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Abstract
Weprove sharpweighted estimates for the non-tangentialmaximal function of singular
integrals mapping functions from Rn to the half-space in R1+n above Rn . The proof
is based on pointwise sparse domination of the adjoint singular integrals that map
functions from the half-space back to the boundary. It is proved that these map L1
functions in the half-space to weak L1 functions on the boundary. From this a non-
standard sparse domination of the singular integrals is established, where averages
have been replaced by Carleson averages.

Keywords Sparse domination · Non-tangential maximal functional · Carleson
functional · Sharp weighted estimates

Mathematics Subject Classification 42B35 · 42B20 · 42B37

1 Introduction

Let us recall the sparse domination paradigm for estimating singular integral opera-
tors, which has been very successful in proving sharp weighted estimates for various
singular operators for more than a decade. Given a singular integral operator T onRn ,
with Calderón–Zygmund kernel k(x, y), the procedure for obtaining estimates is as
follows.

(a) Boundedness of T on L2(Rn) is proved. For classical convolution singular integral
operators the Fourier transform is used, and for nonconvolution singular integral
operators Tb theorems are used.

(b) Using the Calderón–Zygmund decomposition, L2 boundedness and estimates of
k(x, y), weak L1(Rn) boundedness of T is proved.
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(c) Using weak L1(Rn) boundedness of T and its grand maximal truncation operator
MT , a pointwise domination

|T f (x)| �
∑

Q∈D f ,Q�x

∫

3Q
| f (y)|dy, x ∈ Rn,

by a sum of averages of f , over a sparse collection D f of dyadic cubes Q, is
proved. Sparse roughly means that the cubes in D f are essentially disjoint. See
Sect. 4 for the definition.

(d) From the sparse domination, one can prove the boundedness of T on any Banach
function space on which, together with its dual space, the maximal function is
bounded. For example on weighted L p(w)-spaces, 1 < p < ∞, w ∈ Ap(Rn).

See for exampleLerner [12] andLerner andNazarov [13].Weuse the analyst’s inequal-
ity X � Y , which means that X ≤ CY for some constant C < ∞ independent of
relevant variables but possibly depending on some parameters which should be clear
from the context. For example, the C in (c) above is independent of f and x , but may
depend on the sparseness parameter η. X � Y means Y � X , and X � Y means
X � Y and X � Y .

Somewhat hand in hand with singular integrals T as above, goes the theory of
singular operator families {�t }t>0, where �t are integral operators

�t f (x) =
∫

Rn
k(t, x; y) f (y)dy, x ∈ Rn, t > 0. (1)

Equivalently, the operator family defines a mapping from functions onRn to functions
on the upper half-space R1+n+ = {(t, x) : t > 0, x ∈ Rn}, and a basic L2 estimate is
the square function estimate

∫ ∞

0
‖�t f ‖22

dt

t
� ‖ f ‖22. (2)

For families of classical convolution operators �t , the square function estimate (2) is
Calderón’s reproducing formula and the function (t, x) �→ �t f (x) is a continuous
wavelet transform of f . See Daubechies [5]. For families of nonconvolution operators
�t , there are Tb theorems for proving (2). See for example Semmes [15] andHofmann
and Grau De La Herrán [6]. Sparse domination has been extended to this framework
to prove sharp weighted estimates of the square function

x �→
(∫ ∞

0
|�t f (x)|2 dt

t

)1/2

.

See Lerner [11] and Bailey et al. [2].
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In the above works, the kernel of �t is at least integrable on Rn and typically
satisfies an estimate

|k(t, x; y)| � t−n 1

(1 + |x − y|/t)n+δ
, x, y ∈ Rn, t > 0, (3)

for some δ > 0, together with suitable off-diagonal Hölder estimates. In the present
work, we consider operators �t with kernels that are only locally integrable and
typically satisfy (3) only for δ = 0. The simplest example are the (non-singular) Riesz
transforms

R j
t f (x) =

∫

Rn

x j − y j
(t2 + |x − y|2)(1+n)/2

f (y)dy, x ∈ Rn, t > 0,

where (t, x) �→ R j
t f (x), j = 1, . . . , n, are Stein–Weiss harmonic conjugate functions

to the Poisson extension

Pt f (x) = R0
t f (x) =

∫

Rn

t

(t2 + |x − y|2)(1+n)/2
f (y)dy, x ∈ Rn, t > 0,

of f .
If δ = 0, the square function estimate (2) is no longer suitable as an L2 estimate to

feed into a sparse domination scheme. This is because, in contrast to the case where
the kernels are integrable, we generally do not have strong convergence �t f → 0 for
δ = 0 when t → 0, so the left hand side in (2) is typically infinite. Instead, a natural
object to estimate when δ = 0 is the non-tangential maximal function of �t f (x). We
therefore replace (2) with an estimate

∫

Rn

(
sup

(t,x):|x−z|<αt
|�t f (x)|

)2

dz � ‖ f ‖22, (4)

which serves as our starting L2 estimate for step (a) in a sparse domination scheme.
Given an L2 non-tangential estimate (4), we proceed by duality and consider the map

S f (y) =
∫∫

R1+n+
k(t, x; y) f (t, x)dtdx, y ∈ Rn, (5)

which maps functions f (t, x) defined in the upper half-space R1+n+ to functions
(S f )(y) on its boundary Rn . By duality, (4) corresponds to the Carleson estimate

‖S f ‖22 �
∫

Rn

(
sup
Q�z

1

|Q|
∫∫

Q̂
| f (t, x)|dtdx

)2

dz (6)

for S, where the sup is over all cubes Q ⊂ Rn containing z, and Q̂ ⊂ R1+n+ is
the Carleson box, the cube with Q as its base. The equivalence of (6) and (4) follows
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from [7, Thm. 3.2]. Ourmain result, Theorem 4.1, shows that (6) implies the pointwise
Carleson-sparse domination

|S f (y)| �
∑

Q∈D f ,Q�y

1

|Q|
∫∫

3̂Q
| f (t, x)|dtdx, a.e. y ∈ Rn, (7)

of S. Here 3Q denotes the cube with the same center as Q but three times the side
length. Note that the Carleson averages in this sparse domination normalize by theRn

measure |Q|, and not by the R1+n measure |3̂Q| � |Q̂|. This is in contrast to usual
sparse domination techniques.

The four sections of this paper simply implement steps (a)-(d) of the sparse domi-
nation scheme described above. Starting from an L2 non-tangential maximal estimate
(4), or equivalently an L2 Carleson estimate (6), we prove weighted L p estimates. For
Muckenhoupt weights w ∈ Ap(Rn), we estimate the L p(Rn, w) operator norms by

[w]max(p,q)/p
Ap

, 1/p + 1/q = 1. See Theorem 5.2 for the Carleson estimate and Theo-
rem 5.4 for the dual non-tangential maximal estimate. The power of [w]Ap is optimal
because it is known to be optimal for the Rn singular integral �0 = limt→0 �t , see
Hytönen [10], which the non-tangential maximal function of (�t )t>0 majorizes. Note
that for δ > 0 the non-tangential maximal function of �t f is pointwise bounded
by the maximal function of f . In this case the sharper weighted estimate by [w]q/p

Ap

follows directly from Buckley [3, Thm. 2.5].
The sparse domination and estimates considered in this paper are related to those

by Hytönen and Rosén [9]. There, L p non-tangential maximal estimates for causal
R1+n+ Calderón–Zygmund operators

T+ f (t, x) = p.v.
∫∫

R1+n+
K (t, x; s, y)g(s, y)dsdy, (s, t) ∈ R1+n+

were proved. Here causal means the kernel condition K (t, x; s, y) = 0 for s > t ,
that is, T+ is upward mapping. Both those results and the results in the present paper
are proved by a sparse domination of the adjoint anti-causal, or downward mapping,
operator. A natural attempt to prove an estimate of (5), for example in L p(Rn)-norm,
is to apply the trace estimate from [8, Thm. 1.1] to obtain

‖S f ‖L p(Rn) � ‖C(∇ S̃ f )‖L p(Rn),

where C denotes the Carleson functional, which is defined within the square in (6)
and S̃ f denotes an extension of S f to R1+n+ , defined by an auxiliary weakly singular
integral operator S̃ on R1+n+ . The idea would then be to apply [9, Thm. 5.1] to the
singular integral T = ∇ S̃ onR1+n+ . However this seems to be impossible. Technically,
the boundedness of T would require a Whitney averaging in the Carleson norm. More
seriously, according to [9, Ex. 2.1] it is necessary that T = T− is anti-causal in
order for boundedness to be possible in the Carleson norm. To achieve anti-causality,
a natural way is to truncate the kernel of S̃ so that it becomes anti-causal. (This is

123



Carleson-Sparse Domination Page 5 of 21   360 

possible without changing the boundary values S f .) But at t = s, this adds an Rn

singular integral operator to T = ∇ S̃, which acts on f (t, x) in the x variable for each
t > 0. According to [9, Ex. 2.3], such a horizontal mapping singular integral will in
general not be bounded in a Carleson norm. To summarize, the estimates considered
in this paper are related to, but not implied by, those in [9].

2 Setup and L2 Estimates

This section is about step (a) in the sparse domination scheme. First some notation.
We fix a system of dyadic cubes D = ⋃

j∈ZD j in Rn , where D j are the cubes of

side length �(Q) = 2− j , such that the dyadic cubes in D form a connected tree under
inclusion. Given Q ∈ D, its parent is the minimal dyadic cube strictly containing Q,
its grandparent is the parent of the parent, its children are the maximal dyadic cubes
stricly contained in Q and its siblings are the other children of the parent of Q. For a
given cube Q ⊂ Rn , dyadic or not, we denote by cQ, c > 0, the cube with the same
center as Q but with side length �(cQ) = c�(Q). The Carleson box above Q is the
R1+n+ cube Q̂ = (0, �(Q)) × Q, and the Whitney region described by Q is the upper
half Qw = (�(Q)/2, �(Q)) × Q of Q̂.

With 1E and |E | we denote the indicator function and the measure of a set E . The
maximal function of a function f (x) on Rn is

M f (x) = sup
r>0

∫

|y−x |<r
| f (y)|dy, x ∈ Rn .

We denote the non-tangential maximal functional of a function f (t, x) on R1+n+ by

N f (z) = esssup(t,x):|x−z|<αt | f (t, x)|, z ∈ Rn, (8)

where the aperture α > 0 of the cones is a fixed constant. We denote the Carleson
functional of a function f (t, x) on R1+n+ by

C f (z) = sup
Q�z

1

|Q|
∫∫

Q̂
| f (t, x)|dtdx, z ∈ Rn,

where the sup is over all (non-dyadic) cubes Q ⊂ Rn containing z. Versions of M , N
and C , dyadic and non-dyadic, will appear below where they are needed.

Throughout this paper, we fix a kernel function k : R1+2n → R which morally has
the size estimates

|k(t, x; y)| � 1

|(t, x) − (0, y)|n .
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However, we will not use this estimate, but only the following three. We assume, for
some δ > 0, off-diagonal Hölder estimates

|k(t + s, x + z; y) − k(t, x; y)| � |(s, z)|δ
|(t, x) − (0, y)|n+δ

(9)

for |(s, z)| ≤ |(t, x) − (0, y)|/2, and

|k(t, x; y + z) − k(t, x; y)| � |z|δ
|(t, x) − (0, y)|n+δ

(10)

for |z| ≤ |(t, x) − (0, y)|/2, where s, t > 0 and x, y, z ∈ Rn .
Using the kernel k(t, x; y)we define integral operators�t as in (1) and an operator

S as in (5), and we assume that L2 Carleson estimates

‖S f ‖L2(Rn) � ‖C f ‖L2(Rn) (11)

hold, that is, (6). By duality, (11) is equivalent to L2 non-tangential maximal estimates

‖N (S∗ f )‖L2(Rn) � ‖ f ‖L2(Rn), (12)

that is, (4), for the adjoint operator

S∗ f (t, x) =
∫

Rn
k(t, x; y) f (y)dy, (t, x) ∈ R1+n+ ,

that is, (1). A standard method for verifying the non-tangential estimate (12) is to
derive it from a gradient square function estimate

∫ ∞

0
‖t∇�t f ‖22

dt

t
� ‖ f ‖22,

which in turn can be proved by a Tb theorem applied to the kernel t∇t,xk(t, x; y).
Indeed, (t, x) �→ �t f (x) often solves an elliptic equation in applications, where
L2 estimates between non-tangential maximal functionals and square functionals are
known. See [1, Sec. 10.1] for a large class of elliptic equations.

For the Riesz transforms mentioned in the introduction, there is the following
alternative algebraic argument, also for Lipschitz domains.

Example 2.1 To simplify the notation, we only consider dimension 1 + n = 2. The
following argument can be performed in higher dimensions, replacing the complex
algebra with the Clifford algebra. See [14, Sec. 8.3] for the higher dimensional Cauchy
integral that would be used for this argument.

Let t = φ(x) be the graph of a Lipschitz function φ : R → R, and consider the
family of operators

�t f (x) = 1

2π i

∫

R

f (y) (1 + iφ′(y))dy
y + iφ(y) − x − i(t + φ(x))

, x ∈ R, t > 0,
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which represent the Cauchy integral that acts on functions on the graph. If φ = 0 and
f is real-valued, then Re�t f is the Poisson integral of f and Im�t f is the Riesz
transform of f , but for general φ, both real and imaginary parts have only kernels with
the decay δ = 0 in (3).

We now realise that by the Cauchy integral formula, we have the algebraic identity

�t f = �t (�0 f ),

since g = �0 f = limt→0 �t f represents the trace on the graph of the analytic
function �t f above this graph. The function g belongs to the upper Hardy subspace,
and therefore its Cauchy extension �−t g = 0, t > 0, vanishes below the graph. Thus

�t f = (�t − �−t )(�0 f ), t > 0,

where one proves that the kernel of �t −�−t has Poisson kernel estimates � t/(t2 +
(x − y)2). From this follows the pointwise maximal estimate

N (S∗ f )(z) � M(�0 f )(z), z ∈ R.

Since M : L p(Rn) → L p(Rn) is bounded for 1 < p ≤ ∞ and the singular Cauchy
integral�0 : L p(Rn) → L p(Rn) is bounded for 1 < p < ∞, (12) follows. However,
the sharp weighted estimates in Theorem 5.4 below do not follow.

3 Weak L1 Estimates

This section is about step (b) in the sparse domination scheme.

Proposition 3.1 Assume that the operator S has L2 Carleson estimates (11) and that
the kernel k has x-regularity (9). Then S has weak L1-estimates

|{y ∈ Rn : |S f (y)| > λ}| � λ−1‖ f ‖L1(R
1+n+ )

, λ > 0.

For the proof, we need a twin of the Carleson functional, the area functional

A f (z) =
∫∫

|x−z|<αt
| f (t, x)| dtdx

tn
, z ∈ Rn,

where the aperture α > 0 of the cones is a fixed constant. Recall that for 1 ≤ p < ∞,
different apertures α > 0 give equivalent norms ‖A f ‖L p(Rn). See [8, Prop. 2.2].

Lemma 3.2 Let g : R1+n+ → R be a function such that ‖Cg‖L∞(Rn) ≤ λ. Then

∫

Rn
|Ag(z)|2dz � λ

∫

Rn
|Ag(z)|dz.
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Recall that
‖A f ‖L p(Rn) � ‖C f ‖L p(Rn) (13)

for 1 < p < ∞. See [8, Prop. 2.4]. However, for p = ∞ the area functional can be
unbounded, even if the Carleson functional is bounded. We take the opportunity to
correct a typo in the counterexample given in the first display after [8, Prop. 2.4]: It
should read f (t, x) = (t + |x |)−1 in each dimension n. Lemma 3.2 means that Ag is
close enough to be bounded for the stated estimate to hold.

Proof The following is inspired by the good lambda inequality from [4, Thm. 3(a)].
Denote by A(α)g and A(β)g the area functionalswith the aperturesα andβ respectively.
Assuming that ‖Cg‖L∞(Rn) ≤ λ, we claim that the estimate

|{z : A(α)g(z) > 2s}| � (λ/s)|{z : A(β)g(z) > s}|

holds for all s > 0, provided that α < β. To see this, let U = ⋃
j Q j be a Whitney

decomposition of the open set U = {z : A(β)g(z) > s} into disjoint cubes Q j ⊂ Rn

such that �(Q j ) � dist (Q j ,Rn \U ). It suffices to show

|{z ∈ Q j : A(α)g(z) > 2s}| � (λ/s)|Q j | (14)

for each Q j , since summing over j then gives the desired estimate. Let Mj = {z ∈
Q j : A(α)g(z) > 2s} and choose a point z j ∈ Rn\U such that dist (z j , Q j ) � �(Q j ),
so that A(β)g(z j ) ≤ s. Now note that

{(t, x) : |x − z| < αt} ⊂ {(t, x) : |x − z j | < βt}
∪ {(t, x) : |x − z| < αt, t < c�(Q j )}

for all z ∈ Q j , for some constant c > 1 only depending on α, β. Indeed, if |x−z| < αt
and t ≥ c�(Q j ), then |x − z j | ≤ αt + |z − z j | where |z − z j | � �(Q j ) ≤ t/c. This
gives the estimate

|Mj | ≤ 1

2s

∫

Mj

A(α)g(z)dz

≤ 1

2s

∫

Mj

A(β)g(z j )dz + 1

2s

∫

Q j

(∫∫

|x−z|<αt,t<c�(Q j )

|g(t, x)|t−ndtdx

)
dz

≤ |Mj |/2 + c′s−1
∫∫

(1+2cα)Q j×(0,c�(Q j ))

|g(t, x)|dtdx,

for some c′ < ∞. Since ‖Cg‖L∞(Rn) < λ, this yields |Mj | � s−1|Q j |λ as claimed.
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Finally, multiplying (14) by s and integrating over s ∈ (0,∞) gives

∫

Rn
|A(α)g(z)|2dz �

∫ ∞

0
s|{z : A(α)g(z) > 2s}|ds

�
∫ ∞

0
λ|{z : A(β)g(z) > s}|ds

= λ

∫

Rn
|A(β)g(z)|dz.

Since different apertures give equivalent L2 norms and equivalent L1 norms, this
proves the lemma. ��
Proof of Proposition3.1 (i) We estimate f using a Calderón–Zygmund argument

based on Carleson averages. Given λ > 0, let Q j ∈ D denote the maximal
dyadic cubes for which

∫∫

Q̂ j

| f (t, x)|dtdx > λ|Q j |.

Define

b j (t, x) =
{
f (t, x) − 1

|Q̂ j |
∫∫

Q̂ j
f (s, y)dsdy, (t, x) ∈ Q̂ j ,

0, else,

and g = f − ∑
j b j . Note that in the definition of b j , we do normalize the

integral by |Q̂ j | and not |Q j |.
(ii) Estimating first Sg, we note that ‖Cg‖L∞(Rn) � λ. Indeed, since g is constant

equal to the Q̂ j -average of f on each Q̂ j , it follows that |Q|−1
∫∫

Q̂ |g|dtdx �
|Q j |−1

∫∫
Q̂ j

| f |dtdx if Q ⊂ Q j . Note that
∫∫

Q̂ j
| f |dtdx ≤ ∫∫

R̂ | f |dtdx ≤
λ|R| � λ|Q j |, where R is the dyadic parent of Q j . For Q not contained in
any Q j , we have |Q|−1

∫∫
Q̂ | f |dtdx ≤ λ. We can now apply (11), (13) and

Lemma 3.2 to get

|{y ∈ Rn : |Sg(y)| > λ}| ≤ λ−2
∫

Rn
|Sg(y)|2dy

� λ−2
∫

Rn
|Cg(y)|2dy � λ−2

∫

Rn
|Ag(y)|2dy

� λ−1
∫

Rn
|Ag(y)|dy � λ−1‖g‖L1(R

1+n+ )
≤ λ−1‖ f ‖L1(R

1+n+ )
.

(iii) To estimate Sb j , we do the standard estimate

|{y :

∣∣∣∣S
( ∑

j

b j

)∣∣∣∣ > λ}| ≤
∑

j

|3Q j | + λ−1
∑

j

∫

Rn\(3Q j )

|Sb j (y)|dy,

123
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where

∑

j

|3Q j | �
∑

j

λ−1
∫∫

Q̂ j

| f (t, x)|dtdx ≤ λ−1‖ f ‖L1(R
1+n+ )

.

For the second term, we use that
∫∫

Q̂ j
b j (t, x)dtdx = 0 and (9) to estimate

∫

Rn\(3Q j )

|Sb j (y)|dy

=
∫

Rn\(3Q j )

∣∣∣∣∣

∫∫

Q̂ j

(k(t, x; y) − k(tQ, xQ; y))b j (t, x)dtdx

∣∣∣∣∣ dy

�
∫∫

Q̂ j

(∫

Rn\(3Q j )

�(Q)δ

|(tQ, xQ) − (0, y)|n+δ
dy

)
|b j (t, x)|dtdx

�
∫∫

Q̂ j

|b j (t, x)|dtdx �
∫∫

Q̂ j

| f (t, x)|dtdx,

where (tQ, xQ) denotes the center of Q̂ j . This yields

∑

j

∫

Rn\(3Q j )

|Sb j (y)|dy �
∑

j

∫∫

Q̂ j

| f (t, x)|dtdx � ‖ f ‖L1(R
1+n+ )

,

which completes the proof.
��

Remark 3.3 In the proof of Proposition 3.1, we can easily reduce to the case when
f is constant on each dyadic Whitney region Qw. Indeed, given f ∈ L1(R

1+n+ ), we
write f = f0 + f1, where

∫∫
Qw f0(t, x)dtdx = 0 and f1 is constant on each dyadic

Whitney region Qw. For f0, using (9), we have strong L1 estimates

∫

Rn
|S f0(y)|dy =

∫

Rn

∣∣∣∣∣∣

∑

Q∈D

∫∫

Qw

(k(t, x; y) − k(tQ, xQ; y)) f0(t, x)dtdx
∣∣∣∣∣∣
dy

�
∑

Q∈D

∫∫

Qw

(∫

Rn

�(Q)δ

|(tQ, xQ) − (0, y)|n+δ
dy

)
| f0(t, x)|dtdx

�
∑

Q∈D

∫∫

Qw

| f0(t, x)|dtdx = ‖ f0‖L1(R
1+n+ )

,

where (tQ, xQ) now denotes the center of Qw. Thus it remains to estimate S f1.

For the sparse domination of S, we require the maximal operator

MS f (y) = sup
Q�y

‖S(1R1+n+ \3̂Q f )‖L∞(Q), y ∈ Rn,
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where the sup is taken over all dyadic cubes Q ⊂ Rn containing y. This is a version
of Lerner’s grand maximal truncation operator from [12], which is enough for our
purposes.

Proposition 3.4 Assume that the operator S has L2 Carleson estimates (11) and that
the kernel k has the x-regularity (9) and the y-regularity (10). Then MS has the weak
L1 bound

|{y ∈ Rn : |MS f (y)| > λ}| � λ−1‖ f ‖L1(R
1+n+ )

, λ > 0.

Proof This result follows by tweaking the standard proof of Cotlar’s lemma. Fix a
cube Q ⊂ Rn . Let

f1 = 13̂Q f and f2 = 1R1+n+ \3̂Q f .

At a given point y1 ∈ Q, we estimate S f2(y1) by averaging over a variable point
y ∈ Q. Write

S f2(y1) = (S f2(y1) − S f2(y)) + S f (y) − S f1(y) = I + I I + I I I .

Fixing p > 1, we estimate term II as

∫

Q
|S f (y)|1/pdy � inf

Q
M(|S f |1/p)

and term III as
∫

Q
|S f1(y)|1/pdy � |Q|−1/p‖ f1‖1/pL1(R

1+n+ )
� (inf

Q
C f )1/p,

using Kolmogorov’s inequality and Proposition 3.1. To estimate term I, we use (10)
to get

|S f2(y1) − S f2(y)| �
∫∫

R1+n+ \3̂Q
�(Q)δ

|(t, x) − (0, y0)|n+δ
| f (t, x)|dtdx,

for any y0 ∈ Q. Writing r = |(t, x) − (0, y0)| and r−n−δ
�

∫ ∞
r s−n−1−δds, we get

|S f2(y1) − S f2(y)| � �(Q)δ
∫∫

R1+n+ \3̂Q

(∫ ∞

r

ds

sn+1+δ

)
| f (t, x)|dtdx

= �(Q)δ
∫ ∞

�(Q)

ds

sn+1+δ

(∫∫

{|(t,x−y0)|<s}\3̂Q
| f (t, x)|dtdx

)

� �(Q)δ
∫ ∞

�(Q)

ds

s1+δ
C f (y0) � C f (y0).
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Collecting the estimates, we have prove the pointwise estimate

MS f � C f + M(|S f |1/p)p + C f .

Here M is bounded on L p,∞(Rn), which combined with Proposition 3.1 gives the
estimate for the second term. A standard Vitali covering argument finally shows that

|{y ∈ Rn : |C f (y)| > λ}| � λ−1‖ f ‖L1(R
1+n+ )

, λ > 0,

which completes the proof. ��

4 Carleson-Sparse Domination

This section is about step (c) in the sparse domination scheme.
We recall that a collection of dyadic cubes D̃ ⊂ D is called η-sparse, η > 0, if each

Q ∈ D̃ contains a subset EQ ⊂ Q such that |EQ | ≥ η|Q| and ER ∩ EQ = ∅ whever
R �= Q, Q, R ∈ D̃.

Our main result in this paper is the following Carleson-sparse domination. The
proof given below is an adaption of the estimate in [12] to singular integrals mapping
from R1+n+ to Rn .

Theorem 4.1 Assume that the operator S has L2 Carleson estimates (11) and that
the kernel k has the x-regularity (9) and the y-regularity (10). Fix 0 < η < 1. Then
for any f ∈ L1(R

1+n+ ) with bounded support, there exists an η-sparse family D f of
dyadic cubes such that

|S f (y)| �
∑

Q∈D f ,Q�y

1

|Q|
∫∫

3̂Q
| f (t, x)|dtdx, for a.e. y ∈ Rn .

Proof (i) Let c, α > 0 be constants to be chosen below. Let Q ∈ D be such that
supp f ⊂ 3̂Q. Define

E =
{
y ∈ Rn : max

(|S f (y)|, MS f (y)
)

> c|Q|−1
∫∫

3̂Q
| f |dtdx

}
, (15)

and let R j ∈ D be the maximal subcubes R j ⊂ Q such that

|R j ∩ E | > α|R j |.

Using maximality, we can also obtain a converse estimate by noting that

|R j ∩ E | ≤ |Rp
j ∩ E | ≤ α|Rp

j | = α2n|R j |,
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where Rp
j denotes the dyadic parent of R j . We choose α = 1/(2n + 1), so that

each R j contains a substantial part of both E and Rn \ E in the sense that

min(|R j ∩ E |, |R j \ E |) ≥ |R j |/(2n + 1). (16)

Lebesgue’s differentiation theorem shows that

E ∩ Q ⊂
⋃

j

R j , (17)

modulo a set of measure zero. From Propositions 3.1 and 3.4, we obtain

|E | �
(
c|Q|−1

∫∫

3̂Q
| f |dtdx

)−1 ∫∫

3̂Q
| f |dtdx = |Q|/c.

Since
⋃

R j = {M(1E ) > α}, by the weak L1 boundedness of M we have

∑

j

|R j | � α−1|E | � |Q|/(αc).

Having fixed α = 1/(2n + 1), we choose c large enough so that

∑

j

|R j | ≤ (1 − η)|Q|. (18)

(ii) Recall that supp f ⊂ 3̂Q, so that 13̂Q f = f . Now write

1QS(13̂Q f ) = 1Q\⋃ R j S(13̂Q f ) +
∑

j

1R j S(1R1+n+ \̂3R j
f ) +

∑

j

1R j S(1̂3R j
f )

= I + I I +
∑

j

1R j S(1̂3R j
f ).

• For term I, by (17) we have y /∈ E for a.e. y ∈ Q \ ⋃
R j , and therefore (15)

gives

|S(13̂Q f )(y)| � |Q|−1
∫∫

3̂Q
| f |dtdx .

• For subcube R j in term II, by (16) there exists y′ ∈ R j \ E . For all y ∈ R j ,
we therefore have

|S(1R1+n+ \̂3R j
) f (y)| � MS f (y

′) � |Q|−1
∫∫

3̂Q
| f |dtdx,

using (15).
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To summarize, we have shown that

1QS(13̂Q f ) ≤ C1|Q|−1
∫∫

3̂Q
| f |dtdx +

∑

j

1R j S(1̂3R j
f ), (19)

for some constant C1 < ∞, where the disjoint subcubes satisfy (18).
(iii) We can now iterate (19) to get the stated sparse estimate as follows. Choose

Q1 ∈ D such that supp f ⊂ Q̂1. Set P1 = Q1 and recursively define Pj+1
to be the dyadic parent of Pj , j = 1, 2 . . .. Let Q2, Q3, . . . be an ordering of
all the siblings of all the cubes Pj , j = 1, 2, . . .. We obtain a disjoint union
Rn = ⋃∞

j=1 Q j modulo a zero set. Since Q1 is contained in a sibling of Q j , it

follows that 3Q j ⊃ Q1, and therefore 3̂Q j ⊃ supp f , j = 1, 2, . . .. Hence

S f =
∑

j

1Q j S f =
∑

j

1Q j S(1̂3Q j
f ). (20)

We now apply the estimate in step (ii) above to each Q = Q j , which produces
first generations of subcubes Rk ⊂ Q j . Then we apply the estimate in step (ii)
above to each such first generation subcube Q = Rk , which produces second
generations of subcubes. Continuing recursively in this way, we define the family
of dyadic cubesD f as the union of all Q j along with all generations of subcubes
Rk . For Q ∈ D f , we define

EQ = Q \
⋃

k

Rk,

where Rk are all the subcubes of Q, constucted from Q as in step (i) above. It
follows from (18) thatD f is η-sparse. Combining (20) and recursively (19), the
stated sparse domination of S f follows. This completes the proof.

��

5 SharpWeighted Estimates

This section is about step (d) in the sparse domination scheme.Wefirst deriveweighted
L p Carleson estimates of S from Theorem 4.1, and then use duality between the Car-
leson and non-tangential maximal functionals to obtain weighted Lq non-tangential
maximal estimates of S∗.

We fix 1 < p < ∞ and 1/p + 1/q = 1, a let w(x) > 0, x ∈ Rn , be an Ap weight,
that is,

[w]1/pAp
= sup

Q

(∫

Q
wdx

)1/p (∫

Q
νdx

)1/q

< ∞,
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where the sup is over all cubes Q, and ν = w−q/p is the dual weight. It is readily
checked that ν is an Aq weight with [ν]1/qAq

= [w]1/pAp
. Write w(Q) = ∫

Q dw for the
w-measure of Q, where dw = wdx , and similarly for ν.

Some additional technicalities arise sincewe aim to proveweighted estimateswhich
are sharp with the respect to the dependence on the Ap characteristic [w]Ap of the
weight. In particular we need to avoid using the doubling property of the measures
quantitatively. To this end, dyadic operators are preferred. We also need to handle
dilations 3Q of dyadic cubes Q ∈ D coming from Theorem 4.1.

Lemma 5.1 Let 1 < p ≤ ∞. Then we have maximal function estimates

‖M3D
w f ‖L p(w) � ‖ f ‖L p(w)

for the centered dyadic weighted maximal operator

M3D
w f (z) = sup

Q∈D,Q�z
1

w(3Q)

∫

3Q
| f |dw.

The same estimate holds for the standard dyadic weighted maximal operator

MD
w f (z) = sup

Q∈D,Q�z
1

w(Q)

∫

Q
| f |dw.

The implicit constant is independent of w, but depends on p.

Proof It suffices to consider M3D
w as the proof for MD

w is similar but simpler. For
p = ∞, clearly ‖M3D

w f ‖L∞(w) ≤ ‖ f ‖L∞(w). By the Marcinkiewicz interpolation
theorem, it suffices to show the weak L1 estimate

w({z : M3D f (z) > λ}) � λ−1‖ f ‖L1(w).

To see this, for given λ > 0 we consider the dyadic cubes Q ∈ D such that∫∫
3Q | f |dw > λw(3Q). Denote by {Q j } the maximal such cubes. Then Q j are

disjoint and {z : M3D f (z) > λ} = ⋃
j Q j . This gives

w({z : M3D f (z) > λ}) =
∑

j

w(Q j ) ≤
∑

j

w(3Q j )

≤ λ−1
∑

j

∫

3Q j

| f |dw = λ−1
∫

Rn

∑

j

13Q j | f |dw

≤ λ−13n‖ f ‖L1(w).

��
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Theorem 5.2 Let 1 < p < ∞. Assume that the operator S has estimates (11) and that
the kernel k has estimates (9) and (10). Then we have estimates

‖S f ‖L p(w) � [w]max(1,q/p)
Ap

‖CD
ν ( f ν−1)‖L p(ν),

where the dyadic weighted Carleson functional is

CD
ν f (z) = sup

Q∈D,Q�z
1

ν(Q)

∫∫

Q̂
| f (t, x)|dtdν.

Here the implicit constant in the estimate is independent of w and ν.

Proof (i) We first estimate S f by the auxiliary Carleson functional

C3D
ν f (z) = sup

Q∈D,Q�z
1

ν(cQ)

∫∫

3̂Q
| f (t, x)|dtdν,

where c ≥ 1 is a fixed constant. Let g : Rn → R be a dual function for which
equality holds in Hölder’s inequality

∫
Rn (S f )gdx ≤ ‖S f ‖L p(w)‖g‖Lq (ν). Using

Theorem 4.1 and adapting the argument [12, Sec. 5], we estimate

∫

Rn
(S f )gdx �

∑

Q∈D f

(
1

|Q|
∫∫

3̂Q
| f |dtdx

) (∫

Q
|g|dx

)

=
∑

Q∈D f

BQ

(
ν(EQ)1/p

ν(cQ)

∫∫

3̂Q
| f |dtdx

) (
w(EQ)1/q

w(cQ)

∫

Q
|g|dx

)

≤ sup
Q∈D

BQ

⎛

⎝
∑

Q∈D f

( 1

ν(cQ)

∫∫

3̂Q
| f |dtdx

)p
ν(EQ)

⎞

⎠
1/p

×
⎛

⎝
∑

Q∈D f

( 1

w(cQ)

∫

Q
|g|dx

)q
w(EQ)

⎞

⎠
1/q

≤ (
sup
Q∈D

BQ
)‖C3D

ν ( f ν−1)‖L p(ν)‖MD
w (gw−1)‖Lq (w),

using that w(cQ) ≥ w(Q) in the last inequality, where EQ ⊂ Q are the disjoint
ample subsets of Q ∈ D f and

BQ = ν(cQ)w(cQ)

|Q|ν(EQ)1/pw(EQ)1/q

=
(

w(cQ)

w(EQ)

)1/q (
ν(cQ)

ν(EQ)

)1/p ((w(cQ)

|Q|
)1/p(ν(cQ)

|Q|
)1/q)

.
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To estimate BQ , write a = w(cQ)/w(EQ), b = ν(cQ)/ν(EQ) and γ = [w]1/pAp
,

so that
BQ � a1/qb1/pγ, (21)

since |Q| � |cQ|. Using that |Q| � |EQ | ≤ w(EQ)1/pν(EQ)1/q by Hölder’s
inequality, we have

a1/pb1/q � γ. (22)

Combining (21) and (22) and noting a, b ≥ 1, we have BQ ≤ (γ b−1/q)p/qb1/pγ
≤ γ p if p ≥ 2 and BQ ≤ a1/q(γ a−1/p)q/pγ ≤ γ q if p ≤ 2. This proves that

supQ∈D BQ � [w]max(1,q/p)
Ap

and yields the stated estimate of ‖S f ‖L p(w), since

‖MD
w (gw−1)‖Lq (w) � ‖gw−1‖Lq (w) = ‖g‖Lq (ν).

(ii) Next we prove the stated estimate by CD
ν . By (i), it suffices to show that

‖C3D
ν f ‖L p(ν) � ‖CD

ν f ‖L p(ν), (23)

for some c ≥ 1 in the definition of C3D
ν f . Assume that C3D

ν f (z) > λ. Then
there exists Q ∈ D such that Q � z and

∫∫

3̂Q
| f |dtdν > λν(cQ).

Let Pj ∈ D denote the at most 2n dyadic cubes of side length 4�(Q) such that
Pj ∩ (3Q) �= ∅, where P1 ⊃ Q is the grandparent of Q. By the pigeonhole
principle,

∫∫

P̂j

| f |dtdν ≥ 2−n
∫∫

3̂Q
| f |dtdν

holds for at least one of the dyadic Carleson regions P̂j , since
⋃

j P̂j ⊃ 3̂Q. We
get

1

ν(Pj )

∫∫

P̂j

| f |dtdν ≥ 2−nλν(cQ)/ν(Pj ),

and so CD
ν f ≥ 2−nλν(cQ)/ν(Pj ) on Pj . Since z ∈ P1 ∈ D and 3P1 ⊃ Pj , we

have

M3D
ν (CD

ν f )(z) ≥ 1

ν(3P1)

∫

Pj

2−nλν(cQ)/ν(Pj )dν = λ2−nν(cQ)/ν(3P1).

Choose c = 15. Then cQ ⊃ 3P1 and therefore M3D
ν (CD

ν f )(z) ≥ λ2−n . Letting
λ → C3D

ν f (z), we have shown that

C3D
ν f ≤ 2nM3D

ν (CD
ν f ).
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The estimate (23) now follows from Lemma 5.1, which completes the proof.
��

To obtain sharp weighted estimates of ND(S∗) via duality, where ND is the dyadic
non-tangential maximal functional

ND f (z) = sup
Q∈D,Q�z

‖ f ‖L∞(Qw), z ∈ Rn,

we need the following dyadic weighted duality estimates.

Proposition 5.3 Let 1 < p < ∞. Then

∣∣∣∣∣

∫∫

R1+n+
f gdtdν

∣∣∣∣∣ � ‖ND f ‖Lq (ν)‖CD
ν g‖L p(ν). (24)

Moreover, given any f : R1+n+ → R with ‖ND f ‖Lq (ν) < ∞, there exists a non-

vanishing g : R1+n+ → R such that

‖ND f ‖Lq (ν)‖CD
ν g‖L p(ν) �

∫∫

R1+n+
f gdtdν. (25)

The implicit constants in the estimates are independent of the weight ν.

Proof The result to be proved is a weighted extension of [7, Thm. 2.2], and the proof
is a straightforward modification of the unweighted proof. Since we shall not use (24),
we only give the proof of (25) to convince the reader that the constants there are
independent of ν.

Given f and λ > 0, we let Dλ ⊂ D be the set of maximal cubes Q ∈ D such that
‖ f ‖L∞(Qw) > λ. Then the cubes in Dλ are disjoint and we have {z : ND f (z) >

λ} = ⋃Dλ. We compute

‖ND f ‖qLq (ν) =
∫ ∞

0
λq ν({ND f (z) > λ})dλ

λ

=
∫ ∞

0
λq

∑

Q∈Dλ

ν(Q)
dλ

λ
=

∑

Q∈D
ν(Q)

∫

λ:Dλ�Q
λq

dλ

λ

≤
∑

Q∈D
‖ f ‖L∞(Qw)

(
ν(Q)

∫

λ:Dλ�Q
λq−1 dλ

λ

)
=

∑

Q∈D
‖ f ‖L∞(Qw)gQ,

where we have set gQ = ν(Q)
∫
λ:Dλ�Q λq−1 dλ

λ
. For the inequality, we used that

λ < ‖ f ‖L∞(Qw) when Q ∈ Dλ. Now define g to be a function on R1+n+ , whose
restriction to Qw satisfies

∫∫

Qw

f gdtdν � ‖ f ‖L∞(Qw)‖g‖L1(Qw,dtdν) = ‖ f ‖L∞(Qw)gQ .
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To estimate CD
ν g, for Q ∈ D we compute

1

ν(Q)

∫∫

Q̂
|g|dtdν = 1

ν(Q)

∑

R⊂Q

ν(R)

∫

λ:Dλ�R
λq−1 dλ

λ

= 1

ν(Q)

∫ ∞

0
λq−1

∑

R∈Dλ,R⊂Q

ν(R)
dλ

λ

= 1

ν(Q)

∫ ∞

0
λq−1 ν({ND f > λ} ∩ Q)

dλ

λ

= 1

ν(Q)

∫

Q
(ND f )q−1dν ≤ inf

Q
MD

ν ((ND f )q−1).

Using Lemma 5.1, this shows that

‖CD
ν g‖L p(ν) ≤ ‖MD

ν ((ND f )q−1)‖L p(ν) � ‖(ND f )q−1‖L p(ν) = ‖ND f ‖q−1
Lq (ν).

Therefore

‖ND f ‖Lq (ν)‖CD
ν g‖L p(ν) � ‖ND f ‖qLq (ν) ≤

∑

Q∈D
‖ f ‖L∞(Qw)gQ �

∫∫

R1+n+
f gdtdν,

which completes the proof. ��
With the above, we are now in position to prove sharp weighted non-tangential

maximal estimates for {�t }t>0.

Theorem 5.4 Let 1 < q < ∞. Assume that the operator S∗ has estimates (12) and that
the kernel k has estimates (9) and (10). Then for f ∈ Lq(Rn, ν), we have estimates

‖N (S∗ f )‖Lq (ν) � [ν]max(1,p/q)
Aq

‖ f ‖Lq (ν),

for any fixed aperture α > 0 used in the definition (8) of N. Here the implicit constant
in the estimate is independent of ν.

Proof (i) The corresponding dyadic estimate, that is, with N replaced by ND , fol-
lows immediately from Proposition 5.3 and Theorem 5.2 since

‖ND(S∗ f )‖Lq (ν) �
∫∫

R1+n+
(S∗ f )(t, x)g(t, x)dtdν

/
‖CD

ν g‖L p(ν)

=
∫

Rn
f (x) S(gν)(x)dx

/
‖CD

ν g‖L p(ν)

≤ ‖ f ‖Lq (ν)‖S(gν)‖L p(w)

/
‖CD

ν g‖L p(ν)

� ‖ f ‖Lq (ν)[w]max(1,q/p)
Ap

= [ν]max(1,p/q)
Aq

‖ f ‖Lq (ν),

where g is a function dual to S∗ f , provided by Proposition 5.3.
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(ii) For the estimate of N (S∗ f )(z), z ∈ Rn , let (tz, xz) be such that |xz − z| < αtz
and N (S∗ f )(z) � |S∗ f (tz, xz)|. Write

S∗ f (tz, xz) = (S∗ f (tz, xz) − S∗ f (tz, z)) + S∗ f (tz, z) = I + I I .

For term II, we have |S∗ f (tz, z)| ≤ ND f (z). For term I, we have

|S∗ f (tz, xz) − S∗ f (tz, z)| �
∫

Rn

|xz − z|δ
|(tz, z) − (0, y)|n+δ

| f (y)|dy.

Using |xz − z|δ � tδz and writing

1

(1 + r)n+δ
�

∫ ∞

r

ds

(1 + s)n+δ+1 ,

this gives

|S∗ f (tz, xz) − S∗ f (tz, z)| �
∫

Rn

t−n
z

(1 + |y − z|/tz)n+δ
| f (y)|dy

�

∫ ∞

0
t−n
z

(∫

|y−z|/tz<s
| f (y)|dy

)
ds

(1 + s)n+δ+1 � M f (z).

Therefore we have the pointwise estimate

N (S∗ f ) � ND f + M f

The estimate in (i) above and the estimate ‖M f ‖Lq (ν) � [ν]p/qAq
‖ f ‖Lq (ν) from

[3, Thm. 2.5] now completes the proof.
��

We note that in the proof of Theorem 5.4, it would have sufficed to estimate the
vertical maximal function ‖ supt>0 |�t f |‖Lq (ν) in step (i).
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