
CP decomposition-based algorithms for completion problem of motion
capture data

Downloaded from: https://research.chalmers.se, 2024-12-27 03:29 UTC

Citation for the original published paper (version of record):
Mohaoui, S., Dmytryshyn, A. (2024). CP decomposition-based algorithms for completion problem of
motion capture data. Pattern Analysis and Applications, 27(4).
http://dx.doi.org/10.1007/s10044-024-01342-4

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Vol.:(0123456789)

Pattern Analysis and Applications (2024) 27:133
https://doi.org/10.1007/s10044-024-01342-4

ORIGINAL ARTICLE

CP decomposition‑based algorithms for completion problem
of motion capture data

Souad Mohaoui1 · Andrii Dmytryshyn1,2

Received: 3 May 2024 / Accepted: 13 September 2024
© The Author(s) 2024

Abstract
Motion capture (MoCap) technology is an essential tool for recording and analyzing movements of objects or humans. How-
ever, MoCap systems frequently encounter the challenge of missing data, stemming from mismatched markers, occlusion,
or equipment limitations. Recovery of these missing data is imperative to maintain the reliability and integrity of MoCap
recordings. This paper introduces a novel application of the tensor framework for MoCap data completion. We propose
three completion algorithms based on the canonical polyadic (CP) decomposition of tensors. The first algorithm utilizes
CP decomposition to capture the low-rank structure of the tensor. However, relying only on low-rank assumptions may be
insufficient to deal with complex motion data. Thus, we propose two modified CP decompositions that incorporate additional
information, SmoothCP and SparseCP decompositions. SmoothCP integrates piecewise smoothness prior, while SparseCP
incorporates sparsity prior, each aiming to improve the accuracy and robustness of MoCap data recovery. To compare and
evaluate the merit of the proposed algorithms over other tensor completion methods in terms of several evaluation metrics,
we conduct numerical experiments with different MoCap sequences from the CMU motion capture dataset.

Keywords MoCap data · Missing markers · Gap-filling · Candecomp/parafac (CP) decomposition · Tensor recovery ·
Smooth CP · Sparse CP

1 Introduction

Motion Capture (MoCap) systems are popular technologies
used for recording and analyzing the three-dimensional
movements of individuals or objects by employing special-
ized cameras, sensors, or wearable devices. The advanced
techniques for capturing and analyzing motion data have
made motion capture an indispensable tool in various practi-
cal applications within medicine [1, 2], sports sciences [3,
4], robotics [5–8], etc. Most human MoCap systems use the
optical motion capture technique, where specialized cameras
track markers attached to specific joints of the human body.

These cameras capture the position and orientation of mark-
ers in three-dimensional space, and software is then used to
reconstruct the skeleton and posture of the human subject.

Despite the use of professional systems and advanced
software, recorded trajectories of the markers may still suf-
fer from noise or incompleteness due to occlusions, mis-
matched markers, and lighting conditions. For instance, if
a marker is hidden from all cameras at a specific recording
time, its trajectory remains incomplete and cannot be accu-
rately recorded. Missing markers during the motion capture
process leads to gaps in the data, making it challenging to
have a complete and continuous representation of the motion
being captured. Notably, the missing markers problem also
known as the gap-filling problem in MoCap data belongs to
the broader class of data completion problems. A classical
approach to addressing this problem is Low-Rank Matrix
Completion (LRMC), which seeks to recover missing entries
in a matrix from partial observations [9]. These approaches
rely on the low-rank structure to capture the underlying
low-order patterns and relations in the data. The problem
of missing markers in MoCap data can be seen as a partial
case of LRMC problem, allowing, e.g., the singular value

 * Souad Mohaoui
 souad.mohaoui@oru.se

 Andrii Dmytryshyn
 andrii@chalmers.se; andrii.dmytryshyn@oru.se

1 Mathematics Department, School of Science
and Technology, Örebro University, Örebro, Sweden

2 Department of Mathematical Sciences, Chalmers
University of Technology and University of Gothenburg,
41296 Gothenburg, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-024-01342-4&domain=pdf

 Pattern Analysis and Applications (2024) 27:133 133 Page 2 of 19

thresholding algorithm [10] to be used for MoCap data com-
pletion [11, 12].

Improving the recovery of missing markers can be
achieved by exploring specific properties of human motion.
For instance, in [13, 14], bone length constraints are intro-
duced to prevent unrealistic skeleton properties. Moreover,
human motion exhibits temporal smoothness characterized
by continuous transitions in position, velocity, and accelera-
tion. This observation has led to the development of robust
matrix completion models that incorporate both low-rank
properties and temporal smoothness [14–16]. Furthermore, a
hybrid MoCap completion approach [17] has been proposed,
combining skeleton constraints with smoothness to maintain
consistent bone lengths and explore spatial smoothness in
skeleton sequences. Human motion often exhibits strong
nonlocal self-similarity, where similar actions are replicated
across multiple instances. Motivated by this observation,
[18] introduces a nonlocal low-rank framework. In [19], the
authors propose hierarchical block-based incomplete MoCap
data recovery using nonnegative matrix factorization. This
method decomposes the human skeleton into five blocks,
treating MoCap sequences as sub-motion chain clips, and
applies nonnegative matrix factorization to recover miss-
ing markers for each sub-motion chain individually. Low-
rank matrix completion may fail to deliver satisfactory
performance when the data is subject to complex nonlinear
changes, such as significant pose variations or varying illu-
mination conditions. To cope with the nonlinear data effec-
tively, [20] proposes a nonlinear matrix completion method
by approximating low-rank kernel using a multiple kernel
learning process.

In several practical fields, data inherently possesses a
multidimensional structure and often can be organized in
multidimensional arrays. This is typically the case with the
analysis of MoCap data in which the movements of individu-
als or objects are recorded in three dimensions. Thus, a valu-
able method for studying and analyzing MoCap data is to
use multilinear algebra, and, in particular, tensors and their
decompositions. In the context of missing data, tensor com-
pletion techniques have attracted significant attention due to
their flexibility and broad applicability across various fields.

Analog to the LRMC approach [9], tensor completion
aims to reconstruct multidimensional data by approximating
a partially observed tensor using the rank structure of the
data. Unlike in the matrix case, the definition of the tensor’s
rank is not well-established. Thus, to characterize the low-
rankness of tensors, various tensor rank definitions, as well
as their convex relaxations, have been studied. Overall, the
tensor rank definitions have been proposed based on differ-
ent decomposition methods such as Canonical Polyadic (CP)
decomposition [21], tucker decomposition [22], and tensor
train decomposition [23, 24]. Based on these definitions,
several tensor completion approaches have been proposed. In

[25], the authors propose the tensor trace norm as a relaxa-
tion of the tucker rank. This is defined by taking the average
sum of the nuclear norm of the unfolding matrices across all
dimensions of an observed tensor. In [23], authors propose
the tensor multi-rank and tubal rank definitions based on
the tensor tensor product. Besides, a tensor train rank has
been proposed in [26] for the tensor completion problem.
The tensor train rank is established by unfolding the ten-
sor along with permutations of modes instead of one model
versus the rest.

An alternative to minimizing tensor rank directly is tensor
decomposition methods. Tensor decompositions break down
a high-dimensional tensor into a series of lower-dimensional
tensors, facilitating the extraction of meaningful patterns
and simplifying tensor completion. Various tensor decom-
position techniques have been applied to tensor completion
problems, including CP decomposition [27, 28], tucker
decomposition [29], tensor singular value decomposition
[30, 31], and tensor networks [32]. Each of these methods
leverages the low-rank property of the tensor to address the
completion problem.

While the low-rank prior is crucial for effective tensor
completion, it may not be sufficient to deal with complex
data. Thus, to address this limitation, several approaches
incorporate additional prior knowledge [13, 15, 27, 28,
33–37]. These enhanced methods aim to refine the comple-
tion process by integrating contextual or structural insights
that complement the low-rank properties, such as manifold
information, smoothness, sparsity, and spatial or tempo-
ral constraints. For instance, one popular method involves
regularizing the factor matrices of the tensor decomposi-
tion with the l2 norm [38]. Another approach proposes
simultaneous tensor decomposition and completion using
manifold information and the nuclear norm to regularize
the tucker decomposition. Additionally, a Bayesian CP
decomposition with mixture priors and an automatic rank
determination procedure has been proposed, along with
methods that exploit smoothness priors to constrain the
decomposition factors, enhancing applicability and robust-
ness. However, these methods often lack comparisons with
baseline tensor decomposition methods in their reported
results. This absence of comparative evaluation leaves
unanswered questions regarding the extent of improve-
ment achieved by these auxiliary priors in the context of
tensor decompositions for data completion. To bridge this
gap, it is essential to present a comprehensive framework
that thoroughly investigates and evaluates both the base-
line tensor decomposition and its modified versions. To
address the identified gap and demonstrate the robustness
of tensor completion techniques in MoCap data, this paper
develops and evaluates three tensor completion algorithms.
In the first algorithm, we consider the CP decomposition
to reveal the latent patterns that may be present in the

Pattern Analysis and Applications (2024) 27:133 Page 3 of 19 133

tensor MoCap data. Besides, when Mocap data is subject
to complex changes, such as significant pose variations,
the CP decomposition only relies on the low-rank prop-
erty, and may fail to deliver satisfactory results. Therefore,
given the inherent complexity of MoCap data, we propose
two modified variations of CP decomposition: SmoothCP
and SparseCP. These modified decompositions incorporate
constraints on the factor vectors to enhance the extraction
of meaningful patterns by leveraging smoothness and spar-
sity properties, respectively.

Smoothness is an essential characteristic of MoCap data,
which can be effectively utilized to predict missing elements
more accurately. In the SmoothCP decomposition, we incor-
porate 1D total variation constraints on the factor vectors.
This approach ensures that the decomposition respects the
smooth transitions inherent in human motion. Conversely,
sparsity focuses on identifying and utilizing the most
informative parts of the data, which is crucial in scenarios
where only a few significant elements contribute to the over-
all structure. In the SparseCP decomposition, we introduce
sparsity constraints by applying the l1-norm to the factor vec-
tors. This method guides the decomposition process to pro-
duce sparse factor vectors, highlighting the most informative
components and reducing redundancy in the decomposition.
In the experiment section, we evaluate the effectiveness of
these priors in enhancing the performance of tensor com-
pletion regarding the CP decomposition-based algorithm.
Briefly, the contributions of this paper are as follows:

• We introduce and demonstrate the application of ten-
sor completion techniques for the gap-filling problem in
MoCap data.

• We propose three CP-based approaches to address the
gap-filling problem taking into consideration the com-
plexity of the data.

• We develop three minimization algorithms to solve the
three completion problems and we study their conver-
gence analysis.

• We evaluate the merit of these algorithms in the experi-
mental section, as well as compare their performance
with state-of-the-art tensor completion algorithms.

The rest of this paper is organized as follows. After the intro-
duction, in Sect. 2, we introduce the main notations, proper-
ties, and preliminaries used throughout the paper. Then, in
Sect. 3, we present the proposed tensor completion methods.
In Sect. 4, we illustrate and discuss the numerical simula-
tions and the comparison between the proposed methods
over different MoCap sequences from the CMU dataset.
Finally, we conclude in Sect. 5.

2 Tensor notations and preliminaries

In this section, we present notations and definitions used
throughout the paper. We also review the CP decomposition
and the optimization algorithm used to fit the decomposition.

2.1 Basic definitions

The order of a tensor is the number of dimensions. A tensor
X of order N and size I1 × I2 ×⋯ × IN is an N dimensional
array in ℝI1×I2×⋯×IN . Thus, a vector is a first-order tensor and
a matrix is a second-order tensor. We use the Euler script
to denote tensors, e.g., X , bold upper-case letters to denote
matrices, e.g., X , bold lowercase letters to denote vectors,
e.g., x , and light lowercase letters to denote scalars, e.g.,
x. The j-th column of the matrix X is denoted as xj . The (
i1, i2,… , in

)
-th element of a tensor X is denoted as xi1i2…in

 ,
the

(
i1, i2

)
-th element of a matrix X is denoted as xi1i2 , and

the (i)-th element of a vector x is denoted as the scalar xi .
Following [39], we define the notions below.

Definition 1 (The inner product) The inner product of two
same-sized tensors X,Y ∈ ℝ

I1×I2×⋯×IN is the sum of the prod-
ucts of their entries, i.e.,

Definition 2 (The Frobenius norm) The Frobenius norm of
tensor X ∈ ℝ

I1×I2×⋯×IN is the square root of the sum of the
squares of all its elements, i.e.,

Definition 3 (The rank-one tensor) A tensor X ∈ ℝ
I1×I2×⋯×IN

of order N is rank one if it can be written as the outer product
of N vectors, i.e.,

where the symbol " ◦ " represents the vector’s outer product.
This means that each element of the tensor is the product of
the corresponding vector elements

Definition 4 (Super-diagonal tensor) A tensor
X ∈ ℝ

I1×I2×⋯×IN of order N is super-diagonal if

(1)⟨X,Y⟩ = �
i1,…,iN

xi1,…,iN
⋅ yi1,…,iN

.

(2)‖X‖F =

��
i1

�
i2

…
�
iN

x2
i1i2…iN

=
√⟨X,X⟩.

(3)X = a(1)◦a(2)◦⋯◦a(N),

(4)xi1i2⋯iN
= a

(1)

i1
a
(2)

i2
⋯ a

(N)

iN
, for all 1 ≤ in ≤ In.

xi1i2⋯iN
=

{
1 if i1 = i2 = … = iN ,

0 otherwise.

 Pattern Analysis and Applications (2024) 27:133 133 Page 4 of 19

Definition 5 (The Khatri–Rao product) Given two matrices
A = [a1, ..., aK] ∈ ℝ

I×K and B = [b1, ..., bK] ∈ ℝ
J×K , their

Khatri–Rao product is the matching column-wise Kronecker
product and is denoted by A⊙ B . The result is a matrix of
size IJ × K defined by

where ⊗ is the Kronecker product. If a and b are vectors,
then the Khatri–Rao and Kronecker products are identical,
i.e., a⊗ b = a⊙ b.

Definition 6 (The n-mode tensor-matrix product) The
n-mode tensor-matrix product of a tensor X ∈ ℝ

I1×I2×⋯×IN
with a matrix A ∈ ℝJ×In is denoted by X ×n A and is of the
size I1 ×⋯ × In−1 × J × In+1 ×⋯ × IN . Elementwise,

Definition 7 (The n-mode tensor-vector product) The
n-mode tensor-vector product of a tensor X ∈ ℝ

I1×I2×⋯×IN
with a vector v ∈ ℝ

In is denoted by X×nv . The result is of
order N − 1 , i.e., the size is I1 ×⋯ × In−1× In+1 ×⋯ × IN .
Elementwise,

Definition 8 (The mode-n matricization) The mode-n matri-
cization (unfolding) of a tensor X ∈ ℝ

I1×I2×⋯×IN , is the oper-
ation of transforming the tensor into a matrix denoted as
X(n) ∈ ℝ

In×S , where S =
∏N

k≠n
Ik . Thus, the tensor element (

i1, i2,… , iN
)
 corresponds to the matrix element

(
in, j

)
 , where

Example 1 The mode-1, mode-2, and mode-3 matricizations
of a third-order tensor X ∈ ℝ

I1×I2×I3 using Matlab notation
are, respectively,

(5)A⊙ B =
[
a1 ⊗ b1, a2 ⊗ b2, ⋯ , aK ⊗ bK

]
,

(6)
(
X ×n A

)
i1⋯in−1jin+1⋯iN

=

In∑
in=1

xi1i2⋯iN
ajin .

(7)
(
X×nv

)
i1⋯in−1in+1⋯iN

=

In∑
in=1

xi1i2⋯iN
vin .

j = 1 +

N∑

k = 1

k ≠ n

(
ik − 1

)
Jk, with Jk =

k−1∏

m = 1

m ≠ n

Im.

X(1) =
[
x∶11,… , x∶I21, x∶12 … , x∶I22,… , x∶1I3 ,… , x∶I2I3

]
∈ ℝ

I1×I2I3 ,

X(2) =
[
x1∶1,… , xI1∶1, x1∶2 … , xI1∶2,… , x1∶I3 ,… , xI1∶I3

]
∈ ℝ

I2×I1I3 ,

X(3) =
[
x11∶,… , xI11∶, x12∶ … , xI12∶,… , x1I2∶,… , xI1I2∶

]
∈ ℝ

I3×I1I2 .

2.2 CP decomposition

The CP decomposition factorizes multidimensional data,
or tensors, into a sum of rank-one tensors. For an N-order
tensor X ∈ ℝ

I1×I2×⋯×IN , we have

where for any n ∈ {1,… ,N} , a(n)
r

∈ ℝ
In stand for the factor (or

loading) vector and �r are weight parameters. The matrix
A(n) ∈ ℝ

In×R called the n-th factor (or loading) matrix and refers
to the combination of the vectors from the rank-one components,
i.e., A(n) =

[

a(n)1 , a(n)2 ,… , a(n)R

] , � = diag
[
�1,… , �R

]
∈ ℝ

R×⋯×R is a
super-diagonal tensor, and R is the tensor rank also known as CP
rank.

Definition 9 (The CP rank) The CP rank of a tensor
X ∈ ℝ

I1×⋯×IN is the minimum number of rank-1 tensors

2.3 The hierarchical alternating least squares
(HALS) algorithm

The Alternating Least Squares (ALS) algorithm is a com-
monly used minimization algorithm to obtain the CP
decomposition of a given tensor X . The idea is to consider
the factor matrices and minimize the objective function

The ALS algorithm iteratively optimizes the factor matrices
A(n) leading to an easy implementation. One major limita-
tion of the algorithm is that it may suffer from slow conver-
gence [40, 41]. An alternative method is to use local cost
functions whose simultaneous (one-by-one) minimization
leads to a simple ALS algorithm, called the Hierarchical
ALS (HALS) algorithm [42]. Instead of updating the fac-
tor matrices {A(n)}N

n=1
 , the algorithm simultaneously updates

each vector of {{a(n)
r
}N
n=1

}R
r=1

 per iteration. The algorithm is
a particular case of the Block Coordinates Descent (BCD)
algorithm [43]. It is developed to deal with the nonnegative
matrix/tensor factorization models by proposing a class of
optimized local algorithms [44]. For the CP decomposition,

(8)X ≈

R∑
r=1

�
r
a(1)
r
◦a(2)

r
◦⋯◦a(N)

r
= [[�;A(1)

,A(2)
,… ,A(N)]],

(9)rank(X) = min
R

{
R ∣ X =

R∑
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r

}
.

(10)min
�,{A(n)}N

n=1

1

2
‖X − [[�;A(1),A(2),… ,A(N)]]‖2

F
.

Pattern Analysis and Applications (2024) 27:133 Page 5 of 19 133

the HALS operates by converting the global objective func-
tion for the rank-R tensor to local objective functions for R
rank-one tensors

where

is the residue for r ∈ {1, ...,R} . The algorithm minimizes the
above objective function by iteratively updating the follow-
ing subproblems for r ∈ {1, ...,R}

3 The completion algorithms

In this section, we describe the proposed MoCap completion
algorithms. We first present a tensor representation of human
MoCap data and then address the MoCap gap-filling problem
using the three tensor completion frameworks.

3.1 MoCap tensor representation

Motion data is composed of a sequence of frames (poses) and
each frame is characterized by the positions of markers placed
on specific parts of the body or joints. Each marker provides
3D coordinates usually denoted by [x, y, z]. In all the exist-
ent completion methods for MoCap data, the captured motion
sequence is represented as an m × n matrix M where n = 3p
is the number of position coordinates for all markers or joints,
m corresponds to the total number of frames in the motion
sequence. Thus, each row of the matrix M corresponds to a
frame in the sequence

Notably, MoCap data is recorded in three dimensions. Thus,
MoCap data can naturally be modeled as a third-order ten-
sor M ∈ ℝ

m×p×3 where the dimensions correspond to time

(11)
‖X −

R�
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F

= ‖Xr − �ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

(12)
Xr = X −

R∑

k = 1

k ≠ r

�ka
(1)

k
◦a

(2)

k
◦⋯◦a

(N)

k

(13)
{�r, a

(n)
r
} = arg min

�r ,a
(n)
r

1

2
‖Xr − �ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

n ∈ {1, ...,N}.

(14)M =

⎡⎢⎢⎢⎣

f 1
f 2
⋮

fm

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

x1,1 y1,1 z1,1 ... x1,p y1,p z1,p
x2,1 y2,1 z2,1 ... x2,p y2,p z2,p

⋮ ⋮

xm,1 ym,1 zm,1 ... xm,p ym,p zm,p

⎤⎥⎥⎥⎦
.

(frames), joints (markers), and spatial coordinates (3D coor-
dinates), respectively

where Mx , My , and Mz ∈ ℝ
m×p represent the components

of the MoCap data along the x, y, and z axes, respectively.

3.2 CP decomposition for MoCap completion

Given an incomplete MoCap tensor M which has gaps due
to the missing markers problem, we seek a complete tensor
X where the missing markers are recovered as accurately
as possible. In this context, the goal of the CP decompo-
sition is to find a set of R normalized rank-one tensors
{a(1)

r
◦a(2)

r
◦⋯◦a(N)

r
}R
r=1

 that best approximates X . Normalizing
the loading factors in CP decomposition offers certain advan-
tages, such as improving the robustness to noise, and prevent-
ing the minimization process from assigning excessively large
values to some components.

We propose the following MoCap tensor completion using
CP decomposition

where Ar = �ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
 , Ω is the index set of

observed entries, and PΩ is the projection of X on the
observed set Ω defined by

We consider the indicator function �(⋅) given by

Then, problem (16) can be written as the following convex
minimization problem

This problem is minimized using the BCD algorithm, where
we iteratively update the R rank-one tensors {Ar}

R
r=1

 and
the tensor X . Each rank-one tensor Ar is updated using the
HALS algorithm by minimizing local objective functions

M = [Mx,My,Mz],

(15)

min
X,{Ar}

R
r=1

H(X,A1, ...,AR)

= min
X,{Ar}

R
r=1

1

2
‖X −

R�
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

such that PΩ(X) = PΩ(M),

‖a(n)
r
‖2 = 1, n ∈ {1, ...,N}, r ∈ {1, ...,R},

PΩ(X) =

{
xi1,i2,…,iN

if
(
i1, i2,… , iN

)
∈ Ω,

0 otherwise.

�(X) =

{
0 if PΩ(X) = PΩ(M),

∞ otherwise.

(16)

min
X,{Ar}

R
r=1

H(X,A1, ...,AR) + �(X),

such that ‖a(n)
r
‖2 = 1, n ∈ {1, ...,N}, r ∈ {1, ...,R}.

 Pattern Analysis and Applications (2024) 27:133 133 Page 6 of 19

where Xr is the residue and Cn = {a(n)
r

∈ ℝ
In � ‖a(n)

r
‖2 = 1}

is the set of unit vectors. At each iteration of the HALS
algorithm, the objective function is minimized for a single
vector a(n)

r
 while fixing all other vectors. The completion pro-

cess consists of two iterative steps. Initially, the algorithm
approximates the CP decomposition of the MoCap tensor.
This step involves optimizing the factor vectors hierarchi-
cally, where each factor vector is updated while keeping the
others fixed

where

is the tensor decomposition error. The second step involves
completing the gaps in the given tensor based on the
obtained CP decomposition by minimizing the convex
problem

3.2.1 Tensor decomposition step

This step focuses on fitting the CP decomposition using the
HALS algorithm. In this process, each rank-one tensor Ar ,
undergoes hierarchical updates to its factor vectors a(n)

r
 and

the associated parameter �r.
Updating the factor vectors {a(n)

r
}N
n=1

To update each factor vector a(n)
r

 , we use the mode-n matri-
cization version of problem (17)

(17)

min
�r ,{a

(n)
r ∈Cn}

N
n=1

F(Xr,�r, a
(n)
r
)

= min
�r ,{a

(n)
r ∈Cn}

N
n=1

1

2
‖Xr − �ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

(18)

{Ar}
R
r=1

=

⎧
⎪⎪⎨⎪⎪⎩

a(n)
r

= argmin
a
(n)
r ∈Cn

F(Xr,�r, a
(n)
r
), n ∈ {1, ...,N},

�r = argmin
�r

F(Xr,�r, a
(n)
r
),

Xr ← E + �ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
,

E =X −

R∑
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r

=Xr − �ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r

(19)

X = argmin
X

1

2
‖X

−

R�
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
+ �(X).

where {a
r
}T
⊙−n

= [a(N)
r
]T ⊙ ...⊙ [a(n+1)

r
]T ⊙ [a(n−1)

r
]T ⊙ ...⊙ [a(1)

r
]T ,

(⋅)T refers to the transpose operator, and X(n)
r

 is the mode-n
matricization of the tensor Xr . Minimizing the objective
function for each vector a(n)

r
 , n ∈ {1, ...,N} , which is a dif-

ferentiable function requires setting the gradient at zero

where {ar}T⊙−n
{ar}⊙−n

= {aT
r
ar}⊙−n

= 1 . Thus, the closed-
form solution is given as

where PCn
(⋅) is the projection mapping onto Cn , i.e., the

normalization defined by PCn
(u) = u∕‖u‖2 . The term

X(n)
r
{ar}⊙−n

 can also be expressed using either the tensor
vector product

where {ar} = {a(1)
r
, ..., a(N)

r
} and ×−n is a short notation of the

multiplication of tensor Xr by all the vectors but a(n)
r

 . Or by
using the tensor matrix product

where Vec is the operator that stacks the columns of a tensor
into a column vector.

Updating the parameter �r After updating the factor vec-
tors {a(n)

r
}N
n=1

 , we update the parameter �r by minimizing the
following strictly quadratic function

(20)

a(n)
r

= argmin
a
(n)
r ∈Cn

F(Xr,�r, a
(n)
r
)

= argmin
a
(n)
r ∈Cn

1

2
‖Xr − 𝜆ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

= argmin
a
(n)
r ∈Cn

1

2
‖X(n)

r
− 𝜆ra

(n)
r
{ar}

T
⊙−n

‖2
F
,

(21)

∇
a
(n)
r
F(Xr,�r, a

(n)
r
) = 𝜆rX

(n)
r
{ar}⊙−n

− 𝜆2
r
a(n)
r
{ar}

T
⊙−n

{ar}⊙−n

= 𝜆rX
(n)
r
{ar}⊙−n

− 𝜆2
r
a(n)
r

= 0,

(22)a(n)
r

= PCn

(
X(n)
r
{ar}⊙−n

𝜆r

)
,

X(n)
r
{a

r
}⊙−n

= X
r
×1a

(1)
r

⋯×
n−1a

(n−1)
r

×
n+1a

(n+1)
r

⋯×
N
a(N)
r

= X
r
×−n{ar},

X(n)
r {ar}⊙−n

= Vec
(

r ×1 [a(1)r]T ⋯ ×n−1 [a(n−1)r]T ×n+1 [a(n+1)r]T ⋯ ×N [a(N)r]T
)

= Vec
(

r ×−n {ar}T
)

,

Pattern Analysis and Applications (2024) 27:133 Page 7 of 19 133

Setting the gradient of the function with respect to �r to zero

yields to the following closed-form solution

3.2.2 Tensor completion step

Once we update the CP decomposition, we turn into the
second step to recover the MoCap tensor X by solving the
minimization problem (19) which has the following solution

where Ωc is the complement of Ω.

3.3 Modified CP decomposition for MoCap
completion

The modified CP decomposition for the completion problem
is given as

where R ∶ ℝ
N
→ ℝ refers to the regularization function

and {�n}Nn=1 are parameters controlling the level of the con-
straint on each factor vector. Then, under the framework of
the HALS algorithm, problem (27) is formulated as

(23)

�r = argmin
�r

F(Xr, �r, a
(n)
r
)

= argmin
�r

1

2
‖Xr − �ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

= argmin
�r

�2
r

2
− �r⟨Xr, a

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩.

(24)
∇�r

�
�2
r

2
− �r⟨Xr, a

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩
�

= �r − ⟨Xr, a
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩ = 0,

(25)�r = ⟨Xr, a
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩.

(26)X = PΩc

(
R∑
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r

)
+ PΩ(M),

(27)

min
X,{Ar}

R
r=1

H(X,A1, ...,AR)

+ �(X) +

R�
r=1

N�
n=1

�nR(a(n)
r
),

such that ‖a(n)
r
‖2 = 1, n ∈ {1, ...,N}, r ∈ {1, ...,N},

Similar to (16), problem (28) is carried out in two steps:
tensor decomposition and tensor completion steps. The com-
pletion step remains the same, only the first step changes
entailing the solution of the following minimization problem

To update the factor vector a(n)
r

 for n ∈ {1, ...,N} in problem
(29), we use the Projected Gradient Descent (PGD) method.1
The PGD is an iterative process that performs a descent gra-
dient/subgradient step and then projects the result to satisfy
the constraints. To compute the projection effectively, the
constraints are required to be sufficiently simple. Let f(x) be
a differentiable (not necessarily convex) continuous function
over a convex set Q, for k = 1, 2, ...,Kmax , the PGD method
consists of gradient descent and projection steps

where � is a positive stepsize, ∇f (xk) is the gradient of the
function f at xk , and PQ(⋅) denotes projection on the convex
set Q. In the case where the function f is convex and nondif-
ferentiable at some points, the subgradient of the function f
is used instead of the gradient

where �f (xk) is any subgradient of f at xk.

3.3.1 Smooth CP decomposition

The smoothness prior has been considered in the context of
matrix MoCap data completion due to the inherent spatial
and temporal smoothness in motion sequences. Among the
various smoothness constraints, total variation stands out as
a successful choice. Thus, we are interested in the following

(28)

min
X,�r ,{a

(n)
r ∈Cn}

N
n=1

1

2
‖Xr − �ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F

+ �(X) +

N�
n=1

�nR(a(n)
r
),

such that Xr = X −

R�

k = 1

k ≠ r

�ka
(1)

k
◦a

(2)

k
◦⋯◦a

(N)

k
.

(29)

{�r, a
(n)
r
} = argmin

�r ,a
(n)
r ∈Cn

F(Xr,�r, a
(n)
r
) + �nR(a(n)

r
), n ∈ {1, ...,N},

such that Xr = X −

R∑

k = 1

k ≠ r

�ka
(1)

k
◦a

(2)

k
◦⋯◦a

(N)

k
.

(30)xk+1 = PQ(x
k − �∇f (xk)),

(31)xk+1 = PQ(x
k − ��f (xk)),

1 In this work, the abbreviation PGD refers to both the projected gra-
dient and subgradient descent methods.

 Pattern Analysis and Applications (2024) 27:133 133 Page 8 of 19

completion problem where the l2-total variation regulariza-
tion is imposed on the factor vectors

where ‖x‖TV refers to the l2-total variation norm of a vector
x ∈ ℝ

m defined as

In contrast to [28], the factors �k are not involved in the pen-
alty level of the smoothness prior in (32). While involving
�k in the penalty term provides adaptability, in cases where
the data exhibits a relatively constant smoothness level, the
adaptability of �k may not provide a significant advantage.
Thus, the levels of smoothness of different components
can be enforced by setting adequate values of regulariza-
tion parameters {�n}Nn=1 . In (32), minimizing each a(n)

r
-sub-

problem involves a differentiable objective function. Thus
we use the PGD algorithm with gradient descent step (30).
Therefore, the HALS-based PGD yields the following itera-
tive scheme

where bk is the gradient of the objective function (32) with
respect to a(n)

r
 at iteration k and � is the gradient descent

stepsize.

3.3.2 Sparse CP decomposition

We exploit the sparsity constraint over the factor vectors of the
CP decomposition to encourage the robustness of the decom-
position by focusing on the most informative features. Thus,
we consider the l1-norm minimization problem

where ‖x‖1 = ∑m

i=1
�xi� is the l1-norm. The objective func-

tions of the {a(n)
r
}N
n=1

 subproblems are convex. Thus,

(32)

{�r, a(n)r } = argmin
�r ,a

(n)
r ∈Cn

1
2
‖X(n)

r − �ra(n)r {ar}T⊙−n
‖

2
F

+ �n‖a(n)r ‖

2
TV, n ∈ {1, ...,N},

‖x‖TV =

�
m−1�
i=1

�xi − xi+1�2
� 1

2

= ‖Dmx‖2, where

Dm =

⎡
⎢⎢⎣

1 −1

⋱ ⋱

1 −1

⎤
⎥⎥⎦
∈ ℝ

(m−1)×m.

(33)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

for n = 1, ...,N
⎧

⎪

⎨

⎪

⎩

bk = �rX(n)
r {ar}⊙−n

− �2ra
(n),k
r + �nDT

nDna(n),kr ,
a(n),k+1r = a(n),kr − �bk ,
a(n),k+1r = a(n),k+1r ∕‖a(n),k+1r ‖2,

�r = ⟨r , a(1)r ◦a(2)r ◦⋯◦a(N)r ⟩,
r ← + �ra(1)r ◦a(2)r ◦⋯◦a(N)r ,

(34)
{𝜆r, a

(n)
r
} =argmin

𝜆r ,a
(n)
r ∈Cn

1

2
‖X(n)

r
− 𝜆ra

(n)
r
{ar}

T
⊙−n

‖2
F

+ 𝛼n‖a(n)r
‖1, n ∈ {1, ...,N},

minimizing each a(n)
r

-subproblem is carried out by the PGD
algorithm (31) with a subgradient descent step. The set of all
subgradients of the l1-norm denoted by �

�‖ ⋅ ‖1
�
 is given by

The signum function of a vector x ∈ ℝ
m denoted as

Sgn(x) = [sgn(x1), sgn(x2),… , sgn(xm)]
T is a subgradient

of the l1-norm and it is defined as

Therefore, the SparseCP decomposition is obtained by the
following iterative scheme

The three MoCap data completion algorithms are arranged
together in Algorithm 1.

3.4 Rank estimation

A required task in the low-rank tensor factorization problem
is to specify the ranks R ∈ {1,… ,Rmax} since in most cases,
we do not know the true rank of the given tensor. Therefore,
different rank-adjusting schemes have been proposed in [24,
31, 45–47]. We can distinguish between two main rank-adjust-
ing schemes, namely, rank-decreasing and rank-increasing
schemes. In this work, we use a rank-increasing technique for
the three algorithms. The rank-increasing starts by R such that
R ≤ Rmax . Then, we attempt to increase the rank by 1 if both,
the rank R has not reached the maximum rank and the follow-
ing criterion is met

where � = ‖Et
Ω
‖2
F
 denotes the mean squared error of the ten-

sor decomposition at the current iteration and � is a threshold
value. When the criterion (36) is reached, it means that the
current rank is not capturing the complexity or details of the
data sufficiently. Thus, increasing the rank allows the model
to be adapted to the complexity of the data and improve its
performance.

�
�‖x‖1

�
=
�
v ∈ ℝ

m ∣ v
i
= x

i
∕�x

i
� if x

i
≠ 0,

and v
i
∈ [−1, 1] if x

i
= 0

�
.

(Sgn(x))i = sgn(xi) =

{
xi∕|xi| if xi ≠ 0,

0 if xi = 0.
i = 1,… ,m.

(35)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

for n = 1, ...,N

⎧⎪⎨⎪⎩

bk = 𝜆rX
(n)
r
{ar}⊙−n

− 𝜆2
r
a(n),k
r

+ 𝛼nSgn(a
(n),k
r

),

a(n),k+1
r

= a(n),k
r

− 𝛾bk,

a(n),k+1
r

= a(n),k+1
r

∕‖a(n),k+1
r

‖2,
𝜆r = ⟨Xr, a

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩,

Xr ← E + 𝜆ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
.

(36)
|� − �old|

|�| ≤ �,

Pattern Analysis and Applications (2024) 27:133 Page 9 of 19 133

Algorithm 1 The three MoCap completion algorithms.

 Pattern Analysis and Applications (2024) 27:133 133 Page 10 of 19

3.5 Convergence analysis

The convergence of HALS and HALS-based PGD
To guarantee the convergence of Algorithm 1, we first

need to ensure the convergence of Algorithm 1.1, 1.2, and
1.3 used to fit the CP, SmoothCP, and SparseCP decomposi-
tions respectively. For Algorithm 1.1, the HALS algorithm
is used to fit the CP decomposition. The HALS is a spe-
cial case of the BCD algorithm, and its convergence can be
obtained from [48, 49]. Briefly, the objective function F in
problem (17) is a continuously differentiable and convex
function, and each subproblem of (17) has a closed-form
solution. Thus, the sequence generated by the HALS algo-
rithm converges to a stationary point, see [49, Proposition
7.2.1]. For both Algorithm 1.2, and 1.3, HALS-based PGD
is used to fit the SmoothCP and SparseCP decompositions.
The HALS-based PGD method can be viewed as the Block

Successive Upper bound Minimization (BSUM) algorithm
[50], and it converges since (32) and (34) satisfy the assump-
tions of [50, Theorem 2].

The convergence of Algorithm 1
The convergence can be shown using [48, Theo-

rem 4.1(b)]. To do this, first, note that the objective functions
in (16) and (27) are the sum of convex and differentiable
functions. Thus, they are continuous and have a compact
level set, see [49, Proposition B.9], and by [48, Lemma 3.1],
are regular. Second, the uniqueness of the solution of sub-
problems of (17), (32), and (34) is guaranteed by the conver-
gence of HALS and HALS-based PGD algorithms. There-
fore, according to [48, Theorem 4.1(b)], every limit point of
the sequence generated by each algorithm of Algorithm 1
is a stationary point of its associated optimization problem.

Fig. 1 Masks: a random gaps.
b Random missing entries
(uniformly distributed)

(a) (b)

Table 2 The RMSE of
SmoothCP and SparseCP
versus different values of
� = [�1, �2, �3]

Methods [.1, .1, .1] [.01, .01, .01] [.001, .001, .001] [.1, .01, 0] [.1, .01, .01] [.001, .001, .01]

SmoothCP 1.991 2.341 2.369 2.639 2.182 2.354
SparseCP 2.448 2.240 2.575 2.425 2.350 2.274

Table 3 The RMSE of
SmoothCP and SparseCP versus
different values of �

Methods � = 10−1 � = 10−2 � = 10−3 � = 10−4 � = 10−5 � = 10−6

SmoothCP 3.120 3.000 3.012 2.971 3.341 2.907
SparseCP 2.871 3.350 2.991 3.208 3.050 3.086

Table 1 Motion files from
CMU used in the experiments

Motion File name Description Frames Markers Frequency

M1 02_01 Walking 343 41 120
M2 64_02 Playing golf: swing 493 44 120
M3 85_02 Breakdance: jump twist 810 41 120

Pattern Analysis and Applications (2024) 27:133 Page 11 of 19 133

4 Experiments

In this section, we evaluate the results of the three suggested
completion algorithms. We first introduce the settings of the
experiments, including the used data, the gap-filling setting,
the evaluation metrics, and the parameter setting.Then, we
illustrate and discuss the results of several tests conducted
on different motion sequences. We compare the results of
the proposed algorithms with three recently developed state-
of-the-art tensor completion methods including the tensor
trace norm-based LRTC (HaLRTC) [25], the smooth Parafac
(SPC) [28], and the partial sum of the tubal nuclear norm
(PSTNN) [51]. The MoCap toolbox2 was employed for these
tests. All experiments were executed in MATLAB (R2018b)
on a system equipped with an Intel Core i5-10210U CPU @
1.60GHz (2.11 GHz) and 8 GB of RAM.

Data: The data used in our experiments is from the online
CMU human motion database.3 The database contains vari-
ous human motions of several categories including, human
interaction, physical activities, and sports. We select three
motion sequences given in Table 1. These motion sequences
cover different types of motion with varying complexity. In
all the tests, the MoCap data is represented as a third-order
tensor S ∈ ℝ

m×p×3.

Gap-filling setting: The completion of MoCap data involves
recovering gaps that depend on factors such as the length
of gaps (the number of consecutively missing frames),
the number of missing markers, and the complexity of the
motion sequence. Thus, the challenge of gap-filling differs
significantly from the conventional missing data problem
studied in other applications such as image processing as
illustrated in Fig. 1. To effectively address the gap-filling
issue in MoCap data, it is important to replicate real-world

Fig. 2 a The RMSE versus R.
b The convergence of RMSE of
the three proposed algorithms

(a) (b)

Fig. 3 The visual comparison
of the completion results for the
sequence M1 (Walking) with
the length of gaps set to 50 and
30 missing markers. Red arrows
highlight small inaccuracies in
the recovered markers

(a) Orignal (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

2 https:// github. com/ mocap toolb ox.
3 http:// mocap. cs. cmu. edu/ subje cts. php.

https://github.com/mocaptoolbox
http://mocap.cs.cmu.edu/subjects.php

 Pattern Analysis and Applications (2024) 27:133 133 Page 12 of 19

Table 4 The comparative
evaluation of RMSE, AvE, and
STD for completing the motion
data M1 (walking) with varied
numbers of missing markers
and the length of gaps

The results of the six algorithms HaLRTC, SPC, PSTNN, CP, SmoothCP, and SparseCP are provided for
each setting. The best two results are highlighted in bold and italic, respectively

Missing
markers

Methods Length of gaps

20 50 100

RMSE AvE STD RMSE AvE STD RMSE AvE STD

HaLRTC 1.752 1.53e−1 1.75 3.153 4.75e−1 3.15 4.157 8.42e−1 3.37
SPC 0.748 6.86e−2 0.74 1.799 2.53e−1 1.79 4.648 7.59e−1 4.64

10 PSTNN 0.434 3.96e −2 0.43 1.008 1.41e −1 1.00 3.083 5.59e −1 3.07
CP 0.733 6.72e −2 0.73 1.618 2.46e−1 1.61 3.378 6.59e−1 3.37
SmoothCP 0.790 7.19e−2 0.79 1.652 2.24e −1 1.65 3.703 6.74e−1 3.70
SparseCP 0.873 7.77e−2 0.87 1.570 2.26e−1 1.57 2.973 5.66e −1 2.97
HaLRTC 1.704 2.17e−1 1.70 3.100 6.26e−1 3.09 9.160 2.24 9.06
SPC 1.338 1.71e−1 1.33 2.417 4.68e−1 2.41 5.739 1.60 5.73

20 PSTNN 0.711 8.46e −2 0.71 2.212 4.32e −1 2.21 4.581 1.18 4.57
CP 1.152 1.46e−1 1.15 2.249 4.32e −1 2.24 4.583 1.27 4.58
SmoothCP 1.129 1.38e−1 1.12 2.422 4.91e−1 2.42 5.453 1.48 5.45
SparseCP 0.919 1.24e −1 0.92 2.478 5.09e−1 2.47 4.567 1.30 4.56
HaLRTC 2.641 3.76e−1 2.64 4.403 9.82e−1 4.40 15.398 4.62 15.25
SPC 1.410 2.09e−1 1.41 3.393 7.94e−1 3.38 7.969 2.75 7.96

30 PSTNN 1.130 1.50e −2 1.13 3.258 6.79e −1 3.25 8.294 2.49 8.28
CP 1.530 2.26e−1 1.53 3.396 7.87e −1 3.38 7.859 2.69 7.85
SmoothCP 1.375 1.99e −1 1.37 3.607 8.23e−1 3.60 7.023 2.42 7.01
SparseCP 1.670 2.431e−1 1.67 3.556 8.27e−1 3.55 7.093 2.45 7.08

Fig. 4 The visual comparison
of the completion results for the
sequence M1 (Walking) with
the length of gaps set to 100 and
30 missing markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

Pattern Analysis and Applications (2024) 27:133 Page 13 of 19 133

complexities accurately. Therefore, we intentionally intro-
duce gaps in multiple markers at random locations. The gaps
in MoCap data are represented as ’Not a Number’ (NaN)
values, making them easily identifiable. We test different
scenarios where we increase the missing markers and the
gap length to evaluate their impact on the three algorithms.

Evaluation metrics: To analyze the performance of each
algorithm, we use three basic measures: the Root Mean
Square Error (RMSE), the Average Error (AvE), and the
Standard Deviation (STD)

where xijk and sijk are the (i, j, k)-th element of the recovered
motion sequence X and the ground truth motion sequence
S , respectively, and n = m × p × 3.

Parameter setting: For all algorithms, the number of itera-
tions Itermax is fixed at 1500. The algorithms also use the
relative change of two successive reconstructed tensors
‖X − Xold‖∕‖Xold‖ < 𝜖 with a given tolerance 𝜖 = 10−6 as a
stopping rule. In the case of SmoothCP and SparseCP, the
number of iterations Kmax of the PGD algorithm is set to
1000. The step size � of the gradient descent and the regu-
larization parameters �n for n = 1, 2, 3 are critical for the
algorithm’s performance. Tables 2 and 3 illustrate the behav-
ior of the SmoothCP and SparseCP algorithms for different
values of �n and �.

4.1 Results and discussion

In Tables 4, 5, and 6 we summarize the quantitative results
obtained from the completion of motion sequences (M1,
M2, M3) by the proposed and the comparative algorithms.
We evaluate the performance using RMSE, AvE, and STD
metrics across varying lengths of the gaps (20, 50, 100) and
numbers of missing markers (10, 20, 30). From the results,
we observe that when the number of missing frames is small
(gap length=20 or 50), increasing the number of missing
markers does not drastically affect the recovery results. In
contrast, when increasing the length of gaps, the RMSE,
AvE, and STD increase significantly, especially for motions

RMSE =

√

√

√

√
1
n

m
∑

i=1

p
∑

j=1

3
∑

k=1
|xijk − sijk|2,

AvE = 1
n

m
∑

i=1

p
∑

j=1

3
∑

k=1
|xijk − sijk|,

STD =

√

√

√

√
1
n

m
∑

i=1

p
∑

j=1

3
∑

k=1

(

(xijk − sijk) − e
)2,

where e = 1
n

m
∑

i=1

p
∑

j=1

3
∑

k=1
(xijk − sijk).

M2 and M3. Increasing the gaps’ length and the number
of missing markers significantly affects the RMSE, AvE,
and STD. The gap-filling problem appears more sensitive
to missing markers’ duration than quantity.

For all algorithms, the recovery results of the walking
sequence (M1) are more robust than those of the playing
golf (swing) or breakdance (jump twist) sequences (M2 and
M3). This can be explained by the fact that simple motions,
like walking, have repetitive and predictable patterns. Break-
dance, on the other hand, tends to be more complex and
challenging to recover due to its dynamic nature and sudden
changes in direction and speed. These dynamic movements
can result in more jerky changes in the MoCap data. Thus, it
is important to note that the performance of the completion
process depends on motion complexity.

When comparing the performance of the six algorithms,
the PSTNN algorithm demonstrates robust reconstruction
results across all three motions for short gap lengths, with
motion M1 exhibiting particularly favorable outcomes. This
effectiveness can be attributed to PSTNN’s approach of
directly minimizing the partial sum of the tubal multi-rank,
which proves more precise in handling missing markers
with short durations. However, as gap lengths increase, CP-
based algorithms show superior performance over the ten-
sor rank minimization method. For instance, SparseCP and
SmoothCP consistently yield more accurate results when
gap lengths extend to 100 and 30 missing markers across
all three motions.

When comparing the three proposed algorithms, the CP
algorithm shows favorable results for walking motion M1
and when the gap lengths are relatively small for motions
M2 and M3. Furthermore, the modified CP algorithms dem-
onstrate better performance, particularly for more complex
motions (M2 and M3). For motion M2, the SparseCP model
exhibits lower RMSE, AvE, and STD, especially as the num-
ber of gaps increases. In the case of motion M3, there is no
clear distinction in performance between the two algorithms.
Therefore, we conclude that the CP algorithm effectively
captures the low-rank property of the data and reconstructs
the missing markers for regular motions. Conversely, for
more varied and complex motions, the modified CP decom-
positions handle irregularities more accurately. Thus, we
can conclude that incorporating additional priors over the
CP decomposition is valuable and significantly impacts the
accuracy of data completion.

Additionally, we conduct a visual comparison of the
completion results of the six algorithms in Figs. 3, 4, 5, 6, 7,
and 8 for the three motion sequences (M1, M2, M3), respec-
tively. We present the recovered results of different frames
of each motion sequence with 30 missing markers and (50,
and 100) consecutive missing frames, respectively. We

 Pattern Analysis and Applications (2024) 27:133 133 Page 14 of 19

highlight inaccurately recovered markers using red arrows.
As expected, the six algorithms perform well in recover-
ing the missing markers for motion M1, as shown in Fig. 3.
However, for motion sequences, (M2, M3), which involve

more inconsistent movements, large errors in the recovered
markers occur when the length of gaps is high. Therefore,
certain motion details are inaccurately predicted especially
by HaLRTC and PSTNN, see Figs. 6 and 8. Further, to better

Fig. 5 The visual comparison
of the completion results for
the sequence M2 (Playing golf)
with the length of gaps set to 50
with 30 missing markers. Red
arrows highlight inaccuracies in
the recovered markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

Table 5 The comparative
evaluation of RMSE, AvE,
and STD for completing the
motion data M2 (Playing golf)
with varied numbers of missing
markers and length of gaps

The results of the six algorithms HaLRTC, SPC, PSTNN, CP, SmoothCP, and SparseCP are provided for
each setting. The best two results are highlighted in bold and italic, respectively

Missing
markers

Methods Length of gaps

20 50 100

RMSE AvE STD RMSE AvE STD RMSE AvE STD

HaLRTC 1.354 8.97e−2 1.35 2.889 2.61e−1 2.88 7.482 8.86e −1 7.47
SPC 0.692 4.26e−2 0.69 2.266 1.92e −1 2.26 8.936 9.61e−1 8.93

10 PSTNN 0.122 8.54e −3 0.12 2.225 1.76e −1 2.22 8.762 8.70e−1 8.75
CP 0.639 3.61e−2 0.63 2.950 2.39e−1 2.95 10.503 1.43 15.03
SmoothCP 0.673 3.88e−2 0.67 2.604 2.32e−1 2.60 9.652 1.04 9.65
SparseCP 0.539 3.20e −2 0.53 2.363 1.94e−1 2.36 7.529 8.21e −1 7.52
HaLRTC 1.071 1.00e−1 1.07 3.213 4.17e−1 3.21 29.719 4.96 29.62
SPC 0.810 27.31e−2 0.81 2.853 3.55e −1 2.85 10.587 1.81 10.58

20 PSTNN 0.349 2.95e −2 0.34 3.139 3.25e−1 3.13 21.628 3.82 21.54
CP 0.767 6.09e−2 0.67 2.929 3.67e−1 2.92 15.484 2.03 15.48
SmoothCP 0.693 5.72e−2 0.69 3.435 4.21e−1 3.43 12.523 1.95 12.51
SparseCP 0.692 6.08e −2 0.69 2.760 3.37e −1 2.76 13.109 2.03 13.10
HaLRTC 2.567 2.12e−1 2.56 11.749 1.59 11.73 39.634 8.39 39.47
SPC 2.553 2.07e−1 2.55 10.610 1.48 10.60 22.890 4.71 22.88

30 PSTNN 0.793 6.61e −2 0.79 10.282 1.31 10.28 33.435 22.42 33.43
CP 2.302 1.77e −1 2.30 12.544 1.63 12.54 26.490 5.47 26.49
SmoothCP 2.994 2.20e−1 2.99 10.095 1.41 10.09 18.516 3.97 18.50
SparseCP 2.425 1.94e−1 2.24 10.068 1.42 10.06 22.800 4.36 22.79

Pattern Analysis and Applications (2024) 27:133 Page 15 of 19 133

illustrate the performance of our completion algorithms
compared with the other methods, we illustrate in Fig. 9 the
results obtained from the plots of RMSE versus the frame
indices of the three motions. In this experiment, we intro-
duce 30 missing markers and gaps of length 100. The curves
depicting RMSE across all frames demonstrate the effec-
tiveness of the proposed algorithms in handling large miss-
ing gaps. For example, in the second plot (M2), SmoothCP
consistently exhibits low RMSE values across all frames.

Figure 2a presents the plots of RMSE of the three CP-
based decompositions versus R and the estimation of rank
R versus iterations. The plots reveal that small values of R
are insufficient to accurately fit the decomposition, result-
ing in notably high RMSE values. This is because a low
R restricts the model’s capacity to capture the underlying
structure of the data. To overcome this issue, the experi-
ments were conducted with a very large Rmax . This large
initial value of Rmax ensures that the criterion (36) controls

Fig. 6 The visual comparison
of the completion results for
the sequence M2 (Playing golf)
with the length of gaps set to
100 with 30 missing markers.
Red arrows highlight inaccura-
cies in the recovered markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

Fig. 7 The visual comparison
of the completion results for the
sequence M3 (Breakdance) with
the length of gaps set to 50 and
30 missing markers. Red arrows
highlight inaccuracies in the
recovered markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

 Pattern Analysis and Applications (2024) 27:133 133 Page 16 of 19

the rank estimation process, incrementally adjusting the
rank until the method converges. We illustrate in Fig. 2b
the convergence behavior of three algorithms based on
RMSE values across iterations. We observe that the RMSE
keeps decreasing as the iteration number increases, which
demonstrates the numerical stability and the convergence
of the proposed algorithm.

Table 7 provides the running times of the six algorithms
for recovering the three motion sequences. Notably, the
HaLRTC algorithm demonstrates the most efficient per-
formance, emerging as the fastest option among the tested
methods. Following HaLRTC, the PSTNN algorithm also
exhibits commendable speed. Regarding the CP-based
algorithms, the CP algorithm itself shows a relatively
quick execution time, and the SparseCP algorithm closely
follows with comparable running times.

5 Conclusion

This study expands the application scope of tensor comple-
tion techniques and offers promising avenues for enhancing
data quality in MoCap systems. We address the gap-filling
problem in MoCap data by introducing three completion
algorithms based on the tensor CP decomposition: the CP,
SmoothCP, and SparseCP algorithms. The experimental
results demonstrate the significant impact of incorpo-
rating priors in the CP decomposition process. Moreo-
ver, the results reveal that the SmoothCP and SparseCP
algorithms, outperform or achieve comparable results to
existing state-of-the-art tensor completion methods. For
instance, while the PSTNN method excels in accurately
completing small gaps, SmoothCP and SparseCP demon-
strate superior accuracy in handling larger gaps, especially

Fig. 8 The visual comparison
of the completion results for the
sequence M3 (Breakdance) with
the length of gaps set to 100 and
30 missing markers. Red arrows
highlight inaccuracies in the
recovered markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

Fig. 9 The RMSE values of
all recovered frames and their
average (Average_HaLRTC,
Average_SPC, Average_PSTN,
Average_CP, Average_
SmoothCP, Average_SparseCP)
for three MoCap data obtained
by the six algorithms. The gap
length is set to 100 with 30
missing markers. From left to
right, the recovered results are
for M1, M2, and M3, respec-
tively

M1 M2 M3

Pattern Analysis and Applications (2024) 27:133 Page 17 of 19 133

for more complex data scenarios. However, the current
algorithms primarily focus on single-subject scenarios and
may not perform as well in multi-subject environments. In
future work, we aim to extend the proposed algorithms to
more challenging scenarios involving multiple individu-
als, such as couples dancing. Additionally, we will explore
applying multiple regularization techniques on the tensor
decomposition factors to enhance performance in these
more challenging contexts.

Funding Open access funding provided by Örebro University. Carl
Tryggers Stiftelse supported the first author’s work under Grant CTS
22:2196. The Swedish Research Council (VR) supports the second
author’s work under Grant 2021-05393.

Declarations

Conflict of interest The authors have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Table 6 The comparative
evaluation of RMSE, AvE,
and STD for completing the
motion data M3 (Breakdance)
with varied numbers of missing
markers and length of gaps

The results of the six algorithms HaLRTC, SPC, PSTNN, CP, SmoothCP, and SparseCP are provided for
each setting. The best two results are highlighted in bold and italic, respectively

Missing
markers

Methods Length of gaps

20 50 100

RMSE AvE STD RMSE AvE STD RMSE AvE STD

HaLRTC 1.440 9.22e −2 1.43 4.484 3.48e −1 4.47 13.204 1.37 13.19
SPC 2.291 1.25e−1 2.29 5.219 4.06e−1 5.21 14.295 1.51 14.28

10 PSTNN 1.205 6.24e −2 1.20 5.210 3.92e −1 5.20 13.308 1.38 13.29
CP 2.013 1.237e−1 2.01 6.924 4.91-1 6.91 14.989 1.56 14.98
SmoothCP 1.687 9.36e−2 1.68 5.893 4.40e−1 5.89 9.309 1.13 9.30
SparseCP 1.749 9.25e−2 1.74 5.467 4.24e−1 5.467 11.463 1.11 11.46
HaLRTC 1.990 1.75e −1 1.99 7.127 7.51e −1 7.11 30.693 4.26 30.63
SPC 2.214 1.87e−1 2.21 8.120 8.87e−1 8.11 19.356 2.72 19.35

20 PSTNN 1.678 1.22e −1 1.67 10.071 1.03 10.05 21.307 3.11 21.27
CP 2.481 2.00e−1 2.48 8.313 9.09e−1 8.11 22.944 3.12 22.93
SmoothCP 2.728 2.15e−1 2.72 7.042 7.87e −1 7.04 18.052 2.71 18.04
SparseCP 2.729 2.08e−1 2.48 8.324 9.55e−1 8.32 16.604 2.57 16.60
HaLRTC 2.555 3.24e −1 2.55 9.762 1.33 9.75 41.528 7.61 41.44
SPC 3.324 3.26e−1 3.32 11.835 1.51 11.83 26.635 5.09 26.63

30 PSTNN 2.550 2.28e −1 2.55 12.472 1.70 12.46 38.151 6.84 38.04
CP 3.536 3.48e−1 3.32 12.508 1.62 12.50 28.738 5.34 28.70
SmoothCP 3.681 3.45e−1 3.68 10.885 1.58 10.88 25.877 4.91 25.85
SparseCP 3.177 3.28e−1 3.17 9.547 1.39 9.54 24.748 4.82 24.74

Table 7 The CPU time (in min)
of the six algorithms for (M1,
M2, M3) sequences

Motion Number of
frames

HaLRTC SCP PSTNN CP SparseCP SmoothCP

M1 343 0.002 0.951 0.018 0.557 0.927 4.775
M2 493 0.002 1.371 0.022 0.917 1.328 7.335
M3 810 0.005 2.102 0.031 1.175 1.709 17.639

http://creativecommons.org/licenses/by/4.0/

 Pattern Analysis and Applications (2024) 27:133 133 Page 18 of 19

References

 1. Zhou H, Huosheng H (2008) Human motion tracking for rehabili-
tation: a survey. Biomed Signal Process Control 3(1):1–18

 2. Takeda I, Yamada A, Onodera H (2021) Artificial intelligence-
assisted motion capture for medical applications: a comparative
study between markerless and passive marker motion capture.
Comput Methods Biomech Biomed Eng 24(8):864–873

 3. Van der Kruk E, Reijne MM (2018) Accuracy of human motion
capture systems for sport applications; state-of-the-art review. Eur
J Sport Sci 18(6):806–819

 4. Millour G, Velásquez AT, Domingue F (2023) A literature over-
view of modern biomechanical-based technologies for bike-fitting
professionals and coaches. Int J Sports Sci Coach 18(1):292–303

 5. Field M et al (2011) Human motion capture sensors and analysis
in robotics. Ind Robot Int J 38(2):163–171

 6. Schreiter T et al (2022) The magni human motion dataset: accu-
rate, complex, multi-modal, natural, semantically-rich and con-
textualized. In: arXiv preprint arXiv: 2208. 14925

 7. Schreiter T et al (2024) THÖR-MAGNI: a large-scale indoor
motion capture recording of human movement and robot inter-
action. arXiv preprint arXiv: 2403. 09285

 8. Boschetti G et al (2023) 3D collision avoidance strategy and
performance evaluation for human–robot collaborative systems.
Comput Ind Eng 179:109225

 9. Candes E, Recht B (2012) Exact matrix completion via convex
optimization. Commun ACM 55(6):111–119

 10. Cai J-F, Candès EJ, Shen Z (2010) A singular value thresh-
olding algorithm for matrix completion. SIAM J Optim
20(4):1956–1982

 11. Lai Ranch YQ, Yuen Pong C, Lee Kelvin KW (2011) Motion
capture data completion and denoising by singular value thresh-
olding. In: Eurographics (short papers), pp 45–48

 12. Tan C-H, Hou J, Chau L-P (2013) Human motion capture data
recovery using trajectory-based matrix completion. Electron
Lett 49(12):752–754

 13. Tan C-H, Hou JH, Chau L-P (2015) Motion capture data recov-
ery using skeleton constrained singular value thresholding. Vis
Comput 31:1521–1532

 14. Chen B et al (2018) Human motion recovery utilizing truncated
schatten p-norm and kinematic constraints. Inf Sci 450:89–108

 15. Feng Y et al (2014) Exploiting temporal stability and low-rank
structure for motion capture data refinement. Inf Sci 277:777–793

 16. Wenyu H et al (2017) Motion capture data completion via trun-
cated nuclear norm regularization. IEEE Signal Process Lett
25(2):258–262

 17. Yang J et al (2019) Spatio-temporal reconstruction for 3D
motion recovery. IEEE Trans Circuits Syst Video Technol
30(6):1583–1596

 18. Cui Q, Chen B, Sun H (2019) Nonlocal low-rank regularization
for human motion recovery based on similarity analysis. Inf Sci
493:57–74

 19. Peng S-J et al (2015) Hierarchical block-based incomplete human
mocap data recovery using adaptive nonnegative matrix factoriza-
tion. Comput Graph 49:10–23

 20. Xia G et al (2018) Nonlinear low-rank matrix comple-
tion for human motion recovery. IEEE Trans Image Process
27(6):3011–3024

 21. Douglas Carroll J, Chang J-J (1970) Analysis of individual differ-
ences in multidimensional scaling via an N-way generalization of
“Eckart-Young" decomposition. Psychometrika 35(3):283–319

 22. Tucker LR (1966) Some mathematical notes on three-mode factor
analysis. Psychometrika 31(3):279–311

 23. Oseledets IV (2011) Tensor-train decomposition. SIAM J Sci
Comput 33(5):2295–2317

 24. Zhao Q et al (2016) Tensor ring decomposition. arXiv preprint
arXiv: 1606. 05535

 25. Liu J et al (2012) Tensor completion for estimating missing
values in visual data. IEEE Trans Pattern Anal Mach Intell
35(1):208–220

 26. Bengua JA et al (2017) Efficient tensor completion for color image
and video recovery: low-rank tensor train. IEEE Trans Image Pro-
cess 26(5):2466–2479

 27. Zhao Q, Zhang L, Cichocki A (2015) Bayesian CP factorization
of incomplete tensors with automatic rank determination. IEEE
Trans Pattern Anal Mach Intell 37(9):1751–1763

 28. Yokota T, Zhao Q, Cichocki A (2016) Smooth parafac decom-
position for tensor completion. IEEE Trans Signal Process
64(20):5423–5436

 29. Heidel G, Schulz V (2018) A Riemannian trust-region method
for low-rank tensor completion. Numer Linear Algebra Appl
25(6):e2175

 30. Liu X-Y et al (2019) Low-tubal-rank tensor completion using alter-
nating minimization. IEEE Trans Inf Theory 66(3):1714–1737

 31. Zhou P et al (2017) Tensor factorization for low-rank tensor com-
pletion. IEEE Trans Image Process 27(3):1152–1163

 32. Wang W, Aggarwal V, Aeron S (2017) Efficient low-rank tensor
ring completion. In: Proceedings of the IEEE international confer-
ence on computer vision, pp 5697–5705

 33. Chen Y-L, Hsu C-T, Liao H-YM (2013) Simultaneous tensor
decomposition and completion using factor priors. IEEE Trans
Pattern Anal Mach Intell 36(3):577–591

 34. Yuankai W et al (2018) A fused CP factorization method
for incomplete tensors. IEEE Trans Neural Netw Learn Syst
30(3):751–764

 35. Madathil B, George SN (2018) Twist tensor total variation reg-
ularized-reweighted nuclear norm-based tensor completion for
video missing area recovery. Inf Sci 423:376–397

 36. Mohaoui S, Hakim A, Raghay S (2022) Parallel matrix factori-
zation-based collaborative sparsity and smooth prior for estimat-
ing missing values in multidimensional data. Pattern Anal Appl
25(4):963–980

 37. Zhao X-L et al (2021) Tensor completion via complementary
global, local, and nonlocal priors. IEEE Trans Image Process
31:984–999

 38. Bazerque JA, Mateos G, Giannakis GB (2013) Rank regulariza-
tion and Bayesian inference for tensor completion and extrapola-
tion. IEEE Trans Signal Process 61(22):5689–5703

 39. Kolda TG, Bader BW (2009) Tensor decompositions and applica-
tions. SIAM Rev 51(3):455–500

 40. Comon P, Luciani X, De Almeida ALF (2009) Tensor decompo-
sitions, alternating least squares and other tales. J Chemomet J
Chemomet Soc 23(7–8):393–405

 41. Uschmajew A (2012) Local convergence of the alternating least
squares algorithm for canonical tensor approximation. SIAM J
Matrix Anal Appl 33(2):639–652

 42. Cichocki A, Zdunek R, Amari S (2007) Hierarchical ALS algo-
rithms for nonnegative matrix and 3D tensor factorization. In:

http://arxiv.org/abs/2208.14925
http://arxiv.org/abs/2403.09285
http://arxiv.org/abs/1606.05535

Pattern Analysis and Applications (2024) 27:133 Page 19 of 19 133

International conference on independent component analysis and
signal separation, vol 1(1). Springer, pp 169–176

 43. Kim J, He Y, Park H (2014) Algorithms for nonnegative matrix
and tensor factorizations: a unified view based on block coordinate
descent framework. J Glob Optim 58:285–319

 44. Cichocki A, Phan A-H (2009) Fast local algorithms for large scale
nonnegative matrix and tensor factorizations. IEICE Trans Fun-
dam Electron Commun Comput Sci 92(3):708–721

 45. Tian X, Xie K, Zhang H (2022) A low-rank tensor decomposition
model with factors prior and total variation for impulsive noise
removal. IEEE Trans Image Process 31:4776–4789

 46. Sedighin F, Cichocki A, Phan A-H (2021) Adaptive rank selec-
tion for tensor ring decomposition. IEEE J Sel Top Signal Process
15(3):454–463

 47. Yangyang X et al (2015) Parallel matrix factorization for low-rank
tensor completion. Inverse Probl Imaging 9(2):601–624

 48. Tseng P (2001) Convergence of a block coordinate descent
method for nondifferentiable minimization. J Optim Theory Appl
109:475–494

 49. Bertsekas DP (1997) Nonlinear programming. J Oper Res Soc
48(3):334–334

 50. Razaviyayn M, Hong M, Luo Z-Q (2013) A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization. SIAM J Optim 23(2):1126–1153

 51. Jiang T-X et al (2020) Multi-dimensional imaging data recovery
via minimizing the partial sum of tubal nuclear norm. J Comput
Appl Math 372:112680

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	CP decomposition-based algorithms for completion problem of motion capture data
	Abstract
	1 Introduction
	2 Tensor notations and preliminaries
	2.1 Basic definitions
	2.2 CP decomposition
	2.3 The hierarchical alternating least squares (HALS) algorithm

	3 The completion algorithms
	3.1 MoCap tensor representation
	3.2 CP decomposition for MoCap completion
	3.2.1 Tensor decomposition step
	3.2.2 Tensor completion step

	3.3 Modified CP decomposition for MoCap completion
	3.3.1 Smooth CP decomposition
	3.3.2 Sparse CP decomposition

	3.4 Rank estimation
	3.5 Convergence analysis

	4 Experiments
	4.1 Results and discussion

	5 Conclusion
	References

