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Abstract

We prove sharp weighted estimates for the non-tangential maximal function of singular
integrals mapping functions from R” to the half-space in R!*” above R”. The proof
is based on pointwise sparse domination of the adjoint singular integrals that map
functions from the half-space back to the boundary. It is proved that these map L
functions in the half-space to weak L functions on the boundary. From this a non-
standard sparse domination of the singular integrals is established, where averages
have been replaced by Carleson averages.

Keywords Sparse domination - Non-tangential maximal functional - Carleson
functional - Sharp weighted estimates

Mathematics Subject Classification 42B35 - 42B20 - 42B37

1 Introduction

Let us recall the sparse domination paradigm for estimating singular integral opera-
tors, which has been very successful in proving sharp weighted estimates for various
singular operators for more than a decade. Given a singular integral operator 7 on R”,
with Calderén—-Zygmund kernel k(x, y), the procedure for obtaining estimates is as
follows.

(a) Boundednessof T on L,(R") is proved. For classical convolution singular integral
operators the Fourier transform is used, and for nonconvolution singular integral
operators T'b theorems are used.

(b) Using the Calderén—Zygmund decomposition, L, boundedness and estimates of
k(x,y), weak L1(R") boundedness of T is proved.
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(c) Using weak L1 (R") boundedness of T and its grand maximal truncation operator
M7, a pointwise domination

IS Y ]gglf(y)ldy, x eR",

Q€Dy,03x

by a sum of averages of f, over a sparse collection Dy of dyadic cubes Q, is
proved. Sparse roughly means that the cubes in Dy are essentially disjoint. See
Sect. 4 for the definition.

(d) From the sparse domination, one can prove the boundedness of 7' on any Banach
function space on which, together with its dual space, the maximal function is
bounded. For example on weighted L, (w)-spaces, 1 < p < 0o, w € A,(R").

See for example Lerner [12] and Lerner and Nazarov [13]. We use the analyst’s inequal-
ity X < Y, which means that X < CY for some constant C < oo independent of
relevant variables but possibly depending on some parameters which should be clear
from the context. For example, the C in (c) above is independent of f and x, but may
depend on the sparseness parameter . X 2 Y means ¥ < X, and X < Y means
XSYandX 2 Y.

Somewhat hand in hand with singular integrals T as above, goes the theory of
singular operator families {®,};~, where ®, are integral operators

O f(x) = /R k(t,x; y)f(»)dy, xeR"t>0. (1)

Equivalently, the operator family defines a mapping from functions on R” to functions
on the upper half-space Rf" ={(t,x) : t > 0,x € R"}, and a basic L, estimate is
the square function estimate

o0 dt
/0 100135 < 1713 %)

For families of classical convolution operators ®,, the square function estimate (2) is
Calderén’s reproducing formula and the function (¢, x) — ©®; f(x) is a continuous
wavelet transform of f. See Daubechies [5]. For families of nonconvolution operators
®;, there are T b theorems for proving (2). See for example Semmes [15] and Hofmann
and Grau De La Herran [6]. Sparse domination has been extended to this framework
to prove sharp weighted estimates of the square function

o0 dr\'"?
xw(f |®,f<x>|2—> :
0 t

See Lerner [11] and Bailey et al. [2].
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In the above works, the kernel of ®; is at least integrable on R” and typically
satisfies an estimate

1
(1+ |x = y|/pymt+e’

|k, x; )| St™" x,yeR"t>0, 3)

for some § > 0, together with suitable off-diagonal Holder estimates. In the present
work, we consider operators ®; with kernels that are only locally integrable and
typically satisfy (3) only for § = 0. The simplest example are the (non-singular) Riesz
transforms

J _ Xj =i n
Rtf(x)_/l;n (t2+|x_y|2)(l+n)/2f(y)dyv XGR 7t >0a

where (¢, x) R,] f(x),j =1,...,n,are Stein—Weiss harmonic conjugate functions
to the Poisson extension

_ R0 — !
P f(x) =R/ f(x)= /1;" (12 + |x — y|2)a+m/

sfdy, xeR't>0,
of f.

If 8 = 0, the square function estimate (2) is no longer suitable as an L, estimate to
feed into a sparse domination scheme. This is because, in contrast to the case where
the kernels are integrable, we generally do not have strong convergence ®; f — 0 for
6 = 0 when t — 0, so the left hand side in (2) is typically infinite. Instead, a natural
object to estimate when § = 0 is the non-tangential maximal function of ®; f (x). We
therefore replace (2) with an estimate

2
f( sup |®tf(x)|> dz S If13, (4)

(t,x):|x—z|<at

which serves as our starting Ly estimate for step (a) in a sparse domination scheme.
Given an L, non-tangential estimate (4), we proceed by duality and consider the map

st = [[ | kexin e,y er, )

which maps functions f (¢, x) defined in the upper half-space Rf‘" to functions
(Sf)(y) on its boundary R". By duality, (4) corresponds to the Carleson estimate

2
578 % [ (s oo ([ 176 vidnax) oz ©)
NAeliol 1

for S, where the sup is over all cubes Q C R” containing z, and @ C Rf" is
the Carleson box, the cube with Q as its base. The equivalence of (6) and (4) follows
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from [7, Thm. 3.2]. Our main result, Theorem 4.1, shows that (6) implies the pointwise
Carleson-sparse domination

1
ISFOIS Y @/f@mz,xnmdx, ac.yeR", @

QeDy,Q3y

of S. Here 3Q denotes the cube with the same center as Q but three times the side
length. Note that the Carleson averages in this sparse domination normalize by the R”
measure |Q|, and not by the R!*" measure [3Q| ~ |Q|. This is in contrast to usual
sparse domination techniques.

The four sections of this paper simply implement steps (a)-(d) of the sparse domi-
nation scheme described above. Starting from an L, non-tangential maximal estimate
(4), or equivalently an L, Carleson estimate (6), we prove weighted L , estimates. For
Muckenhoupt weights w € A,(R"), we estimate the L ,(R", w) operator norms by
[w]r:j:x(p’q)/p, 1/p+1/g = 1. See Theorem 5.2 for the Carleson estimate and Theo-
rem 5.4 for the dual non-tangential maximal estimate. The power of [w]y4, is optimal
because it is known to be optimal for the R" singular integral ®¢ = lim;_,o ®;, see
Hytonen [10], which the non-tangential maximal function of (®;),~o majorizes. Note
that for § > O the non-tangential maximal function of ®, f is pointwise bounded
by the maximal function of f. In this case the sharper weighted estimate by [w]%’ P
follows directly from Buckley [3, Thm. 2.5].

The sparse domination and estimates considered in this paper are related to those
by Hytdnen and Rosén [9]. There, L, non-tangential maximal estimates for causal
Rf" Calder6n—Zygmund operators

T*f(t,x)=p.v.ff,+ K, x;s,)g(s, y)dsdy,  (s,1) € RF™"
R

were proved. Here causal means the kernel condition K (¢, x;s,y) = 0 for s > ¢,
that is, T is upward mapping. Both those results and the results in the present paper
are proved by a sparse domination of the adjoint anti-causal, or downward mapping,
operator. A natural attempt to prove an estimate of (5), for example in L ,(R")-norm,
is to apply the trace estimate from [8, Thm. 1.1] to obtain

IS L, @ S UCVSHIL, @

wherj: C denotes the Carleson functional, which is defined within the square in (6)
and S f denotes an extension of Sf to Rf”, defined by an auxiliary weakly singular
integral operator S on Rf". The idea would then be to apply [9, Thm. 5.1] to the
singular integral T = vSon R_l‘_+”. However this seems to be impossible. Technically,
the boundedness of 7' would require a Whitney averaging in the Carleson norm. More
seriously, according to [9, Ex. 2.1] it is necessary that 7 = T~ is anti-causal in
order for boundedness to be possible in the Carleson norm. To achieve anti-causality,
a natural way is to truncate the kernel of S so that it becomes anti-causal. (This is

@ Springer
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possible without changing the boundary values Sf.) But at 7 = s, this adds an R"
singular integral operator to 7 = V.S, which acts on f (¢, x) in the x variable for each
t > 0. According to [9, Ex. 2.3], such a horizontal mapping singular integral will in
general not be bounded in a Carleson norm. To summarize, the estimates considered
in this paper are related to, but not implied by, those in [9].

2 Setup and L, Estimates

This section is about step (a) in the sparse domination scheme. First some notation.
We fix a system of dyadic cubes D = | J jez D’ in R", where D/ are the cubes of

side length £(Q) = 27/, such that the dyadic cubes in D form a connected tree under
inclusion. Given Q € D, its parent is the minimal dyadic cube strictly containing Q,
its grandparent is the parent of the parent, its children are the maximal dyadic cubes
stricly contained in Q and its siblings are the other children of the parent of Q. For a
given cube Q C R”, dyadic or not, we denote by cQ, ¢ > 0, the cube with the same
center as Q but with side length £(cQ) = c£(Q). The Carleson box above Q is the
Rf" cube @ = (0, £(Q)) x Q, and the Whitney region described by Q is the upper
half Q" = (£(Q)/2,£(Q)) x Q of Q.

With 1g and | E| we denote the indicator function and the measure of a set E. The
maximal function of a function f(x) on R” is

Mf(X)=Sllp][| | |fDldy,  x eR™

r>0

We denote the non-tangential maximal functional of a function f (¢, x) on R f" by

Nf(z) = esssup; vy (x—z|<ael [ (£, X)), 2 € R, ®)

where the aperture o« > 0 of the cones is a fixed constant. We denote the Carleson
functional of a function f (¢, x) on Rf" by

Cf(z):supL / | f(t, x)|dtdx, z e R",
05: 101 JJ5

where the sup is over all (non-dyadic) cubes Q C R” containing z. Versions of M, N
and C, dyadic and non-dyadic, will appear below where they are needed.

Throughout this paper, we fix a kernel function k : R'*?* — R which morally has
the size estimates

1

kx| < —
TP ST

@ Springer



360 Page6of21 A.Rosén

However, we will not use this estimate, but only the following three. We assume, for
some § > 0, off-diagonal Holder estimates

. , (s, 2)I°
lk(t +s,x +2z;y) —k(t,x; )| S ) = 0.5 9)
for |(s, z)| < |(¢,x) — (0, y)|/2, and
|z°
lk(t, x5y +2) —k(t,x; )| S (10)

|(, x) — (0, y)|"+

for |z] < |(¢,x) — (0, y)|/2, where s, t > 0 and x, y, z € R".
Using the kernel k(z, x; y) we define integral operators ®; as in (1) and an operator
S as in (5), and we assume that L, Carleson estimates

I1SfllLarry S NCFIL, R (11)

hold, that is, (6). By duality, (11) is equivalent to L, non-tangential maximal estimates

INS* Oll,wry S I la®e, (12)

that is, (4), for the adjoint operator

S*f(t,x) = fR keSO, @0 e R,

that is, (1). A standard method for verifying the non-tangential estimate (12) is to
derive it from a gradient square function estimate

* ) dt 2
A 1£VO: fli5 7 S,

which in turn can be proved by a T'h theorem applied to the kernel ¢V, k(z, x; y).
Indeed, (7, x) — ©;f(x) often solves an elliptic equation in applications, where
L, estimates between non-tangential maximal functionals and square functionals are
known. See [1, Sec. 10.1] for a large class of elliptic equations.

For the Riesz transforms mentioned in the introduction, there is the following
alternative algebraic argument, also for Lipschitz domains.

Example 2.1 To simplify the notation, we only consider dimension 1 + n = 2. The
following argument can be performed in higher dimensions, replacing the complex
algebra with the Clifford algebra. See [14, Sec. 8.3] for the higher dimensional Cauchy
integral that would be used for this argument.

Let + = ¢ (x) be the graph of a Lipschitz function ¢ : R — R, and consider the
family of operators

s FO) (1 +i¢/ (y)dy
Orf () = 5— RY +ig(Y) —x —i(t + o (x))

xeR,t>0,

@ Springer



Carleson-Sparse Domination Page70f21 360

which represent the Cauchy integral that acts on functions on the graph. If ¢ = 0 and
f is real-valued, then Re ©; f is the Poisson integral of f and Im ©®; f is the Riesz
transform of f, but for general ¢, both real and imaginary parts have only kernels with
the decay 6 = 0 in (3).

We now realise that by the Cauchy integral formula, we have the algebraic identity

O f =0:(O0f),
since g = Opf = lim,_, O, f represents the trace on the graph of the analytic
function ®, f above this graph. The function g belongs to the upper Hardy subspace,
and therefore its Cauchy extension ®_;g = 0, ¢ > 0, vanishes below the graph. Thus

O:f =(Or —0_)(Oof), >0,

where one proves that the kernel of ®, — ©_; has Poisson kernel estimates < ¢ /(1> +
(x — y)2). From this follows the pointwise maximal estimate

N(S*f)2) S MO f)(2), ze€R.

Since M : L,(R") — L,(R") is bounded for 1 < p < oo and the singular Cauchy
integral ®¢ : L, (R") — L,(R")is bounded for 1 < p < 00, (12) follows. However,
the sharp weighted estimates in Theorem 5.4 below do not follow.

3 Weak L1 Estimates

This section is about step (b) in the sparse domination scheme.

Proposition 3.1 Assume that the operator S has Ly Carleson estimates (11) and that
the kernel k has x-regularity (9). Then S has weak L-estimates

. —1
Hy e R" : [Sf(W)] > A S A ”f”L](le")v A > 0.
For the proof, we need a twin of the Carleson functional, the area functional

Af(z)=//| Feol T cer,
xX—z|<ot

where the aperture o > 0 of the cones is a fixed constant. Recall that for | < p < oo,
different apertures o > 0 give equivalent norms [|Af||z,®»). See [8, Prop. 2.2].

Lemma3.2 Letg: Rf‘" — R be a function such that ||Cg|| 1., r") < A. Then
/ |Ag(@)1Pdz S 2 / |Ag(2)ldz.
RVI Rll
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Recall that
IASf L, @ =~ ICflIL,®m (13)

for 1 < p < oo. See [8, Prop. 2.4]. However, for p = oo the area functional can be
unbounded, even if the Carleson functional is bounded. We take the opportunity to
correct a typo in the counterexample given in the first display after [8, Prop. 2.4]: It
should read f(z, x) = (t + |x|)~" in each dimension n. Lemma 3.2 means that Ag is
close enough to be bounded for the stated estimate to hold.

Proof The following is inspired by the good lambda inequality from [4, Thm. 3(a)].
Denote by A® g and AP g the area functionals with the apertures o and S respectively.
Assuming that ||Cgll .. r") < A, we claim that the estimate

Hz 0 A®g(2) > 251 S W/s)llz : AP g(2) > s}

holds for all s > 0, provided that « < B. To see this, let U = | J j Q; be a Whitney

decomposition of the open set U = {z : A®)g(z) > s} into disjoint cubes Q ; CR"
such that £(Q;) =~ dist (Q;, R" \ U). It suffices to show

Hze Q; : A®g(z) > 25} < (A/9)|Q;] (14)

for each Q;, since summing over j then gives the desired estimate. Let M; = {z €
0;: A("‘)g(z) > 2s}and chooseapointz; € R"\U suchthatdist (z;, Q;) =~ £(Q;),
so that A(ﬂ)g(zj) < s. Now note that

{(t,x) 1 |x —z| <at} C{(t,x) : |x —zj| < Bt}
U{(t,x):|x—z|l<at,t <cl(Q)))}

forall z € Q, for some constantc > 1 only depending on «, 8. Indeed, if |x —z| < at
andt > cl(Q;), then |x — z;| < at + |z — z;| where |z — z;| = £(Q;) < t/c. This
gives the estimate

|M|

IA

1
—/ ADg(2)dz
25 Jm;

! ® 1 .
Ao A e(zj)dz + — lg(t, x)|t ™ "dtdx | dz
2s M; 2s 0 lx—zl<at,t<cl(Q})

Mil/2 +¢'s™! t,x)|dtdx
17 86t )ldrd,
(14+2ca) Q; x(0,c€(Q))

for some ¢’ < oo. Since ||Cgllz (r") < A, this yields [M;] < s Q| as claimed.

IA

IA

@ Springer
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Finally, multiplying (14) by s and integrating over s € (0, 00) gives

oo
/ |A@g(2)Pdz =~ / sz : A®g(2) > 2s}ids
Rn 0
oo
5/ Mz 0 AP g(z) > s}lds
0

—a / 1A®) ¢(2)dz.

Since different apertures give equivalent L, norms and equivalent L norms, this
proves the lemma. O

Proof of Proposition3.1 (i) We estimate f using a Calderén—-Zygmund argument

(ii)

(iii)

based on Carleson averages. Given A > 0, let Q; € D denote the maximal
dyadic cubes for which

//QA | f(, x)|dtdx > A Q.

Define

, else,

1 A 0
byt ) = {f(t,x) — 151 /g, s ndsdy, (%) € 0j,

and g = f — Zj b;. Note that in the definition of b;, we do normalize the

integral by | Q| and not | Q ;.
Estimating first Sg, we note that |Cg|L. ®r") < A. Indeed, since g is constant
equal to the Q] -average of f on each Q], it follows that |Q|~! ffA lgldtdx <

1017 [fg; | fldidx if O C Q;. Note that [ | f|dtdx < ffR|f|dtdx <

AR| = A|Qj|, where R is the dyadic parent of Q;. For Q not contained in
any Q;, we have |Q|~! ff@ | fldtdx < A. We can now apply (11), (13) and
Lemma 3.2 to get

W eR gl = a1 =372 [ 1Seidy
Rll
R” R”
S A_I/ [AgWldy = )L_lngllLl(le") < )\'_lnf”Ll(R_l'j’”)-

To estimate Sb;, we do the standard estimate

‘ (Zb) >x}|<Z|3QJ|+A ‘Z/ 1Sbj(y)ldy,

RN\@EQ))
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where
Z 1301 5 Z/\_l //@\ | f(t, x)|dtdx < )‘_luf”Ll(le"y
J J J

For the second term, we use that ff@ bj(t, x)dtdx = 0 and (9) to estimate

f 1Sb; ()dy
R"\(3Q;)
/ (it x1 y) — k(19 x: Y)bj (. x)d1dx

/R”\(3Qj) Q;

€(Q)°
< .
- //Qj (/R"\og,-) (tg, x0) — (0, y)l"*sdy) 161 ldrd

< /./A [b;(t, x)dtdx S //A | f(t,x)|dtdx,
Qj Qj

where (7¢, xp) denotes the center of Q\] This yields

ISb;j(nldy S f/A L@, 0ldtdx SNl gitnys
;/R"\@Qj) XJ: 0; PR

dy

which completes the proof.

Remark 3.3 In the proof of Proposition 3.1, we can easily reduce to the case when
f is constant on each dyadic Whitney region Q". Indeed, given f € L (Rf” ), we
write f = fo + f1, where fou fo(t, x)dtdx = 0 and f) is constant on each dyadic
Whitney region QY. For fp, using (9), we have strong L estimates

/ ISfo(y)Idy=/ Z/ (k(t,x3y) — k19, x0; y)) fo(t, x)dtdx|dy
R)'l Rl‘l Qe’D QlU

£0Q)° )
: d ,x)|dtd
h QXE;D‘//"’ </” I(tg, xg) — (0, y)|*+3 v ) I fo(t, x)|dtdx

sy / /Q 1fott. ) ldedx = 1 foll gy

QeD

where (¢p, xo) now denotes the center of Q". Thus it remains to estimate Sf7.

For the sparse domination of S, we require the maximal operator

Ms f(y) = sup [SUgrim 55 )L, ¥ € R",
0>y *

@ Springer
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where the sup is taken over all dyadic cubes O C R” containing y. This is a version
of Lerner’s grand maximal truncation operator from [12], which is enough for our
purposes.

Proposition 3.4 Assume that the operator S has Ly Carleson estimates (11) and that
the kernel k has the x-regularity (9) and the y-regularity (10). Then Mg has the weak
L1 bound

v € R ¢ [Ms )] > A S AT Ifll, ey »> 0.
+

Proof This result follows by tweaking the standard proof of Cotlar’s lemma. Fix a
cube Q C R”. Let

fi=lgpf and fo=lgingpf.

At a given point y; € Q, we estimate Sf>(y;) by averaging over a variable point
y € Q. Write

Sy = Sy = SLON +SFy) = SHy) =T+ 11T +111.

Fixing p > 1, we estimate term II as
][ ISFIYPdy < inf M(SfIVP)
[¢)

and term III as

1/p < —1/p 1/p < (i 1/p
][QISfl(y)l dy S 10| ||f1||LI(R1++n)N(lréfo) ,

using Kolmogorov’s inequality and Proposition 3.1. To estimate term I, we use (10)
to get

()’
L5 16 x) — (0, yo)

[S2(y1) — Sf2(0)] 5// s | f (@, x)|dtdx,
R |

for any yo € Q. Writing r = |(¢, x) — (0, yo)| and r "% < froos_”_l_‘sds, we get

*© d
1Sf201) = SH(I S Q) //I;H”\f@ (/ W—fﬂ;) | f(t, x)|dtdx
+ r

o0
= e(Q)‘S/ % (/f _ If(t,x)ldtdx)
«o s (I6.x—y0) <sN\T0

© d
SuQ [ cron = Cfow.
wo st
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Collecting the estimates, we have prove the pointwise estimate
Msf < Cf +M(SfI'P)P +Cf.

Here M is bounded on L, »(R"), which combined with Proposition 3.1 gives the
estimate for the second term. A standard Vitali covering argument finally shows that

Iy € R 1CF O > M S 27 SNy om0,

which completes the proof. O

4 Carleson-Sparse Domination

This section is about step (c) in the sparse domination scheme.
We recall that a collection of dyadic cubes D C D is called n-sparse, n > 0, if each
Q € D contains a subset Eg C Q such that |Eg| > n|Q| and Eg N Eg = ¥ whever

R+#0,0,ReD.

Our main result in this paper is the following Carleson-sparse domination. The
proof given below is an adaption of the estimate in [12] to singular integrals mapping
from Rf" to R".

Theorem 4.1 Assume that the operator S has Ly Carleson estimates (11) and that
the kernel k has the x-regularity (9) and the y-regularity (10). Fix 0 < n < 1. Then
forany f € L (Rf‘” ) with bounded support, there exists an n-sparse family Dy of
dyadic cubes such that

1
[SfDI S Z 7] //;/@ |f(t,x)|dtdx, forae yeR".

0€Dy, 05y

Proof (i) Let ca > 0 be constants to be chosen below. Let Q € D be such that
supp f C 30. Define

E={yeR":max (1SF O, Ms f () > clQ] ™ /f@ flddx}.  (15)
and let R; € D be the maximal subcubes R; C Q such that
IR; NE| > a|R;].
Using maximality, we can also obtain a converse estimate by noting that
Rj ME| <R N E| <«lR]| = a2"[Rj].
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where R’ denotes the dyadic parent of R j- We choose @ = 1/(2" + 1), so that
each R; contains a substantial part of both £ and R" \ E in the sense that

min(|R; N E|, |R; \ E|) > |R;|/(2" +1). (16)

Lebesgue’s differentiation theorem shows that

Engc| R, (17)
j

modulo a set of measure zero. From Propositions 3.1 and 3.4, we obtain

IE| < <c|Q|‘ //@ Ifldtdx>_1//3AQ |fldtdx = 0]/,

Since |JR; = {M(1g) > a}, by the weak L boundedness of M we have

YIRS EI S 101/ (o).

J

Having fixed « = 1/(2" 4+ 1), we choose ¢ large enough so that

IR = =)0l (18)
J

(i) Recall that supp f C 3@ so that 153 f = f. Now write

105(155) = 1o\Ur,SU5p /) + D 1k, SUgrencgzf) + D 1o, Sz
j j

=1+11I +ZleS(1§Tf).
j

e FortermI, by (17) we have y ¢ E forae.y € Q \ |J R}, and therefore (15)
gives

S5 NI S 1017 //@ \fldtdx.

e For subcube R; in term II, by (16) there exists y’ € R; \ E. Forall y € R},
we therefore have

IS grngz) FOI S Ms FG) S 1QI! //@ \flddx,
using (15).
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To summarize, we have shown that

IQS<13AQf)scl|Q|‘//@|f|drdx+211e,.s<1g,;f>, 19)
J

for some constant C; < oo, where the disjoint subcubes satisfy (18).

(iii)) We can now iterate (19) to get the stated sparse estimate as follows. Choose
01 € D such that supp f C Q\l Set P = Q1 and recursively define Pji4
to be the dyadic parent of P;, j = 1,2.... Let O3, O3, ... be an ordering of
all the siblings of all the cubes P;, j = 1,2,.... We obtain a disjoint union
R" = 72, Q ; modulo a zero set. Since Q1 is contained in a sibling of Q, it

follows that 3Q; O Oy, and therefore3/Q7 Dsupp f,j=1,2,.... Hence

Sf=21Qj5f=21QjS(13/Q7f). (20)
j j

‘We now apply the estimate in step (ii) above to each Q = @, which produces
first generations of subcubes Ry C Q. Then we apply the estimate in step (ii)
above to each such first generation subcube Q = Ry, which produces second
generations of subcubes. Continuing recursively in this way, we define the family
of dyadic cubes D s as the union of all Q ; along with all generations of subcubes
Ry. For Q € Dy, we define

Eg=0\JR,
k

where Ry are all the subcubes of Q, constucted from Q as in step (i) above. It
follows from (18) that D is n-sparse. Combining (20) and recursively (19), the
stated sparse domination of Sf follows. This completes the proof.

m}

5 Sharp Weighted Estimates

This section is about step (d) in the sparse domination scheme. We first derive weighted
L, Carleson estimates of S from Theorem 4.1, and then use duality between the Car-
leson and non-tangential maximal functionals to obtain weighted L, non-tangential
maximal estimates of S*.

Wefix1 < p<oocand1l/p+1/g =1,aletw(x) > 0,x € R", be an A, weight,

that is,
1 1/p 1/q
[w],” :sup(l[ wdx) (7[ vdx) < 00,
" o No 0
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where the sup is over all cubes Q, and v = w™%/P is the dual weight. It is readily
checked that v is an A, weight with [v]i/qq = [w]z/pp. Write w(Q) = [, dw for the
w-measure of O, where dw = wdx, and similarly for v.

Some additional technicalities arise since we aim to prove weighted estimates which
are sharp with the respect to the dependence on the A, characteristic [w]a, of the
weight. In particular we need to avoid using the doubling property of the measures
quantitatively. To this end, dyadic operators are preferred. We also need to handle
dilations 3Q of dyadic cubes Q € D coming from Theorem 4.1.

Lemma5.1 Let 1 < p < oo. Then we have maximal function estimates

IMP UL, S IFIL,w)

for the centered dyadic weighted maximal operator

1
M3P £ (z) = _/ dw.
w @) QesDu,stszQ) 3Qlfl w

The same estimate holds for the standard dyadic weighted maximal operator

1
MmP = —/ dw.
w [ (@) Qegréazw(Q) Qlfl w

The implicit constant is independent of w, but depends on p.
Proof 1t suffices to consider M%D as the proof for Mg is similar but simpler. For

p = 0o, clearly ||M3)Df||Loo(w) < I fllLe(w)- By the Marcinkiewicz interpolation
theorem, it suffices to show the weak L estimate

w(tz : M2 £ > 1) S 27l w)-
To see this, for given A > 0 we consider the dyadic cubes Q € D such that

ff3Q |fldw > Aw(3Q). Denote by {Q;} the maximal such cubes. Then Q; are
disjoint and {z : M3P f(z) > 1} = J; Q;. This gives

w{z : MPf@) > ) =) w(@) <) w30

J J
<3 [ i =37 [ 1o, I 1aw
j 32 R
< A3 f Ny -
O
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Theorem 5.2 Let 1 < p < 0o. Assume that the operator S has estimates (11) and that
the kernel k has estimates (9) and (10). Then we have estimates

ISFllLy S [y PP oD, 0,

where the dyadic weighted Carleson functional is

D _ 1
Cyf@)= QesDu’pQBZ o) //Q | £(t, x)|dtdv.

Here the implicit constant in the estimate is independent of w and v.

Proof (i) We first estimate Sf by the auxiliary Carleson functional

Clfz)= sup ! //Alf(t,x)ldtdv,
0eD, 0>z V(CQ) 30

where ¢ > 1 is a fixed constant. Let g : R” — R be a dual function for which
equality holds in Holder’s inequality fR” (Sf)gdx < IISfllL,w)llgllL, - Using
Theorem 4.1 and adapting the argument [12, Sec. 5], we estimate

1
S dx < — dtd d
s “Qé <|QI//3@|f| as) (f(g|g| )
- 3 (S ] ) (202 )
- (cQ) wecQ) Jo'*

QeDy

1 p
<supBg| Y //A | fldtdx) v(Eg)
QeDf (\)(CQ) 30 )

1/p

QeD
1/q

1 q
X Q;f(w(CQ)/‘thldx) w(Ep)

< (sup Bo)lIC;P (fv Dl m MY (gw™ L, w).
QeD

using that w(cQ) > w(Q) in the last inequality, where £y C Q are the disjoint
ample subsets of O € Dy and

B v(eQ)w(cQ)
T IQIV(EQ) Y Pw(E )4

_ (w(vQ))”q (v(cQ))“” ((w(CQ)>1/P(V(CQ))1/4)
~ \w(Eg) v(Eg) 10 10| '
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(i)

To estimate By, writea = w(cQ)/w(Eg),b = v(cQ)/v(Eg) and y = [w]“”
so that
Bg <al/ipl/ry, (1)

since |Q| = |cQ|. Using that |Q| < |Eg| < w(Eg)"/Pv(Ep)!/4 by Holder’s
inequality, we have
al/Ppl/a < . (22)

Combining (21) and (22) and notinga, b > 1,wehave By < (yb~'/0)P/apl/pry
<yPif p>2and Bp < a'’4(ya=1/P)4/Py < y49if p < 2. This proves that

Suppep Bo S [w]max(l 4/P) and yields the stated estimate of || Sf ||, w), since

1M (gw DL, S lgw™ L, = 18l w)-
Next we prove the stated estimate by CP. By (i), it suffices to show that
1C3P FllL, ) SNCL FllL, 0 (23)

for some ¢ > 1 in the definition of C3? f. Assume that C3P f(z) > . Then
there exists Q € D such that Q > z and

/fA | fldtdv > Av(cQ).
30

Let P; € D denote the at most 2" dyadic cubes of side length 4£(Q) such that
PN (3 Q) # 0, where P; D Q is the grandparent of Q. By the pigeonhole

pr1n01ple
//A | fldtdv > 27" //A | fldtdv
Pj 30

holds for at least one of the dyadic Carleson regions P, since U j 1’7 D 3@ We
get

v(P ) / [ fldtdv = 27" v (cQ)/v(P)),

and so C‘?f >27"xv(cQ)/v(Pj)on P;.Sincez € Py e Dand3P; D Pj, we
have

MP(CP f)(z) >

V(3P /p,. 27w (eQ)/v(Pj)dv = 227"v(c Q) [v(3P1).

Choose ¢ = 15. Then cQ D 3 P; and therefore M3P (CP f)(z) > A27". Letting
A — Cfo(z), we have shown that

CPf<2"MP(Cclf).
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The estimate (23) now follows from Lemma 5.1, which completes the proof.
]

To obtain sharp weighted estimates of N P (S*) via duality, where N is the dyadic
non-tangential maximal functional

Npf() = sup | fllLecowy, z€R",
QeD,0>z

we need the following dyadic weighted duality estimates.

Proposition 5.3 Let | < p < oo. Then

‘//l;lj" fegdtdv

Moreover, given any f : Ri_+” — R with ||NDf||Lq(v) < 00, there exists a non-

SUNP flli,mlICPgllL,w- (24)

vanishing g : R1+" — R such that
INP FllL,mlICLgllL,wm < f ., fedrdv. (25)
R™

The implicit constants in the estimates are independent of the weight v.

Proof The result to be proved is a weighted extension of [7, Thm. 2.2], and the proof
is a straightforward modification of the unweighted proof. Since we shall not use (24),
we only give the proof of (25) to convince the reader that the constants there are
independent of v.

Given f and A > 0, we let D, C D be the set of maximal cubes Q € D such that
I fllLo(ow)y > A. Then the cubes in D, are disjoint and we have {z : NP f(z) >
A} = U Dy. We compute

o dx
IN® FIIZ, —/ MNP f(2) >A}>7
0

dx

Y w0 = Y v e

/ QEZD QEZD aDy3Q A
= 3 W leion (v(Q)f ) S 1 lemiomgos

QeD D’\BQ 0eD

where we have set g9 = v(Q) szpﬁ 0 )ﬂ_l‘%. For the inequality, we used that

A < [ fllLeo(ow) When Q € D;,. Now define g to be a function on Rf", whose
restriction to Q" satisfies

/ 0 fedtdv = || fllLcom gl ow,dtavy = I fllLa(0)&0-
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To estimate C VD g, for O € D we compute

1 dA
dtd R K G
Q) f/@'g' rav = Z v )/DABR

= R 2
V(Q) ReD,\ RCQ A
1 © di
_ qg—1 D i
= V(Q)fo MTTv({NT f > AN Q) -

D r\g—1 : D D r\qg—1
v(Q)/Q(N ) dvslléva ((NTHT).

Using Lemma 5.1, this shows that

ICPglL,m = IMP(NP HT D L,0 S TN AT 0 = INPFIT )

Therefore

IN Fll, 1€ 8lL,00 SINPFIT o) = D0 1 lwiomgo = f  fgdrdv,
QeD

which completes the proof. O

With the above, we are now in position to prove sharp weighted non-tangential
maximal estimates for {®,},-0.

Theorem 5.4 Let1 < g < oo. Assume that the operator S* has estimates (12) and that
the kernel k has estimates (9) and (10). Then for f € L,(R", v), we have estimates

1
INGS* Ollzyor S PPN Fll, 0,

for any fixed aperture o > 0 used in the definition (8) of N. Here the implicit constant
in the estimate is independent of v.

Proof (i) The corresponding dyadic estimate, that is, with N replaced by N2, fol-
lows immediately from Proposition 5.3 and Theorem 5.2 since

INP(S* )L, < / / S P 0didy 1P gl )
R++n

- /R 0 S /16281,

< 1, 1S @) ey /1CL el L0

1 1,
S g lwly X7 = P oy
where g is a function dual to $* f, provided by Proposition 5.3.
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(ii) For the estimate of N(S* f)(z), z € R”, let (¢, x;) be such that |x, — z| < «at,
and N(S* f)(z) = |S* f(t,, x;)|. Write

S ft,, x) = (S" ft;,x) = S*f(t;, )+ S f(t;, ) =1+11.

For term II, we have |S* f(t., z)| < NP f(z). For term I, we have

T
|S*f(rz,xz>—5*f<rz,z)|5f e 2" e ay.

Re (1, 2) = (0, )"

Using |x; — z|® < ¢ and writing

1 Y ds
S R A
this gives

—n

12
* _g* < :
|S* f(t;, x;) — S™ f(t;, 2)| NLH (L+ |y —zl/t;

o0 ds
~ " — < .
/0 i ( /w_z/,zq'f(”'dy) T S MG

Therefore we have the pointwise estimate

)y

N(S*f) SNPf+Mf

The estimate in (i) above and the estimate | Mf 1|z, ) < [v]ﬁ{{q I £ Iy vy from

[3, Thm. 2.5] now completes the proof.
O

We note that in the proof of Theorem 5.4, it would have sufficed to estimate the
vertical maximal function || sup,. [©; f|llL, ) in step (i).
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