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A B S T R A C T

There is an increasing demand for software that can handle an arbitrary number of linked markers in forensic 
genetics; primarily with application to inference of relationships and direct matching but also in applications 
such as ancestry inference and mixture interpretation. With the emergence of sequencing technologies, denser 
sets of SNP markers are generated and analyzed. Additionally, sequence data of low quality and quantity DNA 
generate uncertainty about the underlying true genotype. We provide an efficient implementation of a general 
model for pedigree likelihood computations with genetic marker data using a three-layered approach. The top 
and first layer is the population model where allele frequencies and population substructure are accounted for. 
The second layer is the inheritance model which efficiently handles linked markers using an IBD model. The third 
and bottom layer is the observational level where we model the likelihood of the true genotype given underlying 
reads as well as parameters for errors. We exemplify the utility of our implementation as well as provide vali
dation according to guidelines established by the ISFG using a combination of two published SNP panels. We 
demonstrate that computations are feasible for panels encompassing 10,000 markers and we argue that, due to 
the properties of the underlying algorithm, extending the number of markers will result in a linear increase in 
computation time. In addition we study the impact of parameters used in our model and suggest some guidelines 
pertaining to their values. The results demonstrate that a probabilistic model for low coverage sequence read 
data is needed instead of relying on an a threshold based genotype and applying our general model for inference 
of relationships on a real case can be superior, i.e. higher information content, to other methods relying on either 
fixed genotypes with low quality sequence data or simple pair wise relationship tests. In summary, the imple
mentation, FamLink2 (freely available at https://famlink.se), can jointly handle genetic linkage, genotype un
certainty and population substructure for an arbitrary pedigree with data for any number of individuals. Whereas 
the current study will focus on calculations disregarding mutations, FamLink2 has the ability to model mutations 
for certain built-in pedigrees.

1. Introduction

Progress in forensic genetics has made several expanded panels of 
SNP markers available to the community, primarily aimed at massively 
parallel sequencing platforms [1–4]. Tillmar et al. recently published a 
joint effort to unify the panel of genetic markers used in forensic genetics 
[1] without focusing on a particular library preparation protocol. The 

FORCE panel encompasses a total of 5422 markers with 3931 autosomal 
SNPs particularly suitable for kinship applications. The markers have 
been carefully selected to a) avoid linkage disequilibrium between al
leles, b) minimize population dependency of allele frequencies, i.e. low 
diversity across continents and c) maximize kinship information content 
which for bi-allelic SNP markers is achieved when the minor allele fre
quency approaches 0.5. Secondly, the commercial ForenSeq 
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Kintelligence panel [3], encompasses 10,230 SNPs, with its main 
application in inference of relationships, it aims to supplement dense 
SNP microarray and whole genome sequencing data in genealogy con
texts. Moreover, Gorden et al. [4] published two different panels 
including roughly 25,000 and 95,000 SNP markers with the aim to 
resolve distant kinship from samples of low quality.

In contrast to traditional forensic DNA data from capillary electro
phoresis (CE) analysis, sequence data generates individual reads which 
contain meta information such as sequence quality (per base) and 
mapping quality (per read). Both these parameters feed into the geno
type calling procedure. Ultimately, genotypes can be called based on the 
number of reads covering a region of interest, which is comparable to 
relative fluorescent units (RFU) in CE applications, but also taking the 
afore-mentioned quality measures into account. For instance, GATK [5, 

6] and bcftools [7] are two different tools commonly used in genetic 
applications to call the most likely genotype based on sequence data. 
Tillmar et al. [8] proposed a binary model to call genotypes based on 
thresholds for the number observed reads per variant allele, the variant 
allele frequency distribution and sequencing quality. Such exact binary 
calling of genotypes is well suited for high coverage and quality 
sequence data where the true underlying genotype is well represented in 
the reads, but

when quality or coverage is low, say below 5X, may be mistaken in 
its calls with a small probability so that some errors in the profile are 
introduced, and when it does not make a call, it ignores the (sometimes 
considerable) information that the reads give (see Table 1 for an illus
trative example).

Instead of calling genotypes based on read thresholds, a probabilistic 
genotyping model can be constructed to use a likelihood distribution for 
all possible genotypes for a given genetic marker in the biostatistical 
calculations. The tool ngsRelate from Korneliussen et al. [9] implements 
a model to compute measures of relatedness based on sequence read 
data using a maximization likelihood approach, but lacks a model for 
genetic linkage and in addition relies on pair wise tests between in
dividuals. Merlin [10], on the other hand, provides efficient likelihood 
calculations for general pedigrees with linked markers with a simple 
model for genotyping errors, but does not model sequence data.

In this paper we evaluate a new model for likelihood calculations 
with linked markers while simultaneously modelling genotype likeli
hoods. Mostad et al. [11] recently published an efficient IBD model 
leveraging pedigree symmetries to speed up likelihood calculations. In 
addition, op cit. describes a model for using sequencing read data to 
model likelihood for genotypes combining the power of the aforemen
tioned methods. The aim with the present study is to present a general 
and efficient implementation of the model to compute likelihoods for 
relationship applications and forensic match statistics. Mostad et al. [11]
provided an implementation in R, we expand the implementation to a 
user-friendly GUI in C++ with various additional functionality, 
described later. We provide ways of validating the results as well as a 
real case example of when our model is crucial to solving a case. The 
model for sequence read data is described for SNP data but can be 
adopted for STR markers and the IBD model for inheritance makes no 
distinction as to what type of markers are used. Besides kinship and 
forensic matching applications, our observational model is useful also in 
other forensic areas, e.g. ancestry inference and phenotype predictions 
accounting for genotype uncertainty. We follow the recommendations 
set forth by Coble et al. for validating bio-statistical software in forensic 

Table 1 
Illustrative example of the binary/threshold based genotype calling approach 
and the genotype likelihood approach. Data is given for a single SNP marker 
with alleles A/C in the population. Note the notation used in the table is 
simplified for this example. Pr(Data|G) corresponds to the conditional proba
bility of the read data given a particular genotype, G.

Example #Reads 
with A

#Reads 
with C

Binary/Threshold 
based*

Genotype 
likelihood**

1 12 11 AC Pr(Data|AA)=
0.01 
Pr(Data|CC)=
0.008 
Pr(Data|AC)=1

2 11 0 No call Pr(Data|AA)=1 
Pr(Data|CC)=
0.001 
Pr(Data|AC)=
0.009

3 22 0 AA Pr(Data|AA)=1 
Pr(Data|CC)=
0.0001 
Pr(Data|AC)=
0.0009

4 4 3 No call Pr(Data|AA)=
0.06 
Pr(Data|CC)=
0.04 
Pr(Data|AC)=1

* Analytical threshold (AT)=10 and stochastic threshold (ST)=20.
** Note, the likelihood is scaled such that the most probable genotype has a 

likelihood of 1.

Fig. 1. Illustration of our model for likelihood computations starting at the top with our population model with parameters for subpopulation structure (Fst) and γ 
(frequency for alleles not in the population database) as inputs. In the middle our inheritance model with recombination rates (θ) as input which can be different for 
males or females and the bottom layer, our model for observations where e (sequencing and mapping errors) and m (PCR imbalance) are used to create genotype 
likelihoods. The top two layers illustrate data for two SNP markers while the bottom layer illustrates read data for a single marker.
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genetics [12].

2. Material and methods

The below sections are divided as follows; First we briefly describe 
our model for computations, details are provided in Mostad et al. [11]. 
Secondly, we outline the data used to test and validate our imple
mentation. Thirdly, we present a study to evaluate the impact of model 
parameters and finally we present authentic cases where previous efforts 
have been insufficient to resolve questions about the alleged relation
ship. In the description that follows, we will refer to low coverage next 
generation sequencing (lcNGS) data without exactly defining the 
criteria. We generally use this abbreviation when coverage data is <10X.

2.1. Model and implementation

Conceptually, computation of the probability of observed data given 
a particular pedigree can be subdivided into three parts: First, compu
tation of the probability of all possible genotypes for the founder alleles 
in the pedigree, i.e., the maternal or paternal alleles not inherited from 
another person in the pedigree. Such computations are done according 
to a population model specified below. Secondly, for all possible founder 
genotypes, we need to compute the probability of the possible observ
able (un-phased) genotypes of the tested persons. We call the specifi
cation of how this is done the inheritance model. Finally, we must 
compute the probability of the actual observed data given all possible 
genotypes of the tested persons, using a specification in an observation 
model. Multiplying these three probabilities together and summing over 
all possible founding genotypes and tested genotypes yields the proba
bility we seek.

Clearly, the sum has too many terms to be computed by direct 
summation, so instead we compute it by applying a version of the 
Lander-Green algorithm [13], see Mostad et al. [11] for details. Below 
we focus on describing the three layers used in computations and 
illustrated in Fig. 1.

The population model assumes independence of the alleles at 
different loci along the chromosome, i.e. linkage equilibrium. For each 
locus, the vector of counts of nucleotides A, C, G, or T appearing among 
the founder alleles is modelled with a Dirichlet-Multinomial distribu
tion, see Mostad et al. for details. Briefly, we use a population fixation 
(kinship) parameter Fst together with a parameter γ specifying the 
probability, for any allele, that it is randomly selected from A, C, G, or T 
instead of selected according to given population frequencies (fA, fC, fG,
fT). Specifically, we use a Dirichlet distribution where the i’th parameter 
(i = A,C,G,T) is ( 1

Fst
− 1)(fi(1 − γ) + γ

4). The Dirichlet-Multinomial cor
responds to a Polya urn model where the initial total number of balls is 
( 1
Fst
− 1). Marginalizing to a model for count k of alleles of type i and 

count s − k of other types, we get a Beta-Binomial model with parameters 
α and β where α = ( 1

Fst
− 1)(fi(1 − γ)+γ

4) and α + β = ( 1
Fst 

− 1). In this 
model, given s and k, the probability of drawing another allele of type i is 

(k + α)/(s + α + β), which works out to k+( 1
Fst
− 1)(fi(1− γ)+γ

4)

s+ 1
Fst
− 1 =

Fstk+(1− Fst)(fi(1− γ)+γ
4)

1+Fst(s− 1) . From the perspective of pseudo-counts, we see that, 
from the total size of 1

Fst
− 1 of the database, ( 1

Fst
− 1)(1 − γ) consists of 

frequency counts, while 
(

1
Fst
− 1

)

γ consists of pseudo-counts, with a 

quarter of this of each type.
The inheritance model specifies probabilities for the possible 

unphased genotypes of tested persons given the genotypes of pedigree 
founder alleles. The computation uses Mendelian inheritance patterns at 
each locus and assumes there are no mutations. Crucially, inheritance 
patterns are correlated between adjacent loci, using crossover proba
bilities computed from given genetic map data, in our example given as 
a sex-average. Details on the inheritance model are provided in Mostad 

et al. [11].
Finally, the observational model describes, at each locus indepen

dently, a probability distribution for lcNGS data given a specific geno
type (g1, g2) of a tested person, where each gi is one of A, C, G, or T. We 
describe this model by describing how to simulate from it using several 
steps: First, for each of m DNA templates that end up founding PCR 
amplicons, where m is a model parameter, it is randomly chosen 
whether the template is based on g1 or g2. The identity of each recorded 
read in the lcNGS data is then determined as follows: With a probability 
e, where e is a model parameter, it is chosen uniformly at random from 
A, C, G, T. Otherwise it is equal to g1 with a probability k

m and g2 with 
probability m− k

m , where k is the number of DNA templates based on g1.
Note how the parameter e is broadly related to the drop-in rate, so 

that, if e = 0, no drop-ins will originate as noise in the lcNGS data. 
However, if γ > 0, data could still contain alleles not observed in the 
frequency database used, but such data could then indicate a true, but 
until now unobserved, genotype. Similarly, m is related to the drop-out 
rate. When m is large (say m = 1000), k

m ≈ 1
2, and a drop-out can only 

occur, in our observation model, when the total number of reads is so 
low that they all can happen to be based on the same of the two alleles g1 

or g2. When m is smaller (say m = 10), k
m can be further away from 1

2, 
increasing the imbalance in the sampling and thus the chance of drop- 
outs. If m is quite small (say m = 3), there is a considerable chance 
that k

m = 0 or k
m = 1, in which cases there will be a drop-out (for a het

erozygote genotype) no matter how many reads are recorded for the 
single allele. Finally, we note that our model for genotype likelihoods is 
defined using two parameters (e and m) whereas there in reality are 
other parameters that could be relevant.

The algorithm alluded to above and fully described in Mostad et al. 
[11], is implemented in freely available R code (https://familias.na 
me/lcNGS/) which can be used for research purposes. We present an 
efficient C++ implementation in the software FamLink2 with several 
tools for forensic purposes. The cores of the R code and C++ calculations 
are almost identical. However, since the R code is intended for research 
purposes and as a proof of the original model description it will be 
updated less frequently. The current study will focus on the imple
mentation in FamLink2.

2.2. Data

2.2.1. Genetic markers
We used marker data from the FORCE panel [1] using 3931 auto

somal SNP markers developed for kinship applications and from the 
KIntelligence panel consisting of a selection of 9618 autosomal SNP 
markers [3]. The latter was only used for performance testing while the 
FORCE panel was used for several other purposes, described later. Ge
netic positions were extracted from Rutger’s repository [14] or alter
natively interpolated for markers with missing data. We used an allele 
frequency database based on individuals with European ancestry (CEU, 
GBR, TSI and IBS) in the 1000 G project [15], which is henceforth 
referred to as NFE (Non Finnish Europeans).

2.2.2. Import of data
We first tested rudimentary functionality of FamLink2. To test that 

the software correctly imports genetic map and population frequency 
data we use data sets available through https://famlink.se/f_validation. 
html for the FORCE panel. We first import data into FamLink2 and 
subsequently export the data to files again. An R-script tests that iden
tical input/output is obtained. Similarly, to test that genotypes are im
ported correctly, genotype data from the fictive samples (also available 
through https://famlink.se/f_validation.html) is imported into a case 
and subsequently exported back to file. We confirm that identical input/ 
output is reported. The procedure is tested for the following input for
mats; VCF, CLC, Familias-like, Genemapper, DTC-like, vertical data and 
horizontal data. The CLC and VCF file formats are currently the only 
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ones that allow read counts and/or genotype likelihoods to be imported. 
We randomly generate read counts using a discretized Gamma distri
bution with 100X as the expectation and 10X as standard deviation for 
each of the observed alleles in the genotype. For a detailed description of 
the input format we refer to the software or the manual. Note that 
import/export of data should always be internally validated for new 
software.

2.2.3. Validation cases

2.2.3.1. Study of the inheritance model. Next we generated 100 sets of 
genotypes for the kinship markers in the FORCE panel [1] where we 
simulate data for pair wise sets of individuals assuming the relationships 
full siblings, half siblings, first cousins, first cousins once removed as 
well as second cousins. Data is generated through simulations ac
counting for linkage while mutations and subpopulations structure is 
disregarded. For each simulated pair of individuals we compute the LR 
in FamLink2 using unrelated as the alternative hypotheses as well as in 
Merlin [10] expecting identical output when our model for observations 
is turned off. As mean of continuous validation, FamLink2 allows com
putations in Merlin to be performed simultaneously with our method.

2.2.3.2. Study of the observation model. To verify the output from our 
observation model we used real sequence data from a dilution series 
(10 ng, 1 ng, 0.3 ng, 0.1 ng and 0.06 ng input DNA) of a control DNA 
(2800 M, Promega1) with known golden standard genotypes. Data was 
generated using the methods described in Staadig et el [16]. The bio
informatic analysis was conducted in CLC Genomic Workbench (Qiagen) 
outputting the results as a text file with four rows per marker, each line 
signifying a base (A,C,G,T) and its read count. Additionally, the read 
output for the 1 ng sample was down-sampled to 5000 total reads. The 
resulting BAM-files were processed in ANGSD to generate genotype 
likelihoods [17]. In detail we used the call angsd –GL 2 –doGlf 2 –i 
[Sample].bam –out [Sample]_likelihood –rf force_snps_hg38.bed to generate 
a list of log likelihoods for each kinship marker in the FORCE panel using 
the GATK likelihood method (-GL 2) and outputting all 10 possible ge
notype likelihoods (-doGlf 2), see McKenna et al. [6]. The GATK model 

resembles our parameterization and should give similar output. We used 
the output from CLC to generate genotype likelihoods in FamLink2 with 
m ranging from low values 1–10 to high 100 as well as 20 different 
values on e ranging from 0.00001 to 0.2.

Table 2 
Overview of the experiments performed on the impact of the parameters in the observation model. D=Depth, NFE=Non-Finnish European allele freqencies.

Experiment Genetic 
markers

Population 
data

Inheritance 
data

Sampled read data Parameters used in 
calculations

#Simulations

Observational model Single 
marker

None None D=1X–30X; e=[0.1, 0.01, 0.001,0]; m=

[2,3,4,5,10, 100]
Same as for sampling 10000

Pilot study FORCE NFE First cousins D=1X,5X,10X; e=[0.1, 0.05, 0.01]; m= [5,10,20] e=[0.001, 0.01, 0.05, 0.1, 
0.2] and m=[5,10,25,100]

1000

Study of the parameter e FORCE NFE First cousins D=1X–5X,10X,20X,30X; e=[0.001, 0.0005, 
0.001, 0.005, 0.01, 0.05, 0.1, 0.2] and m=10

Same as for sampling 100

Study of the parameter m FORCE NFE First cousins D=1X–5X,10X,20X,30X; e=[0.001, 0.01, 0.1]; m=

[5, 10, 15, 20, 25, 50, 100]
Same as for sampling 100

Table 3 
Description of parameters used to sample read data. Read data is sampled from a 
dicretized Gamma distribution based on the actual genotypes with expectation 
(Depth) and standard deviation (SD) where e relates to the dropin error and m to 
PCR imbalance.

Combination Depth SD e m

1 1X 0.5X 0.1 5
2 5X 1X 0.05 10
3 10X 2X 0.01 20

Fig. 2. Pedigree for the authentic test case. SNP data was available for human 
remains presumably originating from M, together with SNP data from reference 
individuals 1 A (1C2R to M), 2 A (nephew to M) and X (unrelated to M, 1 A 
and 2 A).

Table 4 
Time consumption for likelihood calculations using the method and implementation outlined in this paper. Calculations are performed on a 12 core 2.1 Ghz CPU with 
16 Gb RAM for varying degree of genetic markers (bi-allelic data) for some relationships (listed in first column). Single core means that the calculations have only 
utilized a single of the available cores. 1000 simulations were performed whenever simulations is included in the table header.

Relation FORCE single 
core

FORCE multi 
core

FORCE simulations multi 
core

KIntelligence single 
core

KIntelligence multi 
core

KIntelligence simulations 
multi core

Full siblings <1 sec <1 sec 5 min 50 sec 3 sec 2 sec 13 min 10 sec
Half siblings <1 sec <1 sec 7 min 31 sec 3 sec 2 sec 17 min 7 sec
First cousins <1 sec <1 sec 7 min 20 sec 4 sec 2 sec 14 min 23 sec
First cousins once 
removed

2 sec 1 sec 14 min 9 sec 5 sec 3 sec 26 min 32 sec

Second cousins 6 sec 2 sec 32 min 40 sec 13 sec 6 sec 1 h 11 min
Second cousins once 
removed

19 sec 7 sec 1 h 41 min 50 sec 17 sec 4 h 6 min

1 https://se.promega.com/products/forensic-dna-analysis-ce/str-amplificat 
ion/2800m-control-dna/?catNum=DD7101
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2.2.3.3. Direct matching. Finally, we perform direct-matching where we 
compute the LR in FamLink2 for all pairs of combinations of the samples 
alluded to previously. We model genotype likelihoods in the search to 
accommodate the low read data and explore m=2, 10, 50 and e=0.001, 
0.01.

2.3. Impact of model parameters

We performed a series of evaluation of the observation model, 
summarized in Table xx and described in detail below.

2.3.1. Observation model
The model described in 2.1 and detailed in Mostad et al. [11], re

quires specification of some parameters. In particular, we explore the 
impact of the parameters used in the observation model, namely e (a 
float in the range 0–1) related to sequencing and mapping errors and m 
(an integer larger than 0) related to the PCR allelic imbalance. To un
derstand the model, we start at its core by studying the genotype like
lihood matrix where each element of the symmetric matrix (4×4) 

describes the likelihood of the read data given each possible genotype 
and where we assume a SNP marker with four possible alleles. To this 
end we sample read data for 10,000 heterozygote genotypes and 10,000 
homozygote genotypes separately. Note that the exact genotypes are 
irrelevant as we are studying the read data only. We sample reads using 
e=[0.1, 0.01, 0.001], m=[2,3,4,5,10, 100] and average depth ranging 
from 1X–30X. We subsequently analyze the data with the same sets of e 
and m. We summarize the data and explore the likelihood of the true 
genotype for each combination of parameters described previously.

2.3.1.1. Combining pedigree and observation data. Next, we simulate 
genotypes using our population model and inheritance model for 1000 
pairs of first cousins as well as 1000 pairs of unrelated pairs. We use 
allele frequencies described in Section 2.2.1 with marker data from the 
FORCE panel and Fst=0 to simulate founder genotypes. The simulations 
subsequently use gene-dropping [18] and the genetic map described in 
Section 2.2.1 to sample non-founder alleles. Note, the simulations 
merely output genotypes whereas the next steps will simulate sequence 
read data. To mimic a realistic scenario, we sample low quality read data 

Fig. 3. Results from validation cases (N=100), where relatives have been simulated in FamLink2 and the resulting genotypes analyzed in Merlin and FamLink2 
respectively. The violin plot illustrates the ratio between the two LRs obtained in each software.

Table 5 
Summary of genotype callings based on the observation model described by Mostad et al. We provide the results based on the combination of e/m that minimizes the 
differences which may be different for each sample. Note, even though different callings (maximum likelihood estimates) is produced both models still provide a non- 
zero likelihood for all genotypes. The column “Match with reference (%)” indicate results from comparisons with golden standard reference genotypes.

Sample Concordant callings (%) Discordant callings (%) Match with reference (%) e/m used Average depth (X)

10 ng 100 0 99.847 e=0, m=2 560.6
1 ng 100 0 99.822 e=0, m=2 119.9

0.3 ng 99.975 0.025 99.745 e=0.021, m=7 75.8
0.1 ng 99.439 0.561 98.751 e=0.032, m=7 45
0.06 ng 98.448 1.552 88.205 e=0.021, m=5 27.2

Downsampled 70.567 29.433 64.901 e=0.179, m=2 0.9

Table 6 
log10LRs for direct matching comparisons between reference sample 2800 M genotypes and read data from a dilution series of 2800 M, and a downsampled dataset.

Samples Coverage log10LR

Reference vs Mean X m=50, e=0.001 m=50, e=0.01 m=10, e=0.001 m=10, e=0.01 m=2, e=0.001 m=2, e=0.01

10 ng 560.6 3819 3862 3803 3852 3137 3137
1 ng 119.9 3853 3862 3819 3854 3136 3137

0.3 ng 75.8 3840 3849 3776 3845 3132 3128
0.1 ng 45 3635 3574 3657 3729 3064 3058
0.06 ng 27.2 787 567.9 2104 2162 2441 2419

Downsampled 0.9 976.7 969.9 976.7 969.2 961.5 948.4
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for one of the samples and use high quality genotypes for the second 
sample. To this end, we sample sequence read data using a Gamma 
distribution with a combination of settings and then analyze each set of 
read data, i.e. study the impact on the final LR, using a combination of 
values for e and m. Since the number of combination with which data 
can be simulated and subsequently analyzed is in theory infinite we first 
perform a pilot study where three levels of read depth and choices of e 
and m are explored, see Table 3. In addition to using our model for ge
notype likelihoods we also call the genotypes for each simulated data set 
using a model described in Mostad et al. [11].

For analysis we study all combinations of e=[0.001, 0.01, 0.05, 0.1, 
0.2] and m=[5,10,25,100]. In total, we sample sequence data and 
perform 3 ×5×4 = 60 likelihood calculations for each set of simulated 
genotype data.

Next we use the results from the pilot study and refine our simulation 
to explore data from a selection of 100 simulated genotypes where we 
sample read data using depths 1–5, 10,20 and 30X and e=[0.001, 
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2] and m=10. That is we focus 
on studying the impact of e for different depths first. We note that 100 
simulations is a comparatively low number which is due to the 
computational effort required for each likelihood computation and the 
large number of comparisons being performed. For each set we analyze 
the data, i.e. perform likelihood computations for the same set of e as 
data is simulated from. Similar to the first tests we also call the low 
coverage genotypes using a model described in Mostad et al. [11]. In 
total 8 ×8 x (1+8) = 576 calculations are performed for each set of 
simulated genotypes.

In the final set of tests we explore the effect of the m parameter. 
Again we restrict our analysis to 100 simulated genotypes and simulate 
read data using depths 1X–5X, 10X,20X and 30X with e=[0.001, 0.01, 
0.1] and m=[5, 10, 15, 20, 25, 50, 100]. For analysis we used the same 
set of e and m as used in the simulations and in addition call the low 
coverage genotypes using a model described in Mostad et al. [11]. In 
total, 8 ×3 ×7 x (3×7 + 1) = 3696 likelihood calculations are performed 
for each simulated set of genotypes.

2.4. Authentic cases

In Tillmar et al. [1] the FORCE SNP panel was developed and tested 
on six different case scenarios with authentic SNP data from both low 
and high quality samples. One of these cases, which in op cit. resulted in 
inconclusive relationship estimates, was chosen as a test case for our 
implementation. The case consisted of SNP data from human remains 

(M) originating from World War II (WWII) and associated SNP data from 
two reference individuals, one nephew (2 A) and one first cousin twice 
removed (1 A). For comparison, we also added SNP data from an indi
vidual (X) unrelated to M, 1 A and 2 A. For the comparisons with this X 
individual, we tested a 1C2R vs Unrelated case scenario. In Tillmar et al., 
the comparisons, and LR calculations, were performed with a threshold 
based approach for the genotype calling. Applying a 10X threshold for 
coverage, only 15 SNPs met this criteria resulting in LRs with an 
inconclusive decision when compared to the references, see Tillmar 
et al. for details on the thresholds used in decisions. However, roughly 
4000 SNPs were covered to at least 1X, making it a suitable case to test 
the genotype likelihood model described in this study and to, poten
tially, increase the possibility for relationship matching with low 
coverage SNP data. We used the methods described previously and the 
implementation in FamLink2 to compute likelihood ratios using the 
FORCE kinship SNPs and European SNP allele frequencies. All calcula
tions were performed in a pair wise fashion between M, 1 A, 2 A and X 
(see Fig. 2) with various settings for values for m (2, 5, 10, 50) and e 
(0.001 and 0.01). Finally, we computed the full pedigree LR using the 
same range of m/e.

3. Results

3.1. Implementation and performance

Mostad et al. [11] presented an implementation of the algorithm 
using open-source R scripts, available at https://familias.name/lcNGS/. 
In this paper we expand the implementation to FamLink2 [20] which 
was first released in 2012 for pairs of linked markers. The expansion of 
FamLink2 allows for general calculations for linked markers where 
subpopulation correction is accounted for in the model for population 
allele frequencies and genotype likelihoods based on sequence read 
counts. The software can use the observation model presented in Mostad 
et al. and alluded to in the Methods section, but also allows genotype 
likelihoods from external sources, e.g. from imputed data or genotype 
variant callers. In addition, our inheritance model is general in the sense 
that any pedigree is allowed with any number of typed individuals. 
FamLink2 further implements a variety of user-friendly functionality 
such as blind searches, a simplified DVI module as well as inference of 
biogeographic ancestry. The latest version is freely available at https://f 
amlink.se.

We did performance testing of our implementation using a 12 logical 
core 2.1 Ghz CPU workstation with 16 Gb of RAM. The implementation 

Table 7 
Illustration of log10 LR in the authentic case described in the main text. Different methods for calculations are described in the first column with settings used on e and 
m. The table includes the binary calling method in Tillmar et al. for comparison [1]. Relationship hypotheses are indicated in parenthesis encompassing second cousins 
once removed (2C1R), first cousins twice removed (1C2R) and Uncle/nephew.

Computation method 01 A vs 02 A (2C1R 
vs Unrel)

01 A vs M (1C2R vs 
Unrel)

02 A vs M (Uncle vs 
Unrel)

01 A vs X (2C1R vs 
Unrel)

02 A vs X (2C1R vs 
Unrel)

M vs X (2C1R vs 
Unrel)

Full 
pedigree

Tillmar et al. 2021 2.58 − 0.04 − 0.17 0.00 0.00 0.00 -
FamLink2: m=50; 
e=0.001

2.43 4.21 38.93 − 0.58 − 0.06 0.62 40.32

FamLink2: m=50; 
e=0.01

2.69 4.28 39.37 − 0.62 − 0.08 0.60 41.56

FamLink2: m=10; 
e=0.001

2.33 4.28 39.42 − 0.52 − 0.03 0.61 49.29

FamLink2: m=10; 
e=0.01

2.44 4.30 39.27 − 0.60 − 0.06 0.59 48.92

FamLink2: m=5; 
e=0.001

2.33 4.33 39.33 − 0.56 − 0.05 0.61 49.91

FamLink2: m=5; 
e=0.01

2.47 4.36 39.56 − 0.60 − 0.07 0.59 49.42

FamLink2: m=2; 
e=0.001

2.68 4.52 34.90 − 0.60 − 0.08 0.61 49.25

FamLink2: m=2; 
e=0.01

2.70 4.64 34.77 − 0.63 − 0.08 0.59 48.39

described in the legend with different settings used on e and m. The figure includes the binary calling method in Tillmar et al. for comparison [1].
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can leverage a maximum of 22 computational cores/threads, with par
allelization across chromosomes. We note that the software benefits 
from more CPU cores (up to 22) with higher individual clock speed 
whereas the memory requirement is low, typically 2–4 Gb is sufficient. 
We used constructed data based on the markers in the FORCE panel [1]
and the KIntelligence panel [3] for some standard pair wise relation
ships, described in Table 4. In addition, we performed repeated calcu
lation on simulated data 1000 times for the same relationships, using our 
multi core setup. Details on the data and simulations are reported in 
Section 2.2. We note that for the pair wise relationships described in 
Table 4, computation times are very low, typically less than 10 seconds 
except for second cousins once removed, but acknowledge that extended 
pedigrees involving several typed individuals may require considerably 
longer time to finish (Data not shown). Leveraging pedigree symmetries 
as described in Mostad et al. [11] can greatly reduce computation speed 
for such extended pedigrees in future releases of FamLink2.

3.2. Validation

All files used in the validations (except files relating to the authentic 
case) are available following links from https://famlink.se/f_validation. 
html. The files can be used to test new version of FamLink2 with ex
pected results given for each file. As means of validating the inheritance 
model, we simulated genotype data for a range of relationships and 
computed the likelihood and likelihood ratios (assuming linkage) in 
Merlin [10] and FamLink2. As illustrated in Fig. 3, the ratio between the 
two LRs is small, with a mean centered close to 1 for all relationships. 
The small deviations detected in some cases are possibly explained by 
the use of different mapping functions, i.e. to convert cM values to 
recombination rates, or numerical issues.

Next we performed a comparative study where the observation 
model was applied on a selection of real samples with varying DNA 
quantity/quality used in the sequence library preparation. The output 
(either a text file with read counts for each nucleotide at a given position 

Fig. 4. Summary of the results from extensive sampling (n=10000) of read data using different combinations of depths, e and m. Details given in main text. A) Allelic 
dropout rate when data is sampled with e=0.01 at different depths (legend) and m (x-axis), signified by a complete allelic dropout, i.e. no reads, for one of two alleles 
in a true heterozygote genotype. Note that at 2X and m=2, dropout occur in 75 % of all samples whereas for 10X and m=100 almost no complete allelic dropouts is 
observed. B) Correct likelihood proportion for the true heterzygote genotype based on a subset of data where a complete allelic dropout has occurred, data is sampled 
with e=0.01 and at m=2 and various depths (legend). C). Correct likelihood proportion for the true heterzygote genotype based on a subset of data when both true 
alleles are observed (no dropin), data is sampled with e=0.01 and at m=2 and various depths (legend). D) Allelic dropin rate, signified by the occurrence of two (or 
more) alleles in a true homozygote genotype. Note that at 20X and e=0.1, dropin occur in roughly 80 % of all samples whereas for 2X very few dropins are observed 
B) Correct likelihood proportion for the true homozygote genotype based on a subset of data where a allelic dropin has occurred, data is sampled with e=0.01 and 
various depths (legend). F). Correct likelihood proportion for the true homozygote genotype based on a subset of data when no dropins are observed, data is sampled 
with e=0.01 and various depths (legend).
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or a BAM-file) was analyzed in FamLink2 as well as in ANGSD gener
ating genotype likelihoods for each genetic marker. Since the compari
son is not entirely fair, i.e. ANGSD works on individual reads with 
assigned quality parameters and phred scores whereas FamLink2 works 
on read count summary data and overall error parameters, we summa
rized the number of genetic markers where the two models produced 
identical and different genotypes, based on the maximum likelihood 
estimate. We also compared the genotypes against the reference data for 
the control sample. A summary of the results is illustrated in Table 5
where we note a high concordance between the model in ANGSD and 
FamLink2. Note that whereas the table presents numbers pertaining to 
the concordance rate, the full model assigns likelihoods to all genotypes 
and the outcome from the comparison, although illustrating a high 
concordance rate, is therefore not entirely relevant to the implementa
tion. Nonetheless, we expect the models to assign similar maximum 
likelihood estimates for genotypes given the input read count and error 
rates.

Finally, we performed an all-against-all search using the blind search 
function in FamLink2 where we compute LR for genetic identity versus 
the likelihood that the two samples are from unrelated individuals. The 
results are illustrated in Table 6 and show that the LRs in favor for the 
samples originating from the same individual are all extremely high, 
even for the sample with mean coverage below 1X, for all tested values 
of m and e.

3.3. Authentic case

The results in Tillmar et al. [1] were inconclusive for the authentic 
case, where a 10X stringent threshold was used to drop markers from 
genotype calling. In contrast, we applied our model for genotype like
lihoods allowing down to 1X markers to be included. We conducted pair 
wise comparison, results illustrated in Table 7, although a complete 
pedigree analysis would have been possible in FamLink2. The compar
ison of individuals denoted 1 A vs M (alleged first cousins twice 
removed) gave results indicating evidence for a 1C2R relationship (LR>
104). Comparison of 2 A vs M (alleged uncle/nephews) gave results 
indicating evidence for a uncle/nephew relationship (LR> 1038). 

Finally, comparison of 1 A vs 2 A (known second cousins once removed) 
now resulted in similar LRs as for the 10X threshold approach 102 – 103. 
The majority of the LRs obtained for the comparisons with an unrelated 
individual, X, were in the order of 1, except for the comparison between 
2 A and X when the value of m was set to 20, for which the LR was 
calculated to around 300 for a 2C1R vs unrelated comparison. Finally, 
we computed the full pedigree LR, where both relatives (01 A and 02 A) 
were included, with high LRs for all selections of m/e, but with limited 
added information compare to only using the alleged uncle as the only 
reference.

3.4. Impact of model parameters

3.4.1. Observation model
We summarize the results using, what refer to as, correct likelihood 

proportions. Briefly this proportion is calculated as the likelihood for the 
true genotype, given our parameters e/m, divided by the sum of all 
possible genotype likelihoods (10 in total assuming that all four bases 
(A/C/G/T) are possible). We note that the interpretation of these result 
are purely in the sense of providing an understanding of the observation 
model and the interplay with the complete likelihood model (i.e. with 
the population and inheritance model) is complex and explored later. 
For a detailed mathematical evaluation of the properties of our obser
vational model we refer to Supplementary Data. First, we make some 
theoretical notes, i) when sampling data for a homozygote genotype at 
depth (D) 1X, the probability to observe an allele different then the true 
allele is 3e/4, which is typically small, ii) when sampling data for a 
homozygote genotype with D>1X the probability to observe at least one 
dropin is 1-(1–3e/4)D where D is the depth, which for high depths in
dicates a high probability for at least one dropin, iii) when sampling data 
for a heterozygote genotype at D=1X the probability to observe a 
complete allelic dropout is 1, that is only a single true allele is observed, 
and iv) when sampling data for a heterozygote genotype at D>1X the 
probability to observe a complete allelic droput is 
∑m

k=0

(
m
k

)

(
(1− e)k

m + e/4)D
(

1
2

)m
, see details in Supplementary data. The 

results are visualized in Fig. 4 and suggest that, i) when the true 

Fig. 5. Illustration of exceedance probabilities (inclusion power). Data is based on 1000 simulated genotypes for A) First cousins (H1) and B) Unrelated individuals 
(H2). Briefly, genotype data is simulated according to our population and inheritance model. Likelihood ratios (LRs) are then computed with true genotypes (dark 
blue and red lines). Low coverage sequence read data is subsequently generated based on expected depth 1X and standard deviation equal to 1 with e=0.1 and m=5 
(see text for details). LRs are then calculated with m=5 and different values on e (see legend). All LRs compare the data given first cousins versus unrelated.
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genotype is a heterozygote and a complete allelic dropout is observed, i. 
e. only reads for a single allele is observed, (see Fig. 4A for rate and 
Fig. 4B for results), lower choices of m will increase the likelihood 
proportion for the true heterozygote, but never exceed 0.2, ii) when the 
true genotype is a heterozygote and both alleles is observed (see 
Fig. 4C), lower choices of m will decrease the likelihood proportion for 
the true heterozygote, but for higher depths, say >10X, the impact of m 
is small, iii) when the true genotype is a homozygote and one (or more) 
alleles have dropped in (see Figure 9 D and E), increasing m will increase 
the likelihood proportion for the true homozygote, in particular for high 
depths (>=10X) and iv) when the true genotype is a homozygote and 
only the single (true) allele is observed (see Fig. 4F), increasing m also 
increases the likelihood proportion for the true homozygote genotype 
whereas m has little or no impact when coverage is low (1–2X)

3.4.2. Pilot study
Next, we studied the impact of e and m in the calculation of pedigree 

likelihoods (i.e. genotype likelihoods combined with inheritance and 
population data). We used 1000 simulated genotypes for a pair of first 
cousins as well as 1000 genotypes from two unrelated individuals and 
sampled read data with three different depths (average coverage), 
standard deviation and values on e and m, see Table 2. We summarize 
the results by means of exceedance plots, see Fig. 5 for an illustrative 

example, where we compute the probability that the LR will exceed a 
given threshold. For reference purposes we include the LR computed 
using complete genotype data (with and without a model for linkage). 
Fig. 5 illustrates the importance of a model for genotype likelihoods, in 
particular for low coverage data (1X) whereas the impact is less evident 
for higher coverage (5X) with our choice of parameters, see Supple
mentary Figure 5. Fig. 5A further illustrates that even though the true 
positive rate (for a given threshold) increases when the e parameter 
approaches its true (simulated) value, the false positive rate also in
creases, see Fig. 5B. However, we note that if the LR threshold is 1000 
(equivalent to a log10 LR of 3), the false positive rate is zero for all 
choices of e used in the analysis.

3.4.3. Study of the parameter e
Next we focus on extending the conditions when sampling sequence 

read data with fixed value on m=10 but varying e, both when simulating 
data and when analyzing the data. An excerpt of the results is visualized 
in Fig. 6 when genotypes are based on data from two first cousins. The 
results indicate that, i) a high value of e always results in high LRs in 
favour of first cousins, regardless of other conditions, ii) calling of ge
notypes fails, i.e. LRs are deflated, for high error rates, e.g. e>=0.1 and 
iii) for very low depths (e.g. below 5X), increasingly complete locus 
dropouts will cause the LR to decrease regardless of the value of e. When 

Fig. 6. Exceedance plots with data from 100 simulated genotypes from two first cousins. Details on the simulations is given in the main text. Each row represents 
data sampled with expected depth (1X–30X) and standard deviation 1X and m=10. The e parameter is varied in the sampling of sequence read data (each column of 
the figure) and subsequently analyzed with different choices of e (see top legend). In addition, genotypes are called for each simulated sequence data based on a 
method described in main text.
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the genotypes are based on two unrelated individuals, Supplementary 
Figure 6,we note that i) for low to medium depths (e.g. >4X), the results 
will always favour unrelated, regardless of choices of e and ii) for very 
low depths (e.g. <5X), locus dropouts and to some extent the value of e 
will falsely inflate the LR.

3.4.4. Study of the parameter m
Finally, we performed extended sampling of read data varying both e 

and m. The results indicate that the choice of m has limited impact on the 
results in this example, see Fig. 7 In fact the results obtained with 
varying m used in the analysis cannot easily be visually distinguished in 
Fig. 7 regardless of the value of m used in the simulations.

4. Discussion

The model described in Mostad et al. [11] allows for general likeli
hood computations combining low and high coverage sequencing data 
as well as determined genotypes in questions of relationship inference. 
The model essentially combines the inheritance model implemented in 
Merlin [10] expanding the population model to handle subpopulation 
correction, with a model for sequencing data, similar to what is 
described in Korneliussen et al. [9]. Our observation model can be 
further tuned to include parameters such as mapping quality and 

average sequence base quality which is the focus of current research. 
Since most forensic sequencing applications deal with read count data 
and potentially quality parameters for instance as part of a vcf-like file, 
we have refrained from implementing a model where individual mapped 
reads (e.g. BAM file) can be used as input. For such cases we refer to 
commonly available callers such as GATK [5], bcftools [7] or ansgd 
[17]. All of the afore-mentioned work on BAM-files to produce a geno
type likelihood and a vcf-file. The vcf-file with likelihoods attached to 
each genetic marker can subsequently be used as input for FamLink2. In 
our implementation we study the output generated in CLC Genomic 
Workbench using the “Identify known mutations” tool where individual 
counts for each allele at a given positions can be obtained.

We performed a sensitivity analysis where two parameters of our 
observation model are studied, i.e. e which is used to address sequencing 
and mapping errors, i.e. dropins, and m which is used to address allelic 
imbalance or dropout of alleles. We studied both the immediate impact 
on the genotype likelihood using sequence data sampled with different 
conditions; see Fig. 4, as well as the interplay with the joint likelihood 
for the pedigree, Figs. 5–7. The results illustrate a complex interaction 
where it appears the value of m has limited impact on the joint likelihood 
in our sensitivity analysis. In summary, we recommend a comparatively 
high value on e (say 0.01) and low value of m (say 5) to account for 
allelic dropouts as well as sequencing/mapping errors. In addition to the 

Fig. 7. Exceedance plots with data from 100 simulated genotypes from two first cousins. Details on the simulations is given in the main text. Each row represents 
data sampled using different depths (1X–30X) with standard deviation 0.5)X and e=0.1. The m parameter is varied in the simulation of sequence read data (each 
column of the figure) and subsequently analyzed with different choices of m (see top legend). In addition, genotypes are called for each simulated sequence data 
based on a method described in main text.
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data presented in this validation study, we believe a more in-depth study 
is necessary to evaluate and develop our model for genotype likelihoods. 
This study should focus on realistic forensic grade samples to elude what 
parameters adequately describe the data to further expand the recom
mendations for end-users. For instance individual read quality metrics, 
e.g. mapping quality and base quality scores should be explored in 
addition to read counts only. Moreover, FamLink2 currently assigns the 
same values on e/m for all samples whereas the observation model al
lows sample and even marker specific numbers to be assigned which will 
also likely be implemented in future version of the software.

Our population model does not currently handle linkage disequilib
rium (LD) which we believe is a minor limitation as most forensic panels 
are constructed to avoid this, see for instance Tillmar et al. as well as 
Gordon et al. However, the model can be expanded using a similar 
approach as Abecasis et al. [21] where superloci, i.e. clusters of closely 
located markers, are constructed.

One parameter not explored in the present study, but with potential 
impact in the likelihood model is the γ parameter of our population 
model. In particular with high dropin error rates (i.e. high values on e) 
random, unobserved, alleles without a frequency in the population will 
occur in the data and could inflate the LRs if it appears in the sequence 
data for two samples involved in the pedigree. We suggest a compara
tively high value of γ (say 0.05) to partly mitigate such issues, but 
further studies should explore the interplay between this population 
parameter and our observation model.

We did not specifically study the impact of accounting for linkage, or 
not, a subject that has been extensively studied previously, see for 
instance Tillmar et al. [1] for the markers in the FORCE panel and Kling 
et al. [19]. These, and other studies, have noted the impact of not ac
counting for linkage with expanded marker panels necessitating a model 
for recombinations.

A limitation of the current implementation is that male and female 
genetic maps are not differentiated, i.e. the inheritance vectors need a 
sex-average value to be used in each transmission. It is well know that 
male have a lower rate of recombination across most parts of the genome 
[Ref Behrer et al.], however we argue that few implementations ac
counts for this difference and that information about male/female 
transitions is not always available for pedigrees.

Future work will also focus on implementing further improvements 
relating to pedigree symmetries, partly described in the Supplementary 
material of Mostad et al. [11] which could greatly improve computa
tional speed for extended pedigrees with several typed individuals, 
where we acknowledge that FamLink2 currently is time consuming.

CRediT authorship contribution statement

Daniel Kling: Writing – original draft, Visualization, Validation, 
Software, Methodology, Investigation, Formal analysis, Data curation, 
Conceptualization. Petter Mostad: Writing – original draft, Methodol
ogy, Conceptualization. Andreas Tillmar: Writing – review & editing, 
Visualization, Validation, Supervision, Methodology, Investigation, 
Formal analysis, Conceptualization.

Declaration of Competing Interest

None.

Acknowledgements

We would like to acknowledge the comments from two anonymous 
reviewers that have greatly improved both the quality as well as the 
correctness of the manuscript.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.fsigen.2024.103150.

References

[1] A. Tillmar, et al., The FORCE Panel: an all-in-one SNP marker set for confirming 
investigative genetic genealogy leads and for general forensic applications, Genes 
12 (12) (2021) 1968.

[2] C. Phillips, et al., A compilation of tri-allelic SNPs from 1000 genomes and use of 
the most polymorphic loci for a large-scale human identification panel, Forensic 
Sci. Int.: Genet. 46 (2020) 102232.

[3] J. Snedecor, et al., Fast and accurate kinship estimation using sparse SNPs in 
relatively large database searches, Forensic Sci. Int.: Genet. 61 (2022) 102769.

[4] E.M. Gorden, et al., Extended kinship analysis of historical remains using SNP 
capture, Forensic Sci. Int. Genet. 57 (2022) 102636.

[5] M.A. DePristo, et al., A framework for variation discovery and genotyping using 
next-generation DNA sequencing data, Nat. Genet. 43 (5) (2011) 491–498.

[6] A. McKenna, et al., The genome analysis toolkit: a MapReduce framework for 
analyzing next-generation DNA sequencing data, Genome Res. 20 (9) (2010) 
1297–1303.

[7] H. Li, A statistical framework for SNP calling, mutation discovery, association 
mapping and population genetical parameter estimation from sequencing data, 
Bioinformatics 27 (21) (2011) 2987–2993.

[8] A. Tillmar, et al., Whole-genome sequencing of human remains to enable 
genealogy DNA database searches–a case report, Forensic Sci. Int.: Genet. 46 
(2020) 102233.

[9] T.S. Korneliussen, I. Moltke, NgsRelate: a software tool for estimating pairwise 
relatedness from next-generation sequencing data, Bioinformatics 31 (24) (2015) 
4009–4011.

[10] G.R. Abecasis, et al., Merlin–rapid analysis of dense genetic maps using sparse gene 
flow trees, Nat. Genet. 30 (1) (2002) 97–101.

[11] P. Mostad, A. Tillmar, D. Kling, Improved computations for relationship inference 
using low-coverage sequencing data, BMC Bioinforma. 24 (1) (2023) 90.

[12] M.D. Coble, et al., DNA commission of the international society for forensic 
genetics: recommendations on the validation of software programs performing 
biostatistical calculations for forensic genetics applications, Forensic Sci. Int.: 
Genet. 25 (2016) 191–197.

[13] E.S. Lander, P. Green, Construction of multilocus genetic linkage maps in humans, 
Proc. Natl. Acad. Sci. USA 84 (8) (1987) 2363–2367.

[14] T.C. Matise, et al., A second-generation combined linkage–physical map of the 
human genome, Genome Res. 17 (12) (2007) 1783–1786.

[15] G.P. Consortium, A global reference for human genetic variation, Nature 526 
(7571) (2015) 68–74.

[16] A. Staadig, J. Hedman, A. Tillmar, Applying unique molecular indices with an 
extensive all-in-one forensic snp panel for improved genotype accuracy and 
sensitivity, Genes 14 (4) (2023) 818.

[17] T.S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: analysis of next generation 
sequencing data, BMC Bioinforma. 15 (1) (2014) 1–13.

[18] J.W. MacCluer, et al., Pedigree analysis by computer simulation, Zoo. Biol. 5 (2) 
(1986) 147–160.

[19] D. Kling, On the use of dense sets of SNP markers and their potential in relationship 
inference, Forensic Sci. Int.: Genet. 39 (2019) 19–31.

[20] D. Kling, T. Egeland, A.O. Tillmar, FamLink - a user friendly software for linkage 
calculations in family genetics, Forensic Sci. Int.: Genet. 6 (5) (2012) 616–620.

[21] G.R. Abecasis, J.E. Wigginton, Handling marker-marker linkage disequilibrium: 
pedigree analysis with clustered markers, Am. J. Hum. Genet. 77 (5) (2005) 
754–767.

D. Kling et al.                                                                                                                                                                                                                                    Forensic Science International: Genetics 74 (2025) 103150 

11 

https://doi.org/10.1016/j.fsigen.2024.103150
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref1
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref1
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref1
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref2
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref2
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref2
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref3
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref3
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref4
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref4
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref5
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref5
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref6
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref6
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref6
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref7
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref7
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref7
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref8
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref8
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref8
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref9
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref9
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref9
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref10
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref10
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref11
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref11
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref12
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref12
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref12
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref12
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref13
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref13
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref14
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref14
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref15
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref15
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref16
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref16
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref16
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref17
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref17
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref18
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref18
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref19
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref19
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref20
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref20
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref21
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref21
http://refhub.elsevier.com/S1872-4973(24)00146-7/sbref21

	FamLink2 – A comprehensive tool for likelihood computations in pedigrees analyses involving linked DNA markers accounting f ...
	1 Introduction
	2 Material and methods
	2.1 Model and implementation
	2.2 Data
	2.2.1 Genetic markers
	2.2.2 Import of data
	2.2.3 Validation cases
	2.2.3.1 Study of the inheritance model
	2.2.3.2 Study of the observation model
	2.2.3.3 Direct matching


	2.3 Impact of model parameters
	2.3.1 Observation model
	2.3.1.1 Combining pedigree and observation data


	2.4 Authentic cases

	3 Results
	3.1 Implementation and performance
	3.2 Validation
	3.3 Authentic case
	3.4 Impact of model parameters
	3.4.1 Observation model
	3.4.2 Pilot study
	3.4.3 Study of the parameter e
	3.4.4 Study of the parameter m


	4 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supporting information
	References


