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Abstract
Motion capture (MoCap) technology is an essential tool for recording and analyzing movements of objects or humans. How-
ever, MoCap systems frequently encounter the challenge of missing data, stemming from mismatched markers, occlusion, 
or equipment limitations. Recovery of these missing data is imperative to maintain the reliability and integrity of MoCap 
recordings. This paper introduces a novel application of the tensor framework for MoCap data completion. We propose 
three completion algorithms based on the canonical polyadic (CP) decomposition of tensors. The first algorithm utilizes 
CP decomposition to capture the low-rank structure of the tensor. However, relying only on low-rank assumptions may be 
insufficient to deal with complex motion data. Thus, we propose two modified CP decompositions that incorporate additional 
information, SmoothCP and SparseCP decompositions. SmoothCP integrates piecewise smoothness prior, while SparseCP 
incorporates sparsity prior, each aiming to improve the accuracy and robustness of MoCap data recovery. To compare and 
evaluate the merit of the proposed algorithms over other tensor completion methods in terms of several evaluation metrics, 
we conduct numerical experiments with different MoCap sequences from the CMU motion capture dataset.

Keywords MoCap data · Missing markers · Gap-filling · Candecomp/parafac (CP) decomposition · Tensor recovery · 
Smooth CP · Sparse CP

1 Introduction

Motion Capture (MoCap) systems are popular technologies 
used for recording and analyzing the three-dimensional 
movements of individuals or objects by employing special-
ized cameras, sensors, or wearable devices. The advanced 
techniques for capturing and analyzing motion data have 
made motion capture an indispensable tool in various practi-
cal applications within medicine [1, 2], sports sciences [3, 
4], robotics [5–8], etc. Most human MoCap systems use the 
optical motion capture technique, where specialized cameras 
track markers attached to specific joints of the human body. 

These cameras capture the position and orientation of mark-
ers in three-dimensional space, and software is then used to 
reconstruct the skeleton and posture of the human subject.

Despite the use of professional systems and advanced 
software, recorded trajectories of the markers may still suf-
fer from noise or incompleteness due to occlusions, mis-
matched markers, and lighting conditions. For instance, if 
a marker is hidden from all cameras at a specific recording 
time, its trajectory remains incomplete and cannot be accu-
rately recorded. Missing markers during the motion capture 
process leads to gaps in the data, making it challenging to 
have a complete and continuous representation of the motion 
being captured. Notably, the missing markers problem also 
known as the gap-filling problem in MoCap data belongs to 
the broader class of data completion problems. A classical 
approach to addressing this problem is Low-Rank Matrix 
Completion (LRMC), which seeks to recover missing entries 
in a matrix from partial observations [9]. These approaches 
rely on the low-rank structure to capture the underlying 
low-order patterns and relations in the data. The problem 
of missing markers in MoCap data can be seen as a partial 
case of LRMC problem, allowing, e.g., the singular value 
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thresholding algorithm [10] to be used for MoCap data com-
pletion [11, 12].

Improving the recovery of missing markers can be 
achieved by exploring specific properties of human motion. 
For instance, in [13, 14], bone length constraints are intro-
duced to prevent unrealistic skeleton properties. Moreover, 
human motion exhibits temporal smoothness characterized 
by continuous transitions in position, velocity, and accelera-
tion. This observation has led to the development of robust 
matrix completion models that incorporate both low-rank 
properties and temporal smoothness [14–16]. Furthermore, a 
hybrid MoCap completion approach [17] has been proposed, 
combining skeleton constraints with smoothness to maintain 
consistent bone lengths and explore spatial smoothness in 
skeleton sequences. Human motion often exhibits strong 
nonlocal self-similarity, where similar actions are replicated 
across multiple instances. Motivated by this observation, 
[18] introduces a nonlocal low-rank framework. In [19], the 
authors propose hierarchical block-based incomplete MoCap 
data recovery using nonnegative matrix factorization. This 
method decomposes the human skeleton into five blocks, 
treating MoCap sequences as sub-motion chain clips, and 
applies nonnegative matrix factorization to recover miss-
ing markers for each sub-motion chain individually. Low-
rank matrix completion may fail to deliver satisfactory 
performance when the data is subject to complex nonlinear 
changes, such as significant pose variations or varying illu-
mination conditions. To cope with the nonlinear data effec-
tively, [20] proposes a nonlinear matrix completion method 
by approximating low-rank kernel using a multiple kernel 
learning process.

In several practical fields, data inherently possesses a 
multidimensional structure and often can be organized in 
multidimensional arrays. This is typically the case with the 
analysis of MoCap data in which the movements of individu-
als or objects are recorded in three dimensions. Thus, a valu-
able method for studying and analyzing MoCap data is to 
use multilinear algebra, and, in particular, tensors and their 
decompositions. In the context of missing data, tensor com-
pletion techniques have attracted significant attention due to 
their flexibility and broad applicability across various fields.

Analog to the LRMC approach [9], tensor completion 
aims to reconstruct multidimensional data by approximating 
a partially observed tensor using the rank structure of the 
data. Unlike in the matrix case, the definition of the tensor’s 
rank is not well-established. Thus, to characterize the low-
rankness of tensors, various tensor rank definitions, as well 
as their convex relaxations, have been studied. Overall, the 
tensor rank definitions have been proposed based on differ-
ent decomposition methods such as Canonical Polyadic (CP) 
decomposition [21], tucker decomposition [22], and tensor 
train decomposition [23, 24]. Based on these definitions, 
several tensor completion approaches have been proposed. In 

[25], the authors propose the tensor trace norm as a relaxa-
tion of the tucker rank. This is defined by taking the average 
sum of the nuclear norm of the unfolding matrices across all 
dimensions of an observed tensor. In [23], authors propose 
the tensor multi-rank and tubal rank definitions based on 
the tensor tensor product. Besides, a tensor train rank has 
been proposed in [26] for the tensor completion problem. 
The tensor train rank is established by unfolding the ten-
sor along with permutations of modes instead of one model 
versus the rest.

An alternative to minimizing tensor rank directly is tensor 
decomposition methods. Tensor decompositions break down 
a high-dimensional tensor into a series of lower-dimensional 
tensors, facilitating the extraction of meaningful patterns 
and simplifying tensor completion. Various tensor decom-
position techniques have been applied to tensor completion 
problems, including CP decomposition [27, 28], tucker 
decomposition [29], tensor singular value decomposition 
[30, 31], and tensor networks [32]. Each of these methods 
leverages the low-rank property of the tensor to address the 
completion problem.

While the low-rank prior is crucial for effective tensor 
completion, it may not be sufficient to deal with complex 
data. Thus, to address this limitation, several approaches 
incorporate additional prior knowledge [13, 15, 27, 28, 
33–37]. These enhanced methods aim to refine the comple-
tion process by integrating contextual or structural insights 
that complement the low-rank properties, such as manifold 
information, smoothness, sparsity, and spatial or tempo-
ral constraints. For instance, one popular method involves 
regularizing the factor matrices of the tensor decomposi-
tion with the l2 norm [38]. Another approach proposes 
simultaneous tensor decomposition and completion using 
manifold information and the nuclear norm to regularize 
the tucker decomposition. Additionally, a Bayesian CP 
decomposition with mixture priors and an automatic rank 
determination procedure has been proposed, along with 
methods that exploit smoothness priors to constrain the 
decomposition factors, enhancing applicability and robust-
ness. However, these methods often lack comparisons with 
baseline tensor decomposition methods in their reported 
results. This absence of comparative evaluation leaves 
unanswered questions regarding the extent of improve-
ment achieved by these auxiliary priors in the context of 
tensor decompositions for data completion. To bridge this 
gap, it is essential to present a comprehensive framework 
that thoroughly investigates and evaluates both the base-
line tensor decomposition and its modified versions. To 
address the identified gap and demonstrate the robustness 
of tensor completion techniques in MoCap data, this paper 
develops and evaluates three tensor completion algorithms. 
In the first algorithm, we consider the CP decomposition 
to reveal the latent patterns that may be present in the 
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tensor MoCap data. Besides, when Mocap data is subject 
to complex changes, such as significant pose variations, 
the CP decomposition only relies on the low-rank prop-
erty, and may fail to deliver satisfactory results. Therefore, 
given the inherent complexity of MoCap data, we propose 
two modified variations of CP decomposition: SmoothCP 
and SparseCP. These modified decompositions incorporate 
constraints on the factor vectors to enhance the extraction 
of meaningful patterns by leveraging smoothness and spar-
sity properties, respectively.

Smoothness is an essential characteristic of MoCap data, 
which can be effectively utilized to predict missing elements 
more accurately. In the SmoothCP decomposition, we incor-
porate 1D total variation constraints on the factor vectors. 
This approach ensures that the decomposition respects the 
smooth transitions inherent in human motion. Conversely, 
sparsity focuses on identifying and utilizing the most 
informative parts of the data, which is crucial in scenarios 
where only a few significant elements contribute to the over-
all structure. In the SparseCP decomposition, we introduce 
sparsity constraints by applying the l1-norm to the factor vec-
tors. This method guides the decomposition process to pro-
duce sparse factor vectors, highlighting the most informative 
components and reducing redundancy in the decomposition. 
In the experiment section, we evaluate the effectiveness of 
these priors in enhancing the performance of tensor com-
pletion regarding the CP decomposition-based algorithm. 
Briefly, the contributions of this paper are as follows:

• We introduce and demonstrate the application of ten-
sor completion techniques for the gap-filling problem in 
MoCap data.

• We propose three CP-based approaches to address the 
gap-filling problem taking into consideration the com-
plexity of the data.

• We develop three minimization algorithms to solve the 
three completion problems and we study their conver-
gence analysis.

• We evaluate the merit of these algorithms in the experi-
mental section, as well as compare their performance 
with state-of-the-art tensor completion algorithms.

The rest of this paper is organized as follows. After the intro-
duction, in Sect. 2, we introduce the main notations, proper-
ties, and preliminaries used throughout the paper. Then, in 
Sect. 3, we present the proposed tensor completion methods. 
In Sect. 4, we illustrate and discuss the numerical simula-
tions and the comparison between the proposed methods 
over different MoCap sequences from the CMU dataset. 
Finally, we conclude in Sect. 5.

2  Tensor notations and preliminaries

In this section, we present notations and definitions used 
throughout the paper. We also review the CP decomposition 
and the optimization algorithm used to fit the decomposition.

2.1  Basic definitions

The order of a tensor is the number of dimensions. A tensor 
X  of order N and size I1 × I2 ×⋯ × IN is an N dimensional 
array in ℝI1×I2×⋯×IN . Thus, a vector is a first-order tensor and 
a matrix is a second-order tensor. We use the Euler script 
to denote tensors, e.g., X  , bold upper-case letters to denote 
matrices, e.g., X , bold lowercase letters to denote vectors, 
e.g., x , and light lowercase letters to denote scalars, e.g., 
x. The j-th column of the matrix X is denoted as xj . The (
i1, i2,… , in

)
-th element of a tensor X  is denoted as xi1i2…in

 , 
the 

(
i1, i2

)
-th element of a matrix X is denoted as xi1i2 , and 

the (i)-th element of a vector x is denoted as the scalar xi . 
Following [39], we define the notions below.

Definition 1 (The inner product) The inner product of two 
same-sized tensors X,Y ∈ ℝ

I1×I2×⋯×IN is the sum of the prod-
ucts of their entries, i.e.,

Definition 2 (The Frobenius norm) The Frobenius norm of 
tensor X ∈ ℝ

I1×I2×⋯×IN is the square root of the sum of the 
squares of all its elements, i.e.,

Definition 3 (The rank-one tensor) A tensor X ∈ ℝ
I1×I2×⋯×IN 

of order N is rank one if it can be written as the outer product 
of N vectors, i.e.,

where the symbol " ◦ " represents the vector’s outer product. 
This means that each element of the tensor is the product of 
the corresponding vector elements

Definition 4 (Super-diagonal tensor)  A tensor 
X ∈ ℝ

I1×I2×⋯×IN of order N is super-diagonal if

(1)⟨X,Y⟩ = �
i1,…,iN

xi1,…,iN
⋅ yi1,…,iN

.

(2)‖X‖F =

��
i1

�
i2

…
�
iN

x2
i1i2…iN

=
√⟨X,X⟩.

(3)X = a(1)◦a(2)◦⋯◦a(N),

(4)xi1i2⋯iN
= a

(1)

i1
a
(2)

i2
⋯ a

(N)

iN
, for all 1 ≤ in ≤ In.

xi1i2⋯iN
=

{
1 if i1 = i2 = … = iN ,

0 otherwise.
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Definition 5 (The Khatri–Rao product) Given two matrices 
A = [a1, ..., aK] ∈ ℝ

I×K and B = [b1, ..., bK] ∈ ℝ
J×K , their 

Khatri–Rao product is the matching column-wise Kronecker 
product and is denoted by A⊙ B . The result is a matrix of 
size IJ × K defined by

where ⊗ is the Kronecker product. If a and b are vectors, 
then the Khatri–Rao and Kronecker products are identical, 
i.e., a⊗ b = a⊙ b.

Definition 6 (The n-mode tensor-matrix product) The 
n-mode tensor-matrix product of a tensor X ∈ ℝ

I1×I2×⋯×IN 
with a matrix A ∈ ℝJ×In is denoted by X ×n A and is of the 
size I1 ×⋯ × In−1 × J × In+1 ×⋯ × IN . Elementwise,

Definition 7 (The n-mode tensor-vector product) The 
n-mode tensor-vector product of a tensor X ∈ ℝ

I1×I2×⋯×IN 
with a vector v ∈ ℝ

In is denoted by X×nv . The result is of 
order N − 1 , i.e., the size is I1 ×⋯ × In−1× In+1 ×⋯ × IN . 
Elementwise,

Definition 8 (The mode-n matricization) The mode-n matri-
cization (unfolding) of a tensor X ∈ ℝ

I1×I2×⋯×IN , is the oper-
ation of transforming the tensor into a matrix denoted as 
X(n) ∈ ℝ

In×S , where S =
∏N

k≠n
Ik . Thus, the tensor element (

i1, i2,… , iN
)
 corresponds to the matrix element 

(
in, j

)
 , where

Example 1 The mode-1, mode-2, and mode-3 matricizations 
of a third-order tensor X ∈ ℝ

I1×I2×I3 using Matlab notation 
are, respectively,

(5)A⊙ B =
[
a1 ⊗ b1, a2 ⊗ b2, ⋯ , aK ⊗ bK

]
,

(6)
(
X ×n A

)
i1⋯in−1jin+1⋯iN

=

In∑
in=1

xi1i2⋯iN
ajin .

(7)
(
X×nv

)
i1⋯in−1in+1⋯iN

=

In∑
in=1

xi1i2⋯iN
vin .

j = 1 +

N∑

k = 1

k ≠ n

(
ik − 1

)
Jk, with Jk =

k−1∏

m = 1

m ≠ n

Im.

X(1) =
[
x∶11,… , x∶I21, x∶12 … , x∶I22,… , x∶1I3 ,… , x∶I2I3

]
∈ ℝ

I1×I2I3 ,

X(2) =
[
x1∶1,… , xI1∶1, x1∶2 … , xI1∶2,… , x1∶I3 ,… , xI1∶I3

]
∈ ℝ

I2×I1I3 ,

X(3) =
[
x11∶,… , xI11∶, x12∶ … , xI12∶,… , x1I2∶,… , xI1I2∶

]
∈ ℝ

I3×I1I2 .

2.2  CP decomposition

The CP decomposition factorizes multidimensional data, 
or tensors, into a sum of rank-one tensors. For an N-order 
tensor X ∈ ℝ

I1×I2×⋯×IN , we have

where for any n ∈ {1,… ,N} , a(n)
r

∈ ℝ
In stand for the factor (or 

loading) vector and �r are weight parameters. The matrix 
A(n) ∈ ℝ

In×R called the n-th factor (or loading) matrix and refers 
to the combination of the vectors from the rank-one components, 
i.e., A(n) =

[

a(n)1 , a(n)2 ,… , a(n)R

] , � = diag
[
�1,… , �R

]
∈ ℝ

R×⋯×R is a 
super-diagonal tensor, and R is the tensor rank also known as CP 
rank.

Definition 9 (The CP rank) The CP rank of a tensor 
X ∈ ℝ

I1×⋯×IN is the minimum number of rank-1 tensors

2.3  The hierarchical alternating least squares 
(HALS) algorithm

The Alternating Least Squares (ALS) algorithm is a com-
monly used minimization algorithm to obtain the CP 
decomposition of a given tensor X  . The idea is to consider 
the factor matrices and minimize the objective function

The ALS algorithm iteratively optimizes the factor matrices 
A(n) leading to an easy implementation. One major limita-
tion of the algorithm is that it may suffer from slow conver-
gence [40, 41]. An alternative method is to use local cost 
functions whose simultaneous (one-by-one) minimization 
leads to a simple ALS algorithm, called the Hierarchical 
ALS (HALS) algorithm [42]. Instead of updating the fac-
tor matrices {A(n)}N

n=1
 , the algorithm simultaneously updates 

each vector of {{a(n)
r
}N
n=1

}R
r=1

 per iteration. The algorithm is 
a particular case of the Block Coordinates Descent (BCD) 
algorithm [43]. It is developed to deal with the nonnegative 
matrix/tensor factorization models by proposing a class of 
optimized local algorithms [44]. For the CP decomposition, 

(8)X ≈

R∑
r=1

�
r
a(1)
r
◦a(2)

r
◦⋯◦a(N)

r
= [[�;A(1)

,A(2)
,… ,A(N)]],

(9)rank(X) = min
R

{
R ∣ X =

R∑
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r

}
.

(10)min
�,{A(n)}N

n=1

1

2
‖X − [[�;A(1),A(2),… ,A(N)]]‖2

F
.
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the HALS operates by converting the global objective func-
tion for the rank-R tensor to local objective functions for R 
rank-one tensors

where

is the residue for r ∈ {1, ...,R} . The algorithm minimizes the 
above objective function by iteratively updating the follow-
ing subproblems for r ∈ {1, ...,R}

3  The completion algorithms

In this section, we describe the proposed MoCap completion 
algorithms. We first present a tensor representation of human 
MoCap data and then address the MoCap gap-filling problem 
using the three tensor completion frameworks.

3.1  MoCap tensor representation

Motion data is composed of a sequence of frames (poses) and 
each frame is characterized by the positions of markers placed 
on specific parts of the body or joints. Each marker provides 
3D coordinates usually denoted by [x, y, z]. In all the exist-
ent completion methods for MoCap data, the captured motion 
sequence is represented as an m × n matrix M where n = 3p 
is the number of position coordinates for all markers or joints, 
m corresponds to the total number of frames in the motion 
sequence. Thus, each row of the matrix M corresponds to a 
frame in the sequence

Notably, MoCap data is recorded in three dimensions. Thus, 
MoCap data can naturally be modeled as a third-order ten-
sor M ∈ ℝ

m×p×3 where the dimensions correspond to time 

(11)
‖X −

R�
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F

= ‖Xr − �ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

(12)
Xr = X −

R∑

k = 1

k ≠ r

�ka
(1)

k
◦a

(2)

k
◦⋯◦a

(N)

k

(13)
{�r, a

(n)
r
} = arg min

�r ,a
(n)
r

1

2
‖Xr − �ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

n ∈ {1, ...,N}.

(14)M =

⎡⎢⎢⎢⎣

f 1
f 2
⋮

fm

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

x1,1 y1,1 z1,1 ... x1,p y1,p z1,p
x2,1 y2,1 z2,1 ... x2,p y2,p z2,p

⋮ ⋮

xm,1 ym,1 zm,1 ... xm,p ym,p zm,p

⎤⎥⎥⎥⎦
.

(frames), joints (markers), and spatial coordinates (3D coor-
dinates), respectively

where Mx , My , and Mz ∈ ℝ
m×p represent the components 

of the MoCap data along the x, y, and z axes, respectively.

3.2  CP decomposition for MoCap completion

Given an incomplete MoCap tensor M which has gaps due 
to the missing markers problem, we seek a complete tensor 
X  where the missing markers are recovered as accurately 
as possible. In this context, the goal of the CP decompo-
sition is to find a set of R normalized rank-one tensors 
{a(1)

r
◦a(2)

r
◦⋯◦a(N)

r
}R
r=1

 that best approximates X . Normalizing 
the loading factors in CP decomposition offers certain advan-
tages, such as improving the robustness to noise, and prevent-
ing the minimization process from assigning excessively large 
values to some components.

We propose the following MoCap tensor completion using 
CP decomposition

where Ar = �ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
 , Ω is the index set of 

observed entries, and PΩ is the projection of X  on the 
observed set Ω defined by

We consider the indicator function �(⋅) given by

Then, problem (16) can be written as the following convex 
minimization problem

This problem is minimized using the BCD algorithm, where 
we iteratively update the R rank-one tensors {Ar}

R
r=1

 and 
the tensor X  . Each rank-one tensor Ar is updated using the 
HALS algorithm by minimizing local objective functions

M = [Mx,My,Mz],

(15)

min
X,{Ar}

R
r=1

H(X,A1, ...,AR)

= min
X,{Ar}

R
r=1

1

2
‖X −

R�
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

such that PΩ(X) = PΩ(M),

‖a(n)
r
‖2 = 1, n ∈ {1, ...,N}, r ∈ {1, ...,R},

PΩ(X) =

{
xi1,i2,…,iN

if
(
i1, i2,… , iN

)
∈ Ω,

0 otherwise.

�(X) =

{
0 if PΩ(X) = PΩ(M),

∞ otherwise.

(16)

min
X,{Ar}

R
r=1

H(X,A1, ...,AR) + �(X),

such that ‖a(n)
r
‖2 = 1, n ∈ {1, ...,N}, r ∈ {1, ...,R}.
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where Xr is the residue and Cn = {a(n)
r

∈ ℝ
In � ‖a(n)

r
‖2 = 1} 

is the set of unit vectors. At each iteration of the HALS 
algorithm, the objective function is minimized for a single 
vector a(n)

r
 while fixing all other vectors. The completion pro-

cess consists of two iterative steps. Initially, the algorithm 
approximates the CP decomposition of the MoCap tensor. 
This step involves optimizing the factor vectors hierarchi-
cally, where each factor vector is updated while keeping the 
others fixed

where

is the tensor decomposition error. The second step involves 
completing the gaps in the given tensor based on the 
obtained CP decomposition by minimizing the convex 
problem

3.2.1  Tensor decomposition step

This step focuses on fitting the CP decomposition using the 
HALS algorithm. In this process, each rank-one tensor Ar , 
undergoes hierarchical updates to its factor vectors a(n)

r
 and 

the associated parameter �r.
Updating the factor vectors {a(n)

r
}N
n=1

To update each factor vector a(n)
r

 , we use the mode-n matri-
cization version of problem (17)

(17)

min
�r ,{a

(n)
r ∈Cn}

N
n=1

F(Xr,�r, a
(n)
r
)

= min
�r ,{a

(n)
r ∈Cn}

N
n=1

1

2
‖Xr − �ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

(18)

{Ar}
R
r=1

=

⎧
⎪⎪⎨⎪⎪⎩

a(n)
r

= argmin
a
(n)
r ∈Cn

F(Xr,�r, a
(n)
r
), n ∈ {1, ...,N},

�r = argmin
�r

F(Xr,�r, a
(n)
r
),

Xr ← E + �ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
,

E =X −

R∑
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r

=Xr − �ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r

(19)

X = argmin
X

1

2
‖X

−

R�
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
+ �(X).

where {a
r
}T
⊙−n

= [a(N)
r
]T ⊙ ...⊙ [a(n+1)

r
]T ⊙ [a(n−1)

r
]T ⊙ ...⊙ [a(1)

r
]T , 

(⋅)T refers to the transpose operator, and X(n)
r

 is the mode-n 
matricization of the tensor Xr . Minimizing the objective 
function for each vector a(n)

r
 , n ∈ {1, ...,N} , which is a dif-

ferentiable function requires setting the gradient at zero

where {ar}T⊙−n
{ar}⊙−n

= {aT
r
ar}⊙−n

= 1 . Thus, the closed-
form solution is given as

where PCn
(⋅) is the projection mapping onto Cn , i.e., the 

normalization defined by PCn
(u) = u∕‖u‖2 . The term 

X(n)
r
{ar}⊙−n

 can also be expressed using either the tensor 
vector product

where {ar} = {a(1)
r
, ..., a(N)

r
} and ×−n is a short notation of the 

multiplication of tensor Xr by all the vectors but a(n)
r

 . Or by 
using the tensor matrix product

where Vec is the operator that stacks the columns of a tensor 
into a column vector.

Updating the parameter �r After updating the factor vec-
tors {a(n)

r
}N
n=1

 , we update the parameter �r by minimizing the 
following strictly quadratic function

(20)

a(n)
r

= argmin
a
(n)
r ∈Cn

F(Xr,�r, a
(n)
r
)

= argmin
a
(n)
r ∈Cn

1

2
‖Xr − 𝜆ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

= argmin
a
(n)
r ∈Cn

1

2
‖X(n)

r
− 𝜆ra

(n)
r
{ar}

T
⊙−n

‖2
F
,

(21)

∇
a
(n)
r
F(Xr,�r, a

(n)
r
) = 𝜆rX

(n)
r
{ar}⊙−n

− 𝜆2
r
a(n)
r
{ar}

T
⊙−n

{ar}⊙−n

= 𝜆rX
(n)
r
{ar}⊙−n

− 𝜆2
r
a(n)
r

= 0,

(22)a(n)
r

= PCn

(
X(n)
r
{ar}⊙−n

𝜆r

)
,

X(n)
r
{a

r
}⊙−n

= X
r
×1a

(1)
r

⋯×
n−1a

(n−1)
r

×
n+1a

(n+1)
r

⋯×
N
a(N)
r

= X
r
×−n{ar},

X(n)
r {ar}⊙−n

= Vec
(

r ×1 [a(1)r ]T ⋯ ×n−1 [a(n−1)r ]T ×n+1 [a(n+1)r ]T ⋯ ×N [a(N)r ]T
)

= Vec
(

r ×−n {ar}T
)

,
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Setting the gradient of the function with respect to �r to zero

yields to the following closed-form solution

3.2.2  Tensor completion step

Once we update the CP decomposition, we turn into the 
second step to recover the MoCap tensor X  by solving the 
minimization problem (19) which has the following solution

where Ωc is the complement of Ω.

3.3  Modified CP decomposition for MoCap 
completion

The modified CP decomposition for the completion problem 
is given as

where R ∶ ℝ
N
→ ℝ refers to the regularization function 

and {�n}Nn=1 are parameters controlling the level of the con-
straint on each factor vector. Then, under the framework of 
the HALS algorithm, problem (27) is formulated as

(23)

�r = argmin
�r

F(Xr, �r, a
(n)
r
)

= argmin
�r

1

2
‖Xr − �ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F
,

= argmin
�r

�2
r

2
− �r⟨Xr, a

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩.

(24)
∇�r

�
�2
r

2
− �r⟨Xr, a

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩
�

= �r − ⟨Xr, a
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩ = 0,

(25)�r = ⟨Xr, a
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩.

(26)X = PΩc

(
R∑
r=1

�ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r

)
+ PΩ(M),

(27)

min
X,{Ar}

R
r=1

H(X,A1, ...,AR)

+ �(X) +

R�
r=1

N�
n=1

�nR(a(n)
r
),

such that ‖a(n)
r
‖2 = 1, n ∈ {1, ...,N}, r ∈ {1, ...,N},

Similar to (16), problem (28) is carried out in two steps: 
tensor decomposition and tensor completion steps. The com-
pletion step remains the same, only the first step changes 
entailing the solution of the following minimization problem

To update the factor vector a(n)
r

 for n ∈ {1, ...,N} in problem 
(29), we use the Projected Gradient Descent (PGD) method.1 
The PGD is an iterative process that performs a descent gra-
dient/subgradient step and then projects the result to satisfy 
the constraints. To compute the projection effectively, the 
constraints are required to be sufficiently simple. Let f(x) be 
a differentiable (not necessarily convex) continuous function 
over a convex set Q, for k = 1, 2, ...,Kmax , the PGD method 
consists of gradient descent and projection steps

where � is a positive stepsize, ∇f (xk) is the gradient of the 
function f at xk , and PQ(⋅) denotes projection on the convex 
set Q. In the case where the function f is convex and nondif-
ferentiable at some points, the subgradient of the function f 
is used instead of the gradient

where �f (xk) is any subgradient of f at xk.

3.3.1  Smooth CP decomposition

The smoothness prior has been considered in the context of 
matrix MoCap data completion due to the inherent spatial 
and temporal smoothness in motion sequences. Among the 
various smoothness constraints, total variation stands out as 
a successful choice. Thus, we are interested in the following 

(28)

min
X,�r ,{a

(n)
r ∈Cn}

N
n=1

1

2
‖Xr − �ra

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
‖2
F

+ �(X) +

N�
n=1

�nR(a(n)
r
),

such that Xr = X −

R�

k = 1

k ≠ r

�ka
(1)

k
◦a

(2)

k
◦⋯◦a

(N)

k
.

(29)

{�r, a
(n)
r
} = argmin

�r ,a
(n)
r ∈Cn

F(Xr,�r, a
(n)
r
) + �nR(a(n)

r
), n ∈ {1, ...,N},

such that Xr = X −

R∑

k = 1

k ≠ r

�ka
(1)

k
◦a

(2)

k
◦⋯◦a

(N)

k
.

(30)xk+1 = PQ(x
k − �∇f (xk)),

(31)xk+1 = PQ(x
k − ��f (xk)),

1 In this work, the abbreviation PGD refers to both the projected gra-
dient and subgradient descent methods.
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completion problem where the l2-total variation regulariza-
tion is imposed on the factor vectors

where ‖x‖TV refers to the l2-total variation norm of a vector 
x ∈ ℝ

m defined as

In contrast to [28], the factors �k are not involved in the pen-
alty level of the smoothness prior in (32). While involving 
�k in the penalty term provides adaptability, in cases where 
the data exhibits a relatively constant smoothness level, the 
adaptability of �k may not provide a significant advantage. 
Thus, the levels of smoothness of different components 
can be enforced by setting adequate values of regulariza-
tion parameters {�n}Nn=1 . In (32), minimizing each a(n)

r
-sub-

problem involves a differentiable objective function. Thus 
we use the PGD algorithm with gradient descent step (30). 
Therefore, the HALS-based PGD yields the following itera-
tive scheme

where bk is the gradient of the objective function (32) with 
respect to a(n)

r
 at iteration k and � is the gradient descent 

stepsize.

3.3.2  Sparse CP decomposition

We exploit the sparsity constraint over the factor vectors of the 
CP decomposition to encourage the robustness of the decom-
position by focusing on the most informative features. Thus, 
we consider the l1-norm minimization problem

where ‖x‖1 = ∑m

i=1
�xi� is the l1-norm. The objective func-

tions of the {a(n)
r
}N
n=1

 subproblems are convex. Thus, 

(32)

{�r, a(n)r } = argmin
�r ,a

(n)
r ∈Cn

1
2
‖X(n)

r − �ra(n)r {ar}T⊙−n
‖

2
F

+ �n‖a(n)r ‖

2
TV, n ∈ {1, ...,N},

‖x‖TV =

�
m−1�
i=1

�xi − xi+1�2
� 1

2

= ‖Dmx‖2, where

Dm =

⎡
⎢⎢⎣

1 −1

⋱ ⋱

1 −1

⎤
⎥⎥⎦
∈ ℝ

(m−1)×m.

(33)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

for n = 1, ...,N
⎧

⎪

⎨

⎪

⎩

bk = �rX(n)
r {ar}⊙−n

− �2ra
(n),k
r + �nDT

nDna(n),kr ,
a(n),k+1r = a(n),kr − �bk ,
a(n),k+1r = a(n),k+1r ∕‖a(n),k+1r ‖2,

�r = ⟨r , a(1)r ◦a(2)r ◦⋯◦a(N)r ⟩,
r ←  + �ra(1)r ◦a(2)r ◦⋯◦a(N)r ,

(34)
{𝜆r, a

(n)
r
} =argmin

𝜆r ,a
(n)
r ∈Cn

1

2
‖X(n)

r
− 𝜆ra

(n)
r
{ar}

T
⊙−n

‖2
F

+ 𝛼n‖a(n)r
‖1, n ∈ {1, ...,N},

minimizing each a(n)
r

-subproblem is carried out by the PGD 
algorithm (31) with a subgradient descent step. The set of all 
subgradients of the l1-norm denoted by �

�‖ ⋅ ‖1
�
 is given by

The signum function of a vector x ∈ ℝ
m denoted as 

Sgn(x) = [sgn(x1), sgn(x2),… , sgn(xm)]
T  is a subgradient 

of the l1-norm and it is defined as

Therefore, the SparseCP decomposition is obtained by the 
following iterative scheme

The three MoCap data completion algorithms are arranged 
together in Algorithm 1.

3.4  Rank estimation

A required task in the low-rank tensor factorization problem 
is to specify the ranks R ∈ {1,… ,Rmax} since in most cases, 
we do not know the true rank of the given tensor. Therefore, 
different rank-adjusting schemes have been proposed in [24, 
31, 45–47]. We can distinguish between two main rank-adjust-
ing schemes, namely, rank-decreasing and rank-increasing 
schemes. In this work, we use a rank-increasing technique for 
the three algorithms. The rank-increasing starts by R such that 
R ≤ Rmax . Then, we attempt to increase the rank by 1 if both, 
the rank R has not reached the maximum rank and the follow-
ing criterion is met

where � = ‖Et
Ω
‖2
F
 denotes the mean squared error of the ten-

sor decomposition at the current iteration and � is a threshold 
value. When the criterion (36) is reached, it means that the 
current rank is not capturing the complexity or details of the 
data sufficiently. Thus, increasing the rank allows the model 
to be adapted to the complexity of the data and improve its 
performance. 

�
�‖x‖1

�
=
�
v ∈ ℝ

m ∣ v
i
= x

i
∕�x

i
� if x

i
≠ 0,

and v
i
∈ [−1, 1] if x

i
= 0

�
.

(Sgn(x))i = sgn(xi) =

{
xi∕|xi| if xi ≠ 0,

0 if xi = 0.
i = 1,… ,m.

(35)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

for n = 1, ...,N

⎧⎪⎨⎪⎩

bk = 𝜆rX
(n)
r
{ar}⊙−n

− 𝜆2
r
a(n),k
r

+ 𝛼nSgn(a
(n),k
r

),

a(n),k+1
r

= a(n),k
r

− 𝛾bk,

a(n),k+1
r

= a(n),k+1
r

∕‖a(n),k+1
r

‖2,
𝜆r = ⟨Xr, a

(1)
r
◦a(2)

r
◦⋯◦a(N)

r
⟩,

Xr ← E + 𝜆ra
(1)
r
◦a(2)

r
◦⋯◦a(N)

r
.

(36)
|� − �old|

|�| ≤ �,
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Algorithm 1  The three MoCap completion algorithms.
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3.5  Convergence analysis

The convergence of HALS and HALS-based PGD
To guarantee the convergence of Algorithm 1, we first 

need to ensure the convergence of Algorithm 1.1, 1.2, and 
1.3 used to fit the CP, SmoothCP, and SparseCP decomposi-
tions respectively. For Algorithm 1.1, the HALS algorithm 
is used to fit the CP decomposition. The HALS is a spe-
cial case of the BCD algorithm, and its convergence can be 
obtained from [48, 49]. Briefly, the objective function F in 
problem (17) is a continuously differentiable and convex 
function, and each subproblem of (17) has a closed-form 
solution. Thus, the sequence generated by the HALS algo-
rithm converges to a stationary point, see [49, Proposition 
7.2.1]. For both Algorithm 1.2, and 1.3, HALS-based PGD 
is used to fit the SmoothCP and SparseCP decompositions. 
The HALS-based PGD method can be viewed as the Block 

Successive Upper bound Minimization (BSUM) algorithm 
[50], and it converges since (32) and (34) satisfy the assump-
tions of [50, Theorem 2].

The convergence of Algorithm 1
The convergence can be shown using [48, Theo-

rem 4.1(b)]. To do this, first, note that the objective functions 
in (16) and (27) are the sum of convex and differentiable 
functions. Thus, they are continuous and have a compact 
level set, see [49, Proposition B.9], and by [48, Lemma 3.1], 
are regular. Second, the uniqueness of the solution of sub-
problems of (17), (32), and (34) is guaranteed by the conver-
gence of HALS and HALS-based PGD algorithms. There-
fore, according to [48, Theorem 4.1(b)], every limit point of 
the sequence generated by each algorithm of Algorithm 1 
is a stationary point of its associated optimization problem.

Fig. 1  Masks: a random gaps. 
b Random missing entries 
(uniformly distributed)

(a) (b)

Table 2  The RMSE of 
SmoothCP and SparseCP 
versus different values of 
� = [�1, �2, �3]

Methods [.1, .1, .1] [.01, .01, .01] [.001, .001, .001] [.1, .01, 0] [.1, .01, .01] [.001, .001, .01]

SmoothCP 1.991 2.341 2.369 2.639 2.182 2.354
SparseCP 2.448 2.240 2.575 2.425 2.350 2.274

Table 3  The RMSE of 
SmoothCP and SparseCP versus 
different values of �

Methods � = 10−1 � = 10−2 � = 10−3 � = 10−4 � = 10−5 � = 10−6

SmoothCP 3.120 3.000 3.012 2.971 3.341 2.907
SparseCP 2.871 3.350 2.991 3.208 3.050 3.086

Table 1  Motion files from 
CMU used in the experiments

Motion File name Description Frames Markers Frequency

M1 02_01 Walking 343 41 120
M2 64_02 Playing golf: swing 493 44 120
M3 85_02 Breakdance: jump twist 810 41 120
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4  Experiments

In this section, we evaluate the results of the three suggested 
completion algorithms. We first introduce the settings of the 
experiments, including the used data, the gap-filling setting, 
the evaluation metrics, and the parameter setting.Then, we 
illustrate and discuss the results of several tests conducted 
on different motion sequences. We compare the results of 
the proposed algorithms with three recently developed state-
of-the-art tensor completion methods including the tensor 
trace norm-based LRTC (HaLRTC) [25], the smooth Parafac 
(SPC) [28], and the partial sum of the tubal nuclear norm 
(PSTNN) [51]. The MoCap toolbox2 was employed for these 
tests. All experiments were executed in MATLAB (R2018b) 
on a system equipped with an Intel Core i5-10210U CPU @ 
1.60GHz (2.11 GHz) and 8 GB of RAM.

Data: The data used in our experiments is from the online 
CMU human motion database.3 The database contains vari-
ous human motions of several categories including, human 
interaction, physical activities, and sports. We select three 
motion sequences given in Table 1. These motion sequences 
cover different types of motion with varying complexity. In 
all the tests, the MoCap data is represented as a third-order 
tensor S ∈ ℝ

m×p×3.

Gap-filling setting: The completion of MoCap data involves 
recovering gaps that depend on factors such as the length 
of gaps (the number of consecutively missing frames), 
the number of missing markers, and the complexity of the 
motion sequence. Thus, the challenge of gap-filling differs 
significantly from the conventional missing data problem 
studied in other applications such as image processing as 
illustrated in Fig. 1. To effectively address the gap-filling 
issue in MoCap data, it is important to replicate real-world 

Fig. 2  a The RMSE versus R. 
b The convergence of RMSE of 
the three proposed algorithms

(a) (b)

Fig. 3  The visual comparison 
of the completion results for the 
sequence M1 (Walking) with 
the length of gaps set to 50 and 
30 missing markers. Red arrows 
highlight small inaccuracies in 
the recovered markers

(a) Orignal (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

2 https:// github. com/ mocap toolb ox.
3 http:// mocap. cs. cmu. edu/ subje cts. php.

https://github.com/mocaptoolbox
http://mocap.cs.cmu.edu/subjects.php
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Table 4  The comparative 
evaluation of RMSE, AvE, and 
STD for completing the motion 
data M1 (walking) with varied 
numbers of missing markers 
and the length of gaps

The results of the six algorithms HaLRTC, SPC, PSTNN, CP, SmoothCP, and SparseCP are provided for 
each setting. The best two results are highlighted in bold and italic, respectively

Missing 
markers

Methods Length of gaps

20 50 100

RMSE AvE STD RMSE AvE STD RMSE AvE STD

HaLRTC 1.752 1.53e−1 1.75 3.153 4.75e−1 3.15 4.157 8.42e−1 3.37
SPC 0.748 6.86e−2 0.74 1.799 2.53e−1 1.79 4.648 7.59e−1 4.64

10 PSTNN 0.434 3.96e −2 0.43 1.008 1.41e −1 1.00 3.083 5.59e −1 3.07
CP 0.733 6.72e −2  0.73 1.618 2.46e−1 1.61 3.378 6.59e−1 3.37
SmoothCP 0.790 7.19e−2 0.79 1.652 2.24e −1 1.65 3.703 6.74e−1 3.70
SparseCP 0.873 7.77e−2 0.87 1.570 2.26e−1 1.57 2.973 5.66e −1 2.97
HaLRTC 1.704 2.17e−1 1.70 3.100 6.26e−1 3.09 9.160 2.24 9.06
SPC 1.338 1.71e−1 1.33 2.417 4.68e−1 2.41 5.739 1.60 5.73

20 PSTNN 0.711 8.46e −2 0.71 2.212 4.32e −1 2.21 4.581 1.18 4.57
CP 1.152 1.46e−1 1.15 2.249 4.32e −1 2.24 4.583 1.27 4.58
SmoothCP 1.129 1.38e−1 1.12 2.422 4.91e−1 2.42 5.453 1.48 5.45
SparseCP 0.919 1.24e −1 0.92 2.478 5.09e−1 2.47 4.567 1.30 4.56
HaLRTC 2.641 3.76e−1 2.64 4.403 9.82e−1 4.40 15.398 4.62 15.25
SPC 1.410 2.09e−1 1.41 3.393 7.94e−1 3.38 7.969 2.75 7.96

30 PSTNN 1.130 1.50e −2 1.13 3.258 6.79e −1 3.25 8.294 2.49 8.28
CP 1.530 2.26e−1 1.53 3.396 7.87e −1 3.38 7.859 2.69 7.85
SmoothCP 1.375 1.99e −1 1.37 3.607 8.23e−1 3.60 7.023 2.42 7.01
SparseCP 1.670 2.431e−1 1.67 3.556 8.27e−1 3.55 7.093 2.45 7.08

Fig. 4  The visual comparison 
of the completion results for the 
sequence M1 (Walking) with 
the length of gaps set to 100 and 
30 missing markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP
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complexities accurately. Therefore, we intentionally intro-
duce gaps in multiple markers at random locations. The gaps 
in MoCap data are represented as ’Not a Number’ (NaN) 
values, making them easily identifiable. We test different 
scenarios where we increase the missing markers and the 
gap length to evaluate their impact on the three algorithms.

Evaluation metrics: To analyze the performance of each 
algorithm, we use three basic measures: the Root Mean 
Square Error (RMSE), the Average Error (AvE), and the 
Standard Deviation (STD)

where xijk and sijk are the (i, j, k)-th element of the recovered 
motion sequence X  and the ground truth motion sequence 
S , respectively, and n = m × p × 3.

Parameter setting: For all algorithms, the number of itera-
tions Itermax is fixed at 1500. The algorithms also use the 
relative change of two successive reconstructed tensors 
‖X − Xold‖∕‖Xold‖ < 𝜖 with a given tolerance 𝜖 = 10−6 as a 
stopping rule. In the case of SmoothCP and SparseCP, the 
number of iterations Kmax of the PGD algorithm is set to 
1000. The step size � of the gradient descent and the regu-
larization parameters �n for n = 1, 2, 3 are critical for the 
algorithm’s performance. Tables 2 and 3 illustrate the behav-
ior of the SmoothCP and SparseCP algorithms for different 
values of �n and �.

4.1  Results and discussion

In Tables 4, 5, and 6 we summarize the quantitative results 
obtained from the completion of motion sequences (M1, 
M2, M3) by the proposed and the comparative algorithms. 
We evaluate the performance using RMSE, AvE, and STD 
metrics across varying lengths of the gaps (20, 50, 100) and 
numbers of missing markers (10, 20, 30). From the results, 
we observe that when the number of missing frames is small 
(gap length=20 or 50), increasing the number of missing 
markers does not drastically affect the recovery results. In 
contrast, when increasing the length of gaps, the RMSE, 
AvE, and STD increase significantly, especially for motions 

RMSE =

√

√

√

√
1
n

m
∑

i=1

p
∑

j=1

3
∑

k=1
|xijk − sijk|2,

AvE = 1
n

m
∑

i=1

p
∑

j=1

3
∑

k=1
|xijk − sijk|,

STD =

√

√

√

√
1
n

m
∑

i=1

p
∑

j=1

3
∑

k=1

(

(xijk − sijk) − e
)2,

where e = 1
n

m
∑

i=1

p
∑

j=1

3
∑

k=1
(xijk − sijk).

M2 and M3. Increasing the gaps’ length and the number 
of missing markers significantly affects the RMSE, AvE, 
and STD. The gap-filling problem appears more sensitive 
to missing markers’ duration than quantity.

For all algorithms, the recovery results of the walking 
sequence (M1) are more robust than those of the playing 
golf (swing) or breakdance (jump twist) sequences (M2 and 
M3). This can be explained by the fact that simple motions, 
like walking, have repetitive and predictable patterns. Break-
dance, on the other hand, tends to be more complex and 
challenging to recover due to its dynamic nature and sudden 
changes in direction and speed. These dynamic movements 
can result in more jerky changes in the MoCap data. Thus, it 
is important to note that the performance of the completion 
process depends on motion complexity.

When comparing the performance of the six algorithms, 
the PSTNN algorithm demonstrates robust reconstruction 
results across all three motions for short gap lengths, with 
motion M1 exhibiting particularly favorable outcomes. This 
effectiveness can be attributed to PSTNN’s approach of 
directly minimizing the partial sum of the tubal multi-rank, 
which proves more precise in handling missing markers 
with short durations. However, as gap lengths increase, CP-
based algorithms show superior performance over the ten-
sor rank minimization method. For instance, SparseCP and 
SmoothCP consistently yield more accurate results when 
gap lengths extend to 100 and 30 missing markers across 
all three motions.

When comparing the three proposed algorithms, the CP 
algorithm shows favorable results for walking motion M1 
and when the gap lengths are relatively small for motions 
M2 and M3. Furthermore, the modified CP algorithms dem-
onstrate better performance, particularly for more complex 
motions (M2 and M3). For motion M2, the SparseCP model 
exhibits lower RMSE, AvE, and STD, especially as the num-
ber of gaps increases. In the case of motion M3, there is no 
clear distinction in performance between the two algorithms. 
Therefore, we conclude that the CP algorithm effectively 
captures the low-rank property of the data and reconstructs 
the missing markers for regular motions. Conversely, for 
more varied and complex motions, the modified CP decom-
positions handle irregularities more accurately. Thus, we 
can conclude that incorporating additional priors over the 
CP decomposition is valuable and significantly impacts the 
accuracy of data completion.

Additionally, we conduct a visual comparison of the 
completion results of the six algorithms in Figs. 3, 4, 5, 6, 7, 
and 8 for the three motion sequences (M1, M2, M3), respec-
tively. We present the recovered results of different frames 
of each motion sequence with 30 missing markers and (50, 
and 100) consecutive missing frames, respectively. We 
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highlight inaccurately recovered markers using red arrows. 
As expected, the six algorithms perform well in recover-
ing the missing markers for motion M1, as shown in Fig. 3. 
However, for motion sequences, (M2, M3), which involve 

more inconsistent movements, large errors in the recovered 
markers occur when the length of gaps is high. Therefore, 
certain motion details are inaccurately predicted especially 
by HaLRTC and PSTNN, see Figs. 6 and 8. Further, to better 

Fig. 5  The visual comparison 
of the completion results for 
the sequence M2 (Playing golf) 
with the length of gaps set to 50 
with 30 missing markers. Red 
arrows highlight inaccuracies in 
the recovered markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

Table 5  The comparative 
evaluation of RMSE, AvE, 
and STD for completing the 
motion data M2 (Playing golf) 
with varied numbers of missing 
markers and length of gaps

The results of the six algorithms HaLRTC, SPC, PSTNN, CP, SmoothCP, and SparseCP are provided for 
each setting. The best two results are highlighted in bold and italic, respectively

Missing 
markers

Methods Length of gaps

20 50 100

RMSE AvE STD RMSE AvE STD RMSE AvE STD

HaLRTC 1.354 8.97e−2 1.35 2.889 2.61e−1 2.88 7.482 8.86e −1 7.47
SPC 0.692 4.26e−2 0.69 2.266 1.92e −1 2.26 8.936 9.61e−1 8.93

10 PSTNN 0.122 8.54e −3 0.12 2.225 1.76e −1 2.22 8.762 8.70e−1 8.75
CP 0.639 3.61e−2 0.63 2.950 2.39e−1 2.95 10.503 1.43 15.03
SmoothCP 0.673 3.88e−2 0.67 2.604 2.32e−1 2.60 9.652 1.04 9.65
SparseCP 0.539 3.20e −2 0.53 2.363 1.94e−1 2.36 7.529 8.21e −1 7.52
HaLRTC 1.071 1.00e−1 1.07 3.213 4.17e−1 3.21 29.719 4.96 29.62
SPC 0.810 27.31e−2 0.81 2.853 3.55e −1 2.85 10.587 1.81  10.58

20 PSTNN 0.349 2.95e −2 0.34 3.139 3.25e−1 3.13 21.628 3.82 21.54
CP 0.767 6.09e−2 0.67 2.929 3.67e−1 2.92 15.484 2.03 15.48
SmoothCP 0.693 5.72e−2 0.69 3.435 4.21e−1 3.43 12.523 1.95 12.51
SparseCP 0.692 6.08e −2 0.69 2.760 3.37e −1 2.76 13.109 2.03 13.10
HaLRTC 2.567 2.12e−1 2.56 11.749 1.59 11.73 39.634 8.39 39.47
SPC 2.553 2.07e−1 2.55 10.610 1.48 10.60 22.890 4.71 22.88

30 PSTNN 0.793 6.61e −2 0.79 10.282 1.31 10.28 33.435 22.42 33.43
CP 2.302 1.77e −1 2.30 12.544 1.63 12.54 26.490 5.47 26.49
SmoothCP 2.994 2.20e−1 2.99 10.095 1.41 10.09 18.516 3.97 18.50
SparseCP 2.425 1.94e−1 2.24 10.068 1.42 10.06 22.800 4.36 22.79
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illustrate the performance of our completion algorithms 
compared with the other methods, we illustrate in Fig. 9 the 
results obtained from the plots of RMSE versus the frame 
indices of the three motions. In this experiment, we intro-
duce 30 missing markers and gaps of length 100. The curves 
depicting RMSE across all frames demonstrate the effec-
tiveness of the proposed algorithms in handling large miss-
ing gaps. For example, in the second plot (M2), SmoothCP 
consistently exhibits low RMSE values across all frames.

Figure 2a presents the plots of RMSE of the three CP-
based decompositions versus R and the estimation of rank 
R versus iterations. The plots reveal that small values of R 
are insufficient to accurately fit the decomposition, result-
ing in notably high RMSE values. This is because a low 
R restricts the model’s capacity to capture the underlying 
structure of the data. To overcome this issue, the experi-
ments were conducted with a very large Rmax . This large 
initial value of Rmax ensures that the criterion (36) controls 

Fig. 6  The visual comparison 
of the completion results for 
the sequence M2 (Playing golf) 
with the length of gaps set to 
100 with 30 missing markers. 
Red arrows highlight inaccura-
cies in the recovered markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

Fig. 7  The visual comparison 
of the completion results for the 
sequence M3 (Breakdance) with 
the length of gaps set to 50 and 
30 missing markers. Red arrows 
highlight inaccuracies in the 
recovered markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP
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the rank estimation process, incrementally adjusting the 
rank until the method converges. We illustrate in Fig. 2b 
the convergence behavior of three algorithms based on 
RMSE values across iterations. We observe that the RMSE 
keeps decreasing as the iteration number increases, which 
demonstrates the numerical stability and the convergence 
of the proposed algorithm.

Table 7 provides the running times of the six algorithms 
for recovering the three motion sequences. Notably, the 
HaLRTC algorithm demonstrates the most efficient per-
formance, emerging as the fastest option among the tested 
methods. Following HaLRTC, the PSTNN algorithm also 
exhibits commendable speed. Regarding the CP-based 
algorithms, the CP algorithm itself shows a relatively 
quick execution time, and the SparseCP algorithm closely 
follows with comparable running times.

5  Conclusion

This study expands the application scope of tensor comple-
tion techniques and offers promising avenues for enhancing 
data quality in MoCap systems. We address the gap-filling 
problem in MoCap data by introducing three completion 
algorithms based on the tensor CP decomposition: the CP, 
SmoothCP, and SparseCP algorithms. The experimental 
results demonstrate the significant impact of incorpo-
rating priors in the CP decomposition process. Moreo-
ver, the results reveal that the SmoothCP and SparseCP 
algorithms, outperform or achieve comparable results to 
existing state-of-the-art tensor completion methods. For 
instance, while the PSTNN method excels in accurately 
completing small gaps, SmoothCP and SparseCP demon-
strate superior accuracy in handling larger gaps, especially 

Fig. 8  The visual comparison 
of the completion results for the 
sequence M3 (Breakdance) with 
the length of gaps set to 100 and 
30 missing markers. Red arrows 
highlight inaccuracies in the 
recovered markers

(a) Original (b) Incomplete (c) HaLRTC (d) SPC

(e) PSTNN (f) CP (g) SmoothCP (h) SparseCP

Fig. 9  The RMSE values of 
all recovered frames and their 
average (Average_HaLRTC, 
Average_SPC, Average_PSTN, 
Average_CP, Average_
SmoothCP, Average_SparseCP) 
for three MoCap data obtained 
by the six algorithms. The gap 
length is set to 100 with 30 
missing markers. From left to 
right, the recovered results are 
for M1, M2, and M3, respec-
tively

M1 M2 M3
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for more complex data scenarios. However, the current 
algorithms primarily focus on single-subject scenarios and 
may not perform as well in multi-subject environments. In 
future work, we aim to extend the proposed algorithms to 
more challenging scenarios involving multiple individu-
als, such as couples dancing. Additionally, we will explore 
applying multiple regularization techniques on the tensor 
decomposition factors to enhance performance in these 
more challenging contexts.

Funding Open access funding provided by Örebro University. Carl 
Tryggers Stiftelse supported the first author’s work under Grant CTS 
22:2196. The Swedish Research Council (VR) supports the second 
author’s work under Grant 2021-05393.

Declarations 

Conflict of interest The authors have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Table 6  The comparative 
evaluation of RMSE, AvE, 
and STD for completing the 
motion data M3 (Breakdance) 
with varied numbers of missing 
markers and length of gaps

The results of the six algorithms HaLRTC, SPC, PSTNN, CP, SmoothCP, and SparseCP are provided for 
each setting. The best two results are highlighted in bold and italic, respectively

Missing 
markers

Methods Length of gaps

20 50 100

RMSE AvE STD RMSE AvE STD RMSE AvE STD

HaLRTC 1.440 9.22e −2 1.43 4.484 3.48e −1 4.47 13.204 1.37 13.19
SPC 2.291 1.25e−1 2.29 5.219 4.06e−1 5.21 14.295 1.51 14.28

10 PSTNN 1.205 6.24e −2 1.20 5.210 3.92e −1 5.20 13.308 1.38 13.29
CP 2.013 1.237e−1 2.01 6.924 4.91-1 6.91 14.989 1.56 14.98
SmoothCP 1.687 9.36e−2 1.68 5.893 4.40e−1 5.89 9.309 1.13 9.30
SparseCP 1.749 9.25e−2 1.74 5.467 4.24e−1 5.467 11.463 1.11 11.46
HaLRTC 1.990 1.75e −1 1.99 7.127 7.51e −1 7.11 30.693 4.26 30.63
SPC 2.214 1.87e−1 2.21 8.120 8.87e−1 8.11 19.356 2.72 19.35

20 PSTNN 1.678 1.22e −1 1.67 10.071 1.03 10.05 21.307 3.11 21.27
CP 2.481 2.00e−1 2.48 8.313 9.09e−1 8.11 22.944 3.12 22.93
SmoothCP 2.728 2.15e−1 2.72 7.042 7.87e −1 7.04 18.052 2.71 18.04
SparseCP 2.729 2.08e−1 2.48 8.324 9.55e−1 8.32 16.604 2.57 16.60
HaLRTC 2.555 3.24e −1 2.55 9.762 1.33 9.75 41.528 7.61 41.44
SPC 3.324 3.26e−1 3.32 11.835 1.51 11.83 26.635 5.09 26.63

30 PSTNN 2.550 2.28e −1 2.55 12.472 1.70 12.46 38.151 6.84 38.04
CP 3.536 3.48e−1 3.32 12.508 1.62 12.50 28.738 5.34 28.70
SmoothCP 3.681 3.45e−1 3.68 10.885 1.58 10.88 25.877 4.91 25.85
SparseCP 3.177 3.28e−1 3.17 9.547 1.39 9.54 24.748 4.82 24.74

Table 7  The CPU time (in min) 
of the six algorithms for (M1, 
M2, M3) sequences

Motion Number of 
frames

HaLRTC SCP PSTNN CP SparseCP SmoothCP

M1 343 0.002 0.951 0.018 0.557 0.927 4.775
M2 493 0.002 1.371 0.022 0.917 1.328 7.335
M3 810 0.005 2.102 0.031 1.175 1.709 17.639

http://creativecommons.org/licenses/by/4.0/
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