ϵ2 − ϵ1

where ∆x = x(t+∆t)− x(t) is the true displacement due to diffusion.

The variance of the observed displacement ∆xm is:

Var(∆xm) = 2D∆t+ 2σ2
L

Likelihood Function and Fisher Information

Assuming that the observed displacements ∆xm are independent and normally
distributed, the likelihood function for observing a displacement ∆xm given
diffusivity D is:

f(∆xm;D) =
1√

4π(D∆t+ σ2
L)

exp

(
− (∆xm)2

4(D∆t+ σ2
L)

)

The log-likelihood function is:

log f(∆xm;D) = −1

2
log

(
4π(D∆t+ σ2

L)
)
− (∆xm)2

4(D∆t+ σ2
L)

The first derivative with respect to D is:

∂

∂D
log f = − ∆t

2(D∆t+ σ2
L)

+
(∆xm)2∆t

4(D∆t+ σ2
L)

2

The second derivative is:

∂2

∂D2
log f =

∆t2

2(D∆t+ σ2
L)

2
− (∆xm)2∆t2

2(D∆t+ σ2
L)

3

The Fisher information I(D) from a single displacement measurement is the
negative expected value of the second derivative:

I(D) = −E

[
∂2

∂D2
log f

]
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Since E
[
(∆xm)2

]
= 2(D∆t+ σ2

L), we have:

I(D) = −
(

∆t2

2(D∆t+ σ2
L)

2
− 2(D∆t+ σ2

L)∆t2

2(D∆t+ σ2
L)

3

)
=

∆t2

2(D∆t+ σ2
L)

2

For n independent measurements:

Itotal(D) = n× I(D) =
n∆t2

2(D∆t+ σ2
L)

2

Cramér-Rao Lower Bound

The CRLB for diffusivity D, considering the localization error, is:

Var(D̂) ≥ 1

Itotal(D)
=

2(D∆t+ σ2
L)

2

n∆t2

Simplifying:

Var(D̂) ≥ 2

n

(
D∆t+ σ2

L

∆t

)2

The localization precision σL is related to the measurement noise σ and the
experimental parameters:

σL =
σ√

cI0L|αt|2
k3

4

Substituting σL into the CRLB expression:

σ2
L =




σ√
cI0L|αt|2

k3

4




2

=
4σ2

cI0L|αt|2k3

Thus, the CRLB becomes:

Var(D̂) ≥ 2

n



D∆t+

4σ2

cI0L|αt|2k3
∆t




2

Simplify the numerator inside the parentheses:

D∆t+
4σ2

cI0L|αt|2k3
= ∆t

(
D +

4σ2

cI0L|αt|2k3∆t

)

Therefore, the CRLB simplifies to:

Var(D̂) ≥ 2

n

(
D +

4σ2

cI0L|αt|2k3∆t

)2
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Final CRLB Expression for Diffusivity in NSM

The modified CRLB for diffusivity D in NSM, incorporating the localization
precision, is:

Var(D̂) ≥ 2

n

(
D +

4σ2

cI0L|αt|2k3∆t

)2

The term
4σ2

cI0L|αt|2k3∆t
represents the influence of localization error on the

variance of D̂. Reducing measurement noise σ or increasing the detected signal
improves localization precision, thus reducing this term. Increasing ∆t reduces
the impact of localization error relative to diffusion, enhancing estimation
precision. The variance decreases inversely with the number of measurements,
here the number of acquired frames with a molecule inside the nanochannel,
emphasizing the benefit of collecting more data.

In the absence of localization error (σ2
L = 0), the CRLB reduces to:

Var(D̂) ≥ 2D2

n

which matches the standard result derived without considering localization
error.

3.4.4 Comparing CRLB to Ideal Model Precision

To illustrate the predictive capabilities of the HViT model in terms of MW
and Rs, we trained it on simulated kymographs and corresponding probability
maps of particles with MW in the range 1 - 30 kDa and Rs in the range
1 - 2.7 nm. We furthermore categorise the obtained data into three groups
according the simulated trajectory length, N , according to N = 100, N = 2000
and N = 10000 measurements, respectively. These three categories serve the
purpose of investigating the significant impact of N on the models’ particle
property prediction accuracy, as it mediates the amount of data available to
the model, which is critical for reducing noise. Corresponding scatter plots of
the predicted versus true MW and Rs for the three different trajectory length
categories reveal significantly improving accuracy and precision for increasing
trajectory lengths with N = 10000 delivering almost perfect agreement between
true and predicted MW (Figure 3.10A-C), as well as true and predicted Rs

(Figure 3.10 D-F). This alignment indicates that by simplifying the learning
problem through the use of probability maps, the HViT model effectively utilizes
the increasing amount of available data to produce more reliable estimates of
molecular properties, remarkably even for simulated particles with MW as low
as 5 kDa in a nanochannel with cross-sectional diameter AV = 30× 63 nm2.

To further analyze and fundamentally understand these results, it is instructive
to plot the relative mean error (”accuracy”) and relative standard deviation
(”precision”) of the predicted MW and Rs values as functions of the number of
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Figure 3.10: (A,B,C): Scatter plots of predicted MW vs. true MW, based on
kymographs with increasing trajectory lengths (N = [100, 2000, 10000]). Each
dot represents a simulated biomolecule, and the blue dotted line represents the
ideal prediction line (perfect MW match). (D,E,F): Scatter plots of predicted
hydrodynamic radius (HR) vs. true HR for the same trajectory lengths as above,
with each green dot corresponding to a simulated molecule. (G,H,I,J): Relative
mean error (µ) and relative standard deviation (σ) of predicted MW and HR,
showing the accuracy (top row) and precision (bottom row) as a function of
the number of measurements. Blue and green lines represent the ideal model
accuracy and precision for MW and HR, respectively, while black lines indicate
the Cramér-Rao Lower Bound (CRLB) for the 6 kDa molecule, illustrating the
theoretical limit of prediction.
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measurements N (Figure 3.10G-J). We chose to specifically do so for a particle
with MW = 6 kDa to emulate our second experiment discussed below using the
peptide hormone Insulin with MW = 5.8 kDa. Clearly, the accuracy in both
MW (Figure 3.10G) and Rs (Figure 3.10H) predictions increases dramatically
for increasing N and approaches relative mean error values of 3.8% (MW )
and 3.7% (Rs), respectively, for N > 10000. Interestingly, for the precision of
the predictions of MW (Figure 3.10I) and Rs Figure 3.10J), we find very low
values of the relative standard deviation for short trajectories (N < 2500), a
maximum at N ≈ 6200, and asymptotically decreasing values for N > 6200.

This at first somewhat surprising result can be understood as a consequence
of the model being a biased estimator which tends to underfit the data at
intermediate trajectory lengths. This bias occurs because the model is designed
to interpret kymographs with small N as highly likely to be noise, resulting in
a systematic tendency to predict MW s close to zero and Rs close to 1 nm, in
these cases, which for small true MW and Rs values indeed is a quite ”good”
estimate. As N increases, the network has more data at its disposal, allowing
it to increasingly distinguish between actual signal due to the presence of a
particle and noise. Nevertheless, initially in this regime, the precision of the
model prediction decreases because the network is no longer dismissing as
much data as noise. Hence, it starts to process kymographs that, for smaller
N , would have been classified as noise and thus assigned MW s close to zero
or Rs values close to 1 nm. Consequently, this introduces transiently larger
variance into the predictions, which is reflected in the observed transiently
reduced precision (Figure 3.10 I, J). However, with even further increasing N ,
the model continues to refine its predictions, as the additional measurements
provide clearer molecular signals, and both accuracy and precision improve.
By the time the trajectory length reaches N = 10000, the HViT model is
thus able to accurately and consistently predict MW and Rs of the 6 kDa
particle, thereby effectively balancing the trade-off between filtering out noise
and accurately capturing signals in the kymograph that stem from the presence
of the particle.

To put the model prediction precision as function of N of both MW and Rs

for the 6 kDa particle into perspective, we have calculated the corresponding
theoretical limits set by the Cramér-Rao Lower Bound (CRLB) of an NSM
measurement. It becomes clear that for large N , the model performs near
the theoretical limit set by the CRLB (Figure 3.10I,J). It also shows how the
model apparently makes predictions with higher precision than the CRLB in
the regime where N is small, due to the aforementioned systematic tendency
to predict MW s close to zero and Rs close to 1 nm when the signal becomes
indistinguishable from noise. Taken all together, the CRLB analysis illustrates
how the HViT model dynamically adjusts its performance based on the amount
of data available (expressed as trajectory length, N , which in the experiments
translates to the number of frames included in the measured kymograph), and
how it thereby eventually overcomes initial biases that enables it to make pre-
dictions that align closely with the true particle properties, even for a particle as
small as 6 kDa. This in turn corroborates that the probabilistic HViT approach
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not only improves the particle detection capability in low SNR conditions but
also pushes both the accuracy and precision of the made predictions closer to
the fundamental limits of the NSM technique. Simultaneously it highlights
the importance of significant trajectory lengths when operating in this regime.
Experimentally, this constitutes a challenge since the intrinsically higher D of
small particles or molecules reduces the time they spent in the field of view of
the microscope, which at a given frame rate of the imaging camera results in
smaller N for smaller particles. Fortunately, however, if necessary this can be
compensated by, e.g., statistical bootstrapping [158], simply by chance given
long measurements, or potentially by electrostatic entrapment of molecules
[159].

3.5 HViT- enabled NSM of 5.8 kDA Insulin

To further push the LoD of NSM by HViT data analysis, we nanofabricated
a fluidic chip with the to-date smallest nanochannels demonstrated for NSM,
which feature cross-sectional dimensions AV = 30 × 63 nm2, to intrinsically
boost the iOC of small analyte molecules. We then applied this system to
investigate the peptide hormone Insulin in PBS buffer. Insulin has a nominal
MW = 5.8 kDa and Rs ≈ 1.5 nm [160]. As expected for this ultrasmall
MW regime, the scattering intensity kymographs measured for both Insulin
in PBS-buffer and pure PBS-buffer control do not resolve any trajectories or
other significant features due to very small iOC. Hence, they look essentially
identical Figure (3.11A,D). Inputting the kymographs to the HViT model
produces again probability maps that highlight regions where the network has
detected Insulin with high confidence (Figure 3.11B). Corresponding probability
maps obtained from kymographs measured from channels only filled with PBS
buffer exhibit only very low probabilities, confirming the absence of Insulin
molecules in these control samples (Figure 3.11E). Subsequently, based on these
probability maps, the HViT model predicts the MW and Rs values for each
measured kymograph for the Insulin and PBS-control samples, first without
applying any probability threshold (Figure 3.11C). Clearly, identified molecules
in the Insulin sample cluster around a common median value of MW = 6.4
+/- 13.1 kDa and Rs= 1.55 +/- 1.1 nm, which is similar to the nominal MW
= 5.8 kDa and Rs = 1.5 nm.

Nevertheless, we also notice a significant spread in the individual predicted
values, as indicted by the error bars in Figure 3.11C. This spread is the
consequence of variability in the scattering signal intensity due to the inherent
noise in the low SNR conditions at hand. To this end, we also note that the
level of transparency of the individual data points in the scatter plot reflects
N for each corresponding kymograph, with more opaque points corresponding
to larger N values and, consequently, more reliable MW and Rs predictions,
as discussed above. For the pure PBS-buffer control measurements the model
predicts two clusters of particles, one at lower MW and Rs than the Insulin
sample and one at significantly higher values. This is the consequence of
residual noise in the system being misinterpreted as ultra low-molecular-weight
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Figure 3.11: Insulin Analysis in Nanofluidic Channel (30x63 nm).
The experimental results of analyzing Insulin at three different concentrations,
alongside the control PBS-buffer, are shown. (A) Kymographs for Insulin
measurements, demonstrating the interference scattering signal captured by
NSM and representing the input to the network. (B) Corresponding probability
maps, indicating regions of Insulin detection across the different concentrations
by the network. (C) Predicted hydrodynamic radius (HR) versus molecular
weight (MW) for Insulin (turquoise) and PBS (black) measurements, where
each data point corresponds to a kymograph and the error bar corresponds to
the standard deviation of MW (HR) across all measured kymographs. The
transparency of each data point is correlated with the estimated number of
measurements within the respective kymograph. (F-J) Same as (A-E), but after
tresholding low-likelihood kymographs. (K,L) The theoretical limits for MW
and HR prediction precision alongside the experimental Insulin measurements.
The Insulin measurements at different concentrations are superimposed on the
theoretical results, at x-values corresponding to the estimated estimated number
of measurements N in each kymograph.
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particles in the lower cluster, and as larger objects in the higher cluster when
essentially no real detectable objects are in the system. Notably, in particular
the data points in the higher cluster are also very faint, which means they were
extracted from kymographs with small N and thus assigns them an inherent
low reliability.

As the next step, we applied a threshold to the probability maps to be included
in subsequent MW and Rs predictions also in this case (Figure 3.11G-K).
As expected, this thresholding step significantly improves the precision and
accuracy, as evidenced by only probability maps with significantly concentrated
high probabilities being included in the analysis (Figure 3.11H) and consequently
significantly narrowed predicted MW and Rs distributions (Figure 3.11I). This
is the consequence of the increased SNR in the selected probability maps, which
effectively filters out low-confidence detection of molecules, and renders the
identification of true Insulin-related signals more consistent, and thus the MW
and Rs predictions more accurate and precise. This is reflected by a much
tighter distribution of the points in the scatter plot (Figure 3.11I).

As a second aspect, we also see that the thresholding effectively eliminates
the low confidence points from the PBS control data (Figure 3.11J, K) and
thereby also enhances the distinction between Insulin and PBS measurements
as it generates a clearer separation between the two data point clusters (Figure
3.11I). As the final aspect we discuss the absolute values of predicted median
Insulin MW and Rs values after thresholding, i.e. MW = 6.3 kDa +/- 0.18
kDa and Rs = 1.53 nm +/- 0.13 nm (Figure 3.11I), which slightly deviates from
the nominal value of 5.8 kDa. As the main reason for this slight discrepancy we
attribute to deviations in the actual nanochannel dimensions from the nominal
value, which affect the conversion from iOC to MW . Similarly, the mean
predicted Rs is 1.53 nm, which slightly deviates from the nominal value of ca.
1.5 nm.

To further explore the limits of the HViT model in characterizing biomolecules
at low concentrations, we extended our experiments to include Insulin samples
with lower concentrations, emulating a scenario with highly varying total
numbers of measurements, N , across different experimental conditions. In
these experiments, we systematically varied the Insulin concentrations to create
data sets with a wide range of N values, where N represents the total number
of measurements summed over all kymographs collected for each condition.
This approach allows us to assess the model’s performance in situations where
the SNR can vary significantly due to the reduced number of molecules present
in the nanochannel.

We used these data sets to generate the data points displayed in Figure 3.11F
and Figure 3.11L, which depict the relative standard deviation (precision) of
the MW and the relative standard deviation of Rs as functions of the number
of measurements, N . For each concentration, we calculated the precision by
comparing the spread in the predicted values of MW and Rs against their
respective means, normalized by the total number of measurements in the
kymographs. This analysis enabled us to quantify how the variability in the
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data decreases as the number of measurements increases, reflecting the model’s
improved precision with larger sample sizes.

To determine the ideal model precision forMW and Rs, we employed theoretical
limits derived from the CRLB. These limits represent the minimum possible
variance in the parameter estimates given the noise characteristics of the system,
setting a benchmark for the best achievable prediction precision. We computed
the CRLB for each scenario based on the known properties of the nanochannel
and the Insulin molecule, taking into account factors such as the scattering
signal intensity, the background noise level, and the temporal resolution of the
measurements. The ideal model precision curves shown in Figure 3.11F and
Figure 3.11L were generated by applying these CRLB-derived limits to the
experimental conditions, providing a reference against which to compare the
experimental Insulin data.

In panels Figure 3.11F and Figure 3.11L, the Insulin measurements at different
concentrations are superimposed on the theoretical precision limits for molecular
weight and hydrodynamic radius predictions. These limits are derived from
the CRLB, representing the best achievable prediction precision given the
noise in the system. Each Insulin concentration is positioned on the x-axis
according to the estimated number of measurements in the corresponding
kymographs. Remarkably, the experimental Insulin data closely follow the
ideal model’s performance, approaching the theoretical limit for both MW and
HR prediction precision. This strong alignment between experimental and
theoretical results reinforces the robustness of the NSM technique, combined
with deep learning, in characterizing molecules in the sub-10 kDa regime if the
number of measurements are high enough.

The results presented in Figure 3.11 showcase the capacity of this advanced
NSM method to detect and accurately measure Insulin molecules in real time,
in a label-free manner. The close correspondence between the experimental
data and theoretical performance underscores the efficacy of this approach
in pushing the boundaries of biomolecule detection and characterization in
nanofluidic systems.



Chapter 4

DL for Nanoplasmonic
Hydrogen Sensing

In this chapter, we go through the fundamentals of localized surface plasmon
resonance, as well as how we employed transformers to enable and accelerate
hydrogen gas sensing in challenging sensing environments. Note that the
phenomenon of (nano)plasmonic resonance is well documented [161]–[165] and
will not be recounted fully in this thesis, but rather only to give context in
sufficient detail to understand the solutions developed in this thesis.

4.1 Plasmon Resonance

Metals, when downsized to dimensions smaller than the wavelength of light,
exhibit a dramatic shift in their optical characteristics. This leads to the
appearance of vivid colors in materials that are otherwise typically gray and
shiny, a phenomenon originating from Localized Surface Plasmon Resonances
(LSPR). LSPR occurs due to the resonant collective oscillations of the elec-
trons that conduct electricity within these metals. The intriguing aspect of
these resonances is their sensitivity to various properties of the nanoparticles,
including the type of material, their size, shape, and the permittivity of their
surrounding environment. This section aims to explore the underlying physics
that dictate the optical behaviors of metallic nanoparticles, and to discuss their
significance in the context of nanoplasmonic hydrogen sensing.

4.1.1 Plasmonic Nanoparticles

Electrons in atoms or molecules occupy fixed energy levels, and shifting an
electron between these levels requires a precise amount of energy. This energy
may correspond to the absorption of a photon that bridges the energy gap and
thus induces an electronic transition. Similarly, in semiconductors, electron
excitation from the valence to the conduction band occurs across the band gap.

69
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When this absorption falls within the visible spectrum, it alters the material’s
color by absorbing specific photon wavelengths. However, metals lack a band
gap, which means they don’t require a set amount of energy to excite an
electron. In the presence of light, a metal’s free electrons quickly reposition
to ”neutralize” the light’s electric field. If they manage to ”counteract” the
incoming light effectively, the metal reflects it. Yet, at frequencies beyond the
metal’s plasma frequency, electrons cannot adjust rapidly enough, preventing
the reflection of the electromagnetic wave. Furthermore, metals can undergo
interband transitions similar to semiconductors if their band structure permits
electron excitation from high-density states to the Fermi level. This mechanism
is responsible for the color seen in metals like gold, where an interband transition
at 2.5eV(496 nm) absorbs blue light, giving gold its yellow hue. Metals with
interband transition energy below visible light (< 1.65eV or > 750 nm) can
absorb photons across the spectrum, resulting in a muted, less reflective
appearance, as observed with, e.g., palladium. The interaction between metals
and electromagnetic fields is quantifiable through their complex dielectric
function.

A famous and historically relevant example of plasmonic metal nanoparticles
are Faraday’s studies of how the size and shape of gold nanoparticles affect their
observed colour, as illustrated in Figure 4.1. The important takeaway from
these results is that simply enlarging a gold nanoparticle does not necessarily
change its optical properties in any meaningful way. However, adding an
anisotropy to the nanoparticle, such as growing nanorods in this case, the
observed properties may change considerably. This tends to be true in general
for metal nanoparticles, but not necessarily for nanoparticles of other materials.

The mean free path of free electrons in gold particles is ≈ 50 nm, so interactions
on nanoparticles smaller than this are only expected to occur on the surface
[166]. Results of scattering and absorption spectroscopy has shown that
standing resonance can occur for the electrons in the conduction band of
a given nanoparticle, if the wavelength of the incident light is comparable to
the nanoparticle’s size [166]. This occurs because the wave front of incident
light polarizes the electron density to the surface, thereby causing the electron
density to oscillate with the frequency of incident light in a standing oscillation
[166]. The observed colour is a consequence of these collective oscillations of
electrons within the conduction band of the nanoparticle, also known as surface
plasmon oscillations, as is discussed further in section 4.1.2.

4.1.2 Localized Surface Plasmon Resonance (LSPR)

Illustrated in Figure 4.2a is a nanoparticle smaller than the wavelength of an
incident time-varying electric field. This field causes the electrons within the
nanoparticle to shift relative to the atomic nuclei, creating a charge separation
and, as a result, a restorative force aiming to reposition the electrons. This
dynamic results in the nanoparticle acting as a damped harmonic oscillator,
with its response characteristics—such as spring constant and damping—being
influenced by the particle’s shape, size, and material composition. Hence, when
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Figure 4.1: Absorption of electromagnetic radiation within gold nanoparticles
as a function of wavelength, shown here for five different samples of gold
nanoparticles. Note that differently sized gold nanospheres have similar optical
properties, whereas differently sized gold nanorods have very different properties.
Absorption spectra doesn’t change significantly with the size of nanospheres
while for nanorods as the aspect ratio (AR) increases corresponding spectra
moves towards higher wavelength. Reproduced from [166] with permission from
The Royal Society of Chemistry.
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Figure 4.2: Top: The polarization of the surface of metal nanoparticles can
start to oscillate upon interaction with near-visible light, leading to the phe-
nomenon of LSPR. Bottom: Side and top view of plasmonic gold nanoparticle
illuminated at the LSPR wavelength. The locally enhanced dipolar field is illus-
trated schematically by the intensity of light, as calculated by the FDTD method.
This enhanced field region effectively acts as a nanosized sensing volume, where
local changes in poralisation can be detected. Reprinted with permission from
[167]. Copyright 2012 American Chemical Society.
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the nanoparticle resonates at the frequency of incoming electromagnetic radi-
ation, significant absorption and scattering occur, leading to visible coloration
if the resonance frequency falls within the visible spectrum.

These enhanced field regions, as shown in Figure 4.2b-c, serve as probes for the
dielectric environment surrounding the nanoparticle, making them effective for
optical nanoscale sensing in various applications, including biosensing, chemical
sensing, and gas sensing [162], [167]–[170].

To initially describe the LSPR phenomenon in a qualitative manner, one can
consider a simplified model of a metallic sphere whose radius is significantly
smaller than the wavelength of light. This model allows for the use of Gustav
Mie’s analytical solutions to determine the electromagnetic response of the
sphere [171]. For such a small sphere, the electrostatic approximation is valid,
indicating that the electric field does not vary spatially across the sphere at
any given moment. Thus, when exposed to an electric field, E0, an induced
dipole moment is described by:

P = εdαE0 (4.1)

Here, εd represents the dielectric function of the medium surrounding the
sphere, and α denotes the sphere’s polarizability, given by:

α(ω) = 4πr3
εm − εd
εm + 2εd

(4.2)

where r is the sphere’s radius, and εm is the metal’s frequency-dependent
dielectric function. The efficacy of the interaction between the particle and
light is quantifiable as a cross-section, with specific calculations for scattering,
absorption, and extinction cross-sections available for a perfect sphere [172].

Cabsorption = k, Im(α) = 4πkr3Im

(
εm − εd
εm + 2εd

)
(4.3)

Cscattering =
k4

6π
|α|2 =

8π

3
k4r6

∣∣∣∣
εm − εd
εm + 2εd

∣∣∣∣
2

(4.4)

Cextinction = Cabsorption + Cscattering (4.5)

Here, k = 2π
λ denotes the wavenumber associated with the incoming light. From

these expressions, it’s evident that enhancing the polarizability maximizes both
absorption and scattering effects. Moreover, we observe that the scattering
effect is proportional to r6, contrasting with absorption, which is proportional
to r3. This implies that larger particles tend to scatter light more, while smaller
particles are more inclined to absorb light. Critical to both phenomena is the
condition when the denominator approaches zero, defined as:
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εm(ω) = −2εd (4.6)

which establishes the resonance condition for localized surface plasmon reson-
ance (LSPR).

It’s noteworthy that the optical attributes of various metals differ significantly,
leading to variations in εm. A simplified approach to model these metals is
through the Drude model, which considers electrons as freely mobile, thereby
neglecting potential interband transitions. This model is encapsulated by [172]:

εm(ω) = 1− ω2
p

ω2 + iΓω
(4.7)

where ωp signifies the plasma frequency, and Γ represents a damping factor
accounting for energy dissipation mechanisms within the material. The plasma
frequency is given by:

ωp =

√
Ne2

ε0me
(4.8)

with N , e, and me denoting the density of free electrons, the electron charge,
and mass, respectively, and ε0 is the vacuum permittivity.

Assuming minimal damping effects and integrating eq. 4.7 into eq. 4.6 to solve
for ω, we obtain the LSPR frequency as:

ωLSPR =
ωp√

1 + 2εd

or, when expressed in terms of wavelength:

λLSPR = λp

√
2εd + 1

where λp is the plasma wavelength, defined as λp = c
ωp

with c being the speed

of light. Although this model simplifies the concept, it effectively captures
the essence of LSPR, including its sensitivity to the refractive index of the
surrounding medium, which induces a spectral redshift as the index increases.

However, in addition to the sensitivity of λLSPR to the dielectric constant of the
surrounding medium εd, the resonance wavelength is also sensitive to changes
in the metal’s plasma frequency ωp, or equivalently, the plasma wavelength λp.
This sensitivity arises because λLSPR is directly proportional to λp, as seen in
the expression:

λLSPR = λp

√
2εd + 1 (4.9)
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The plasma frequency ωp is a fundamental property of the metal and is defined
by the free electron density N :

ωp =

√
Ne2

ε0me
(4.10)

where e is the elementary charge, ε0 is the vacuum permittivity, and me is the
electron mass.

In hydride-forming metals such as palladium (Pd), the absorption of hydrogen
atoms leads to the formation of palladium hydride (PdHx), which alters the free
electron densityN within the metal lattice. As hydrogen atoms are incorporated
into the metal lattice, they interact with the conduction electrons, effectively
modifying the electron density and the electronic structure of the metal. This
change in N directly impacts the plasma frequency ωp, and consequently, the
plasma wavelength λp.

The alteration in λp results in a shift of the LSPR wavelength λLSPR, which
can be expressed as:

∆λLSPR = ∆λp

√
2εd + 1 (4.11)

where ∆λp represents the change in plasma wavelength due to hydrogen
absorption.

Therefore, the sensitivity of the LSPR to changes in ωp (or λp) is the crit-
ical mechanism exploited in hydrogen sensing using plasmonic nanoparticles.
Unlike the sensitivity to the surrounding dielectric environment (changes in
εd), which is the basis for many plasmonic sensors detecting changes external
to the nanoparticle, hydrogen sensing leverages intrinsic changes within the
nanoparticle’s material properties caused by hydrogen absorption.

This mechanism allows for the direct optical detection of hydrogen gas through
measurable shifts in the LSPR wavelength. By monitoring ∆λLSPR, the amount
of hydrogen absorbed by the nanoparticles can be quantitatively determined,
enabling sensitive and specific hydrogen gas sensing.

Despite assuming negligible damping for simplicity, real nanoparticles exper-
ience damping that significantly influences their optical properties, with the
broadening of the resonance peak in the frequency domain indicating a re-
duced LSPR lifetime. Damping arises from both radiative (scattering) and
non-radiative processes, such as electron-hole excitations within the metal.

While the aforementioned description aids in conceptual understanding, actual
nanostructures deviate from ideal spheres, and their dielectric functions are
more complex than what the Drude model suggests. Addressing realistic
materials and shapes necessitates alternative approaches such as electrodynamic
simulations, and the precise shape, size and structure of nanoparticles have
profound impacts on the nature of LSPR behaviour.



76 CHAPTER 4. DL FOR NANOPLASMONIC HYDROGEN SENSING

4.1.3 Nanoparticle Size, Shape and Structure Impact on
LSPR

Gold (Au) and silver (Ag) are the cornerstone materials in plasmonics, primar-
ily due to their ability to sustain strong localized surface plasmon resonance
(LSPR) bands in the visible light spectrum. Their electronic structures allow
for efficient plasmon excitation, and their chemical stability makes them ideal
for long-lasting plasmonic devices. Specifically, gold is chemically inert and
does not easily oxidize, while silver, though more efficient in terms of plasmonic
properties, can suffer from oxidation, requiring protective coatings. However,
the scope of materials utilized in plasmonics extends beyond these two, incor-
porating copper (Cu), platinum (Pt), Pd, nickel (Ni), and aluminum (Al), as
well as noble metal alloys [173], [174] and nonmetallic entities like nitrides [175].
Each material’s unique electronic structure influences its plasmonic properties
by altering the dielectric function.

The size of nanoparticles plays a crucial role in determining their optical
properties. As nanoparticle size increases, the interaction with the incident
electric field becomes non-uniform due to the larger spatial extent of the
particle compared to the wavelength of light. This non-uniformity introduces
retardation effects, where different parts of the nanoparticle experience different
phases of the electromagnetic field. This phase shift between the incident and
induced dipolar fields within the nanoparticle causes a redshift in the resonance
frequency because the collective electron oscillations are delayed. Moreover, as
Eq. 4.2 suggests, the scattering intensity scales with particle volume, leading
to enhanced radiative damping. This effect results in larger nanoparticles
having a shorter resonance lifetime and a broader resonance peak due to
the increased damping. The non-uniform electric field across the particle’s
surface further complicates the plasmonic response, particularly for larger
particles, where multiple scattering events and phase differences occur across
the nanoparticle. Non-radiative damping, primarily through absorption, also
contributes to further broadening of the resonance peak, especially in materials
with significant absorption or interband transitions in the visible spectrum, like
Pt or Pd, leading to very broad resonance peaks. [176].

For complex-shaped nanoparticles, while analytical extensions of Mie’s theory
for spheres to spheroids exist [177], real-world nanostructures often have more
intricate forms and may be placed on substrates with their own complex sur-
faces. To accurately simulate the optical properties of such entities, reliance
on numerical solutions to Maxwell’s equations is necessary [178]. Techniques
including finite difference time domain (FDTD) [179], discrete dipole approx-
imation (DDA) [177], finite element method (FEM), boundary element method
(BEM) [180], and the modified long wavelength approximation (MLWA)[177],
[178] enable predictions on how single nanoparticles or assemblies will inter-
act with electromagnetic fields, providing a thorough understanding of their
plasmonic behavior.
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4.1.4 Nanoplasmonic In Situ Spectroscopy

Applying the LSPR method described above, it is possible to measure the
LSPR excitations within a single or an array of Au nanoparticles with near-
visible light to study the physical changes within other nanoparticles, such as
catalysts, in the vicinity. The optical characteristics of metal nanoparticles,
important in plasmonics, are influenced by their dielectric properties, size,
and the environment around them, which can lead to observable changes in
their optical spectra [181]–[183]. This principle underpins plasmonic sensing, a
technique that leverages absorption and scattering spectra from LSPR-active
structures to detect minute variations in via change in ωp or around via change
in ϵd the nanoparticles. This approach was initially demonstrated two decades
ago with gold nanoparticles used to sense the binding of antigens to ligands on
their surfaces [184]. An example of how optical changes in nanoparticles are
detected, such as through extinction spectroscopy, is shown in Figure 4.3. The
figure illustrates how environmental changes around the particles alter their
LSPR resonance condition via changing ϵd. Key parameters like the resonance
wavelength (λpeak), peak intensity (Ext), and the full-width-at-half-maximum
(FWHM) help quantify these changes, providing insights into the transient and
steady-state dynamics of the system [185], [186].

Plasmonic sensors find applications across various domains, predominantly
in biological sensing [162], [187], [188], but also in detecting chemical and
gas changes [189], [190], as well as monitoring catalytic reactions [167], [168].
Their utility in solid-state chemical reaction sensing is particularly noted for
its ambient pressure and high-temperature applicability, employing low-power
visible light for non-invasive measurements. Relevant examples include tracking
the phase transition in Pd and Mg from metal to hydride [190]–[194] and the
oxidation of Cu nanoparticles [195], [196].

The sensitivity of LSPR-based refractive index change sensing is confined to
a small volume around the nanoparticle due to the rapid field decay, with
the enhancement region shaped by the particle’s resonance and incoming field
polarization, as well as its geometry, where sharp edges typically greatly enhance
local field intensities. This specificity allows for detecting changes down to the
scale of single molecules [170], [197].

Practically, an induced shift in plasmonic resonance wavelength as a result of
tiny changes within a sensing volume of plasmonic sensing particles defined
by their enhanced field region underlies the basis of the data analysis of the
experiments in this thesis. This peak shift can be extremely subtle, potentially
only fractions of nanometres, but this sensitivity has been shown to be possible
to achieve through function fits of the data [186]. However, to fully realise
the potential of such plasmonic sensing, we require a method of analysis that
is sensitive to such extraordinarily subtle changes in the optical spectra and
robust to, e.g., optical noise.
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Figure 4.3: Idealised signal readout of a generic nanoplasmonic in situ
spectroscopy experiment, in which physical surface changes on the sample
material or changes of the bulk sample material itself induce a change in the
peak position of the resonance wavelength. Additional observables, such as
the difference in particle intensity (∆PI) and full-width at half-maximum (∆
FWHM) may provide additional information or provide a better signal-to-noise
ratio.

4.1.5 Nanoplasmonic Hydrogen Gas Sensing

In hydrogen gas sensing, specifically using nanoplasmonic sensors, one of the
key mechanisms does not arise from localized field enhancements, as often seen
in surface plasmon resonance techniques, but rather from physical changes
within the particles themselves due to hydrogen absorption, i.e., a change of ωp.
When hydrogen molecules dissociate and are absorbed into hydride-forming
metal nanoparticles such as Pd, several phenomena occur that contribute to
the sensing mechanism. Firstly, hydrogen absorption leads to a change in the
particle’s dielectric function. As hydrogen atoms enter the metal lattice, the
electronic properties of the particle, and thus ωp, are altered. This change is
observable in the nanoparticle’s LSPR characteristics. The LSPR frequency,
which is highly sensitive to the dielectric environment and electronic structure
of the nanoparticle, shifts as hydrogen is absorbed. This shift in the LSPR
peak can be measured optically and is directly related to the concentration
of hydrogen absorbed by the nanoparticle. The magnitude of this spectral
shift is proportional to the amount of hydrogen absorbed, making it a reliable
indicator of hydrogen concentration [198].

Secondly, the volume expansion of the nanoparticles due to hydrogen absorption
also plays a role in the sensing mechanism. Hydrogen absorption into the metal
lattice causes the lattice to expand, leading to a slight increase in the volume
of the nanoparticle. This volumetric change, although minor, contributes to
the overall optical response because it influences the scattering and absorption
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properties of the particle. The degree of this expansion depends on the type of
metal and its ability to form hydrides. For example, Pd nanoparticles exhibit
notable volume expansion when forming palladium hydride, which further shifts
the LSPR peak, enhancing the sensitivity of the sensor in detecting hydrogen
gas [199]. Thus, in hydrogen sensing, the primary mechanism relies on changes
in the particle itself, both through alterations in its dielectric function due to
hydrogen absorption and through minor contributions from volume expansion.
These combined effects lead to detectable optical shifts, which are critical for
the real-time and precise detection of hydrogen concentrations in a range of
environments.

4.2 Neural Networks for Nanoplasmonic Sens-
ing of Hydrogen Gas

To reiterate, neural networks are efficient piecewise linear function approximat-
ors, and are theoretically capable of approximating any function by delineating
hyperplane partitions within the input space. This principle underpins the
neural network design adopted in our research, where we endeavour to de-
velop architectures with appropriate representational ability to discover general
function approximations between measured LSPR extinction spectra and sur-
face state of nanoparticles across time. Here, we focus on the application
of hydrogen gas sensing, aiming to significantly advance the field by offering
precise, real-time detection capabilities essential for both safety and efficiency
in hydrogen energy technologies.

4.2.1 Nanoplasmonic Hydrogen Sensing

Efforts are underway to curb greenhouse gas emissions through significant
investments in hydrogen gas technologies. These technologies encompass a
wide array of applications including H2-powered transport modes, refueling
infrastructures, and energy production methods. As H2 is flammable in air,
all of these applications present heightened risks of H2-related accidents due
to their operation in confined or public spaces. The imperative for robust H2

safety sensors is underscored by these potential risks, necessitating devices
capable of precise H2 detection in air [200], [201]. Moreover, H2 sensors play a
crucial role in monitoring processes across various applications, from domestic
heating to fuel cell efficiency. Today, the market offers a variety of H2 sensors
utilizing principles such as resistive, electrochemical, and catalytic transduction
[198].

Optical nanoplasmonic sensors, leveraging LSPR in Pd nanoparticles or similar
nanostructures, have emerged for purposes of H2 detection [198], [202]. These
sensors operate on the principle of H2 dissociation and absorption at the
nanostructure surface and in the bulk, respectively, inducing reversible changes
in optical properties visible as spectral shifts ∆λpeak in the LSPR peak [198],
[199]. The linear relationship between spectral shift and H2 absorption levels,
along with the inherent selectivity of hydride-forming metal-based sensors
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against, e.g., CO2 and hydrocarbons, positions nanoplasmonic sensors as highly
effective [203]–[205]. Addressing the need for improved H2 sensing capabilities,
performance targets have been set, notably by the US Department of Energy
(DoE), aiming for sensors to detect hydrogen concentrations rapidly (within 1
second) in a range from 0.1% to 4% under ambient conditions (DoE-targets
[206], [207]). While some studies have showcased sensors meeting these response
times, these tests were conducted under ideal conditions, significantly removed
from the complexity of real-world applications where sensor performance can
be degraded by impurities, oxygen and water [208]–[211]. In this thesis, the
focus is on using deep learning to enable detection limits in the low ppm range,
rapid response times, and notable selectivity and resistance to deactivating
chemical species, aligning with or surpassing benchmarks set by the US DoE
[198], [212]–[214].

In the realm of H2 sensing, environments can broadly be categorized into two:
those with abundant oxygen and the oxygen-starved or ”inert” environments.
The latter is crucial for safety in large-scale H2 installations like fuel-cell powered
ships and H2-powered airplanes inerted environments to prevent flammable
mixtures. These environments are typically purged with an inert gas, such
as nitrogen, but often contain impurities like water, carbon monoxide, or
sulfur oxides, which can interfere with sensor function. The presence of these
”poisoning” molecules, alongside the lack of oxygen, challenges the efficacy of
traditional H2 sensors, as they require oxygen to operate and are susceptible
to surface poisoning which hinders their ability to detect hydrogen [211].

The advancement in this field has traditionally focused on developing new
sensing materials, nanostructuring, or refining physical sensing mechanisms
[208], [210], [215]–[219]. However, the potential for using deep learning to
improve sensor response time, a critical aspect of sensor performance, remains
largely untapped, despite its proven effectiveness in enhancing accuracy and
sensitivity in gas sensors [220]–[225]. This is explored in papers II and IV.

A primary impetus for the research presented in Paper II arises from the
limitation that current H2 sensing in general, and nanoplasmonic H2 sensors in
particular, do not perform well under conditions of high humidity [198]. This
presents a substantial challenge, as sensors that can tolerate such conditions
are critically needed for both process monitoring and environmental safety
applications, where fluctuations in relative humidity or the inherently humid
hydrogen feed in proton-exchange membrane fuel cells are common. The DL-
based method introduced in Paper II also allows for the rapid prediction of H2

concentrations in inert environments, overcoming the limitations imposed by
traditional sensors’ need for oxygen and their vulnerability to deactivation by
contaminants [211], [226], [227].

Our analysis technique involves a more comprehensive utilization of the output
data from plasmonic hydrogen sensors by leveraging the full scattering or
extinction spectra over time rather than reducing this data to single spectral
descriptors as done in the state of the art (Figure 4.4d). This method acknow-
ledges the wealth of information present in the spectrum’s temporal evolution,
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which can be instrumental in predicting sensor saturation levels or detecting
gradual changes in H2 concentration more quickly in challenging environments
[228].

4.2.2 Transformers for Nanoplasmonic Hydrogen Sensing

The transformer architecture used in Paper II is shown in Figure 4.5, and was
used to enable nanoplasmonic sensing in highly humid conditions in air [229].
Here, the entire spectral data, i.e, the full LSPR spectrum, across a short time
window is considered in every mapping, providing more information compared
to standard approaches of reducing spectra into single descriptors like centroid,
FWHM, peak position and other similar parameters. To address potential signal
drift, we implement min-max normalization based on an initial calibration curve
for each measurement series, complemented by batch normalization layers [230]
that adjust normalization parameters during the training phase and lock them
during inference, as shown in Figure 4.5b. Additionally, to enhance the model’s
capability to uncover physically meaningful and broadly applicable correlations,
Dropout [231] layers (Figure 4.5c) are introduced, periodically resetting weights
during training to promote the learning of durable correlations resistant to
random fluctuations. The model’s computational efficacy and adaptability are
further augmented by connecting a series of dense layers, each followed by
BatchNorm and Dropout layers, through a skip connection, linking this setup
with three similar configurations (Figure 4.5a). These skip connections help
counteract the vanishing gradient issue in deep networks, where the gradient
during backpropagation in earlier layers disappears in deep networks. The series
of extinction spectra generated by the sensor is represented using positional and
time-based embeddings, achieved by 1D-convolution and sinusoidal encoding
methods, respectively. These encoded forms are then inputted into a multi-head
attention module. Within this module, the varied representations formed by
the attention heads are combined with the initial embeddings and processed
by the dense layer-based computational framework, which is linked to an L1
norm loss and optimized via backpropagation.

The most significant results of Paper II that were generated using the approach
outlined above are summarized in Figure 4.6, wherein the aforementioned
transformer is trained to predict hydrogen concentration from sequences of
acquired nanoplasmonic sensor spectra in humid conditions. We find that such
an approach enables an LoD substantially below the DoE goal of 0.1% H2

for sensor operating temperatures above 30 oC, compared to standard LSPR
sensor readout methods.

4.2.3 Long Short-term Transformer Ensemble Model for
Accelerated Sensing

In Paper IV, we extended the transformer architecture shown in Figure 4.5 to
consider longer time periods (effectively taking the full measurement history
of the sensor into account), include estimates of uncertainty within its own
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Figure 4.4: Characterization and working principle of PdAu alloy nano-
particle plasmonic H2 sensors. (a) A single Pd70Au30 alloy nanodisk’s Energy-
dispersive X-ray (EDX) spectrum corroborating its targeted composition. (b) A
detailed view of the EDX spectrum from (a), highlighting the Pd and Au peaks
up to 4.5keV. (c) A diagram illustrating the plasmonic H2 sensor’s operating
mechanism: the absorption of hydrogen by hydride-forming metal nanoparticles
alters their localized surface plasmon resonance frequency, resulting in a detect-
able color shift during spectroscopic analysis in the visible spectrum. (d) An
example of the spectral shift observed in the Pd70Au30 alloy plasmonic sensor’s
extinction spectrum during hydrogen incorporation into the nanoparticles’ crys-
tal structure. Inset: zoom-in reading the subtle spectrum changes induced by
hydrogen absorption.
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Figure 4.5: Schematic of the Transformer-based neural network architecture
employed for enhancing the detection capability of nanoplasmonic sensors in
humid conditions. The architecture integrates multiple advanced techniques: (a)
time and position-based embeddings for the input spectral data, (b) multi-head
attention for complex pattern recognition within the spectral data, (c) batch
normalization to stabilize learning and facilitate model generalization, and
(d) layers incorporated within the dense neural network to prevent overfitting.
The combination of these elements contributes to a robust learning mechanism
capable of handling the intricate nature of nanoplasmonic sensor spectra, par-
ticularly in the presence of challenging environmental conditions, such as high
humidity.
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Figure 4.6: Achieving a Limit of Detection (LoD) below 0.1% (1000 ppm)
H2 in air at 80% RH utilizing deep learning. a) Sensor LoD determined using
standard ∆λpeak measurement across various sensor operating temperatures
and RH levels. It is noted that at over 20% RH, all sensors do not meet
the US Department of Energy (DoE) benchmark of an LoD < 0.1% H2. b)
A comparison of the sensor’s reaction to H2 concentration pulses under dry
and 20% RH conditions at an 80oC operating temperature, recorded via the
conventional ∆λpeak method and the DL-enhanced readout, c(H2,NN). c) LoDs
achieved through the DL-enhanced readout indicate an almost RH-independent
LoD substantially below the DoE goal of 0.1% H2 for operating temperatures of
80 oC or higher. An inset provides a closer look at the 0 - 0.3% H2 LoD range.
Figure reproduced with permission from Paper II.
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predictions and enable accelerated prediction of hydrogen concentration com-
pared to the sensor’s physical response. Thus, we implement a variant of the
transformer known as the long short-term transformer (LSTR), as shown in
Figures 4.7 and 4.8 [232].

Figure 4.7: Illustration of the Long Short-Term Transformer (LSTR) struc-
tured through an encoder-decoder design. Specifically, the LSTR encoder reduces
the extensive long-term memory of size mL into n1 encoded latent features,
while the LSTR decoder utilizes these encoded memories in conjunction with
short-term memory of size mS to facilitate action recognition in real-time.
The construction of both the LSTR encoder and decoder employs transformer
decoder units, processing both input tokens (illustrated by dark green arrows)
and output tokens (shown as dark blue arrows). During the inference phase, the
LSTR evaluates each incoming frame in real-time, operating without access to
future context. It sequentially determines the actions within each frame through
its encoder-decoder framework, lacking any forward-looking context. The dashed
brown arrows depict the flow of data for both long- and short-term memories,
adhering to a first-in-first-out (FIFO) principle. Figure adapted from Ref. [233]

To properly account for long-term drifts inherent to LSPR sensors, the model
needs long-term information regarding what influences the shift of spectra.
However, the multi-head attention mechanism of a standard transformer means
that the memory usage of the architecture scales quadratically with the sequence
length, making long sequences, as produced by continuous sensor operation,
intractable to compute. The efficacy of the LSTR model is also influenced by
how the sensor spectra data is pre-processed. The necessity for pre-processing
arises from the sensor response’s drift over time, primarily due to the light
source intensity’s long-term changes, and minor variations in the extinction
spectra from different separate and independent measurements caused by
slight alterations in the sensor’s positioning within the measurement chamber
for each test. To address this, we applied multiple pre-processing strategies
[234], merging them into a unified dataset. Consequently, the deep learning
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Figure 4.8: Long Short-term Transformer Ensemble Model for Accelerated
Sensing: (a) The model inputs are sequences representing the sensor’s spectral
response history, with the depicted sequence spanning 600 timesteps or 198
seconds. (b) Initially, the sequence is partitioned into long and short-term
segments and undergoes four preprocessing techniques: wavelength-specific min-
max normalization, standard normal variate transformation, comprehensive
min-max normalization, and level adjustment. These preprocessed segments are
then merged and supplied to the LSTR. (c) Within the LSTR, the long-term
segment is first condensed into a compact latent form by the encoder. Sub-
sequently, the decoder focuses on the short-term segment, identifying important
temporal characteristics while referencing the encoded long-term memory. These
characteristics are processed through a series of dense layers, culminating in
the prediction of the current H2 concentration in the sensor environment.

models received a time series input, where each sequence element represented
a combination of these pre-processing methods (Figure 4.8a).

Further, we opted for an ensemble approach with multiple LSTR models
to acquire a measure of uncertainty along each prediction. This strategy is
driven by the high-stakes nature of hydrogen sensor applications, ensuring
more dependable predictions and providing a measure of uncertainty along
with each prediction. This is achieved by averaging the forecasts of several
LSTR models to determine the mean and standard deviation of predictions.
By combining these modeling choices, we developed the Long Short-term
Transformer Ensemble Model for Accelerated Sensing (LEMAS) in Paper IV,
a system characterized by an ensemble of LSTR models adept at quickly
forecasting H2 concentration and offering a reliability measure based on a long
series of pre-processed spectral data.

By implementing neural networks in the form of transformers, we demonstrate
in papers II and IV a significant reduction in response times — up to 40 times
faster — when exposed to H2 pulses in inert gas environments and were able
to achieve LoDs ranging between 0.01 - 0.06% H2 (100 - 600 ppm) in 80%
RH in synthetic air for sensor operating temperatures of 80-130oC. Thereby,
the presented AI-enhanced sensors meet the US DoE performance target of
LoD < 0.1% H2 in humidity in air with significant margin. Similarly, the ISO
26412:2010 sensor signal robustness standard for operation in humid air was met
down to 0.06% H2 concentration for a sensor operation temperature of 80 oC.
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This technology is vital for early detection of H2 leaks, allowing ample time for
implementing safety measures to prevent accidents [233]. Moreover, LEMAS’
ensemble modeling approach provides uncertainty estimates, enhancing its
reliability for safety-critical applications, such as H2 sensing at hand.
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Chapter 5

DL for Mass Spectrometry
in Single Particle Catalysis

In experimental science, isolating small signals from noise is a crucial and
general challenge. One field where this is particularly true is in single particle
catalysis, where chemical reaction products formed on single nanoparticles are
to be quantitatively measured. These very weak signals make their analysis
challenging. We address this in Paper III by combining nanofluidic reactors,
quadrupole mass spectrometry (QMS), and a deep learning-based denoising
auto-encoder to detect reactions on minuscule surfaces in the form of single Pd
nanoparticles, using CO oxidation on Pd as an example. In this chapter, we
go through the fundamentals of catalysis, quadrupole mass spectrometry for
catalytic applications (and beyond) and deep-learning based auto-encoders for
the purposes of denoising.

5.1 Catalysis

Catalysis is the process in which new chemical reaction pathways are enabled,
thereby improving the rate of chemical reactions, by the use of a catalyst
material which is not consumed during the reaction. Generally speaking,
the rate of reaction improves as a result of new intermediate reaction steps
enabled by the reactant’s interaction with the catalyst surface, with lower
activation energies [235]. These crucial effects have made catalysts so pervasive
and ubiquitous that an estimated ≈ 90% of commercially produced chemicals
involve catalysts at some stage of the manufacturing process [236], and an
estimated one-third of the GNP of the US involves a catalytic process somewhere
in the production chain. Some of the major applications for catalysts today
include energy production, food production and the production of (bulk and
fine) chemicals, and one of the most common uses is the catalytic converter
within automobile exhaust aftertreatment systems [236]. Motivated by this
common application, this project is based on an experimental setup in which

89
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CO and O2 can be converted to CO2 on the surface of a few or even a single
catalyst nanoparticle.

However, most studies related to the chemical mechanisms of catalysts are
historically done on ensembles of catalytic particles, thereby potentially missing
intricate subtleties of what occurs on the surfaces of each individual nanoparticle
[237]. Indeed, a long-term goal for the field is to develop methods to isolate
and investigate single nanoparticles during the catalytic process in order to
investigate how the size, shape and structure of individual nanoparticles impact
their catalytic efficiency. This, with the goal to eventually make it possible
to manufacture catalysts consisting solely of the most effective nanoparticles,
leading to significant increases in overall catalytic efficiency. Importantly, we
note here that single nanoparticle catalysis has hitherto been an exceedingly
elusive sub-field of catalysis science, owing to the decades-long issues of the
”materials- and pressure gaps” which is at the heart of the problem we are
trying to solve in this thesis in the long-term.

5.1.1 Materials- and pressure gap

The crux of the pressure gap in catalysis is that analysis of the surface catalytic
reactions on (single) nanoparticles has been done successfully in high vacuum
conditions, and becomes increasingly more difficult at high (and thus practically
more relevant) pressures [238]. A key reason is that electrons, the experimental
probes used, are incompatible with elevated pressure due to extremely short
mean free paths [238]. The materials (and complexities) gap is less fundamental,
and is instead the consequence of the gap between simplified linear models and
the complex structural nature of real catalyst materials [238].

In Paper III, we present a novel method of approaching the bridging of the
pressure and materials gaps at the single nanoparticle level by measuring
the activity of catalysts down to single nanoparticles. This is enabled by
applying modern deep-learning algorithms to improve the resolution and limits
of quantification of QMS data, obtained from nanofluidic reactors decorated
with (single) catalyst nanoparticles.

5.1.2 Catalytic Surface Reactions

In general, chemical reactions involve the breaking of chemical bonds between
or within molecules and the subsequent forming of new ones. This process is
associated with a transfer of energy, related to an activation energy Eact, such
that the reaction is (effectively) impossible if the excess energy of the reactants is
less than Eact [239]. If the excess energy of the reactants is provided by thermal
energy, then the probability of the reactants having sufficient energy for the
reaction to occur is proportional to the Boltzmann distribution P ∝ e−Eact/kBT ,
meaning that the overall reaction rate increases with higher temperature and
decreases with higher activation energy [239]. According to the Boltzmann
distribution, the probability of a system being in a particular state i with
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energy Ei is given by:

Pi =
1

Z
e−Ei/kBT , (5.1)

where Z is the partition function, summing over all possible states of the
system.

By introducing a catalyst to a reaction, the activation energy can be effect-
ively decreased by providing the reactants with intermediate reaction steps
and transition states that are energetically more favorable compared to the
uncatalyzed reaction [235].

Important to note is that catalytic reactions take place on the catalyst surface,
leading to several catalytic reaction rates being very sensitive to the size, shape
and structure of the catalyst’s surface [235]. One early example of a single
particle catalysis experiment is the study in 2008 by Mulvaney et.al [168].
In this work, surface plasmon spectroscopy was implemented to study the
catalytic behaviour on the surface of single gold nanoparticles during oxidation
of ascorbic acid. This study, and most studies on single particle catalysts, were
carried out in the liquid phase. Hence, a much less studied and understood
aspect of single particle catalysis is that of reactions in the gas phase [240]. To
fill this gap, here we consider the surface reaction of CO and O2 in the gas
phase, on catalytic palladium nanoparticles.

5.1.3 Oxidation of CO on Palladium Surfaces

The aforementioned CO oxidation reaction over palladium nanoparticles is a
suitable model reaction for the purpose of method development aimed at in
this thesis. In this section, I thus first introduce the elementary reaction steps
of the CO oxidation reaction.

The reaction can be written as:

CO +
1

2
O2 −→ CO2. (5.2)

In order for this reaction to occur at relatively low temperatures and pressures
(relevant to most industrial and automotive applications), it is necessary to
include a catalyst in the reaction to reduce its activation energy [241]. In the
presence of a catalyst, reaction 5.2 is split into five elementary steps; adsorption
of CO and O2 on the surface of the catalyst, dissociation of O2 into separate
O molecules on the surface, a surface reaction and finally desorption of CO2.
Let ∗ represent an active site on the surface of a catalyst, and X∗ represent
the adsorption of molecule X on the surface of the catalyst. The catalyzed
reaction can then be expressed as [241]

CO + ∗ −→ CO∗,

O2 + ∗ −→ O∗
2 ,

O∗
2 + ∗ −→ 2O∗,

CO∗ +O∗ −→ CO∗
2 + ∗,

CO∗
2 −→ CO2 + ∗.

(5.3)
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This is an example of the Langmuir-Hinshelwood mechanism, whereupon the
maximal reaction rate is expected to occur when the surface coverage of carbon
monoxide θCO and oxygen θO (molecular oxygen dissociates upon adsorption
on the Pd surface) are equal, according to equation 5.4.

r = kθCOθO, (5.4)

where k is the reaction rate constant. An important issue arises from the
fact that CO adsorbs onto a single site on the surface, whereas O2 needs to
dissociatively adsorb onto two sites [237]. Since these species compete for
the same active sites on the surface, the coverage of CO can become much
greater than for O in relation to their gas phase concentrations. This leads
to a lowered CO oxidation rate and is known as CO poisoning [237]. This
phenomenon contributes to the ’cold-start’ problem in automotive catalytic
converters, where the catalyst is not sufficiently active at low temperatures
immediately after engine start due to CO poisoning, leading to higher emissions
of CO until the converter reaches its operating temperature [241]. Increasing
the temperature can mitigate CO poisoning by enhancing the desorption rate
of CO and thereby reducing its equilibrium surface coverage. This allows more
O2 to access the active sites, improving the CO oxidation rate [241].

5.1.4 Quadrupole Mass Spectrometry

An experimental technique widely used for identifying and quantifying the
products of catalytic reactions, is Mass Spectrometry (MS), which ionizes the
analyzed species to enable their characterization and quantification based on
mass-to-charge ratios.

The specific manner in which incoming particles are ionized may vary between
specific MS solutions, but it may for example be achieved by bombarding them
with electrons [242]. Upon bombardment, some particles may just become
charged whilst others may become fragmented before becoming charged, which
is important for distinguishing molecules that have the same mass-to-charge
ratio in so-called cracking patterns [242]. When this has been accomplished, the
now-ionized particles can be separated by their mass-to-charge ratio through
various methods [242]. Finally, the now-separated particles hit a detector that
counts them, resulting in the aforementioned mass spectrum representing the
number of incident particles of a given mass-to-charge ratio as MS intensity
signal [242].

The method used in this thesis is Quadrupole Mass Spectrometry (QMS),
whereupon its namesake comes from the detector’s use of four parallel rods,
through which incoming ions’ trajectories are modified to enable mass selection
[242]. Two of the parallel rods are put under a combined DC and AC potential,
with the other two remaining parallel rods also put under the same combined
potential, such that each opposing pair of parallel rods has the same combined
potential [242]. This technique utilizes the fact that only particles of a certain
mass-to-charge ratio will successfully travel the entire length of the quadrupole
for a certain ratio of DC and AC voltages and reach the detector, whereas all
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other particles simply collide with the surrounding rods due to their unstable
trajectories [242]. This is shown schematically in Figure 5.1. Indeed, through
solving the relevant Mathieu’s differential equations, the exact trajectories of
particles of well-defined mass-to-charge ratio within a given voltage ratio can
be calculated [242]. Based on these equations, the voltage controller can be set
to ”scan” specific ratios of voltages corresponding to the successful transfer of
particles with given mass-to-charge ratios, by oscillating continuously between
different ratios of voltages [242].

Figure 5.1: Schematic of the function of the mass filter used in a QMS. Ions
pass through four rods which are put under a combined DC and AC potential,
with each pair of rods having the same combined potential. Only particles of a
certain mass-to-charge ratio will successfully travel through the mass filter and
be measured.

Furthermore, it is important to be aware that the QMS filters can only distin-
guish ions by their mass-to-charge ratio, which is a problem if sample particles
or molecules have the same mass but identical mass-to-charge ratio [242]. This
problem can be resolved, as mentioned, by measuring fragments of molecules
that form as a result of electronic bombardment [242]. For instance, if the
sample molecules are N2 and CO, which have the same mass, then they can
be distinguished by analyzing their cracking patterns of N, C and O particles
[242]. In this specific case, then, none of the resulting individual ions have
identical mass or mass-to-charge ratio. However, other issues may occur as
well, such as higher order ionizing events that result in ions being detected as
having higher charge, and therefore lower mass, than they actually do. [241]

Despite its widespread use, technical advancements in quadrupole mass spec-
trometers (QMS) have plateaued, limiting progress in enhancing detection
sensitivity and differentiating weak signals from noise [243], [244]. This stagna-
tion poses challenges in accurately measuring catalytic activity and selectivity
from small quantities of catalyst materials like single atom or nanoparticle
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catalysts [245]–[248]. Addressing this, single particle catalysis aims to analyze
reactions on individual nanoparticles to bypass ensemble averaging [249], yet
such endeavors demand exceptionally sensitive detection methods due to the
minuscule active surface areas involved. Alternative detection methods focusing
on photons or electrons have been explored for their sensitivity and specificity
but lack mass spectrometry’s broad applicability and molecular weight de-
termination capabilities [240], [249]–[253]. Miniaturizing reactors to micro and
nanoreactor scales has shown promise in reducing necessary catalyst surface
areas for measurable QMS signals by concentrating reaction products for ana-
lysis, achieving high sensitivity overall but still orders of magnitude away from
enabling QMS detection of reaction products from single nanoparticles[254]–
[259].

To advance beyond this state of the art, we have in Paper III used nanofluidic
reactors with QMS readout and integrated them with a constrained convo-
lutional denoising auto-encoder, merging nanofluidic reactors’ efficiency with
the QMS’ high resolution and deep learning’s signal processing capabilities.
This novel approach significantly lowers the detection limit of state-of-the-art
QMS by approximately three orders of magnitude, enabling the analysis of
reaction products from single nanoparticles, exemplified by CO oxidation over
a Pd catalyst with an active surface area as small as 0.0072 ± 0.00086µm2

[258], [259]. The use of machine learning in mass spectrometry, although
a relatively new development, has seen rapid growth [260]–[267]. However,
applying machine learning specifically to extract small QMS signals from noise,
again as demonstrated in Paper III, is an entirely novel exploration.

5.2 CO Oxidation on Palladium Nanoparticle
Catalysts in Nanofluidic Reactors

In Paper III, experiments were conducted on Pd nanoparticle catalysts within
nanofluidic reactors using CO oxidation as model reaction [268]. The experi-
mental sequence involved 15 min CO/O2 mixture pulses at 6% concentration,
alternating with 15 min Ar pulses, across temperatures from 280◦C to 450◦C.
The relative CO concentration αCO was varied in steps of 0.05 within the range
of 0 ≤ αCO ≤ 1 (Figure 5.2A,D,G). For a sample with n = 1000 nanoparticles,
a clear QMS response was observed for all αCO values at 450◦C, with the
reaction rate peaking at αmax

CO = 0.65, indicating minimal CO poisoning and
negligible mass transport gradients. A decrease in reaction temperature led to
reduced reaction rates and a shift in αmax

CO towards lower values, aligning with
established CO oxidation behavior on Pd catalysts [269], [270].

Reducing the active catalyst surface to n=10 and n=1 nanoparticles resulted
in CO2 reaction product pulses that were orders of magnitude smaller than
for n=1000, with signals nearing the QMS noise floor at reduced temperatures.
The comparison of CO2 counts vs. αCO for n=1000 and n=10 demonstrated
qualitative similarity at 450◦C, but a larger variance for n=10, especially at
low and high αCO values (Figure 5.2B,E,H). At 280◦C, for n=10, the signal
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approached the noise floor, indicating the challenge of detecting CO2 from the
reaction at lower particle numbers.

To address signal detection amidst noise, like in the present case, various
denoising strategies like digital filtering, Fourier and wavelet transforms, and
statistical methods such as PCA were considered. However, these methods have
significant limitations, such as the tendency to remove frequency bands of the
underlying signals or fail under certain signal/noise assumptions. Consequently,
a Denoising Auto-Encoder (DAE), an artificial neural network, was employed
to differentiate between complex noisy data and the underlying signal, trained
using examples of simulated signals with experimentally measured noise. The
DAE’s ability to reconstruct the original signal, even with a Signal-to-Noise
Ratio (SNR) below 1, was enhanced by constraining the latent space to a
step function distribution, ensuring robust representations of the underlying
signal and ultimately allowed us to detect the QMS signal from a single Pd
nanoparticle in Paper III [271].

5.2.1 Autoencoders for Denoising

Deep auto-encoders are designed around a basic principle that involves a
downsampling encoder network coupled with an upsampling decoder network,
without any direct connections between the two. The primary role of the encoder
is to condense the input data into a more compact representation within a
dimensional space known as the ”latent space.” This space preserves only
the most critical features of the data. Subsequently, the decoder utilizes this
condensed representation to reconstruct the original input. Whereas traditional
auto-encoders strive for an exact replication of the input data, denoising auto-
encoders (DAEs) are engineered to recover the significant elements of the input
while eliminating noise or other contamination.

DAEs particularly shine in scenarios where the signal and noise are distinctly
separable and not intertwined. Such situations often arise in environments
where underlying signals are obscured by higher-frequency noise. Neural
networks, with their fundamental function as piecewise linear approximators,
are inherently more adept at identifying and modeling lower-frequency patterns
than higher-frequency ones, rendering them well-suited for most denoising tasks.
Specifically, DAEs demonstrate optimal performance when the higher-level
representations of a signal remain stable despite data corruption, i.e., when
there’s no correlation between noise and signal [272].

While understanding the precise mechanics of neural networks can be difficult,
adopting a probabilistic perspective offers a more accessible interpretation of
DAEs. By learning to invert the process of corruption - effectively deducing
the original signal from its noisy counterpart - DAEs can be understood as
algorithms trained to reconstruct the underlying patterns or distributions
within the data. Table 5.1 captures this concept, illustrating how DAEs are
trained to approximate the original data distribution by alternating between
sampling from the corrupted and the estimated clean data. This approach
suggests that DAEs serve as a potent means to delve into the data-generation
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Figure 5.2: Direct comparison between standard and DAE-enhanced QMS
readouts for CO oxidation on 1000 and 10 Pd nanoparticles in a nanofluidic
reactor. (A) Baseline-adjusted (BA) raw QMS counts for CO2 (grey line)
alongside the average CO2 signal (blue line - calculated as the mean BA-count
per pulse) for n = 1000 Pd nanoparticles over the full αCO range, αCO ∈ (0, 1),
at 450◦C. (B) BA-QMS counts for CO2 (grey line) and the average CO2 signal
(green line) for n = 10 Pd nanoparticles throughout the αCO range and at 450
◦C. (C) BA-QMS counts for CO2 (grey line) with the CO2 signal refined by the
DAE (orange line) for n = 10 over the complete αCO range, αCO ∈ (0, 1), and
at 450◦C. (D-F) Identical to (A-C) but conducted at 280◦C. (G) BA-average
CO2 counts for αCO sweeps at reactor temperatures from 280◦C to 450◦C
in 20◦C increments for n = 1000. Red dots highlight the αCO value at the
peak reaction rate, αmax

CO . (H) Analogous to (G) but for n = 10, with 10◦C
temperature intervals. (I) Similar to (H), but with the QMS signal refined by the
DAE. (J) αmax

CO values derived from (G) for all tested temperatures for n = 1000,
displayed as a function of αCO. A consistent stoichiometric αmax

CO value of
0.65 is observed down to T = 360◦C. Below this temperature, a systematic
shift to lower αmax

CO values is noted, attributed to increased CO poisoning. (K)
Comparable to (J) but for n = 10. A similar trend as seen with n = 1000
is observed, albeit with a greater variance in data points. (L) Equivalent to
(K) but using the DAE-refined QMS signal from (I). The uncertainty in αmax

CO

values is notably reduced, and the temperature-dependent trend of αmax
CO for both

n = 1000 and n = 10 now closely aligns.
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process itself. By corrupting the random variable X (signal) into X̄ through the
distribution C(X̄|X), DAEs essentially aim to estimate the reverse conditional
distribution P (X|X̄) [272]. In [272], it is demonstrated that integrating this
reverse distribution estimator P (X|X̄) with the known corruption process
C(X̄|X) enables a straightforward Markov chain, alternating between sampling
from P (X|X̄) and C(X̄|X) (analogous to encoder/decoder operations), to
discover the intrinsic signal distribution P (X). Consequently, DAE networks
are interpreted to approximate the underlying data-generating process, with a
simple Markov chain that toggles between the denoising model and corrupting
distribution converging to this estimator.

Algorithm 1 THE GENERALIZED DENOISING
AUTO-ENCODER TRAINING ALGORITHM
requires a training set or training distribution D of examples X,

a given corruption process C(X̃ | X) from which one can sample,

and with which one trains a conditional distribution Pθ(X | X̃)
from which one can sample.
repeat
- sample training example X ∼ D
- sample corrupted input X̃ ∼ C(X̃ | X)

- use (X, X̃) as an additional training example towards minimizing the

- expected value of log Pθ(X | X̃), e.g., by a gradient step with respect to θ
through the negative log likelihood loss, until convergence of training.

Table 5.1: The Generalized Denoising Auto-encoder Training Algorithm.

5.2.2 A Constrained Denoising Auto-Encoder to improve
the QMS Limit of Detection

The DAE processes the experimentally obtained QMS signal, which includes
intrinsic measurement noise, potential noise from the nanoreactor setup (such
as slight CO2 concentration fluctuations due to gas impurities or minor leaks),
and the actual CO2 signal from the catalytic reaction on the Pd nanoparticle(s).
This aggregate signal is compressed by an encoder Eθ into a latent space at
the bottleneck, where a consistency loss constrains it to adopt a step function
distribution. Subsequently, this compressed representation is expanded by a
decoder Dθ to reconstruct the underlying signal, effectively separating the
true CO2 signal from the observed noise. Through this architecture, the
DAE is adept at learning complex non-linear relations between the noise
and the underlying signal, enabling it to manage the types of noise-signal
interferences that may challenge traditional data analysis or noise reduction
methods. The model used in Paper III is constructed to process inputs matching
the entire duration of a single αCO sweep. The encoder portion is built
from seven convolutional layers, with each layer comprising 32 neurons and
employing a kernel size of 9. Max-pooling steps are interspersed between these
layers to ensure efficient data compression. The Leaky Rectified Linear Unit
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Figure 5.3: The constrained denoising auto-encoder. We aim to accurately
capture the CO2 production rate’s step functions over time, a task complicated
by the presence of both correlated and uncorrelated noise in the QMS readings.
To mitigate this, a denoising autoencoder is deployed, taking the QMS data as
input and distilling it down to a core representation of the signal, followed by
its reconstruction without the noise. This approach focuses on restoring the
original signal, rather than the noise-embedded QMS output. For training, the
denoising autoencoder uses a standard L2 norm to compare the reconstructed
signal to the actual underlying signal, while an L1 norm and a consistency loss
are applied to the latent space to ensure it accurately represents the signal’s
structure.
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(LeakyReLU) activation function was used for its ability to manage complex
non-linear patterns while preventing issues such as mode collapse and the
vanishing or exploding gradient problems. Following these layers, the data is
condensed into a latent space representation via a dense layer, which scales down
its dimensionality to correspond with the αCO sweep steps. This compact form
is then reshaped and merged with the encoder’s output, maintaining both the
quantitative and structural details of the signal for the decoder. The decoder,
mirroring the encoder, reconstructs the signal using seven convolutional layers
followed by upsampling operations to ensure precise data recovery. The output
is then a reconstructed version of the initial input sans noise. A consistency loss
function was also integrated to improve model precision, comparing average
values across certain segments of the reconstructed and latent space data to
ensure structural alignment with the original input. This structure manages to
reduce noise, preserve features, and maintain data consistency.

5.2.3 Synthetic Data Generation

The framework employs two generators: one for the base signal and another
for noise. Noise generation precedes signal generation and is characterized
by its standard deviation and the morphology and timing of the gas pulses
in the experiment to be simulated. Initially, it simulates common stochastic
variations observed in QMS readings, such as thermal noise, environmental
changes, flicker noise, shot noise, and ion feedback noise, using a Gaussian
distribution to cover a wide range of white noise effects.

The signal generator produces a step function with a selectable signal-to-noise
ratio SNR =

µsignal

σnoise
, set during training to align with the SNR observed in

1-10 Pd nanoparticle reactor outputs given the specified noise profile. The
steps in the function maintain a consistent on-off pattern, though each step
carries a randomly assigned signal magnitude, avoiding any biased assumption
about the relationship between consecutive pulses within the same function.
Some representative samples of this training data are shown in Figure 5.4.

5.2.4 Deep Learning Training

The training process happens in two stages. Initially, a curriculum learning
strategy is applied to signals artificially generated atop Gaussian-distributed
noise with a pre-set SNR, chosen from a uniform distribution between (0.95, 1)
to reflect the peak catalytic activity measured in the n = 10 Pd sample at
T = 450◦C. This SNR range gradually decreases by 0.05 down to a minimum
of 0 with each training cycle, facilitated by an early stopping criteria set
at 32 epochs. This approach mitigates the risk of vanishing gradients and
mode collapse by avoiding direct training on data with extremely low SNRs.
Generating data across a spectrum of noises and signal patterns enhances the
model’s robustness and ability to learn denoising functions that generalize well.

Secondly, all subsequent training on artificial signal patterns within an SNR ∈
(0, 1) range, spanning the entire spectrum of SNRs considered in this study,
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Figure 5.4: Representative Training Data. A selected sample of the training
data, where panels (A-C) feature artificial QMS outputs for SNR ∈ [0, 0.1, 0.2],
achieved by overlaying artificially generated signals atop artificially pro-
duced noise. Similarly, panels (D-F) present artificial QMS outputs for
SNR ∈ [0.3, 0.4, 0.5], constructed by combining artificially generated sig-
nals with experimentally recorded noise from a typical CO oxidation sequence
conducted at T = 40◦C, a temperature at which (almost) no reaction is expected
to occur. It’s important to note that the SNR, along with the characteristics of
both noise and signal, are varied randomly throughout the training process.
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is overlayed on experimentally measured noise profiles. This refinement step
adapts the network to effectively handle noise distributions specific to the
experimental settings during inference. Here, the noise model represents the
output from a CO oxidation experiment using a n = 0 Pd sample chip at
T = 40◦C.

In machine learning models, the loss function measures the discrepancy between
the predicted outputs and actual values and shapes whose functions the models
learn to optimize towards. Adopting the framework of a generalized denoising
autoencoder as described in [272] and shown in Table 5.1, our primary loss
function should be the negative log-likelihood (NLL).

In the context of regression tasks, NLL loss often becomes relevant under
certain probabilistic models of noise or prediction errors. The adoption of NLL
in regression is typically predicated on the assumption that the residuals (the
differences between predicted and actual values) are distributed according to a
Gaussian (or normal) distribution. This leads us to the Mean Squared Error
(MSE) loss, defined as:

MSE(θ) =
1

N

N∑

i=1

(yi − fDθ(xi; θ))
2 (5.5)

where yi denotes the actual value for the i-th data point, fDθ(xi; θ) is the
prediction of the decoder for the i-th data point, parameterized by θ, and N
represents the total number of data points.

Given the Gaussian noise premise, MSE emerges naturally as the NLL. To see
this, the likelihood of a single observation is given by the Gaussian probability
density function:

L(yi|xi; θ) =
1√
2πσ2

exp

(
− (yi − fDθ(xi; θ))

2

2σ2

)
(5.6)

Taking the negative logarithm and disregarding constants not depending on θ
(as they do not influence optimization), we obtain a cost that is proportional
to MSE [273], also known as the L2 or L2 norm.

Moreover, to incorporate the consistency loss within the autoencoder’s latent
space, we apply an MAE (Mean Absolute Error, or L1 norm) directly between
a compressed vector representation of the latent space and the actual values of
each CO2 pulse from the synthetic signal.

MAE(θ) =
1

n

n∑

i=1

|yi − fBθ(xi; θ)|, (5.7)

where yi represents the actual value for the i-th data point, fBθ(xi; θ) is
the representation of the autoencoder’s latent space for the i-th data point,
parameterized by θ, and n is the number of CO2 pulses.
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Subsequently, we calculate the L1 norm between these estimates and the
mean predicted output for each CO2 pulse, promoting consistency between the
decoder’s ultimate predicted output and its corresponding representation in
the latent space of the autoencoder.

This loss is formalized as:

Closs(θ) = MAE
(
fBθ(xi; θ), µ

(
fDθ(xi; θ)pulse[i]

))
(5.8)

Here, µ
(
fDθ(xi; θ)pulse[i]

)
denotes the average output of the decoder across the

i-th pulse.

5.2.5 Resolving CO2 Reaction Product formed on a single
Pd Nanoparticle using the DAE

Having verified the Denoising Auto-Encoder (DAE)’s capacity to effectively
reduce noise in the CO2 QMS signal, we proceeded to test its performance on
an even smaller scale: a single Pd nanoparticle with an approximate surface
area of 17000 nm2. This experiment involved a nanofluidic chip with a single
nanoparticle (n = 1) and an empty chip as a control (n = 0). At 450◦C, the
αCO sweeps for both n = 0 and n = 1 exhibited similar small, stochastic
CO2 pulses in the standard analysis, suggesting background CO2 levels in the
reactant gas mixture and indicating the challenge of discerning CO2 produced
by the single nanoparticle from QMS noise.

Applying the DAE to the n = 1 data at 450◦C, a clear trend of CO2 counts
was observed along the αCO sweep, peaking at a stoichiometric αmax

CO = 0.65,
aligning with results from larger sample sizes (n = 10 and n = 1000) (Figure
5.5D). For the n = 0 control, the DAE processed data displayed nearly flat
baselines at zero counts, demonstrating the DAE’s ability to filter out noise
(Figure 5.5E).

Extending the DAE application to n = 1 across temperatures from 330◦C to
450◦C, we observed the expected reaction rate increase and subsequent decrease
along the αCO sweep, with CO2 counts around 6, roughly ten times lower
than for n = 10 at 450◦C, consistent with the reduction in active surface area
(Figure 5.5F). A shift in αmax

CO to lower values was noted at 410◦C, indicating
temperature-dependent reaction behavior before dropping below the single
count detection limit. Analysis of the n = 0 control consistently showed counts
near or below the detection limit, validating the DAE’s resolution capabilities
(Figure 5.5F).

In comparison with n = 10 and n = 1000 data, αmax
CO values for the DAE-

denoised data across 400 ≤ T ≤ 450◦C were similar for all samples, closely
matching the stoichiometric value of αmax

CO = 0.66,demonstrating consistent
reaction conditions across different particle numbers (Figure 5.5G). Additionally,
CO2 counts at αmax

CO , normalized by the number of particles, indicated direct
scaling of QMS counts with catalyst surface area, within expected uncertainty
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Figure 5.5: Online Mass Spectrometry from a single Pd Nanoparticle. (A)
QMS readings for CO2 (grey line) combined with the average CO2 signal (green
line), calculated as the mean count for each pulse from a single (n = 1) Pd
nanoparticle, over the full αCO spectrum, where αCO ∈ (0, 1), at 450◦C. (B)
Identical to (A), but for an empty nanochannel, denoted n = 0. Notably, both
n = 1 and n = 0 display a similar stochastic pattern in CO2 pulse appearance
under conventional analysis. (C) Average BA-CO2 counts per αCO pulse,
derived using standard analysis across the entire αCO range, αCO ∈ (0, 1), and
at 450◦C, for both n = 0 (black lines) and n = 1 (green lines). The procedure
involved 7 consecutive αCO sweeps for n = 1, and 5 for n = 0. A notable
finding is the consistent reproducibility of the αCO sweeps for both conditions
and the lack of a distinct activity trend based on αCO for the single nanoparticle
sample, despite typically showing slightly higher counts than the empty control.
(D) Similar to (A), but showcasing DAE-denoised BA-QMS CO2 readings
(purple line), where the DAE reveals significantly smaller, yet more consistent
CO2 pulses compared to standard analysis. (E) As in (D), but for an empty
nanochannel (n = 0). The DAE analysis yields a consistently flat baseline at
zero counts for the empty channel. (F) Analogous to (C), but applying DAE-
denoised data, where discernible reaction rate peaks are identified for n = 1
(purple curves), with αmax

CO observed between 0.65 and 0.6 across temperatures
from 450◦C down to 410◦C (inset), aligning well with prior findings for n = 10
and n = 1000. At reduced temperatures, and for n = 0 (black lines, indicative
of several sweeps at 450◦C), the DAE reports counts < 1, deemed physically
implausible, thus establishing the detection threshold. (G) αmax

CO for n = 1000
(blue), n = 10 with DAE-denoising (orange), and n = 1 with DAE-denoising
(purple) across the temperature window of 400 ≤ T ≤ 450◦C, the range wherein
the n = 1 DAE-signal surpasses the detection floor. (H) Particle-normalized
CO2 counts at αmax

CO for n = 1000 (blue), n = 10 post-DAE (orange), and n = 1
post-DAE (purple) within the temperature range of 400 ≤ T ≤ 450◦C.
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due to slight variations in nanoparticle sizes stemming from the fabrication
process of the fluidic chips, since different such chips were used for n = 0, n = 1,
n = 10 and n = 1000, respectively (Figure 5.5H).



Chapter 6

Summary of Included
Papers

6.1 Label-free nanofluidic scattering microscopy
of size and mass of single diffusing bio-
molecules and biological nanoparticles

This study presents Nanofluidic Scattering Microscopy (NSM) as a label-free
technique designed for real-time imaging and analysis of single biomolecules
and biological nanoparticles (BNPs) in solution. NSM addresses the limitations
of traditional fluorescence microscopy, which often requires fluorescent labeling
that can alter the properties of the target molecules. By confining biomolecules
within a nanofluidic channel, NSM significantly enhances their optical contrast,
enabling the accurate determination of their molecular weight (MW) and
hydrodynamic radius (Rs) through scattering analysis.

NSM’s capabilities were demonstrated using a range of biomolecules, including
proteins, DNA, and extracellular vesicles (EVs). The technique was able to
identify distinct molecular populations, such as monomers and dimers, with
high precision. For example, the study identified protein dimers of thyroglobulin
and ferritin with peaks at approximately double the expected MW and about
1.3 times the expected Rs, highlighting the sensitivity of NSM in detecting
molecular assemblies. Moreover, when applied to complex biological samples
like cell culture media, NSM successfully differentiated between lipoprotein
particles and EVs based on their size and scattering properties, underscoring
its versatility in analyzing mixed samples.

A crucial advancement in this study was the integration of deep learning (DL)
methods into the NSM data analysis pipeline. By employing machine learn-
ing algorithms, particularly for interpreting the light-scattering patterns from
biomolecules, the study achieved significant improvements in the speed, accur-
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acy, and precision of MW and Rs measurements. The DL-enhanced analysis
was particularly effective for smaller biomolecules, which are challenging to
characterize using conventional techniques. This approach not only improved
the resolution of NSM but also facilitated the real-time tracking and charac-
terization of biomolecular dynamics, aggregation states, and conformational
changes.

The results demonstrate NSM’s potential to transform biological research by
enabling the label-free characterization of biomolecules, monitoring protein
interactions, and analyzing cellular secretomes with unprecedented detail. The
combination of NSM and DL opens up new possibilities for studying protein
dynamics, enzyme functions, and the behavior of therapeutic agents in biological
contexts, making it a valuable tool for molecular diagnostics and drug discovery
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6.2 Neural network enabled nanoplasmonic hy-
drogen sensors with 100 ppm limit of detec-
tion in humid air

In this paper, we focused on addressing a critical challenge in the field of
hydrogen safety sensors, particularly their performance under high humidity
conditions. Recognizing the expanding role of hydrogen technologies and
the inherent risks due to hydrogen’s high flammability, our work centered on
developing an optical nanoplasmonic hydrogen sensor that functions effectively
in environments with elevated humidity levels.

The cornerstone of the study was the design and testing of a sensor based
on Pd70Au30 alloy nanoparticles. This choice was motivated by the alloy’s
proven sensing capabilities under dry conditions and its ability to mitigate the
intrinsic hysteresis found in pure Pd. The sensor’s performance was evaluated in
varying humidity conditions, revealing a significant challenge: at ambient sensor
operation temperatures, even 20% relative humidity substantially impaired
the sensor’s performance, with complete deactivation observed at 80% relative
humidity.

To overcome this limitation, we first explored the effect of increasing the sensor’s
operating temperature. This approach was predicated on shifting the surface
equilibrium coverage of molecular species present on the sensor’s surface in
humid conditions, favoring hydrogen over water. This strategy enabled efficient
hydrogen dissociation and absorption into the nanoparticles, restoring robust
sensor response even at 80% relative humidity. However, a notable drawback of
this method was the reduced absolute amplitude of sensor response to specific
hydrogen concentrations, a consequence of the temperature-dependent solubility
of hydrogen in Pd and its alloys.

To further enhance the sensor’s capabilities, I incorporated deep learning tech-
niques, employing a Deep Dense Neural Network (DDNN) and a Transformer
architecture. This methodology allowed for a more comprehensive analysis
of the sensor’s spectral data, significantly improving the limit of detection
(LoD). The deep learning-based approach achieved LoDs between 100 – 600
ppm H2 in 80% RH in synthetic air for operating temperatures of 80 – 130 ◦C.
Consequently, the sensor not only met but exceeded the U.S. Department of
Energy’s performance target for LoD in high humidity conditions.

Additionally, we conducted a long-term stability test of the sensor operating
in 80% RH, which showed no signs of degradation over a week, maintaining
a directly measured LoD of 0.06% H2. This test employed a Transformer
architecture for its ability to handle complex time-series analysis. One critical
insight is that sensor performance, when based on deep learning models like the
Transformer, can deteriorate if the sensing environment varies significantly from
the conditions used in the training data. Addressing this, I demonstrated that
re-training the model with data inclusive of these new conditions significantly
improved performance, achieving a record LoD of 100 ppm H2 at 80% RH.
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This study contributes a novel, highly effective solution for hydrogen detection
in high humidity environments, addressing a significant challenge in the de-
ployment of hydrogen technologies. This work not only advances the field of
hydrogen safety sensors but also has broader implications for ensuring safety
in the expanding realm of hydrogen-based applications.

6.3 Deep-learning enabled mass spectrometry
of the reaction product from a single cata-
lyst nanoparticle

The key innovation in this research was the combination of nanofluidic reactors
with deep learning, particularly a constrained denoising autoencoder (DAE),
to enhance the resolution in mass spectrometry for analyzing small amounts
of catalytic reaction products in the gas phase. This approach allowed for
a substantial reduction in the required catalyst surface area for online mass
spectrometric analysis, down to the level of a single nanoparticle.

Unlike traditional auto-encoders that aim to replicate input data precisely,
DAEs focus on restoring only the relevant parts of the input by filtering out
noise and irrelevant information. This approach was particularly effective in our
context, where detecting weak signals amidst high levels of noise was a significant
challenge. To demonstrate the superiority of the DAE, we benchmarked its
performance against established denoising techniques like Fourier transform-
based filtering, Principal Component Analysis (PCA), Total Variation (TV)
denoising, and Wavelet denoising. The DAE consistently showed superior noise
mitigation while maintaining the fidelity of the original signal.

This approach significantly lowered the detection limit of state-of-the-art QMS
by approximately three orders of magnitude, enabling the analysis of reaction
products from single nanoparticles, exemplified by CO oxidation over a Pd
catalyst with an active surface area as small as 0.0072±0.00086µm2 [258], [259].
The use of machine learning in mass spectrometry, although a relatively new
development, has seen rapid growth [260]–[267]. However, applying machine
learning specifically to extract small QMS signals from noise is an entirely
novel exploration.

This research establishes a new method for online reaction analysis in single
particle catalysis, applicable when the quantification of weak signals in over-
whelming noise is of interest. The combination of nanofluidic reactors and deep
learning, particularly through the use of a DAE, significantly improves the
resolution in mass spectrometry, enabling the detection and analysis of reaction
products from catalytic processes occurring on single nanoparticles. This ad-
vancement not only contributes to the field of catalysis but also demonstrates
the potential of deep learning to enhance resolution in analytical techniques
across various scientific disciplines.
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6.4 Accelerating Plasmonic Hydrogen Sensors
in Inert Gas Environments by Transformer-
Based Deep Learning

The research focuses in this manuscript on leveraging a state-of-the-art optical
plasmonic hydrogen sensor, specifically a Pd70Au30 alloy system, integrated
with a deep learning Transformer model we coined Long Short-term Transformer
Ensemble Model for Accelerated Sensing (LEMAS). The primary challenge
addressed in this study is the slow response time of existing hydrogen sensors
in technically relevant conditions, particularly in oxygen-free, inert gas envir-
onments. The Pd70Au30 alloy plasmonic hydrogen sensor was chosen due to
its suitability in such environments and its ability to eliminate the intrinsic
hysteresis characteristic for pure Pd, thus offering a linear optical response
to hydrogen concentration changes. The sensing mechanism is based on the
localized surface plasmon resonance (LSPR) phenomenon, where hydrogen
absorption into the nanoparticle lattice shifts the LSPR peak in the visible
light spectrum.

LEMAS accelerates the sensor’s response by up to 40 times in scenarios sim-
ulating both large and small hydrogen leaks, exploiting the capabilities of
deep learning to predict the hydrogen concentration change before the phys-
ical sensor’s response reaches saturation. This is achieved by learning the
relationship between the full spectral response over time and the hydrogen
concentration. LEMAS not only accelerates response time but also provides
uncertainty estimates, which are crucial for safety-critical applications.

The development of LEMAS involved training and testing on experimental
data generated from various hydrogen concentration profiles in an inert gas
environment. We demonstrated its ability to rapidly discern and quantify
slow, gradual changes in hydrogen concentration, distinguishing these from
noise. This ability is critical for detecting hydrogen at as low concentrations as
possible and as quickly as possible, allowing sufficient time for implementing
safety measures. The results from our study show that LEMAS can significantly
accelerate the response time of the plasmonic hydrogen sensor, particularly in
the low concentration regime. It has proven effective in scenarios of both large,
fast leaks and small, slow leaks. For the smallest H2 concentrations of 0.06%,
the response times ranged between 1.6 s to 3.6 s, compared to 50 s to 85 s for
standard analysis methods, marking a 21 to 40-fold improvement.

This research underscores the potential of deep learning to overcome current
limitations in hydrogen sensor performance, such as slow response times in
technologically relevant sensing environments like inert gas atmospheres. The
integration of LEMAS with plasmonic hydrogen sensors represents a significant
advancement in the field, providing a faster, more reliable detection method
that is critical for the safe implementation of hydrogen technologies.
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6.5 Cross modality transforms in biological mi-
croscopy enabled by deep learning

The review explores the transformation of microscopy images across different
optical modalities through deep learning, advancing multi-modal imaging ana-
lysis. It provides a comprehensive overview of cross-modality transformations
(CMTs), reviewing applications, datasets, and implementations. The focus is on
two primary applications: enhancing image contrast and enhancing resolution.
The paper highlights the significant benefit of CMTs for biologists, enabling
high-contrast and specificity imaging without chemical staining and achieving
super-resolution beyond the limits of diffraction.

Deep learning is central to CMTs, where the networks are trained for image
translation tasks using encoder-decoder-style fully convolutional neural net-
works, such as U-Net, ResNet, and InceptionNet. Loss functions, including
adversarial loss, play a crucial role in training, with Generative Adversarial
Networks (GANs) being particularly effective. Diffusion models, as an alternat-
ive to GANs, offer high-quality images but are computationally expensive. The
review discusses the application of CMTs enabled by these neural networks
in tissue imaging, histology, and cellular imaging. Histological staining, vital
in clinical pathology, encounters challenges with manual chemical staining,
which deep learning models can virtually substitute. Techniques like virtual
staining networks transform unstained samples into stained images, maximiz-
ing information output and easing experimental setups. The use of GANs in
cellular staining enables the replacement of chemical and fluorescent staining
with virtual fluorescence-stained images. Applications include various imaging
modalities like phase-contrast, holographic microscopy and brightfield images.

In molecular imaging, super-resolution (SR) microscopy has seen significant
advancements through DL. The review also surveys the physics of SR and
details DL techniques for transforming images into super-resolved counterparts,
focusing specifically on molecular imaging. Various deep learning approaches
for SR are discussed, including end-to-end low-resolution to high-resolution
mapping, iterative up- and down-sampling, and sequential upsampling. Prolific
architectures like ANNA-PALM, Deep-STORM, and smNet are also highlighted.
The review also addresses challenges in deep learning for microscopy, such as
the need for large training datasets, overfitting, and the importance of transfer
learning. Regularization techniques, data augmentation, and model evaluation
are crucial for robust and reliable models. The potential of deep learning in cross-
modal transformations is underscored, offering transformative advancements in
disease research, drug development, neuroscience, and personalized medicine.
The integration of deep learning into biological microscopy offers non-invasive,
label-free alternatives, impacting various fields and empowering broader research
explorations.
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6.6 Deep Learning Microscopy for Label-free
Biomolecule Weight-and-Size Characteriza-
tion in the Single-kDa Regime

In this study, we developed a method that combines Nanofluidic Scattering
Microscopy (NSM) with Deep Learning (DL) algorithms in the form of a
Hierarchical Vision Transformer (HViT) to enable the label-free characterization
of biomolecules, with a particular focus on those in the sub-10-kDa range,
which is experimentally extremely challenging. This approach addresses the
limitations of traditional optical microscopy techniques, which often require
fluorescent labeling or surface binding, by facilitating real-time, label-free
analysis of small biomolecules.

We enhanced the capability of NSM to accurately determine the molecular
weight and hydrodynamic radius of single biomolecules. By applying the HViT
to interpret complex light scattering patterns from nanofluidic channels, we
achieved detailed study capabilities for smaller biomolecules, including specific
proteins and peptides, which were previously challenging to analyze due to
their size and behavior in solution.

The methodology not only extends the capabilities of label-free biomolecule
characterization but also contributes to biological research, potentially facil-
itating new discoveries in areas such as protein dynamics, enzyme functions,
and therapeutic agent development. Additionally, our approach addresses
the limitations of spatial and temporal resolution and the challenges of the
ill-posed nature of microscopy image transformation tasks encountered with
heuristic-based methods in optical microscopy. Through DL, our method effect-
ively denoises low-frequency trends obscured by high-frequency noise, thereby
enabling a more precise characterization of small biomolecules.

This work signifies a contribution to the fields of biological sciences and medical
research, offering a novel method for the analysis of diseases, including cancer
and diabetes, through the study of binding events and environmental effects
on biomolecules.
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Chapter 7

Discussion and Future
Work

7.1 DL for Nanofluidic Scattering Microscopy

NSM has recently been introduced as a technique that enables the label-free
real-time characterization of freely diffusing single biomolecules down to the
tens-of-kDa regime inside nano-sized channels. The focus of near-term projects
in this system can be split in two; firstly, applying the deep learning methods
developed in this thesis to analyze single molecule trajectories to a high degree
of accuracy, precision and detection limit, and secondly to develop new deep
learning methods to enable analysis beyond the single trajectory regime that,
e.g., would enable studies of mixed samples. All the examples brought up in
the sections below are already being worked on or are in early planning stages,
through collaboration with a broad range of research groups and institutions.

7.1.1 Single Molecule Analysis

All projects within this sub-section share one thing in common; they can in
principle be solved by the deep learning tools introduced in this thesis as-is,
including the high precision, accuracy and detection limits said tools entail.
The only required modification is to train the models in the corresponding
parameter range of noise and generated optical response that each inividual
project requires.

7.1.1.1 Insulin

Following the theoretical limits of detection and quantification defined in Paper
VI, accurate characterization of single molecule trajectories below the 10 kDa
regime is possible. Since the iOC of molecules scales linearly with decreasing
nano-channel cross section, smaller channels may also be nanofabricated to
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improve the accuracy of said characterization. Thus, we should expect to be able
to accurately characterize even the protein-hormone insulin with MW ≈ 6 kDa,
particularly important for diabetes research.

7.1.1.2 λ-DNA

Over the past two decades, nanofluidic structures have become a potent plat-
form for in-depth investigation of DNA on the kilo-bp length scale [274]. The
combination of excluded volume and DNA stiffness causes DNA to be stretched
to almost its full length when contained in nano-sized channels [274]. NSM
is therefore an ideal complementary method to study these long DNA struc-
tures, and preliminary results on comparing fluorescently stained λ-DNA to
unstained λ-DNA show that the staining process indeed affects the length and
optical contrast of said molecules. Therefore, to study their properties without
significantly altering them, label-free methods such as NSM are crucial. In this
project, all deep learning models were used as described in this thesis, with the
only difference being that the models were instead trained on the generated
simulated response of λ-DNA in our nano-sized channels. Further measure-
ments will corroborate these results, and lead to the natural continuation of the
project in studying DNA-protein binding events as outlined in section 7.1.2.

7.1.1.3 Stress Granules

Eukaryotic cells respond to stress by forming stress granules, which are ef-
fectively transient membraneless organelles [275]. They have a core-shell
substructure, are made up of messenger ribonucleoprotein complexes, and are
crucial for controlling the rate of protein translation and signaling under stress
[275]. This has significant implications for cancer and neurological illnesses
[275]. The molecular structure of stress granules and their biochemical function
in plant growth and fitness are the subjects of active research, yet no methods
have so far been able to measure each granule individually in a satisfactory
manner [275]. Stress granules, as high-density protein and RNA aggregates
formed by organisms under stress, may be analyzed in an effectively equivalent
fashion to EVs in Paper I through single molecule trajectory analysis in large
channels.

7.1.1.4 Extracellular Vesicles

In Paper I, we introduce NSM as a powerful characterization technique for
EVs, and we expect it to remain a key method for label-free EV analysis in
the future. In the short term, we will use NSM not only to characterize EVs,
but also their secreted contents by use of nanovesicle traps built directly into
the nano-sized channels. Further, as noted in Paper I, precise conversion of
iOC into MW is more complicated for biological nanoparticles, such as EVs,
than for single molecules due to a large variety of molecular constituents with
different optical properties whose representation and spatial distribution might
be different for each BNP. Therefore, we did not further explore the content
of the EVs via the measured iOC. Further theoretical work suggests that
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correcting for such effects is possible through modelling the electromagnetic
properties of EVs, which would enable more informative BNP characterization
in general.

7.1.2 Beyond Single Molecule Analysis

Going beyond the analysis of isolated trajectories of single molecules or particles
requires the development of new deep learning models. Unpublished results on
simulated data show that node-regression-based graph neural networks (GNNs)
are ideal for high-density samples which require high-fidelity output temporally
and spatially through the channel [151]. In principle, GNNs retain the inherent
benefit of a CNN approach in being able to consider an entire trajectory
simultaneously in its prediction of its properties, without the disadvantage of
having to consider an entire kymograph (or portion of a kymograph). Thus,
each frame of a trajectory can be given a separate prediction of its properties,
whilst still considering the entire connected trajectory in the prediction. This
approach is ideal in cases where we expect molecule trajectories to change over
time, as is the case for enzyme-molecule interactions, DNA-protein binding
events and for investigations of conformational changes in trajectories over
time, among other applications.

7.1.2.1 Protein-Protein Interactions

When performing their tasks in vivo, proteins hardly ever behave as separate
species [276]. In fact, it is estimated that over 80% of proteins have been found
to function in complexes rather than alone [276]. Studying how protein-protein
interactions impact their function is crucial for determining how proteins work in
their natural environment, i.e. in the inside of cells. Further, to understand the
cell’s biochemistry, it would be incredibly helpful to characterize the interactions
between the proteins in said cell [276]. There are numerous approaches to
determine the outcome of an interaction between two or more proteins that
has a clear functional goal.

Cell-to-cell contacts, metabolic regulation, and control of developmental pro-
cesses are only a few of the biological activities that are handled by said
protein-protein interactions [277]. These interactions can be categorized in a
number of ways based on their differing structural and functional traits [277].
For instance, they can be homo- or heterooligomeric depending on their interac-
tion surface, obligate or non-obligate depending on their stability, and transient
or permanent depending on their persistence [277]. Any combination of these
three distinct pairs may be used to characterize a certain protein-protein inter-
action. For instance, while temporary contacts likely create signaling pathways,
long-term interactions are more likely to result in a stable protein complex.
NSM is a promising method to study such interactions, and the aforementioned
GNN approach is an ideal analysis tool for such an application. Another project
along the same focus is to study enzyme-molecular interactions, i.e., how an
enzyme (catalyst) affects the properties of a biomolecule when bound to it, as
is the case with CRISPR/Cas-9 binding events.
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7.1.2.2 λ-DNA - CRISPR/Cas-9 Protein Binding Events

Proteins are lengthy chains of amino acids connected by peptide bonds and, as
established in section 3.1.3, are versatile and serve a number of purposes as
building blocks of the cell. Transporter proteins, receptor proteins, structural
proteins, and enzymes are a few of the various protein subgroups [278]. The
latter work by speeding up chemical reactions and highly selectively controlling
a wide range of functions within living cells [278]. They are also crucial to
the replication, repair, and alteration of DNA [278]. The Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) associated protein-9 nuclease
(Cas9) is one example of an enzyme involved in DNA modification [279]. Cas9,
effectivelly a gene-editing tool, can catalyze extremely sequence-specific double
stranded breaks by cleaving links in the DNA backbone [279]. The enzyme
has many scientific uses, such as gene targeting, control, and involvement in
the adaptive immune system of bacteria and archaea [279]. The Cas9 enzyme
uses an RNA molecule, known as Guide RNA (gRNA), with a 20 bp motif
corresponding to the site of interest to identify the precise DNA sequence at
which it will cause a double-stranded break with very high precision. Direct
detection and characterization of these binding events, as principally enabled
by NSM, is a highly relevant and sought-after feature in the fields of gene
editing and genomic mapping [278]. To study how active each binding site is
over time, GNNs are again an ideal solution.

7.1.2.3 Temperature Influence on Oligomeric State of Protease

Protein quality control is a crucial biological task primarily carried out by
a wide variety of distinct proteases [280]. One of these, the DegP protease,
is essential to the Escherichia coli protein quality control system because it
eliminates unfolded proteins or stops them from aggregating [280]. Upon
temperature activation, this protease is expected to go through extensive
oligomeric state modifications, including massive structural transitions from
its hexameric resting form via a trimeric intermediate state toward the higher
oligomeric states [280]. However, despite being thoroughly studied and having
a number of high-resolution crystal structures of DegP in its many states, there
are still many unanswered concerns regarding how its structural transitions are
actually accomplished [280]. Prior studies using NMR diffusion and Cryo-EM
have been unable to elucidate these questions [280], but temperature-controlled
NSM is in contrast quite promising. To study the structural transitions over
time (with varying temperature), the aforementioned GNNs are ideal.

7.1.3 Long-term Future Outlook

In terms of DL advancement, recent progress in geometric DL for particle
tracking and characterization in terms of GNNs represents promising com-
plementary methods for use in high-fidelity high-density studies [281], where
the CV pipeline introduced in this thesis will struggle. It has recently been
independently shown [151] that reconstructing the trajectories of diffusive
particles is not a necessary requisite to accurately calculate the properties of
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the underlying stochastic process which gave rise to the trajectory. Machine-
learned models, like the ones trained in this thesis, have the potential to exploit
this hidden information to push the boundaries of particle characterization
methods in the regime of low SNR where heuristic-based methods often struggle
significantly. Since the models are trained entirely on simulated data, their
performance is also technically limited by available computational power and
are thereby expected to improve in tandem with the breakneck rates at which
newer generations of parallelizable (GPU) and tensor-processing-optimized
(TPU) chips operate and are developed. Therefore, we expect that beyond
enabling the analysis of biomolecules in the single-digit kDa regime, these DL
tools will become ever-more crucial in the complex and versatile analysis that
NSM and other modern methods of optical characterization enable.

In its current form, NSM already enables highly accurate label-free and tether-
free characterization of individual biomolecules and biological nanoparticles in
a wide range of biofluids. Advances in terms of instrumentation and DL tools is
expected to push the performance even further, and particularly we expect that
high-throughput and resolution in the single-digit kDa regime will find numerous
bioanalytical applications requiring analysis of highly heterogenous samples,
such as exosome characterization and direct detection of small-molecule binding
events [282]. Further, long-term monitoring of individual biomolecules diffusing
in solution represents a yet unexplored opportunity for studies of conformational
changes, aggregation processes and interactions between individual biomolecules.
In addition, due to minimized dilution of the sample by the nanofluidic platform,
NSM is highly efficient for transporting ultra-low volumes, such as intracellular
content or secreted metabolites of a single cell, thereby paving the way to
real-time label-free single-cell studies. Looking further forward, we expect as
mentioned that NSM will find applications outside the field of bioanalysis, such
as characterization of inorganic nanoparticles, particle counting, and single
particle catalysis [142].

7.2 DL for Nanoplasmonic Hydrogen Sensing

In our recent works, we have embarked on an exploration of the intersection
between artificial intelligence (AI) and nanoplasmonic sensing, particularly
focusing on the realm of hydrogen sensors in inert gas environments. Our
studies demonstrate the profound impact of integrating tailored AI models,
specifically the Long Short-term Transformer Ensemble Model for Accelerated
Sensing (LEMAS), with plasmonic hydrogen sensors. This approach signific-
antly enhances sensor responsiveness and accuracy, enabling up to a forty-fold
acceleration in response times and eradicating the intrinsic pressure dependence
that has traditionally limited metal hydride-based sensors. Such advancements
are crucial for applications in environments devoid of oxygen, where rapid and
reliable hydrogen detection is essential for safety.

Looking ahead, the implications of our research extend far beyond hydro-
gen sensing. The principles underlying the AI-enhanced methodologies we’ve
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developed can be adapted and applied across a wide spectrum of chemical
and environmental sensing tasks. The core achievements—markedly improved
sensor response times and operational efficacy under technologically relev-
ant conditions—pave the way for more secure and efficient hydrogen energy
technologies and related applications.

Furthermore, our work lays a foundational blueprint for future research aimed
at leveraging AI to push the boundaries of traditional sensor technology. By
demonstrating the versatility of LEMAS and similar AI models across different
sensing platforms and environments, we highlight the potential for a trans-
formative impact on gas sensing and beyond. The integration of AI-driven
enhancements into sensors for a broad range of applications—from envir-
onmental monitoring and industrial safety to healthcare diagnostics—holds
promise for significant breakthroughs.

Our future research endeavors will likely concentrate on refining AI models
to achieve even quicker response times, enhancing the robustness and depend-
ability of sensors across an expanded range of environmental conditions, and
broadening the spectrum of detectable substances. The synergy between ma-
terials science, chemistry, and AI research will be instrumental in driving these
advancements, as will the development of sophisticated, miniaturized sensor
platforms capable of seamless integration with AI algorithms.

Our work in combining AI with nanoplasmonic sensing marks a significant
stride toward overcoming longstanding limitations in sensor technology that
we postulate cannot be overcome by traditional means of sensing material or
transduction mechanism engineering alone. As we look forward, the continued
evolution of this interdisciplinary approach promises not only to enhance the
safety and efficacy of hydrogen energy systems but also to spur innovations
across diverse domains where precise and rapid detection of chemical species is
of paramount importance.

7.3 DL for Single Particle Catalysis

In our study, we introduce an innovative methodology that employs nanofluidic
reactors in conjunction with deep learning to significantly advance the ability
to study the reaction output from single nanoparticle catalysts. Specifically,
by leveraging a constrained denoising autoencoder, we enable the analysis of
gas-phase reaction products via mass spectrometry at the nanoscale. This
technique focuses on catalyst surface areas as diminutive as individual nano-
particles, approximately 60-70 nm in diameter. The use of nanofluidic reactors
concentrates reaction products, while the autoencoder isolates relevant signal
data from noise. This approach is particularly applied to the CO oxidation on
Pd nanoparticles with an area of ≈ 0.0072 ± 0.00086µm2. Our experiments,
conducted over a temperature range from 280 ◦C to 450 ◦C and with varying
numbers of Pd particles, have delineated a clear dependence of reaction rates
on the CO:O2 ratios. The integration of deep learning has been instrumental in
accurately analyzing data from experiments involving even a single nanoparticle.
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This capability to scrutinize catalytic activity at such a granular level could
potentially lead to the development of catalysts composed solely of highly
efficient nanoparticles, thereby enhancing overall catalytic efficiency. Looking
forward, the research opens several promising avenues for exploration. Notably,
the potential to correlate the nanoplasmonic response of catalytic particles
directly with their catalytic activity offers a novel insight into the interplay
between the physical and chemical properties of nanoparticles and their efficacy
in catalysis [283]. The versatility of our platform suggests it could be adapted for
a wider range of reactions beyond CO oxidation, including those facilitated by
metals with significant plasmonic properties, such as Ag in ethylene epoxidation.

Moreover, our methodology presents opportunities for optimizing reactor geo-
metries to facilitate the detection of reaction products from even smaller
nanoparticle groups. The exploration of alternative sensing arrangements,
such as tailored nanoplasmonic structures for enhancing field strengths, could
extend our ability to study catalytic activities on nanoparticles smaller than
currently possible. Additionally, enhancing the nanoreactor platform to accom-
modate high-resolution imaging techniques, like TEM, could provide valuable
morphological insights into catalyst particles at different reaction stages.

Incorporating chemically synthesized colloidal nanoparticles into our experi-
ments could further refine our understanding of catalyst performance, leveraging
the control over particle crystallinity and structure afforded by chemical syn-
thesis. By continuing to develop and refine these techniques, we aim to achieve
a comprehensive understanding of catalyst behavior at the single-particle level,
thereby making significant contributions to the field of catalysis and offering po-
tential pathways for the development of more efficient and sustainable catalytic
processes.
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[115] B. Špačková, H. Klein Moberg, J. Fritzsche et al., “Label-free nanofluidic
scattering microscopy of size and mass of single diffusing molecules and
nanoparticles,” Nature Methods, vol. 19, no. 6, pp. 751–758, 2022, issn:
1548-7105. doi: 10.1038/s41592-022-01491-6. [Online]. Available:
https://doi.org/10.1038/s41592-022-01491-6 (cit. on pp. 35–37,
40, 42, 44, 45, 53, 54).

[116] M. Piliarik and V. Sandoghdar, “Direct optical sensing of single un-
labelled proteins and super-resolution imaging of their binding sites,”
Nature Communications, vol. 5, no. 1, p. 4495, 2014, issn: 2041-1723.
doi: 10.1038/ncomms5495. [Online]. Available: https://doi.org/10.
1038/ncomms5495 (cit. on p. 35).

[117] M. Piliarik and V. Sandoghdar, “Direct optical sensing of single un-
labelled proteins and super-resolution imaging of their binding sites,”
Nature communications, vol. 5, no. 1, pp. 1–8, 2014, issn: 2041-1723
(cit. on p. 35).

[118] P. Dechadilok and W. M. Deen, “Hindrance factors for diffusion and
convection in pores,” Industrial & engineering chemistry research, vol. 45,
no. 21, pp. 6953–6959, 2006 (cit. on p. 36).

[119] J. A. Marsh and S. A. Teichmann, “Structure, dynamics, assembly,
and evolution of protein complexes,” Annual Review of Biochemistry,
vol. 84, no. 1, pp. 551–575, 2015, PMID: 25494300. doi: 10.1146/
annurev- biochem- 060614- 034142. eprint: https://doi.org/10.
1146/annurev-biochem-060614-034142. [Online]. Available: https:
//doi.org/10.1146/annurev- biochem- 060614- 034142 (cit. on
p. 37).

[120] A. Bruce, J. Alexander, L. Julian et al., Molecular Biology of the Cell.
4th edition, 2002 (cit. on p. 37).
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Figure 4: Predictions underlying the results in Figure 2 of the main text, consisting
of predicting hydrodynamic radius of simulated molecules for MW ∈ [∗∗] kDa for
reference channel ChB for trajectory lengths L between 100 and 10000 frames.

variance among all unbiased estimators for that parameter. The amount of data
influences the Fisher information—generally, an increase in data leads to higher
Fisher information, which implies a tighter bound and hence, a reduced potential
estimation error.

5.0.1 Define the Statistical Model

We begin by specifying the probability density function (pdf) or probability mass
function (pmf) of our data, including the scale parameter σ that we aim to estimate.
The choice of model depends on the nature of our data (e.g., normal distribution,
exponential distribution).

Example: Consider a normal distribution with mean zero and unknown scale (stan-
dard deviation) σ:

f(x;σ) =
1√
2πσ

exp

(
− x2

2σ2

)

This model is appropriate for many natural phenomena due to the Central Limit
Theorem [35].
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5.0.2 Find the Likelihood Function

For a sample of independent and identically distributed observationsX = (X1, X2, . . . , Xn),
we construct the likelihood function by taking the product of individual pdfs:

L(σ;X) =
n∏

i=1

f(xi;σ)

Example:

L(σ;X) =

(
1√
2πσ

)n

exp

(
−
∑n

i=1 x
2
i

2σ2

)

5.0.3 Compute the Log-Likelihood Function

Next, we take the natural logarithm of the likelihood function to simplify differen-
tiation:

ℓ(σ;X) = lnL(σ;X)

Example:

ℓ(σ;X) = −n lnσ −
∑n

i=1 x
2
i

2σ2
+ constant terms

5.0.4 Calculate the First Derivative (Score Function)

We differentiate the log-likelihood function with respect to σ to obtain the score
function:

∂ℓ(σ;X)

∂σ
= −n

σ
+

∑n
i=1 x

2
i

σ3

5.0.5 Compute the Second Derivative

We now differentiate the score function with respect to σ to get the observed infor-
mation:

∂2ℓ(σ;X)

∂σ2
=

n

σ2
− 3

∑n
i=1 x

2
i

σ4

13



5.0.6 Calculate the Fisher Information I(σ)

The Fisher Information quantifies the amount of information that our observable
data carries about the unknown parameter σ:

I(σ) = −E

[
∂2ℓ(σ;X)

∂σ2

]

Given that Xi ∼ N(0, σ2) and E[X2
i ] = σ2, we have:

I(σ) = −
(

n

σ2
− 3nσ2

σ4

)
=

2n

σ2

This result is consistent with standard statistical texts [36].

5.0.7 Compute the Cramér-Rao Lower Bound

Finally, the CRLB provides the minimum variance bound for any unbiased estimator
σ̂ of σ:

Var(σ̂) ≥ 1

I(σ)
=

σ2

2n

This implies that no unbiased estimator of σ can have a variance lower than σ2

2n
, as

established in estimation theory [34].

5.1 Cramér-Rao Lower Bound for NSM

In NSM, the intensity of scattered light from biomolecules diffusing in a nanoflu-
idic channel provides insights into molecular weight and hydrodynamic radius. For
NSM, the observed intensity It of the scattered light from a biomolecule within a
nanochannel can be modeled as:

It = cI0L|αt|2
k3

4

where:

• αt = αc+
αm

L2
represents the total polarizability, composed of the polarizability

of the nanochannel αc and the biomolecule αm.

• αm, αc: Polarizabilities of the biomolecule and the nanochannel.

• I0: Incident light intensity.

• k: Wavenumber of the light.

• L: Length of the illuminated part of the nanochannel.

• c: Collection efficiency.

14



5.1.1 Assumptions for the Likelihood Function

Assume the measured intensity It is subject to Gaussian noise. Thus, the probability
density function of observing It given the parameters αm is modeled as:

f(It;αm) =
1√
2πσ

exp

(
−(It − µ(αm))

2

2σ2

)

where:

µ(αm) = cI0L
(
αc +

αm

L2

)2 k3

4

and σ is the standard deviation of the measurement noise.

The log-likelihood function log f(It;αm) is:

log f(It;αm) = −1

2
log(2πσ2)− (It − µ(αm))

2

2σ2

5.1.2 Derivation of the Fisher Information

The Fisher Information I(αm) is defined as the negative expected value of the second
derivative of the log-likelihood with respect to the parameter αm. In the Gaussian
noise model with known variance, the Fisher Information simplifies to:

I(αm) =
1

σ2

(
∂µ(αm)

∂αm

)2

Compute the first derivative of µ(αm) with respect to αm:

∂µ(αm)

∂αm

= cI0L · 2
(
αc +

αm

L2

)
·
(

1

L2

)
· k

3

4

Simplify:
∂µ(αm)

∂αm

=
cI0k

3

2L

(
αc +

αm

L2

)

Note that αt = αc +
αm

L2
, so:

∂µ(αm)

∂αm

=
cI0k

3

2L
αt

Therefore, the Fisher Information is:

I(αm) =
1

σ2

(
cI0k

3

2L
αt

)2
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5.1.3 Cramér-Rao Lower Bound (CRLB)

The CRLB provides a lower bound on the variance of any unbiased estimator of αm:

Var(α̂m) ≥
1

I(αm)
=

σ2

(
cI0k

3

2L
αt

)2

Simplify:

Var(α̂m) ≥ σ2

(
2L

cI0k3αt

)2

This expression shows that the variance of the estimator depends on the true value
of αt, which includes the parameter αm we aim to estimate.

5.1.4 Model for Multiple Measurements

For N independent measurements, the total Fisher Information is:

Itotal(αm) = N × I(αm)

Thus, the CRLB for estimating αm from N measurements is:

Var(α̂m) ≥
1

Itotal(αm)
=

σ2

N

(
2L

cI0k3αt

)2

5.1.5 CRLB for Diffusivity in NSM

The relationship between the diffusivity D and the hydrodynamic radius Rs is given
by the Stokes-Einstein equation:

D =
kBT

6πηRs

Considering the displacement x of a diffusing particle over time t, the probability
density function is:

f(x;D) =
1√
4πDt

exp

(
− x2

4Dt

)

The log-likelihood function is:

log f(x;D) = −1

2
log(4πDt)− x2

4Dt

Compute the first derivative with respect to D:

∂

∂D
log f = − 1

2D
+

x2

4D2t

Compute the second derivative:

∂2

∂D2
log f =

1

2D2
− x2

2D3t
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Calculate the Fisher Information by taking the negative expected value of the second
derivative. Since E[x2] = 2Dt, we have:

I(D) = −E

[
∂2

∂D2
log f

]
=

1

2D2

Thus, the CRLB for a single measurement is:

Var(D̂) ≥ 1

I(D)
= 2D2

For N independent measurements:

Itotal(D) = N × I(D) =
N

2D2

So the CRLB becomes:

Var(D̂) ≥ 1

Itotal(D)
=

2D2

N

5.1.6 Final CRLB Expressions

Var(α̂m) ≥
σ2

N

(
2L

cI0k3αt

)2

Var(D̂) ≥ 2D2

N

5.2 Including Localization Error in CRLB

So far, we have assumed a theoretically optimal but practically impossible local-
ization error of 0. If we include the theoretical limits of localization error,for n
independent displacement measurements over a total observation time T = n∆t,
the CRLB is derived as follows.

Let σL be the standard deviation of the localization error. The measured position
xm(t) at time t is:

xm(t) = x(t) + ϵ

where x(t) is the true position, and ϵ is a zero-mean Gaussian random variable with
variance σ2

L.

The observed displacement ∆xm between two time points separated by ∆t is:

∆xm = xm(t+∆t)− xm(t) = ∆x+ ϵ2 − ϵ1

where ∆x = x(t+∆t)− x(t) is the true displacement due to diffusion.

The variance of the observed displacement ∆xm is:

Var(∆xm) = 2D∆t+ 2σ2
L

17



5.2.1 Likelihood Function and Fisher Information

Assuming that the observed displacements ∆xm are independent and normally dis-
tributed, the likelihood function for observing a displacement ∆xm given diffusivity
D is:

f(∆xm;D) =
1√

4π(D∆t+ σ2
L)

exp

(
− (∆xm)

2

4(D∆t+ σ2
L)

)

The log-likelihood function is:

log f(∆xm;D) = −1

2
log

(
4π(D∆t+ σ2

L)
)
− (∆xm)

2

4(D∆t+ σ2
L)

The first derivative with respect to D is:

∂

∂D
log f = − ∆t

2(D∆t+ σ2
L)

+
(∆xm)

2∆t

4(D∆t+ σ2
L)

2

The second derivative is:

∂2

∂D2
log f =

∆t2

2(D∆t+ σ2
L)

2
− (∆xm)

2∆t2

2(D∆t+ σ2
L)

3

The Fisher information I(D) from a single displacement measurement is the negative
expected value of the second derivative:

I(D) = −E

[
∂2

∂D2
log f

]

Since E [(∆xm)
2] = 2(D∆t+ σ2

L), we have:

I(D) = −
(

∆t2

2(D∆t+ σ2
L)

2
− 2(D∆t+ σ2

L)∆t2

2(D∆t+ σ2
L)

3

)
=

∆t2

2(D∆t+ σ2
L)

2

For n independent measurements:

Itotal(D) = n× I(D) =
n∆t2

2(D∆t+ σ2
L)

2

5.2.2 Cramér-Rao Lower Bound

The CRLB for diffusivity D, considering the localization error, is:

Var(D̂) ≥ 1

Itotal(D)
=

2(D∆t+ σ2
L)

2

n∆t2

Simplifying:

Var(D̂) ≥ 2

n

(
D∆t+ σ2

L

∆t

)2
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The localization precision σL is related to the measurement noise σ and the experi-
mental parameters:

σL =
σ√

cI0L|αt|2
k3

4

Substituting σL into the CRLB expression:

σ2
L =




σ√
cI0L|αt|2

k3

4




2

=
4σ2

cI0L|αt|2k3

Thus, the CRLB becomes:

Var(D̂) ≥ 2

n



D∆t+

4σ2

cI0L|αt|2k3

∆t




2

Simplify the numerator inside the parentheses:

D∆t+
4σ2

cI0L|αt|2k3
= ∆t

(
D +

4σ2

cI0L|αt|2k3∆t

)

Therefore, the CRLB simplifies to:

Var(D̂) ≥ 2

n

(
D +

4σ2

cI0L|αt|2k3∆t

)2

5.2.3 Final CRLB Expression for Diffusivity in NSM

The modified CRLB for diffusivity D in NSM, incorporating the localization preci-
sion, is:

Var(D̂) ≥ 2

n

(
D +

4σ2

cI0L|αt|2k3∆t

)2

The term
4σ2

cI0L|αt|2k3∆t
represents the influence of localization error on the variance

of D̂. Reducing measurement noise σ or increasing the detected signal improves
localization precision, thus reducing this term. Increasing ∆t reduces the impact of
localization error relative to diffusion, enhancing estimation precision. The variance
decreases inversely with the number of measurements, emphasizing the benefit of
collecting more data.

In the absence of localization error (σ2
L = 0), the CRLB reduces to:

Var(D̂) ≥ 2D2

n

which matches the standard result derived without considering localization error.
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