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Abstract

Fiber optic networks are the backbone of modern communications, supporting
a vast range of services, from internet connectivity to critical infrastructure
operations, such as defense, healthcare, and finance. Their ability to transmit
data at ultra-high rates over long distances with minimal loss makes them the
preferred medium for secure and efficient data transmission. However, fiber
optic installations face various security and physical damage threats which
can compromise the reliability, integrity, and confidentiality of the transmit-
ted data. The threats range from physical damage caused by accidental fiber
cuts or mechanical vibrations to sophisticated eavesdropping attacks that ex-
ploit the physical properties of optical fibers to gain unauthorized access to
the transmitted data. Given the critical role of fiber optic networks in to-
day’s interconnected world, ensuring their security, reliability, and resilience
is paramount. Effective monitoring is a key aspect of maintaining network
security, as it enables the early detection of potential threats and distur-
bances. Traditional monitoring systems are often limited in scope, costly,
and struggle to detect more subtle disturbances like unauthorized tapping or
eavesdropping. Recent advances in Machine Learning (ML) offer new avenues
for enhancing the detection and diagnostics of anomalies in optical networks.

This thesis investigates the use of the State of Polarization (SOP) of light
within optical fibers as a novel technique for monitoring environmental changes
and detecting security threats. By employing a range of ML techniques, in-
cluding supervised, semi-supervised, and unsupervised learning, this research
aims at identifying and classifying disturbances that may indicate mechani-
cal damage or security breaches. The work presented in this thesis demon-
strates how SOP analysis, enhanced by advanced ML models, can improve
the detection capabilities of fiber optic cables as sensing devices, providing a
cost-effective and scalable solution for safeguarding data integrity, confiden-
tiality, and network availability. The findings of this research contribute to
the development of intelligent and adaptive security systems for fiber optic
infrastructure.

Keywords: State of Polarization, Polarization Signature, Machine Learn-
ing, Supervised Learning, Semi-supervised Learning, Unsupervised Learning,
Anomaly Detection, Mechanical Vibrations, Eavesdropping.
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CHAPTER 1

Introduction

1.1 Introduction

Fiber optic networks have emerged as the foundational technology for mod-
ern telecommunications, transforming the way data is transmitted across vast
distances. With their exceptional data transmission speeds and capability to
cover long communication ranges without significant signal loss, fiber optic ca-
bles play a crucial role in interconnecting regions, cities, and entire nations. As
the backbone of global telecommunications infrastructure, these networks are
indispensable for facilitating the rapid, large-scale data exchange required by
contemporary digital communication. The vast web of fiber optic cables spans
continents, ensuring that information flow is fast, reliable, and uninterrupted,
effectively forming the core of both the Internet and global telecommunication
systems [1]-[3]

Due to their vital role in supporting modern communications, optical net-
work security and integrity is more concerning than ever. The information
transmitted through these networks is often highly sensitive, encompassing
private communications, financial transactions, and critical government data.
Consequently, fiber optic networks are enticing targets for cyber-attacks tar-
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geting eavesdropping or service disruption. In eavesdropping, unauthorized
light coupling techniques such as evanescent coupling, V-groove cuts, and mi-
cro/macro bending [4], [5] can be used, allowing malicious actors to gain access
to sensitive data without disrupting the network operation. Such breaches can
compromise the confidentiality of the transmitted data, and unauthorized ac-
cess can also compromise their integrity.

In addition, optical fibers are vulnerable to a variety of disturbances that
can compromise network performance, leading to degradation or interruption
of overlay services. Physical damage, such as fiber cuts [6], is among the most
severe threats, representing, for example, nearly 60 percent of all failures in
France Telecom cable infrastructure [7]. These cuts can be caused by de-
liberate attempts, construction activities, or natural disasters. For instance,
mechanical vibrations from heavy machinery, such as excavators operating
near fiber optic installations, can put stress on the fibers, causing them to
break. A single fiber cut can disrupt connections among thousands of users,
resulting in substantial service outages and economic losses. According to
the North American Telecommunications Damage Prevention Council report,
the cost of repairing fiber optic cables in rural areas closely resembles the
installation costs averaging at an impressive $75,000 per mile [g].

Ensuring confidentiality, integrity, and availability of the data transmit-
ted over the optical network is a crucial priority, requiring robust analysis
and monitoring techniques. Effective monitoring plays an important role in
detecting potential security breaches and maintaining network health by en-
abling the identification of anomalies or tampering. Unlike traditional metal-
based cables that carry electrical signals, optical fibers transmit data using
light, making unauthorized access more difficult [9]. However, advanced tap-
ping techniques have been developed that can extract data without causing
noticeable signal loss |10], underscoring the need for sophisticated real-time
monitoring to protect the transmitted information |2]. Challenges related to
optical network security monitoring also include the need for costly special-
ized devices and their sparse deployment, as well as the requirement of expert
knowledge to analyze the subtle changes in the signal parameter values in-
curred by breaches. The advances in Machine Learning (ML) and Artificial
Intelligence (AI) techniques and the recent proliferation of fiber-based sensing
offer a powerful tool for detection and identification of physical-layer tamper-
ing.
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Optical fibers are increasingly being employed as advanced sensing devices
capable of monitoring a wide range of environmental changes [11]. This sens-
ing capability is based on the intrinsic properties of light, which is transmitted
through the glass core of the fiber. External conditions, such as temperature
fluctuations, mechanical vibrations, pressure changes, or radiation, can in-
fluence the fiber properties and the behavior of the light propagating along
the fiber. By detecting and measuring these alterations, the fiber effectively
functions as a precise sensing system. A key advantage of this technology is
that every segment of the fiber optic cable can act as a potential sensor node,
allowing for continuous, real-time monitoring across vast geographical areas.
This eliminates the need for a dense network of individual sensors, making
fiber optic sensing a powerful tool for applications that require large-scale and
efficient environmental monitoring.

In the context of fiber optic sensing and security, the State of Polarization
(SOP) analysis emerges as a powerful technique for detecting and analyzing
disturbances within the fiber [12]. SOP refers to the orientation and charac-
teristics of the electric field vector of light as it propagates through the optical
fiber. Various environmental factors can alter the SOP [7]. These alterations
serve as indicators of external influences on the fiber, providing critical data
that can be leveraged for monitoring and security purposes. By continuously
monitoring the SOP in real time, it is possible to detect even subtle changes
in the fiber’s environment, which makes SOP-based analysis particularly ef-
fective for both intrusion detection and structural health monitoring [13].

The fiber optic-based security systems are becoming more intelligent and
adaptive. Recent advancements in ML /AT allow for the development of sys-
tems that not only detect disturbances but also analyze and classify them [14].
Machine learning algorithms can be trained to recognize specific patterns of ac-
tivity. By analyzing the nature of changes imposed by external events onto the
optical signal, these systems can differentiate between harmless disturbances
and potential security threats. This ability to classify and respond to differ-
ent types of disturbances can boost the effectiveness of optic network security
systems, contributing to more efficient security policies and resource usage.
ML models allow for the detection of potential threats with high accuracy, im-
proving the response times and decision-making capabilities of security teams.
Such intelligent systems can be deployed in various settings—from protecting
critical infrastructure to monitoring large public events, where the need for
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rapid detection and accurate classification of potential threats is crucial.

In conclusion, the evolving capabilities of fiber optic networks extend well
beyond their traditional role for data transmission in telecommunications.
Their applications in security are transforming how we monitor and protect
physical and digital assets. By interpreting the changes in inherent properties
of light within fibers, they provide a unique platform for real-time, continuous
monitoring across vast areas. This potential, combined with the advancements
in Al and ML, paves the way for the development of highly responsive, intelli-
gent security systems capable of safeguarding optical fiber infrastructures [15].
As reliance on optical networks continues to grow, the development of robust
security frameworks will be critical for ensuring the reliability and safety of
modern communication and security infrastructures.

1.2 Thesis outline

This thesis is structured as follows: Chapter [2]introduces the foundational con-
cepts of light propagation within optical fibers. This chapter delves into the
SOP’s theoretical framework, which is crucial for comprehending the sensing
approach developed in this work. Chapter [3] discusses the application of vari-
ous ML algorithms and models designed to process SOP data, improving the
detection capabilities of various threats affecting optical network through tech-
niques such as classification and anomaly detection models. Finally, Chapter
[ provides a summary of the appended papers included in this thesis.



CHAPTER 2

State of polarization variations for optical fiber sensing

Fiber optic systems are highly sensitive to external mechanical and environ-
mental factors, which can significantly impact their performance and data
transmission capabilities. Various mechanical deformations such as stress, vi-
bration, pressure, or temperature fluctuations, influence the optical fiber by
causing disturbances in the propagating light and altering the optical signal
parameter values. These disturbances are often very subtle and require pre-
cise monitoring and measurement to maintain the performance and integrity
of the optical network.

One of the key optical performance indicators affected by mechanical de-
formations and temperature variations is the state of polarization of light.
Manipulations of the fiber induce distinct changes in the SOP, which can be
translated into valuable data for sensing the environment and detecting tam-
pering or other disturbances. In this chapter, we explore the concept of light
propagation and SOP. We discuss how SOP is influenced by external factors in
optical fibers, and how these effects can be utilized in optical network sensing
applications.
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2.1 The nature of light as an electromagnetic
wave

In addition to its behavior as a particle, light also behaves as a wave. Light
is a type of electromagnetic radiation, with a portion of its spectrum visible
to the human eye. As it travels through vacuum and different materials, light
behaves like a wave, exhibiting characteristics such as wavelength, frequency,
and amplitude. The nature of a light wave is often characterized by its wave-
length (A) and frequency (v), which are inherently connected: the wavelength
is the spatial period of the wave, or the distance over which the wave pat-
tern repeats itself, while the frequency refers to the number of oscillations
that occur per unit time. These two properties are inversely related, with
their product equaling the speed of light (¢ = Av) [16]. The behavior and
properties of light are fundamentally described by Maxwell’s equations, which
link electric and magnetic fields together in a comprehensive electromagnetic
theory [17]. From these equations, the optical wave equation is derived, pro-
viding a mathematical description of how the electric and magnetic fields of
light evolve across both space and time [18§].

2.2 Understanding the state of polarization

In an optical fiber, light is guided as an electromagnetic wave, with its electric
field oscillating in a specific direction, referred to as the polarization [19]. The
SOP describes the orientation of the electric field vector relative to the direc-
tion of light propagation. This orientation can vary over time and space due to
external factors such as stress, bending, or temperature changes in the fiber.
Maintaining control over the SOP is crucial in many applications, as changes
in polarization can impact signal quality and degrade transmission efficiency,
but can also be used to detect environmental changes. Understanding and
managing SOP is therefore essential for optical communication systems and
accurate fiber-based sensing.

Mathematical representation of the SOP

In describing the SOP, one must consider the direction in which the electric
field oscillates relative to the direction of wave propagation. For a light wave
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traveling along the z-axis, its electric field, E(z,t), can be decomposed into its
orthogonal components in the x and y directions. The electric field is generally
expressed as [20]:

E(z,t) = é,E,(2,t) + é,Ey(2,1),

where é, and &, are unit vectors along the x and y axes, respectively, and
E.(z,t) and E,(z,t) are the electric field components along these directions.
These components oscillate over time and space, reflecting how the electric
field changes as the light wave travels through the fiber.

Since light is a time-varying wave, these components are typically repre-
sented as sinusoidal functions:

E.(z,t) = Eg, cos(wt — kz),

Ey(z,t) = Eyy cos(wt — kz + ),

where Ey, and Ey, are the amplitudes of the x and y components, w is the
angular frequency of the wave, k is the wave number, and § is the phase
difference between the x and y components. The SOP is thus determined
by both the relative amplitudes Ey,, Eop, and the phase difference §, which
together define the path traced by the tip of the electric field vector over time.

Types of polarization: linear, circular, and elliptical

The nature of the SOP can vary significantly based on the amplitudes of the
electric field components and their phase relationship. These variations result
in three primary forms of polarization: linear, circular, and elliptical.

Linear polarization Linear polarization occurs when the electric field com-
ponents are either in phase (6 = 0) or completely out of phase (6 = ) [20].
In this case, the electric field vector oscillates along a single line, maintain-
ing a constant orientation relative to the propagation direction. This type
of polarization is relatively easy to produce and control, and it is commonly
utilized in laser systems and optical communication. The angle of the linear
polarization is determined by the ratio of the amplitudes Fy, and Ey,.

Circular polarization Circular polarization arises when the electric field com-
ponents have equal amplitudes (Ey, = FEo,), and there is a phase difference
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of § = £7 [20]. This results in the electric field vector rotating in a circular
motion in the plane perpendicular to the propagation direction. The rotation
can be right-handed (clockwise) or left-handed (counterclockwise) depending
on the sign of §. Circular polarization creates a helical structure of the wave
as it travels, and this property is useful in applications requiring rotational
symmetry or robustness against scattering, such as in satellite communication.

Elliptical polarization Elliptical polarization is the most general form of po-
larization and encompasses both linear and circular polarizations as special
cases. It occurs when the electric field components have different amplitudes
(Eoz # Eoy) and the phase difference is neither 0 nor 7, nor exactly £7 [20].
In this situation, the tip of the electric field vector traces out an ellipse over
time, combining aspects of both linear and circular motions. The orientation
and shape of the ellipse depend on the relative amplitudes and phase differ-
ence of the components. Elliptical polarization is common in natural light
sources and can be intentionally produced in fiber optics for advanced signal
manipulation.

State of polarization monitoring

The internal structure of an optical fiber is highly sensitive to external fac-
tors like bending, acoustic vibrations, and mechanical stress, all of which can
induce rapid changes in the SOP. The fluctuations in SOP serve as indicators
of external disturbances and are particularly important in the context of fiber
security. Shifts in polarization can indicate potential security threats, such as
unauthorized access, physical tampering, or attempts to intercept communi-
cation. Therefore, continuous monitoring of SOP becomes vital for the early
detection of such security breaches, offering a robust mechanism for safeguard-
ing against intrusion, tampering, and other forms of unauthorized interference
[21].

2.3 Poincaré sphere mapping
The Poincaré sphere is a powerful geometrical tool used to represent and

analyze the SOP of light. It provides a visual and mathematical means to
map the orientation and nature of light’s polarization onto a three-dimensional

10
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spherical surface. This concept serves as a standard method for describing the
behavior of the SOP under various influences within optical fibers.

The Poincaré sphere is a unit sphere where each point on its surface cor-
responds to a unique SOP. It provides a way to visualize all possible SOPs,
including linear, circular, and elliptical. The coordinates on the sphere are
determined by the Stokes parameters (Sp, S1, S2,S3), which describe the in-
tensity and polarization characteristics of light. However, the sphere itself
is primarily concerned with the normalized Stokes parameters (S1,S2,S3),
which define the polarization state independent of intensity, as all SOPs map
to a surface of radius 1 [20]. The Poincaré sphere is particularly useful for
mapping how the SOP changes as light propagates through an optical fiber
under varying conditions. Changes in SOP can be visualized as trajectories
or paths on the sphere’s surface.

2.4 Optical fiber as a sensing device

The inherent sensitivity of optical fiber to changes in environmental condi-
tions can be exploited for sensing applications. Fiber Optic Sensors (FOS)
offer distinct advantages over traditional sensors, making them particularly
successful in certain applications, especially where conventional sensors are
difficult to deploy, unfeasible, or unable to provide the same level of informa-
tion. FOS provide a broad range of benefits, including compact size, longer
lifetime, immunity to electromagnetic interference (EMI), the capability for
multiplexing, and high sensitivity [22]-[24]. These attributes make fiber optic
technology the preferred sensing solution in various sectors like healthcare or
infrastructure monitoring.

Wide-spread deployment and very broad and diverse geographical coverage
of optical networks makes them a valuable source of data used for sensing envi-
ronmental changes caused by, e.g., earthquakes 25|, and security threats [26].
In this work, we consider a system for distinguishing among eavesdropping
attempts, harmful and non-harmful vibrations based on the SOP variations,
as depicted in Figure |2.1

The system comprises four main components: a source, a fiber optic trans-
mission line, a receiver with SOP measurement capabilities, and an optical
analyzer. The source, usually a laser, generates an optical signal with stable
spectral and polarization properties to ensure consistent light transmission.

11
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Optical fiber

Q

Transmitter

Receiver Optical analyzer —> SOP variation data

Manipulation

Figure 2.1: A schematic view of a system for anomaly detection based on state of
polarisation changes

This light propagates through the fiber optic transmission line, which serves
as a transmission medium and a sensor for detecting environmental influences
and different kinds of manipulations over fiber optic installations. These ex-
ternal perturbations affect the SOP of the light as it travels, making the trans-
mission line both a carrier and a sensor of SOP changes. These manipulations
can be interpreted as unique SOP indicators for each specific action over a
fiber installation such as eavesdropping attempts, as well as both harmful and
benign mechanical vibrations. The receiver captures the optical signal travel-
ing through the fiber, and this signal is then passed to the optical analyzer to
produce meaningful digital SOP data.

The optical analyzer is responsible for deriving the SOP values from the
received optical signal and processing these values to quantify the variations
in the SOP. Essentially, the analyzer translates the behavior of light into
meaningful data, enabling the extraction of information about the sensed pa-
rameters.

The SOP variation data can then be subjected to advanced analysis using
techniques such as the ML ones described in Chapter [3] for further interpre-
tation and diagnosis of different environmental influences over fiber optical
installations. If an anomalous pattern is identified, an alarm is triggered to
alert the monitoring system. The detected anomalies are further communi-
cated to the Network Management System (NMS), which oversees network
performance and responds to potential threats.

12



CHAPTER 3

Machine learning for SOP data analysis

SOP data offers detailed signatures of the polarization dynamics correspond-
ing to various disturbances in optical fibers. The frequent analysis of SOP
to detect abnormal patterns by human technicians would incur a high la-
bor cost and scalability challenges. The detection of abnormal patterns in
SOP data can be significantly enhanced and automated through the applica-
tion of ML techniques. ML offers a robust framework for analyzing complex
datasets, such as those captured through SOP variations in fiber optic-based
sensors. By leveraging Supervised Learning (SL), Semi-Supervised Learning
(SSL), and Unsupervised Learning (USL) techniques, it is possible to identify
(and possibly classify) deviations in polarization patterns that could indicate
potentially harmful events or irregularities over fiber optic installations.

The ML techniques capitalize on the distinct characteristics of polarization
data, enabling the detection of even subtle changes that might otherwise re-
main undetected. In the following subsections, we will explore these three
ML techniques, detailing how each can be applied to automate the analysis of
SOP data. Additionally, we will discuss the various performance assessment
metrics that can be used to evaluate the effectiveness of the employed ML
algorithms.

13
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3.1 Supervised learning

The use of SL in the context of the detection and identification of SOP pat-
terns can be modeled as a classification problem. SL relies on the availability
of labeled data, where the algorithm learns to associate specific SOP data
with predefined categories, such as normal operations or particular types of
disturbances. The primary benefit of SL is its high accuracy in classification
tasks when sufficient labeled data is available. In this context, labeled datasets
are used where each data instance is linked to a known event type. The ML
model is then trained to recognize and generalize these patterns, enabling it
to classify new data samples based on what was learned.

A decision tree is a fundamental ML model used for both classification and
regression tasks. It works by splitting the data into subsets based on feature
values, forming a tree-like structure where each internal node represents a
decision based on a feature, each branch represents an outcome of the deci-
sion, and each leaf node represents a final classification or regression result.
Decision trees are intuitive and easy to interpret, but they can sometimes
be prone to overfitting, especially with complex datasets. Tree boosting [27]
builds upon the concept of decision trees and is a highly effective and widely
used supervised ML method. By combining multiple decision trees, boost-
ing algorithms iteratively improve their predictions, focusing on reducing the
errors of prior models to create a strong, composite model. Descriptions of
three notable tree-boosting techniques are provided below.

Gradient boosting

Gradient boosting [27] is a method in ML known as ensemble learning. En-
semble learning combines the outputs of multiple simpler models, called weak
learners, to improve overall performance. A weak learner is a model that
performs slightly better than random guessing, and while its predictions may
not be highly accurate on their own, combining many of them can lead to
a strong, accurate model. Unlike traditional decision tree approaches, gradi-
ent boosting builds these models in a sequence, where each new tree focuses
on correcting the errors made by the previous trees. By optimizing the loss
function—a measure of how well the model fits the data—at each stage, the
model’s accuracy progressively improves. This approach is highly flexible, as
gradient boosting can adapt to various loss functions, making it suitable for

14
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classification tasks. In the context of SOP classification, gradient boosting
effectively identifies and differentiates between normal and anomalous states
by capturing complex patterns within the data, which contributes to more
accurate monitoring and detection of disturbances in optical fiber sensing sys-
tems.

eXtreme Gradient Boosting (XGBoost)

XGBoost [28] is a scalable and efficient implementation of the gradient boost-
ing framework, recognized for its performance and speed in classification tasks.
XGBoost builds decision trees sequentially, with each new tree trained to cor-
rect the residual errors made by the ensemble of previously constructed trees.
To enhance model performance and avoid overfitting, XGBoost employs reg-
ularization techniques and supports parallel and distributed computing. Its
robustness in handling missing data and computational efficiency makes it
particularly suitable for SOP datasets generated in optical fiber sensing sys-
tems.

Histogram Gradient Boosting (HGB)

The HGB [29)] is an ensemble learning technique that can assist with problems
related to regression and classification. HGB is an advanced variant of the
gradient boosting algorithm, designed for efficiency when handling large-scale
datasets. HGB discretizes continuous features into histograms, allowing for
faster computation and memory optimization without significantly compro-
mising model accuracy. This approach is particularly advantageous in analyz-
ing SOP data, where the dimensionality is high, and the volume is large. By
efficiently managing the computational demands, HGB achieves rapid training
and prediction, making it suitable for real-time or near-real-time applications
in SOP monitoring.

3.2 Semi-supervised learning

SSL is particularly advantageous in situations where labeled data is limited
or difficult to obtain. In this approach, the model is trained using a training
dataset containing data from normal operating conditions. The model learns
the boundaries of these normal operating conditions. During inference, new

15
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samples are analyzed considering the learned boundaries. Samples that fall
outside of the learned region are flagged as anomalies. The trade-off, however,
lies in the model’s potential sensitivity to the quality of the training dataset; if
the examples are not representative enough of the overall data distribution, the
model’s performance may suffer, e.g., by flagging normal samples as anomalies.
The following part provides an overview of One-Class Support Vector Machine
(OCSVM), a widely utilized semi-supervised algorithm for anomaly detection.

One-Class Support Vector Machine

OCSVM [30] is a powerful ML algorithm widely used for anomaly detection,
particularly in scenarios where the data (predominantly) represents normal
behavior, with the goal of identifying outliers or anomalies that deviate from
this norm. OCSVM operates in a semi-supervised manner by learning the
boundary that encapsulates the majority of the data points, which are as-
sumed to represent normal working conditions. The algorithm maps the input
data into a high-dimensional feature space using a kernel function and then
constructs a decision boundary that maximizes the separation between the
origin and the data points in this feature space. Data points that fall outside
this boundary are detected as anomalies. The choice of kernel function and
hyperparameters, such as the kernel coefficient gamma () and the regular-
ization parameter nu (v), are critical in determining the model’s sensitivity
to outliers and its overall performance. During the execution of the model, it
detects new data points as either normal (if they fall within the boundary) or
abnormal (if they fall outside the boundary).

3.3 Unsupervised learning

USL is particularly valuable in scenarios where no labeled data is available,
enabling the model to identify patterns or clusters within the data. This
approach is ideal for uncovering unknown or unexpected anomalies in the
optical network without the need for prior labeling. USL works by analyzing a
sequence of data samples, and assessing whether or not there are samples that
differ from the majority of other samples based on the density of samples in a
certain region. The samples that diverge are then flagged as anomalies. USL
is crucial for detecting novel and unforeseen anomalies in SOP data that have
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not been previously encountered or labeled. This capability is particularly
important for maintaining the security and reliability of optical networks,
where new types of disturbances or attacks could emerge unannounced.

The following part provides an overview of Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) as a powerful USL technique.

Density-Based Spatial Clustering of Applications with Noise

DBSCAN is an unsupervised ML algorithm particularly effective for clustering
data points in high-dimensional spaces. Unlike OCSVM, which requires a
training phase to learn the boundary of normal behavior, DBSCAN does not
involve any training process. Instead, it analyzes a sequence of data points
and identifies clusters based on their density, making it robust in discovering
clusters of arbitrary shape and isolating outliers. The DBSCAN algorithm
operates by defining two key parameters: the neighborhood radius (e) and
the minimum number of points required to form a dense region (MinPts). A
sample is considered a core point if it has at least MinPts neighbors within
the radius e. Clusters are formed by core points that are within e of each
other. Points that do not belong to any cluster and have fewer than MinPts
neighbors are classified as noise or outliers. Since DBSCAN does not rely on
a training process, it can be directly applied to a sequence of consecutive data
points, making it particularly flexible and adaptable to various conditions.
The number of consecutive samples included in the system depends on the
stability of the system under analysis. Highly stable systems can be analyzed
by including a few tens of samples. More dynamic systems, such as optical
networks which usually have tens of co-propagating channels, may require up
to several hundreds of samples to achieve good performance.

The choice of € and MinPts significantly impacts the performance of DB-
SCAN. A small € may result in many data points being classified as noise,
while a large € can lead to formation of fewer clusters, and omission of detect-
ing potential anomalies. Similarly, MinPts determines the minimum number
of points to form a cluster, influencing how DBSCAN differentiates between
clusters and noise. By tuning these parameters, DBSCAN can be applied to
detect anomalies in SOP data, where abnormal patterns manifest as sparse or
isolated points in the feature space.

17



Chapter 3 Machine learning for SOP data analysis

3.4 Assessment metrics in machine learning

In machine learning, especially in anomaly detection and classification prob-
lems, several performance metrics are used to assess the effectiveness of mod-
els, providing a comprehensive understanding of their predictive capabilities.
At the heart of this evaluation is the confusion matriz, which offers a detailed
breakdown of a model’s predictions. It records four key outcomes: True Pos-
itives (TP), False Positives (FP), True Negatives (TN), and False Negatives
(FN). These metrics give a holistic view of how well a model distinguishes
between normal and anomalous instances.

A TP is when the model correctly identifies an anomalous instance as an
anomaly, whereas an FP occurs when the model incorrectly labels a normal
instance as an anomaly. A TN is when the model accurately identifies a
normal instance as normal, and an FN arises when the model fails to detect
an anomaly, labeling an anomalous instance as normal. Each of these elements
is critical for understanding the model’s behavior, especially when it comes to
balancing the detection of true anomalies while minimizing false alarms.

Key metrics derived from the confusion matrix include:

o True Positive Rate (TPR), also known as Recall or Sensitivity, mea-
sures the proportion of actual anomalies that the model correctly iden-
tifies. It is a critical metric for assessing how well the model minimizes

missed detections:
TP

TPR = ———
R TP +FN

(3.1)
o False Positive Rate (FPR) evaluates the proportion of normal in-
stances that are incorrectly classified as anomalies, providing insight
into the model’s trade-off between detecting true anomalies and avoid-

ing false alarms:
FP

FPR= —
R= i

(3.2)
o Accuracy (ACC) represents the overall proportion of correct predic-
tions made by the model, considering both normal and anomalous in-

stances:
TP + TN

TP + TN + FP + FN (3.3)

Accuracy =

o Precision is particularly informative in anomaly detection as it indi-
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3.4 Assessment metrics in machine learning

cates the proportion of true anomalies among all instances predicted as
anomalies. A high precision score means fewer false positives, which is
critical for reducing the cost of misclassifying normal data as anomalies:

... TP
Precision = TP L TP (3.4)

e The F1-Score serves as a harmonic mean of Precision and Recall, of-
fering a balanced metric that considers both false positives and false
negatives. It is particularly useful when a single performance metric
is needed to compare models, especially in scenarios where there is a
trade-off between precision and recall:

Precision x Recall
F1- =2 .
Score % Precision + Recall (3:5)

In clustering-based anomaly detection algorithms, additional metrics such
as the Silhouette Score (SS) and the Adjusted Rand Score (ARS) are utilized
to evaluate clustering performance. The SS measures how well an object fits
within its own cluster compared to other clusters, giving insight into both
cluster separation and cohesiveness. A higher silhouette score indicates well-
defined, distinct clusters, which is crucial for effective anomaly detection. The
ARS evaluates the similarity between the clustering results and the ground
truth labels, adjusting for chance, and provides a nuanced evaluation by con-
sidering both false positives and false negatives.
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CHAPTER 4

Summary of included papers

4.1 Paper A

Leyla Sadighi, Stefan Karlsson, Carlos Natalino, Marija Furdek
Machine Learning-Based Polarization Signature Analysis for Detection
and Categorization of Eavesdropping and Harmful Events

Published in Optical Fiber Communications Conference and

Ezhibition (OFC), 24-28 March, 2024, pp. 1-3, San Diego, CA, USA.
©IEEE ISBN:979-8-3503-7758-3.

Paper A presents a Machine Learning-based approach to enhance security
in optical fiber networks by detecting and categorizing eavesdropping and
potentially harmful and non-harmful vibrations events over fiber optic in-
stallations. It utilizes the state of polarization variations to identify unique
signatures caused by different physical manipulations of the fiber optic trans-
mission line. The methodology includes data collection from 13 experimental
scenarios from three different optical cables, including military Fiber Optical
tactical Cable Systems (FOCS), indoor cables, and bare single-mode G.675
bend-insensitive fiber. We conducted experiments over a number of ML algo-
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rithms to select the most appropriate classifier for this 13-class classification
problem. The XGBoost classifier achieves the best performance with a 92.3%
accuracy in distinguishing between normal operations and potentially harm-
ful activities. This approach automates threat detection, providing a scalable
and effective solution for securing optical networks.

4.2 Paper B

Leyla Sadighi, Stefan Karlsson, Lena Wosinska, Marija Furdek
Machine Learning Analysis of Polarization Signatures for Distinguishing
Harmful from Non-harmful Fiber Events

Published in 24th International Conference on Transparent Optical
Networks (ICTON), 14-18 July, 2024, pp. 1-5, Bari, Italy.

©IEEE DOI:10.1109/ICTON62926.2024.10648140.

This paper introduced a method for detecting and classifying harmful and
non-harmful events in optical fiber networks by leveraging machine learning
to analyze changes in the state of polarization. We collected state of polar-
ization signatures by manipulating indoor cables to mimic real-world attack
scenarios. Five scenarios were examined, including normal conditions, non-
harmful vibrations, eavesdropping attempts, potentially harmful vibrations,
and dual-frequency vibrations (both harmful and non-harmful). By generating
unique polarization signatures for each event type, we employed various ma-
chine learning classifiers to differentiate these scenarios, with the Histogram
Gradient Boosting classifier achieving a high accuracy of 97.94%. This ap-
proach significantly improves the identification of physical layer anomalies in
optical networks, particularly harmful events such as mechanical vibrations
caused by heavy machinery activities.

4.3 Paper C

Leyla Sadighi, Stefan Karlsson, Carlos Natalino, Lena Wosinska, Marco
Ruffini, Marija Furdek

Detection and Classification of Eavesdropping and Mechanical Vibra-
tions in Fiber Optical Networks by Analyzing Polarization Signatures
Over a Noisy Environment
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4.4 Paper D

Presented in Furopean Conference on Optical Communication,
(ECOCQC), 23-26 September, 2024, Frankfurt, Germany

In this paper, we study how polarization signatures can be recorded and
classified, originating from an installed transmission line in a real-life net-
work Openlreland, operated by Trinity College and located under the street
in Dublin, Ireland. Real-world data from two separate installations in Dublin
with link lengths of 0.15 km and 10.5 km are used to evaluate the method. Our
ML analysis uses data from seven real-life network signatures to differentiate
between polarization patterns obtained during normal operation and those
suggesting malicious vibrations and eavesdropping. We evaluate several ML
algorithms to determine a suitable classifier for our seven-class classification
problem. The Histogram Gradient Boosting classifier outperforms other mod-
els in the real-world dataset, achieving an accuracy of 86.5% and an Fl-score
of 0.866.

4.4 Paper D

Leyla Sadighi, Stefan Karlsson, Carlos Natalino, Marija Furdek
Anomaly Detection in Optical Fibers: Polarization Signature Analysis
with Unsupervised and Semi-supervised Learning

Submitted in Journal of Optical Communications and

Networking (JOCN), October, 2024.

In this paper, we employ OCSVM as an SSL technique and DBSCAN as an
USL method to detect a wide range of anomalies in polarization signatures, in-
cluding eavesdropping, harmful and non-harmful vibrations, and overlapping
events. This study analyzes 13 polarization signatures across three cable types
(bare fiber, FOCS, and indoor cables), simulating various normal and abnor-
mal scenarios. The results demonstrate that OCSVM achieves high F1-scores
and is effective in detecting both normal and abnormal events, particularly in
complex, overlapping scenarios. DBSCAN, though less accurate, shows po-
tential for scenarios lacking labeled data. This work underscores the potential
of SSL and USL techniques to provide scalable and cost-effective anomaly de-
tection in optical networks, enhancing security by identifying both subtle and
significant disturbances and reducing the need for manual monitoring
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